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SUMMARY
A key issue for research onCOVID-19 pathogenesis is the lack of biopsies frompatients and of samples at the
onset of infection. To overcome these hurdles, hamsters were shown to be useful models for studying this
disease. Here, we further leverage the model to molecularly survey the disease progression from time-
resolved single-cell RNA sequencing data collected from healthy and severe acute respiratory syndrome co-
ronavirus 2 (SARS-CoV-2)-infected Syrian and Roborovski hamster lungs. We compare our data to human
COVID-19 studies, including bronchoalveolar lavage, nasal swab, and postmortem lung tissue, and identify
a shared axis of inflammation dominated bymacrophages, neutrophils, and endothelial cells, which we show
to be transient in Syrian and terminal in Roborovski hamsters. Our data suggest that, following SARS-CoV-2
infection, commitment to a type 1- or type 3-biased immunity determines moderate versus severe COVID-19
outcomes, respectively.
INTRODUCTION

For coronavirus disease 2019 (COVID-19), caused by infection

with severe acute respiratory syndrome coronavirus 2 (SARS-

CoV-2), a range of cellular and molecular processes have been

associated with the first acute disease phase.1,2 Among them,

innate immunity responses particularly have been shown to be

essential in modulating severe/critical COVID-19, ultimately

leading to an overly exacerbated inflammatory state and the pro-

duction of proinflammatory cytokines.3–9 This has been exten-
Cell Reports 43, 114328,
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sively described for pulmonary macrophages10,11 but also for

neutrophils, which contribute to disease severity through throm-

botic complications caused by NETosis.12,13

Animal models have been essential in the study of

COVID-1914,15. Hamsters have been particularly useful as they

canbe readily infected by the sameSARS-CoV-2 variants as hu-

mans.16,17 A key advantage of animal models is that samples

can be taken from the earliest time point after infection—unlike

patient samples, which are typically collected at least 1 week

post infection due to incubation times and study enrollment.
June 25, 2024 ª 2024 The Authors. Published by Elsevier Inc. 1
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Furthermore, animal models allow for investigation of samples,

such aswhole lung tissue, that cannot be obtained fromhumans

due to medical and ethical constraints, thus allowing re-

searchers to identify early processes of innate immunity that

are fundamental in determining a mild or severe COVID-19

course and to longitudinally study disease progression.

Here, we provide a comprehensive single-cell RNA sequencing

(scRNA-seq) study of the dynamic cellular and molecular

pulmonary landscape underlying different COVID-19 outcomes.

Specifically, based on the observations that Syrian hamsters

(Mesocricetus auratus) experience a moderate course of disease,

whereas Roborovski hamsters (Phodopus roborovskii) suffer

from severe to lethal COVID-19,16,18 we established a time-

resolved resource of scRNA-seq data collected from healthy

and SARS-CoV-2-infected lung tissue of both hamster species,

which we extensively compared to published human data. Using

a range of analysis methods, including post hoc interpretation

methods in cell-type-specific diffusion map latent spaces, we

found neutrophils and endothelial cells to be likely instrumental

in regulating severe courses of COVID-19, and we identified

expression programs that associate with progressive endothelial

damage.

RESULTS

Tracking cellular changes throughout SARS-CoV-2
infection
To identify the cells and early molecular markers that regulate

COVID-19 disease severity, we jointly analyzed pulmonary

scRNA-seq time-course data from two different hamster species

modeling moderate and severe COVID-19. Specifically, we re-

processed our previously published data for Syrian hamsters19

and generated de novo Roborovski hamster scRNA-seq data-

sets for this study, which we further compared to publicly avail-

able human data20–22 (Figure 1).

Syrian hamsters develop moderate COVID-19 and recover

from infection28; therefore, analysis time points range from un-

infected ‘‘naive’’ control animals (0 days post infection [dpi]) to

early onset (2 dpi) over acute phase of infection (3 and 5 dpi) to

recovery at 14 dpi. Roborovski hamsters develop an overall
Figure 1. The single-cell landscape of SARS-CoV-2-infected lungs

(A) Study design outlining hamster data used in this study. Syrian andRoborovski h

SARS-CoV-2 (13 104 pfu or 13 105 pfu SARS-CoV-2 variant B.1, as indicated). S

data from lung tissue collected at 0 (naive, uninfected controls), 2, 3, 5, and 14 day

replicates 3 4 time points = 15). Additionally, Roborovski hamsters were treate

generated from lung tissue collected at 0 (naive, uninfected controls), 2, and 3 d

animals total.

(B) Integrated uniform manifold approximation and projection (UMAP) embedding

cell type.

(C) Cell proportions per hamster species and virus dose colored by cell type. Ea

center outward.

(D) As in (C), but for human datasets and with rings corresponding to COVID-19

(E) Selected significant gene sets (p < 0.05) from gene set enrichment analysis (G

control samples across datasets. Color corresponds to normalized enrichment sc

of Genes and Genomes (KEGG)24–26 and MSigDB Hallmarks.27

(F) Inflammatory response scores (Hallmark gene set, MSigDB; see STARMethod

and naive samples.

(G) As in (F), but for human datasets split by COVID-19 status.

(F and G) Boxplots: box represents quartiles; line represents median; whiskers r
more severe course of disease, with fulminant pneumonia

when infected with 1 3 105 plaque-forming units (pfu) and

with less striking but still considerable COVID-19-like disease

when infected with 1 3 104 pfu of SARS-CoV-2. Time-course

data comprise naive (0 dpi) and acute phase (2 and 3 dpi), as

severe course hamsters do not recover from disease and reach

humane endpoint criteria from 3 dpi onward (Figure 1A). Objec-

tive clinical signs of SARS-CoV-2 infection are dominated by

weight loss in Syrian hamsters19 but include more severe signs

of disease such as drop of body temperature as well as

reduced movement and fur care up to the point of lethargy in

Roborovski hamsters that experience a severe course of infec-

tion (Figure S1A, Trimpert et al.18). scRNA-seq hamster data-

sets displayed high quality and little variation across replicates

(Figures S1B and S1C), enabling us to identify all major cell

types of the lungs (Figure 1B), including the primary target of

SARS-CoV-2: alveolar type 2 (AT2) cells.29 In addition, we

established a customized data preprocessing pipeline (see

STAR Methods) that allows the recovery of many neutrophils

that are typically discarded during filtering steps. Virus se-

quences were enriched in professional phagocytes (macro-

phages, neutrophils) (Figure S1D).

In order to relate the cellular composition of infected hamster

lungs to humanCOVID-19 patients, we collected public scRNA-

seq data from human nasal swab,20 bronchoalveolar lavage

(BAL) fluid,21 and postmortem lung tissue22 samples. Direct

comparison was hampered by different sample types, time of

sampling, and variable quality of human single-cell datasets

generally containing a lower complexity of cell types. Neverthe-

less, we observed shared COVID-19-specific trends. This

particularly includes neutrophils, for which the proportion

increased after infection across species and sample types,

with the exception of postmortem lung tissue, for which no neu-

trophils could be detected (Figures 1C and 1D). The increase in

neutrophils was most pronounced in critical/severe human pa-

tients and Roborovski hamsters irrespective of virus dose,

compared to a weaker rise in patients with mild/moderate

COVID-19 and Syrian hamsters. Furthermore, T and natural

killer (NK) cell proportions increased in human nasal swab and

BAL-fluid samples after infection and Syrian hamsters toward
amsters were collected naively (uninfected, control animals) or challengedwith

yrian hamster dataset was taken fromNouailles et al.,19 comprising scRNA-seq

s post infection (dpi) with 13 105 pfu SARS-CoV-2 (n = 3 control animals + n = 3

d with either 1 3 104 pfu or 1 3 105 pfu SARS-CoV-2, and scRNA-seq data

pi (n = 3 control animals + 3 replicates 3 2 dosages 3 2 time points = 15); 30

of Syrian and Roborovski scRNA-seq samples with individual cells colored by

ch ring corresponds to a time point after infection in ascending order from the

status.

SEA)23 performed on genes differentially expressed in infected (2 and 3 dpi) vs.

ore (NES) and dot size to�log10(q value). Gene sets from Kyoto Encyclopedia

s) across cell types in Syrian and Roborovski hamsters in infected (2 and 3 dpi)

epresent quartiles plus 1.5 times interquartile range; outliers not shown.

Cell Reports 43, 114328, June 25, 2024 3



A

D

C

B

(legend on next page)

4 Cell Reports 43, 114328, June 25, 2024

Article
ll

OPEN ACCESS



Article
ll

OPEN ACCESS
5 dpi. This was not observed in Roborovski hamsters, which

might be due to the lack of corresponding samples from later

stages of infection.

Beyond changes in cell frequency, we sought to identify cell

types most strongly reacting to the infection. We therefore per-

formed a global pathway enrichment analysis and found inflam-

matory genes to be highly enriched following SARS-CoV-2 infec-

tion throughout all hamster and human datasets (Figures 1E and

S1E; see STAR Methods). In both hamster species, neutrophils

showed the strongest inflammatory activity among all cell types

at the early onset and acute phase of infection (Figure 1F), fol-

lowed by macrophages. This finding also applied to human

BAL fluid and nasal swab (Figure 1G). Moreover, we found that

endothelial cells were strongly affected by the infection in lung

tissues, with Roborovski hamsters having a markedly higher

inflammation score than their Syrian hamster counterparts. Un-

like BAL fluid and nasal swab, human postmortem lung tissue

contained endothelial cells. However, data quality was overall

low in this sample type with absence or extremely weak pres-

ence of detectable molecular signals. As a result, the feasibility

of conducting further molecular investigation using this sample

type was limited (Figure 1G).

SARS-CoV-2 infection causes cellular disbalance of
innate immune cells
Innate immune cells in patients and animal models reacted

strongly to SARS-CoV-2 infection, both in terms of composition

and inflammatory gene expression profiles.We thus investigated

these cells at higher resolution in lungs (Figure 2A). By reintegrat-

ing and subclustering the respective cell populations, we were

able to identify neutrophils and NK cells using canonical marker

expression, in addition to four different subtypes of monocytes/

macrophages including interstitial macrophages (IMs), mono-

cytic macrophages (MoMs), alveolar macrophages (AMs), and

Treml4+ monocytes.19

We forewent direct comparison of cell numbers per lobe be-

tween Syrian and Roborovski hamsters due to different animal

and, consequently, lung sizes (Figure 2B). Overall, pulmonary

numbers of IMs, MoMs, NK cells, and neutrophils increased

significantly (p < 0.05) in both species during infection. In Syrian

hamsters, IMs, MoMs, and NK cell numbers peaked at 5 dpi,

whereas the highest neutrophil numbers were detected at

2 dpi (Figure 2B). Due to the short observation window, resolu-

tion of innate cellular responses was not observed in Roborovski

hamsters (Figure 2B). To further identify dominating immune cell

types and for direct comparison between related species, we
Figure 2. Disproportionate innate immune cell response throughout S

(A) UMAP embedding of innate immune cells. Subclustering identified four distin

(B) Total number of cells per selected cell type in lung lobe across dpi, split by

indicated by color. Test for difference in distribution across samples (n = 3; one-w

*p < 0.05, **p < 0.01.

(C) Relative numbers of cell types as shown in (B). Additional test for difference in

x < 0.05, xx < 0.01, xxx < 0.001, xxxx < 0.0001.

(D) Representative histopathological findings in Syrian and Roborovski hamsters

(black arrows) in Syrian hamsters (top) than Roborovski hamsters (bottom). The n

both species (see also Figure S7 for histopathological examination of neutrophils

H&E stain, original magnification = 600-fold or 1,000-fold (inserts); scale bars, 20
tracked cellular proportions, which reflect local proliferation

and cellular influx (Figure 2C). IM proportions increased fastest

(2 dpi, �6%) upon high-dose infection of Roborovski hamsters,

but they remained at similar levels by 3 dpi. In Syrian hamsters,

IMs peaked by far highest, with�15% among lung cells at 5 dpi,

yet resolved close to baseline levels by 14 dpi. MoM proportions

were high (�11%) in naive (0 dpi) Syrian hamsters, yet they

significantly increased (p = 0.035) to �16% by 3 dpi. Similarly,

MoMs increased significantly (p = 0.045) upon high-dose infec-

tion in Roborovski hamsters from �2% to �7% by 3 dpi. In

contrast, the proportion pattern for NK cells and neutrophils

differed between species. While NK cells significantly increased

by 2-fold at 3 dpi compared to 0 dpi (p = 0.0027) and peakedwith

�7% at 5 dpi (p = 0.008) in Syrian hamsters, SARS-CoV-2 infec-

tion did not trigger an increase in NK cell frequencies in Robor-

ovski hamsters. Frequencies of neutrophils, however, increased

significantly in Roborovski hamsters from �2% in naive animals

to �15% and �20% at 2 dpi upon low- and high-dose infection

(p = 0.023), respectively. Notably, only upon high-dose infection

did Roborovski hamsters maintain high neutrophil frequencies at

3 dpi. Syrian hamsters had higher baseline proportion of neutro-

phils (�10%). However, neutrophils only modestly increased to

�17% at 2 dpi, and had already started resolving at 3 dpi to

baseline levels (Figure 2C). In contrast, AMs and Treml4+ mono-

cytes did not respond as strongly to infection (Figures S2A

and S2B).

Histopathological examination revealed slightly higher numbers

of cells consistent with macrophages in Syrian compared to Ro-

borovski hamsters at 2 and 3 dpi despite similarly high infectious

dose (Figure 2D). Alveolar wall necrosis in Roborovski hamsters

was generally more apparent when compared to Syrian

hamsters at both time points, particularly at 3 dpi. Notably, Syrian

hamsters developed the first signs of epithelial cell proliferation

and tissue regeneration at 3 dpi, resulting in a markedly higher

density of parenchymal cells and thicker alveolar walls when

compared to themore damaged and necrotic alveolarwalls inRo-

borovski hamsters (Figure 2D).

Different cell-mediated immune programs are activated
upon infection
The observed differences in innate immune cell composition

upon infection indicate that different immunological programs

are activated in Syrian and Roborovski hamsters. Innate and

adaptive cell-mediated effector immunity can be discriminated

into three types.30 Type 1 immunity is directed toward intra-

cellular pathogens and achieves this primarily through the
ARS-CoV-2 infection

ct types of macrophages.

Syrian and Roborovski hamsters and additionally by virus dose for the latter,

ay ANOVAwith Dunn post hoc test) against corresponding uninfected samples.

distribution, as described in (B), and across hamster types within time points.

at 2 and 3 dpi. Comparison showing more cells compatible with macrophages

umbers of infiltrating neutrophils (open arrowheads) appeared to be similar in

). Hamster lungs at 2 (left) and 3 (middle) dpi or mock infected with PBS (right),

mm. Infection with 1 3 105 pfu SARS-CoV-2.

Cell Reports 43, 114328, June 25, 2024 5
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Figure 3. Roborovski and Syrian hamsters commit to different types of immunity

(A) Normalized gene expressions of selected immunity-related TFs at 2 and 3 dpi for shown hamster species and virus dose. Integrated UMAP embeddings as in

Figure 1B with relevant cell types showcased in the first row.

(B) Sample-wise log2 fold changes of normalized gene expression with respect to corresponding uninfected samples for genes in (A) after pseudobulking T cell,

NK cell, and ILC2 clusters. The p values of t tests for difference in significance across samples (n = 3) are marked with *p < 0.05, **p < 0.01, or ns (not significant).

(C) Averaged normalized expression of immunity-related genes for all cells across time colored by hamster species and virus dose. Transparent areas show 95%

confidence intervals computed by bootstrap sampling.
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activation of macrophages and cytotoxic effector cells. Type 2

immunity targets helminths and stimulates mucus production

and activation of mast cells, eosinophils, and basophils. Type

3 immunity is directed toward extracellular pathogens such as

bacteria or fungi. Its effectormodules trigger epithelial barrier de-

fense and neutrophil recruitment.
6 Cell Reports 43, 114328, June 25, 2024
In contrast to accessory cells, such as neutrophils and macro-

phages,which lack intrinsic specificity andare recruited topartic-

ipate in a given immune response, NK cells, innate lymphoid cells

(ILCs), and T cells express type-defining transcription factors

(TFs). We therefore examined these cell types in the single-cell

data in order to identify the dominant type of immunity
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(Figures 3A and 3B). In accordance with preferential NK cell

recruitment, we observed an increase of type 1 immunity-associ-

ated TF expression (Eomes, Tbx21)31 in lungs of Syrian hamsters,

whichwas largely absent or weaker in Roborovski hamsters (Fig-

ure 3B). The expression of these markers was confined to NK

cells and partially toCD4+ T cells (Figure 3A). Next, to gain deeper

insights into a potential type 1 versus type 3 immunity bias, we

visualized selected effectormolecules, key cytokine and immune

regulatory genes across time and all cell types, to further evaluate

the induced immune type (Figures 3C and S3A). The expression

of Eomes clearly increased in Syrian until 5 dpi, while this trend

was entirely absent in Roborovski hamsters. Additionally, the

expression of typical cytotoxic effector molecules such as

Gzma, Prf1, and key type 1 cytokine Ifng followed similar trends

in Syrian hamsters, while there was no consistent upregulation

of Gzma and Ifng in lungs of Roborovski hamsters (Figure 3C).

Despite the predominant neutrophil response in Roborovski

hamsters, the primary TF associated with type 3 immunity

(Rorc) displayed no clear upregulation over time and all cells in

high-dose-infected Roborovski hamsters (Figure 3C). However,

focusing on the NK, T, and ILC clusters, Rorc expression signifi-

cantly decreased at 5 dpi in Syrian hamsters (p = 0.02) and

showed a trend toward upregulation at 2 dpi in high-dose- and

at 3 dpi in low-dose-infected Roborovski hamsters (Figure 3B).

The type 2 immunity TF Gata3 was expressed in ILC2 and endo-

thelial cell subsets as expected32,33 (Figure 3A), while no upregu-

lation upon infection was observed in the T/NK/ILC subset (Fig-

ure 3B). Suppressor of cytokine signaling (SOCS) proteins

regulate innate and adaptive immunity and can thereby shape

initiation andmaintenance of immune type. Broadly, SOCS1 sup-

presses type 1 andSOCS3 type 3 immunity.34We found that, at 2

dpi, Socs1, Stat1, and Il6 were strongly upregulated in Roborov-

ski hamsters upon high-dose infection (Figures 3C and S3A). In

Syrian hamsters, Socs1 and Socs3 were both upregulated at

the peak cellular response at 5 dpi (Figure 3C), and expression

of Il12a, Stat4, and Stat3 was generally higher compared to Ro-

borovski hamsters (Figure S3A). Similarly, upon infection, Ifng,

Gzma, and Prf1 displayed uniform upregulation in Syrian ham-

sters in theT/NK/ILCsubset,whileStat1andSocs1 showedhigh-

est upregulation in high-dose-infected Roborovski hamsters.

Stat4 and Stat3, however, displayed no clear trend toward upre-

gulationor a specific hamster speciesbias in theT/NK/ILCsubset

(Figure S3B). In summary, the underlying gene expression pro-

files in Syrian and Roborovski hamsters broadly match the

observed cellular effector responses, reinforcing a type 1 in Syr-

ian versus type 3 bias in Roborovski hamsters.

Neutrophils share a common inflammatory state with
variable intensity
The strength of the neutrophil response differed drastically be-

tween our COVID-19 hamster models and might determine their

lethality. To better understand differences in quality of the

neutrophil response to SARS-CoV-2, we used a factor analysis

approach using diffusion maps35,36 to create a low-dimensional

embedding of all neutrophils in Syrian and Roborovski hamsters

(Figure 4A). Briefly, diffusion map is a dimensionality reduction

method similar to principal-component analysis (PCA), but unlike

PCA, it defines dominant axes of variation across cells based on
random walk distances. The components extracted by diffusion

map describe continuous relationships between cells and

thereby more adequately model the biology within cell types

than classical cluster-based analysis (see STAR Methods).

In this latent space, we identified the first diffusion component

(DC1) as the leading variable associated with inflammatory

neutrophil responses. This inflammatory axis was characterized

by the expression of several inflammatory pathways, including

JAK-STAT, RIG-I, and tumor necrosis factor (TNF) a signaling

(Figure 4B). Therefore, we further analyzed this component and

visualized the distribution of neutrophils along DC1 for each

time point (Figure 4C). At 0 dpi, neutrophils were localized on

the left side of DC1. However, upon infection, there was a gen-

eral shift to the right side of DC1 for the entire neutrophil popula-

tion. Specifically, upon high-dose infection, Roborovski hamster

neutrophils massively overshot Syrian and low-dose-infected

Roborovski hamster neutrophils to the far right at 2 dpi. In

contrast, Syrian hamster neutrophils progressively moved along

DC1, reaching the furthest positions at 5 dpi, before completely

returning to the original 0 dpi DC1 ‘‘ground state’’ at 14 dpi.

To identify the molecular drivers that describe DC1, we next

ranked genes according to their correlation with the DC1 axis

(Figures 4D and S4A). The left side of DC1 associated with

high expression of genes that gradually decreased toward high

DC1. These included S100a8 and S100a9, known to compose

half of the neutrophils’ cytoplasmic proteins and to act as dam-

age-associated molecular patterns (DAMPs) in inflammation.

They critically modulate leukocyte recruitment, cytokine secre-

tion, and neutrophil activation.37,38 Accordingly, the right side

of DC1 was marked by increased expression of interferon-stim-

ulated and chemokine-encoding genes such as Isg15, Ccl3, and

Cd274 (gene encoding for programmed death-ligand 1 [PD-L1]).

PD-L1 is expressed by activated neutrophils with lymphocyte

suppressive capacities.11,39 Our data show that, at 2 and 3 dpi,

neutrophils and endothelial cells predominantly express Cd274

while the expression of the corresponding receptor Pdcd1

(gene encoding for programmed cell death protein 1 [PD-1]) is

mainly confined to T and NK cells (Figure S4B). Specifically,

expression analysis of Cd274 in the neutrophil subset confirmed

that upregulation is strongest in high-dose-infected Roborovski

hamsters at 2 dpi (Figure S1C). Accordingly, expression analysis

of Pdcd1 in the T cell subset revealed that the PD-L1 receptor

likewise had the highest expression in high-dose-infected

Roborovski hamsters at that time point (Figure S1C). In agree-

ment with these findings, our gene set enrichment analyses

(Figures 4E and S4D) showed that ribosome-specific genes

most strongly associated with lower DC1, indicating an initially

high and further decreasing ribosomal activity of cells upon

infection. In contrast, high DC1 was characterized by the enrich-

ment of multiple proinflammatory and immunomodulatory

pathways, including TNFa and interferon-mediated signaling.

While inflammatory response scores increased with DC1 for

all neutrophils (Figures 4F and S4E), those from high-dose-

infected Roborovski hamsters extended furthest toward the right

side of DC1, suggesting an overall higher inflammatory state and

lymphocyte-suppressive capacity triggered in this species upon

infection, matching observations made in severe COVID-19

patients.11
Cell Reports 43, 114328, June 25, 2024 7
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Figure 4. Factor analysis of neutrophils reveals a shared axis of inflammation

(A) Low-dimensional embedding of first and third diffusion component (DC) for all neutrophils, colored by hamster species and virus dose.

(B) Percentage variance explained by selected covariates for first five DCs.

(C) Distribution of neutrophils along DC1, split by dpi and colored by hamster species and virus dose as shown in (A). Mean position of uninfected cells per

hamster type on DC1 is marked with a vertical line.

(D) Heatmapwith gene expression trends for top five (anti-)correlating genes with DC1. Gene expression is Z score normalized and convolved by a uniform kernel

across seven bins.

(E) Significant (p < 0.05) gene set groups from GSEA on genes ranked by correlation with DC1 showing the degree of enrichment in genes with higher positive or

negative DC1 correlations. Data are represented as normalized enrichment scores across gene set clusters ± SD.

(F) Inflammatory response score of neutrophils along DC1 colored by hamster species and virus dose as shown in (A). Lines indicate locally estimated scatterplot

smoothing (LOESS) regression along DC1.
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Identification of a dominant inflammatory response
program in endothelial cells
COVID-19 is also a vascular disease.40 Nonetheless, endothelial

cells, despite their likely importance in determining vascular

vulnerability, remain understudied. Due to their limited accessi-

bility, human endothelial cells have primarily been analyzed

from postmortem lung tissues or in vitro systems. To fill this

gap, we analyzed endothelial cells analogously to neutrophils.

We used a diffusionmap approach, followed by gene expression

and gene set enrichment analyses to identify the molecular

drivers that define characteristic DCs (Figures 5 and S5). While

the first three DCs described endothelial cell subtype identities

(primarily bronchial, vein, artery, and capillary) (Figures 5A and

5B), DC4 identified the dominant transcriptional program of

endothelial cell responses to SARS-CoV-2 infection, as its vari-

ance was explained by a spectrum of proinflammatory pathways

(Figure 5B), prompting us to study the dynamics and genes of

this component in more detail.
8 Cell Reports 43, 114328, June 25, 2024
As seen with neutrophils, endothelial cells were located on the

lower/left end of DC4 before infection (0 dpi), but they shifted to-

ward the right end of DC4 and took on different DC4 values upon

infection (Figures 5C and S5A). In particular, bronchial and capil-

lary endothelial cells from high-dose-infected Roborovski ham-

sters most rapidly increased in DC4 at 2 dpi before shifting

slightly back at 3 dpi. Against this trend, endothelial cells from

Syrian hamsters overall only mildly increased in DC4 throughout

2 and 3 dpi, peaking at 5 dpi, and entirely returned to the original

state (0 dpi) at 14 dpi. Altogether, DC4 is an axis that was shared

between hamster species and that, upon infection, was occu-

pied much more rapidly and to a greater extent in high-dose-in-

fected Roborovski while appearing to be transient in Syrian ham-

sters. Genes for which the expression correlated positively with

increasing DC4 included numerous interferon-stimulated genes

such as Isg15, Rsad2, and Ifit2, as well as chemokines Cxcl10

and Cxcl11 (Figures 5D and S5B), and showed significant upre-

gulation (p = 0) of virus infection/sensing, TNF inflammation, and
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C

B Figure 5. Endothelial cells transiently react to

SARS-CoV-2 infection

(A) Simplex plot of the first three DCs for endothelial

cells, colored by subtype.

(B) Variance explained by selected covariates for

top five DCs.

(C) Distribution of cells along DC4, split vertically by

hamster species and virus dose and horizontally by

dpi, colored by endothelial cell subtype. Average

value of DC4 for 0 dpi marked with red vertical line.

(D) Heatmapwith gene expression trends for top five

(anti-)correlating genes with DC4. Gene expression

is Z score normalized and convolved by a uniform

kernel across seven bins.

(E) Significant (p < 0.05) gene set groups for GSEA

on genes ranked by correlation with DC4 showing

the degree of enrichment in genes with higher pos-

itive or negative DC4 correlations. Data are repre-

sented as normalized enrichment scores across

gene set clusters. Error bars indicate ± SD.

(F) Neutrophils depicted by H&E and naphthol AS-D

chloroacetate esterase (NACE) stain in infected

lungs of Syrian (top) and Roborovski (bottom)

hamsters at 3 dpi. Histopathology visualizing reac-

tive neutrophils (open arrowheads) and macro-

phages (arrows). Of note, only Roborovski hamsters

developed karyolytic smears/necrotic karyoplasm

consistent with alveolar wall and interalveolar blood

vessel necrosis (ovals). H&E stain (left), NACE stain

(middle and right); original magnification = 600-fold

or 1,000-fold (inserts); scale bars, 20 mm; infection

with 1 3 105 pfu SARS-CoV-2.
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immune response pathways (Figures 5E and S5C). For the latter,

endothelial cells from high-dose-infected Roborovski hamsters

scored by far highest in inflammatory response (Figure S5D).

While this clearly highlights DC4 as an axis-of-infection

response, genes anti-correlating with progressing DC4 were

not classically associated with inflammation and, as already

observed for neutrophils, included ribosomal genes. Notably,

among all cell types, ribosomal gene expression was consis-

tently and most strongly downregulated in neutrophils and

endothelial cells from high-dose-infected Roborovski hamsters

(Figure S6A). Concomitantly, in these hamsters, apoptosis sig-

natures were strongly upregulated in endothelial and epithelial

cells at 2 dpi (Figure S6B). Histopathologically, the aforemen-

tioned vastly different reactions to the infection in different sub-

types of endothelial cells were accompanied by interalveolar wall

and blood vessel necrosis with multifocal distinct aggregates of

karyolytic smears and cellular debris (Figure 5F). The larger, pri-

marily venous, endothelial cells from lungs of both hamster spe-

cies exhibited adhesion and extravasation of leukocytes from the

blood as well as dents typical of endotheliitis in both hamster

species at 3 dpi. However, interalveolar capillaries and bronchial

endothelial cells, while mildly affected in Syrian hamsters, were

strongly distressed by necrosis in Roborovski hamsters at 2

and 3 dpi, especially in the higher-dose group. These different

reactions by endothelial subtype are also visible on DC4, where

capillary endothelial cells, particularly from Roborovski ham-

sters, are much further on the right compared to arterial and

venous subtypes.

DISCUSSION

Since the emergence of SARS-CoV-2, there has been an unpar-

alleled global effort to characterize the virus and understand the

clinical course of COVID-19. A variety of animal models and pa-

tient cohort data revealed details on mechanisms of pathogen-

esis,14,41 immunity,42,43 and response to therapy,44 which greatly

improved our understanding of the disease. Macroscopic risk

factors for severe disease, such as age and specific comorbid-

ities, have been identified,45 and also some molecular aspects,

such as interferon autoantibodies or human leukocyte antigen

(HLA) genotype.46–48 Still, the fundamental question of the initial

cellular mechanisms that direct the path to mild, moderate, or

severe disease remains unsolved. There are two key obstacles

to answering this question using human lung patient data. Firstly,

such data are not available for early time points post infection.

Secondly, bronchoalveolar lavages, which represent the typical

sampling method, cover soluble immune cells well but tissue

cells only to a very limited extent.

In order to overcome these hurdles (i.e., to comparatively

study moderate and severe disease at its very onset), we here

probed published and previously unpublished scRNA-seq data-

sets from patients and two COVID-19 hamster models for corre-

lates of disease severity. Syrian hamsters show a moderate

course of COVID-19 with subsequent recovery, whereas Robor-

ovski dwarf hamsters frequently succumb to severe disease.18

scRNA-seq data allow for unbiased, transcriptome-wide investi-

gations of cellular activation states at single-cell resolution. They

can therefore provide a comprehensive overview of the cellular
10 Cell Reports 43, 114328, June 25, 2024
processes happening in COVID-19. By combining this and sam-

pling of animals with different disease severity, we aimed to

investigate early processes in the disease that may lead to

different outcomes.

In our analysis, Syrian hamsters displayed an efficient type 1

immune response, including NK cell and monocyte recruitment

into lungs. This is in line with patient data describing that a mod-

erate course of COVID-19 correlates with functional NK cells.49

The same study found that augmented expression levels of

transforming growth factor b (TGF-b) suppressed NK cells in

their antiviral properties, fostering a severe disease course.

Following their efficient, initial innate response, Syrian hamsters

generally survived beyond 3 dpi andmounted effective T cell and

neutralizing antibody responses against SARS-CoV-2,19 which

was not observed in Roborovski hamsters. This could mean

that, in this severe-disease animal model, either humane

endpoint criteria are reached before an efficient antiviral T and

B cell response can develop or that the inability to initiate this

response is one root cause for severe disease.

In contrast to Syrian hamsters, in which we observed clear up-

regulation of type 1 lineage-determining TFs Tbx21 and Eomes,

we did not observe upregulation of the type 3 lineage-deter-

mining TF Rorc in Roborovski hamsters. Similarly, Stat3, a TF

in the interleukin (IL)-6, IL-21, and IL-23 signaling pathways for

Th17 cells, was upregulated in Syrian but not Roborovski ham-

sters. However, presence of cytokines Il6 and Il23a, as well as

Socs1, together with the absence of type 1 and type 2 associ-

ated transcription patterns, indicates a type 3 response in Ro-

borovski hamsters with severe disease course.

The cell population most strikingly related to severity of inflam-

mation and disease in patients, as well as hamsters, are neutro-

phils. Neutrophils are the downstream effector cells of type 3 im-

munity, providing defense against extracellular pathogens, such

as bacteria and fungi at epithelial barriers.30 However, neutro-

phils are also associated with autoimmune disease and infec-

tion-triggered immunopathology.30,50–53 The protective role of

neutrophils and type 3 immunity against viral infections is limited

to specific cases, e.g., herpes simplex virus 1 (HSV-1) infection

of the cornea, rhinovirus infection, and influenza infection,54–56

yet their presence in the lower respiratory tract correlates with

disease severity, most prominently in the case of highly patho-

genic avian influenza (HPAI) infection.57–59 Notably, for specific

influenza A virus (IAV) variants with increased pathogenicity,

enhanced neutrophil recruitment along with NK cell inhibition

could be linked to distinct viral proteins.60 In the context of

SARS-CoV-2 infection, Th17 cells and neutrophils have been

associated with increased disease severity and immunopa-

thology,11,61 yet no viral protein mediator has been discovered.

We suspect that differential composition of innate immune cell

populations in uninfected lungs between Roborovski and Syrian

hamsters can affect differential response kinetics and types.

Nevertheless, using diffusion analysis, we identified a latent fac-

tor in neutrophils uniquely characterizing their response to the

infection across both hamster species, which revealed an overly

exacerbated pulmonary neutrophil response in Roborovski ham-

sters. Similar trends were observed when comparing blood neu-

trophils between Roborovski and Syrian hamsters.62 Based on

this finding, our data clearly link inflammatory neutrophils to
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disease severity and align with previous studies in which we

showed that dampening neutrophilic inflammation by dexameth-

asone treatment prevents lethal disease outcomes.63 Moreover,

inflammatory neutrophils in severely diseased Roborovski ham-

sters strongly expressed Cd274, as do human neutrophils in pa-

tients with a severe disease course.61 However, the origin of the

neutrophil response remains obscure. One putative mechanism

could be enhanced virus-associated tissue damage in Roborov-

ski hamsters resulting in enhanced release of DAMPs; increased

activation of sensing receptors, such as Toll-like receptors

(TLRs); and stronger release of downstream inflammatory medi-

ators. Indeed, in histological lesions, we observed indications for

enhanced necrosis in Roborovski hamsters as well as higher

expression of Il6, which, together with TGF-b, is a type 3 immu-

nity polarizing cytokine.

An important hallmark of COVID-19 pathogenesis is endothe-

lial damage across multiple organs. Since endothelial cells are

challenging to study in human patients, animal models may be

of particular use. In our diffusion analysis, we identified an axis

of inflammation (DC4), i.e., a specific gene expression program

marked by upregulation of proinflammatory genes that endothe-

lial cells follow upon infection. This effect was particularly strong

for bronchial and capillary cells of high-dose-infected Roborov-

ski hamsters. In the histopathological analysis, we observed

endothelial cell necrosis, particularly in high-dose-infected Ro-

borovski hamsters. Still, it is important to note that endothelial

cells were also strongly activated along DC4 in Syrian hamsters,

but they reverted to ground state and did not show obvious his-

tological endothelial damage. It thus appears that endothelial

activation is associated with disease severity, but this is not

necessarily causative and, under beneficial conditions, is also

reversible.

Our data from lung tissues offer a unique perspective on the

involvement of endothelial cells in the pathological development

of a severe disease course, given the lack of corresponding sam-

ples and data from humans. Notably, our findings suggest that

immunological events early in the course of SARS-CoV-2 infec-

tion cause development of either type 1- or type 3-biased im-

mune responses, thereby determining disease progression in

both hamsters and humans. Future research can make use of

the Roborovski hamstermodel for severe COVID-19-like disease

to further elucidate mechanisms of severe disease and investi-

gate potential medical interventions.

Limitations of the study
Our study provides an in-depth molecular characterization of

biological processes in hamster lungs upon SARS-CoV-2-

infection and identifies cell types and immunological programs

that associate with different COVID-19 outcomes. Neverthe-

less, further investigation is needed to validate these findings

and to fully decipher the pathophysiological mechanisms that

are triggered by the virus. This particularly requires the use of

complementary methods to link immune type and effector cells

to disease severity. However, this is greatly limited by the lack of

gene-knockout hamsters and depletion antibodies for both

hamster species. Beyond the assay used, several limitations

are imposed by the inaccessibility of specific samples. For

instance, the lack of scRNA-seq data from SARS-CoV-2-in-
fected pre-mortem human lung tissue precludes cross-species

comparison of cell-specific features observed in endothelial

cells and IMs, which we found to be highly responsive to infec-

tion. Finally, interventional studies on specific cell types in

controlled environments are needed to robustly establish cau-

sality in pathogenesis.
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Chemicals, peptides, and recombinant proteins

Dispase Corning Cat#354235

DNAse AppliChem Cat#A3778,0100

Collagenase B Roche Cat#11088815001

Actinomycin D Sigma-Aldrich Cat#A9415-5MG

RBC Lysis buffer Santa Cruz Biotechnology Cat#sc-296258

Critical commercial assays

Chromium Next Gem Chip G Single Cell Kit 10x Genomics Cat#1000121

Chromium Next Gem Single cell 3ʹ GEM,

Library & Gel Bead Kit v3.1

10x Genomics Cat#1000120

NEB Luna Universal Probe One-Step RT-qPCR kit New England Biolabs E3006L

innuPREP Virus RNA kit Analytik Jena Cat# 845-KS-4700250

Naphthol AS-D chloroacetate esterase (NACE) kit Sigma-Aldrich 91C-1KT

Deposited data

Roborovski hamster: scRNA-seq data from lung

tissue of naive and SARS-CoV-2-infected animals

This paper GEO: GSE241133

Source tables This paper https://doi.org/10.5281/zenodo.11124622

Syrian hamster: scRNA-seq data from lung tissue

of naive and SARS-CoV-2-infected animals

Nouailles et al.19 GEO: GSE162208

Human nasal swab scRNA-seq data Chua et al.20 https://doi.org/10.6084/m9.

figshare.12436517.v2

Human BAL-fluid scRNA-seq data Liao et al.21 GEO: GSE145926

Human postmortem lung tissue scRNA-seq data Melms et al.22 GEO: GSE171524 and https://singlecell.

broadinstitute.org/single_cell/study/SCP1219

Roborovski hamster genome Andreotti et al.65 https://doi.org/10.6084/m9.figshare.16695457

Syrian hamster genome Nouailles et al.66 GEO: GSE200596

Human-mouse orthologs Smedley et al.67 https://www.ensembl.org/info/data/

biomart/index.html

KEGG gene sets Kanehisa et al.25 KEGG_2021_Human

MSigDB Hallmark gene sets Liberzon et al.27 MSigDB_Hallmark_2020

PROGENy gene signatures Schubert et al.68 https://doi.org/10.1038/s41467-017-02391-6

Experimental models: Cell lines

African green monkey: Vero E6 cells ATCC CRL-1586

Experimental models: Organisms/strains

Hamster: Syrian golden hamster

(Mesocricetus auratus); RjHan:AURA

Janvier labs N/A

Hamster: Roborovski hamster

(Phodopus roborovskii)

German pet trade N/A

Oligonucleotides

RT-qPCR primers and probe Corman et al.69 N/A

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Synthetic probes for the in situ-detection

of the nucleocapsid RNA of SARS-CoV-2

(NCBI database NC_045512.2,

nucleotides 28,274 to 29,533)

Thermo Fisher Scientific assay ID: VPNKRHM

Software and algorithms

Code to reproduce analyses in this paper This paper https://github.com/stefanpeidli/

PanCov19_Hamster; https://doi.org/

10.5281/zenodo.11124622

Scanpy 1.9.1 Wolf et al.70 https://github.com/scverse/scanpy

DESeq2 1.38.3 Love et al.71 https://bioconductor.org/packages/

release/bioc/html/DESeq2.html

Scvi-tools 0.19.0 Lopez et al.72 https://github.com/scverse/scvi-tools

CellRanger 6.1.1 10x Genomics https://github.com/10XGenomics/cellranger

Seurat 4.0.6 Satija et al.73 https://github.com/satijalab/seurat

Gseapy 0.10.8 Fang et al.74 https://github.com/zqfang/GSEApy

Scrublet 0.2.3 Wolock et al.75 https://github.com/swolock/scrublet

Snakemake 7.20.0 Mölder et al.76 https://github.com/snakemake/snakemake

Prism 9.2.0 GraphPad Software http://www.graphpad.com

cellSensTM Imaging Software 1.18 Olympus Soft Imaging Solutions https://www.olympus-lifescience.com/

en/software/cellsens/

Las X Stellaris software Leica, Germany https://www.leica-microsystems.com/

products/microscope-software/

p/leica-las-x-ls/

Other

2100 Bioanalyzer Instrument Agilent Technologies Part#G2939BA

NovaSeq 6000 Illumina Cat#20013850

NextSeq 550 Illumina Cat#SY-415-1002

Chromium Controller 10x Genomics Prod#1000204

Olympus BX41 microscope Olympus, Hamburg, Germany N/A

DP80 Microscope Digital Camera Olympus, Hamburg, Germany N/A

Inverse microscope DMi8 CS Premium

(Stellaris 8 FALCON)

Leica Camera, Germany N/A
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to the lead contact, Samantha Praktiknjo (samantha.

praktiknjo@bih-charite.de).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d Single-cell RNA-seq data have been deposited at the Gene Expression Omnibus (GEO: GSE241133) and are publicly available

as of the date of publication.

d This paper also analyzes existing, publicly available data. These accession numbers for the datasets are listed in the key re-

sources table.

d Code for data analyses is available at GitHub (https://github.com/stefanpeidli/PanCov19_Hamster).

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Animal husbandry
The animal experiments were approved by the competent state authority (Landesamt f€ur Gesundheit und Soziales Berlin, Germany,

approval number 0086/20) and were performed in accordance with national and international regulations. In accordance with the 3R

principle, no additional animal experiments were performed for this study. Instead, we used data and samples from animals studied in

our previously published research.18,19,28 In these experiments, female and male Syrian hamsters (Mesocricetus auratus;

RjHan:AURA, Janvier Labs, Saint-Berthevin, France) and Roborovski hamsters (Phodopus roborovskii, German pet trade) were

housed in a BSL-3 facility in individually ventilated cages (IVCs; Tecniplast, Buguggiate, Italy) with abundant enrichment (Carfil,

Oud-Turnhout, Belgium) and ad libidum access to food and water. Cage temperature and relative humidity were recorded daily

and ranged from 22�C to 24�C and 40 to 55%, respectively. Animals were allowed at least 7 days to acclimatize before the start

of the experiments.

Cells and virus
The SARS-CoV-2 isolate (BetaCoV/Germany/BavPat1/2020)64 was kindly provided by Drs. Daniela Niemeyer and Christian Drosten,

Charité Berlin, Germany. Virus stocks for animal experiments were obtained by propagating the virus under BSL-3 conditions on Vero

E6 cells (ATCC CRL-1586) in minimal essential medium (MEM; PAN Biotech, Aidenbach, Germany) supplemented with 10% fetal

bovine serum (FBS; PAN Biotech, Aidenbach, Germany), 100 IU/mL penicillin G, and 100 mg/mL streptomycin (Carl Roth, Karlsruhe,

Germany). Prior to animal testing, low-passage stocks were titrated to Vero E6 cells using semi-solid overlaymedium as described.77

Briefly, Vero E6 cells were incubated with serial 10-fold dilutions of virus strains for 2 h. The virus inoculumwas then replaced with an

overlay medium consisting of Dulbecco’s modified Eagle’s medium (DMEM; PAN Biotech, Aidenbach, Germany), 2.5% microcrys-

talline cellulose (Avicel RC-591; DuPont, Wilmington, DE, USA) and 10% FBS. After 72 h of incubation at 37�C in a 5% CO2 atmo-

sphere, cells were fixed with 4% formaldehyde for 24 h and plaques were visualized by methylene blue counterstaining. Sequence

integrity of virus stocks was determined by Illumina sequencing as described78 and aligned to the isolate reference sequence

(GenBank: MT270101 and GISAID: EPI_ISL_406862).

METHOD DETAILS

Animal experimentation
10- to 12-week-old male and female Syrian and Roborovski hamsters were infected intranasally with 1x105 or 1x104 plaque-forming

units (pfu) SARS-CoV-2 (variant B1, isolate BetaCoV/Germany/BavPat1/2020) under anesthesia as previously described.79 To pre-

vent any prolonged suffering, the hamsters were clinically examined twice daily. Animals with body weight loss >15% for more than

48 h were euthanized according to the animal use protocol. Otherwise, naive hamsters (n = 3) and hamsters at 2, 3, 5, and 14 days

post infection (n = 3 each) were randomly selected. Euthanasia was performed by cervical dislocation and exsanguination under

anesthesia as previously described.28 Among other materials, all lung lobes were collected for subsequent analyses. Specifically,

the left lobe was used for histopathology, the right caudal lobe for single-cell analysis, the right cranial lobe for virological measure-

ments, and the right middle lobe for bulk RNA and proteomic analysis as described.19

Single-cell isolation
Established cell isolation protocols were modified to comply with BSL-3 facility regulations. For single cell isolation, the caudal lobes

of the right lung were stored in 13 PBS, 0.5% BSA containing 2 mg/mL actinomycin D. The lobes were dissociated mechanically and

enzymatically. Tissue was first disrupted with forceps for 2 min in specific digestion medium (3.4 mg/mL collagenase Cls II (Merck),

1 mg/mL DNase I (PanReac AppliChem) in 2 mL Dispase medium per lung lobe (Corning), 50 caseinolytic units/mL) and then enzy-

matically digested at 37�C and 5% CO2 for 30 min. The cell suspension was further dissociated by pipetting, and filtered through

70 mm cell strainers. The suspensions were centrifuged at 350 g for 6 min at 4�C, and the pellets were subjected to erythrocyte lysis

by resuspension in appropriate buffer (BioLegend). The reaction was stopped by washing with PBS/BSA buffer and the cells were

centrifuged. Cells were resuspended in low BSA buffer (13 PBS, 0.04% BSA) and then filtered through 40 mm FloMi filters (Merck).

Cell number and viability were determined microscopically using trypan blue.

Generation of single-cell RNA-sequencing data
Sequencing libraries were generated using the 30 Chromium Next GEM Single Cell 30 Reagent kit (10x Genomics) according to the

manufacturer’s instructions, and sequenced on a NovaSeq 6000 device (Illumina) to a depth of about 300 million reads per sample.

Histopathology
For histopathological evaluation, left lungs were immersion fixed in 10% buffered formalin (pH 7.0) for 48 h, processed overnight in a

Tissue Tek robot, embedded in paraffin and cut at 2 mm thickness. Three sections per lung were obtained with a distance between

adjacent planes of approximately 150 mmwith the last section centrally placed at the tracheal bifurcation. Sections were stained with

hematoxylin and eosin (H&E) as previously reported.80 In addition, neutrophils were visualized using a naphthol AS-D chloroacetate
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esterase (NACE) kit (Sigma-Aldrich, Germany) according to kit instructions. Bright field photomicrographs were taken with an

Olympus BX41microscope, a DP80Microscope Digital Camera (Olympus, Hamburg, Germany), and cellSensTM Imaging Software,

Version 1.18 (Olympus Soft Imaging Solutions). NACE signals were also assessed using an inverse microscope DMi8 CS Premium

(Stellaris 8 FALCON, Leica, Germany) with an HCPL APO 63x/1.40OIL CS2 (Art.-Nr.15506350, Leica, Germany) objective. Excitation

at 590 nm was achieved with an STELLARIS 8 white light laser (WLL, pulsed, 440–790 nm). The wavelength detection range of a Po-

wer HyD S detector (Leica, Germany) was set from 600 to 750 nm. Trans multi-alkali photomultiplier tubes were turned on and the

output color was set to gray. Smart gain was set to 26%. Microphotographs were taken with a Flash 4.0 V3 camera (Hamamatsu,

Japan) and Las X Stellaris software (Leica, Germany) at original and additionally at three times digitally zoomed-in magnification.

Pathologic changes were assessed by a board-certified, veterinary pathologist (ADG).

QUANTIFICATION AND STATISTICAL ANALYSIS

Data analysis was primarily performed using scanpy70 (v1.9.1) and DESeq271 (v1.38.3). For integration we used scVI72 (scvi-tools,

v0.19.0). We relied on snakemake76 (v7.20.0) to compose a reproducible and modular analysis pipeline using parallelized computa-

tions. Code used to analyze the data and produce figures is publicly available at https://github.com/stefanpeidli/PanCov19_

Hamster. A version of record can be accessed from https://doi.org/10.5281/zenodo.11124622. Definitions of statistical significance

or properties such as median and interquartile range are provided in the corresponding figure legends.

Processing of single-cell RNA-seq data
Raw scRNA-seq reads (FASTQ format) were aligned to reference genomes (Roborovski hamster65 and Syrian hamster66) and

quantified to produce a count matrix using CellRanger (v6.1.1) from 10X Genomics with default parameters. Filtered feature bar-

code matrices from cellranger count were read into scanpy. Raw counts were saved to ‘adata.layers[‘counts’]’ for later use. We

normalized counts using ‘scanpy.pp.normalize_total’ and log-scaled the results using ‘scanpy.pp.log1p’. We did not Z score

normalize the gene expression matrix. Doublets were identified and removed using scrublet (v0.2.3).75 We used UMAP81 for visual

embeddings only, and diffusionmap35,36 to generate latent spaces for further analysis. Gene signatures were called using

scanpy.tl.score_genes.

Filtering, clustering, and cell type annotation
Following generation of count matrices using CellRanger, the data was further processed in R using Seurat.73 For both hamster spe-

cies, all samples weremerged into one Seurat object, and cells grouped into 45–50 clusters. Based on knownmarker genes, clusters

were annotated into broader cell type categories, or ‘‘mixed/unknown’’. Subsequently, clusters representing likely low quality cells,

i.e., low UMI and gene counts, were discarded. In all other clusters, cells with less than the median of UMI counts, or more than the

upper quartile plus three inter-quartile ranges (outliers) were discarded. In contrast to a general quality threshold based on UMI or

gene counts, this introduces less bias as e.g., neutrophils have much lower UMI/gene counts than macrophages. After that first

step, samples were integrated using the sctransform workflow,82 and clustered again, to about 30 clusters. As before, these clusters

were assigned to cell types using marker genes.

Differential expression analysis
Weaveraged unnormalized counts per sample and cell type in python and exported the resulting pseudo bulk countmatrix to be used

in the DESeq2 package71 (v1.38.3) in R. We filtered out genes with less than 10 counts in total, and pseudo bulks obtained by sum-

ming over less than 10 cells to reduce the impact of outlier cells. Adhering to recommendations by DESeq2 authors on applications to

scRNA-seq data, we used the following options: test = "LRT", minReplicatesForReplace = Inf. We compared all infected samples

(2 and 3 dpi only for hamsters) against control/healthy samples separately for each hamster type and human dataset. Sample sizes

for human and hamster samples of different severities and infection status can be found in Table S1 (see source files as listed in the

key resources table), and lied between 2 < n < 15 samples. DESeq2 results were then exported and analyzed in python, where we

generally worked with results filtered by adjusted p-value of <0.05 if not otherwise noted.

Mapping orthologous genes between hamster and human genomes
Instead of ‘‘upper-casing’’ hamster genes to get human orthologs we used existing orthologies to map genes more accurately. We

exported human and mouse orthologs from biomart,67 since the hamster genomes used in this study were originally aligned against

mouse genomes. For each hamster gene, we searched whether there were human orthologs in the database. If multiple were found,

we used the bestmatch according to orthology confidence reported by biomart. If no orthologwas found, we kept the gene name and

upper-cased it as a best-guess matching.

Integration of hamster data with scVI
After concatenating all Syrian and Roborovski hamster scRNA-seq data, we identified the 2000 most highly variable genes using

‘scanpy.pp.highly_variable_genes’ on unnormalized counts using flavor = ’seurat_v3’,83 giving organism identity (Syrian/

Roborovski) as batch_key. This selects for genes that are highly variable within Syrian and Roborovski and can be seen as a mild
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form of batch effect correction. We ran scVI72 with hamster type as batch_key without further covariate keys until convergence (ear-

ly_stopping = True), with training/test/validation set size ratios of 90/5/5%, respectively. Integrations were both performed on all data

and on subsets only (macrophages/endothelial cells/neutrophils) to achieve appropriate resolution in the scVI latent spaces in each

case. When not otherwise mentioned, the scVI latent spaces were used for computing KNN graphs and therefore also for the KNN-

based UMAP and diffusion map embeddings.

Diffusion analysis of neutrophils and endothelial cells
Diffusion map35,36 is a non-linear dimensionality reduction method. Unlike other commonly used dimensionality reduction methods

such as principal component analysis (PCA), diffusion map tries to find the longest paths (main axes of variation) in the data by

wandering between cells on the K-nearest neighbor (KNN) graph. Distances between closely neighboring cells are used to model a

random walk, where the probability to transition between cells is represented by a Gaussian kernel, i.e., it scales exponentially with

the inverse of their distance. Cells that are not connected in the KNN graph will have a transition probability of zero between them.

Mathematically, this random walk process on a microscopic level translates to a diffusion process on the macroscopic level,84,85

hence the name diffusion map. While PCA performs eigendecomposition on the data’s covariance matrix, diffusion map uses the

same approach on the transition matrix defined by the diffusion process after some normalization steps. In both cases, this yields

a list of eigenvectors, ranked by the value of the corresponding eigenvalues, defining the principle or diffusion components

respectively. These components can then be interpreted, as is done for neutrophils and endothelial cells in this work using

GSEA on genes (anti-) correlating with the components or distribution of specific cell groups along each component using

histograms.

Post-hoc interpretation of diffusion components
We employed a simple strategy for post-hoc interpretation of latent variables using one-way ANOVA: Given a continuous or categor-

ical explanatory variable per cell, for each latent variable we fit a simple linear regression model. We then computed how much vari-

ability between cells across the latent variable can be explained by the explanatory variable in this linear model as:

Variation Explained = 1� RSS

TSS
3DOFadjustment

with variables RSS: residual sum of squares, TSS: total sum of squares, and DOFadjustment: degrees of freedom adjustment

factor. These values were obtained from a simple uni-variate linear regression against each latent factor separately. As explan-

atory variables we used variables that we would expect to play a significant role in shaping the data by prior knowledge, e.g., cell

cycle phases, virus detected, cell subtype, various signaling pathway scores,25,27,68 or study variables such as days past infec-

tion, organism or virus dose. In essence, the resulting variation explained describes how much variation in the data can be ex-

plained by a linear model based on the current predictor such as cell subtype or cell cycle phase. We applied this post-hoc

interpretation method to the latent variables produced by PCA of mean-shifted 2000 highly variable genes’ (HVG) expression,

scVI, and diffusion map on scVI. Among those, diffusion map resulted in high overall interpretability with latent variables ex-

plained by few distinct explanatory variables, whereas both PCA and scVI tended to have few latent dimensions explained

by many overlapping explanatory variables.

Gene set enrichment analysis
For gene set enrichment analysis (GSEA)23 we utilized the python package gseapy74 (v0.10.8). For comparison between infected

and control samples, results from DESeq2 (infected vs. control/healthy) were first filtered to exclude genes with less than 10 base-

Mean. The prerank module by gseapy takes in a ranked list of genes together with the score used for ranking them. As basis for the

score we used negative log10 of p-values prior to multiple-testing correction, as this correction does not change the ranking except

that it might lead to genes having ties in scores which should generally be avoided in GSEA. Subsequently, these values, repre-

senting the statistical strength of each gene’s change, were multiplied by the sign of each gene’s log fold change, representing

the direction of change. This score was used to rank genes. For GSEA of neutrophils and endothelial cells, we ranked all genes

by spearman correlation with the corresponding diffusion component. Afterward, we selected genes with a higher number of

counts over all cells than the median to be considered. In both cases, ranked genes were given to gseapy.prerank, with parame-

ters: min_size = 15, max_size = 1000, permutation_num = 1000. Gene sets used comprise KEGG_2021_Human24 and MSigDB_

Hallmark_2020.27 GSEA results with an FDR q-value <0.05 were used for further analysis, including the normalized enrichment

scores as direct output from gseapy.

Selection criteria and processing of human SARS-CoV2 scRNA-seq counts
We searched for scRNA-seq datasets of human patients with the following criteria: A control population must be provided, e.g.,

healthy patient samples; multiple disease severities must be present and annotated, e.g., mild and severe COVID-19; at least three

samples per severity must be present; the data must represent a sample from the airways, which excludes blood samples. This re-

sulted in three representative human datasets from BAL fluid, nasal swap, and postmortem tissue.
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Count data for the datasets from Liao et al.21 and Melms et al.22 were retrieved from GEO, and the data from Chua et al.20 was

downloaded from figshare. A download bash script is provided in our code repository in GitHub, together with a jupyter notebook

processing all three datasets. In summary, cells were filtered (1000 < UMI counts <30000; percent mitochondrial counts <30%),

then library normalized and log1p transformed, followed by HVG selection, PCA, KNN calculation and UMAP embedding. Cell

type annotations were provided by the original authors. The data from Melms et al. was already filtered. We note that the UMI

counts per cell in that dataset were below 1000 counts for most cells, which is likely a consequence of the tissue obtained

postmortem.
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Figure S1.  Clinical data, scRNA-seq data statistics, upregulated gene sets across datasets. (A) Weight 
w.r.t. pre-infected (left), log-scale virus pfu per gram lung tissue (middle), and log-scale virus copies per swab 
(right) colored by study branch (hamster type and virus dose) along dpi (clinical data previously published18,19). 
Data are represented as mean ± SEM. (B) UMAP embedding of integrated datasets colored by hamster species 
and virus dose. (C) UMI counts (top), number of genes with at least one UMI count (middle) per cell and 
number of cells after filtering (bottom) per sample colored by hamster species and virus dose. (D) UMAP 
embedding as in B showing normalized SARS-CoV-2 mRNA sequence counts per cell. (E) GSEA across 
datasets based on DEGs from DESeq2 testing infected (2 and 3 dpi) vs. control showing upregulated gene sets 
with immune-related terms indicated in red. Normalized Enrichment Score (NES) as x-axis and -log10(q-value) 
as y-axis. Blue line corresponds to a q-value of 0.05.   



 

 
Figure S2.  Cell numbers across all other annotated cell types. (A) as in Figure 2B. (B) as in Figure 2C. 



 

 
 
 
Figure S3.  Selected gene expression along time after infection. (A) Expression time courses along time after 
infection per species and virus dose combination for selected immunity marker genes. (B) Sample-wise log2 
fold-changes of normalized expression with respect to corresponding uninfected samples for selected genes after 
pseudobulking T cell, NK cell and ILC2 clusters. P-values of t-test for difference in significance across samples 
(n=3) marked with * < 0.05, ** < 0.01 or ns: not significant.  



 

 
 
Figure S4.  Supporting analyses for neutrophil response to infection. (A) Expression of top 100 (anti-) 
correlating genes along DC1 with genes belonging to the inflammatory response gene set indicated by a purple 
line in the right column of the heatmap. (B) UMAP embeddings of all cells colored by expression of Cd274 
(top) and Pdcd1 (bottom), split by hamster type and virus dose. (C) Gene expression trends of Cd274 in 
neutrophils and Pdcd1 in T cells along time before and after infection per hamster type and virus dose. Areas 
around curves are 95% confidence intervals by bootstrapping. (D) Pairwise Jaccard index between leading edge 
gene sets reported by GSEA on DC1 correlating genes. Jaccard index measures the overlap between sets; a 
value of 1 corresponds to perfect overlap. Resulting hierarchy and associated normalized enrichment scores 
from GSEA adjacent to the right. Bottom: annotation of heatmap aggregates similar gene sets with high overlap 
to reduce redundancy. (E) Neutrophil DC1 against inflammatory response score split by species and virus dose, 
colored by infection status. LOESS regression lines shown on top.   



 

 
Figure S5.  Supporting analyses for endothelial cell response to infection. (A) Simplex plot from Figure 5A  
colored by DC4 value of endothelial cells shows response primarily by capillary and bronchial subtypes. (B) 
Expression of top 100 (anti-) correlating genes along DC1 with genes belonging to the inflammatory response 
gene set indicated by a purple line in the right column of the heatmap. (C) Pairwise Jaccard index between 
leading edge gene sets reported by GSEA on DC4 correlating genes. Jaccard index measures the overlap 
between sets; a value of 1 corresponds to perfect overlap. Resulting hierarchy and associated normalized 
enrichment scores from GSEA adjacent to the right. Bottom: annotation of heatmap aggregates similar gene sets 
with high overlap to reduce redundancy. (D) Endothelial DC4 against inflammatory response score colored by 
species and virus dose. LOESS regression lines shown on top.  



 

 
 
Figure S6.  Selected gene signatures per cell type. (A) Sample-wise log2 fold-change in the relative 
abundance of UMI counts from ribosomal genes with respect to 0 dpi mean per main cell type. Cell types with 
less than 1000 cells in total across all samples and hamster types were excluded. (B) Fold-change in apoptosis 
signature score (Hallmarks from MsigDB63) with respect to 0 dpi sample average per main cell type and 
grouped by sample type. Complete data for (A) and (B) are available in Table S6 (see source files as listed in the 
key resources table). 
  



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure S7.  Histopathological examination of neutrophils by NACE stain. At 2 dpi, reactive neutrophils 
(open arrowheads, red signals) with round to oval cell shape and polymorphic nuclei were less numerous in the 
alveolar air space in Syrian hamsters (top) than in Roborovski hamsters (bottom). At 3 dpi, multiple areas with 
frayed staining signals (oval) suggesting the presence of undefined cell borders, cell debris accumulation, 
erythrocytes, and pycnotic nuclei in the Roborovski hamster. Naphthol AS-D chloroacetate esterase (NACE) 
pictured in red with original magnification at 630-fold and three-fold digitally zoomed-in photomicrographs. 
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