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1 Supplementary notes

1.1 Layer normalization leads to favorable performance over batch normalization

During the initial stages of model development, we tested different normalization layers within the
scVI framework [1], an RNA-only model, using the treatment-control dataset (utilizing only the RNA
modality; results not shown). Our analyses indicated that layer normalization outperformed batch
normalization (the default in scVI) in terms of horizontal integration performance. We thus used
layer normalization in our model, liam. Post hoc, we confirmed this observation using the competi-
tion dataset, which includes cell type labels, enabling a comprehensive performance evaluation. We
compared scVI with its default settings (using batch normalization) to a variant using layer normaliza-
tion, observing a significant improvement in batch effect removal and bio-conservation across various
metrics, except for cell cycle conservation (cc_cons) (Figure S7).

1.2 Effect of feature preselection on MultiVI’s performance

In our analyses involving MultiVI, we followed the authors’ recommendations entailing a feature
preselection step, recommending to use of only features present in more than 1% of the cells. We wanted
to rule out that this feature preselection step is a major contributing factor to the observed differences
in model performance. Hence, we trained a MultiVI model without feature preselection (abbreviated
as ’no fp’ in figures) but otherwise identical settings on the competition use case data. Note that
the number of dimensions of the resulting embedding differs, as MultiVI automatically determines
it from the number of input features. Figure S7 shows how omitting feature preselection affects the
performance metrics. All trends observed with MultiVI with feature preselection are preserved for
MultiVI without feature preselection. Liam outperforms both MultiVI variants on bio-conservation
and does better on the average silhouette width (asw)-based batch removal metrics. The MultiVI
variants do better on the iLISI-based batch removal metrics.

1.3 Comparing convergence and runtime of liam and MultiVI

While MultiVI [2] models chromatin accessibility data with a Bernoulli distribution, we use a negative
multinomial distribution for liam. We observe that MultiVI needed substantially more epochs to
converge on the competition use case data. For liam, the average number of epochs until early
stopping was: 54.8 ± 4.09σ, for MultiVI with default settings: 212.4 ± 27.11σ, and for MultiVI no
feature preselection: 189.8 ± 9.47σ. For random seed 0, liam converged in 50 epochs and trained for
∼ 1h 12min. MultiVI converged in 220 epochs and trained for ∼ 2h 28mins.

1.4 Limitations of current benchmarks concerning vertical integration evaluation

As part of our method evaluation, we compared the performance of liam jointly modeling both modal-
ities of the paired NeurIPS competition data sets (liam default) to variants of liam that use only one
of the individual modalities each (baseline). Unfortunately, this baseline crucial for understanding a
method’s advantages is rarely computed. Figure S2 shows that the RNA-only model performs on a
par with, if not slightly better than the joint model with which we participated in the competition
for the Multiome data. Given that the competition was set up to score multimodal data integration,
it may appear discouraging that a model trained on a single modality seemed to perform best in the
framework. The small performance difference between the joint and the RNA-only model highlights
an important limitation in the expressiveness of the benchmark for evaluating vertical integration:
While it is possible that the RNA-only model indeed performs best, another possibility is that the
RNA-only model’s superior performance is an artifact of our (RNA) gene expression-centric prior
knowledge affecting the definition of cellular states. The competition organizers derived the cell type
labels used for evaluation (bio-consevation: nmi and asw_label; batch removal: asw_batch) indepen-
dently per data set and modality and harmonized them afterward. With this strategy, Luecken et al.
[3] attempted to capture data set-specific substructure in the final cell type annotations. Regardless,
the annotations for the Multiome data set are gene expression-centric, as the chromatin accessibility
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data was converted to gene activity (GA) scores, thus largely ignoring information from intergenic
cell type-specific regulatory elements, and the subsequent annotation is based on known GEX mark-
ers. In fact, it has been shown that reducing chromatin accessibility signal to GA matrices before
dimensionality reduction results in a substantial information loss (discussed in [4]).

The on par performance of an RNA-only model with the joint model on the Multiome data on cell
type label-dependent bio-conservation metrics also suggests that we cannot recover more information
on the provided cell type level with a joint than with an RNA-only model for the Multiome data set.
For the Multiome data, any existing substructure that a joint model might better recover seems to
be less than the overall uncertainty and noise in the cell type labels, leading to all models hitting a
maximal performance at around 0.6 for the metric asw_label. Pre-trained models seem to have been
able to achieve slightly higher scores [5], but the incompleteness of the annotations mentioned earlier
(e.g., the missed MAIT cell population (Figure S3)) let us question the meaningfulness of these results.
Additionally, we currently still lack expressive metrics capturing modality-specific information, as the
GEX-based cc_cons metric [4], on which the ATAC-only model performed notably worse. This is in
line with Ma et al. [6], who observed a less localized cell cycle signature in an embedding derived from
scATAC-seq data compared to an embedding derived from scRNA-seq data when treating modalities
from paired data from the same cell independently.

The observed limitations are slightly alleviated for CITE-seq data, where the joint model performed
better on capturing the harmonized reference cell type annotations. This is in line with previous
observations of some populations being better discernible with ADT than GEX and vice versa but
may be different for other biological systems with less well-defined cell surface markers and antibody
availability.

We tried to circumvent these limitations by exploring alternative ways to use the benchmark data,
simulating challenging (real-world) conditions of differing coverage (data quality) across modalities to
test different modeling choices. Our results suggest that, in practice, joint modeling may be beneficial.
In any case, all our model variants do well on horizontal integration and seem to capture the overall
biological information contained in the data, especially the RNA-only model for Multiome data, and
the joint models. It will be interesting to use the embeddings derived with liam as a starting point to
explore one of the main benefits of the paired data, ground truth on relationships between modalities.
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Figure S1: Liam’s architecture. Schematic representation of liam’s architecture for Multiome
data (paired gene expression and chromatin accessibility), excluding inferred parameters. The latent
cell representation zn corresponds to the integrated embedding (default dimensionality: k = 20) we
obtain after training. To remove batch effects, we model and infer data type- and batch-specific size
factors (ln, dn) and dispersion parameters (not shown), and combine a conditional decoder, where we
feed the one-hot encoded batch label of each cell n (sn) to the decoder with an adversarial training
strategy. The model components required for the adversarial training strategy are labeled in red. The
gradient reversal layer is represented by a dashed red line. When combining paired and unimodal
data (mosaic integration), we set terms with no correspondence in the loss function for cells with only
a single modality measured during model training to 0. Representation inspired by Supplementary
Figure 13 from [7].
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Figure S2: Performance of variants of liam using only single modalities of the multimodal
data from the NeurIPS competition. Data for all figure panels stems from the NeurIPS 2021
Multimodal Single-Cell Data Integration competition. (c) Experimental design. (a) and (d) UMAPs
of embeddings obtained with variants of liam using the individual modalities of (a) Multiome and (d)
CITE-seq data, respectively; Cells are colored by provided cell type annotation (cell type), sample id
(sample), and sequencing site (site). (b) and (e) Selected performance metrics (bio-conservation: nmi,
cc_cons, batch effect removal: asw_batch_d1, iLISI_d1) with the horizontal line indicating the mean
for (b) Multiome and (e) CITE-seq data. All computed metrics, including all competition metrics,
are shown in Figures S7 and S9.
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Figure S3: Liam captures cellular subpopulations missed by the NeurIPS competition ref-
erence annotation. Data for all figure panels stems from the NeurIPS 2021 Multimodal Single-Cell
Data Integration competition Multiome data set. Shown are UMAP representations of the embeddings
obtained with liam, MultiVI and LSL_AE with cells colored by - first row: per cell silhouette scores
with respect to provided cell type annotations; second and third row: raw gene expression values
for the MAIT cell markers KLRB1 and SLC4A10 [8], values outside the p1-p99 percentile range get
assigned the min/max value, respectively.
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Figure S4: Adversarial training evaluation. Data for all figure panels stems from the NeurIPS
2021 Multimodal Single-Cell Data Integration competition Multiome data set. (a) UMAPs of embed-
dings obtained with liam AVAE with distinct contributions of the adversarial term to the overall loss
function (α ∈ {1, 50, 1000}); cells are colored by provided cell type annotations and the sequencing
site (site). (b) Selected performance metrics (bio-conservation: nmi, cc_cons, batch effect removal:
asw_batch_d1, iLISI_d1) with the horizontal line indicating the mean. All computed metrics, in-
cluding all competition metrics, are shown in Figure S7.
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Figure S5: Liam and its baseline variants perform comparably on the competition Mul-
tiome data. Data for all figure panels stems from the NeurIPS 2021 Multimodal Single-Cell Data
Integration competition Multiome data set. (a) UMAPs of embeddings obtained with distinct vari-
ants of liam; Cells are colored by provided cell type annotation (cell type), sample id (sample), and
sequencing site (site). (b) Selected performance metrics (bio-conservation: nmi, cc_cons, batch effect
removal: asw_batch_d1, iLISI_d1) with the horizontal line indicating the mean across models. All
computed metrics, including all competition metrics, are shown in Figure S7.
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Figure S6: Liam excels at mosaic integration of data with differing quality (continued).
Caption on next page.
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Figure S6: We derived data for all figure panels from the NeurIPS 2021 Multimodal Single-Cell
Data Integration competition Multiome data set (cf. Materials and methods and Figure 6(a)). (a)
Data (sub)sets of the mosaic scenarios used in our evaluations (cf. (b)). If not stated otherwise,
’mosaic’ is the default. For the ’mosaic full’ scenario, we only consider the ’mosaic’ subset. (b)
Selected performance metrics (bio-conservation: nmi, cc_cons, batch effect removal: asw_batch_site,
iLISI_site) with the horizontal line indicating the mean across models. (c) UMAPs of embeddings
obtained with liam (α: 5) and MultiVI for the scenarios ’mosaic a’ and ’mosaic full’; cells are colored
by provided cell type annotations and modality. (d) and (e) Rank-based performance evaluation of
model variants with varying adversarial scaling parameter using bio-conservation and batch removal
metrics. Each entry corresponds to the mean rank of the model for the respective metric across five
random seeds. All computed metrics, including all competition metrics, are shown in Figure S8.
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Figure S7: All evaluation metrics for all presented models and the NeurIPS 2021 Multimodal Single-
Cell Data Integration competition Multiome data set (paired multimodal data integration). Shown
are the results of five training runs per model, except for Liam rna only (10 dims) and Liam VAE, for
which the result of a single run are shown (see Materials and methods). The horizontal line indicates
the mean.
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Figure S8: All evaluation metrics for all presented models trained on the mosaic use cases derived
from the NeurIPS 2021 Multimodal Single-Cell Data Integration competition Multiome data set.
Shown are the results of five training runs per model (see Materials and methods). The horizontal
line indicates the mean.
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Figure S9: All evaluation metrics for all presented models on the NeurIPS 2021 Multimodal Single-
Cell Data Integration competition CITE-seq data set (paired multimodal data integration). Shown are
the results of five training runs per model (see Materials and methods); the horizontal line indicates
the mean. GD: Guanlab-dengkw.
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