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Abstract 

Multi-omics characterization of single cells holds outstanding potential for profiling the dynamics and relations of gene regulatory states of 
thousands of cells. How to integrate multimodal data is an open problem, especially when aiming to combine data from multiple sources or 
conditions containing both biological and technical variation. We introduce liam, a flexible model for the simultaneous horizontal and vertical 
integration of paired single-cell multimodal data and mosaic integration of paired with unimodal data. Liam learns a joint low-dimensional rep- 
resentation of the measured modalities, which pro v es beneficial when the information content or quality of the modalities differ. Its integration 
accounts for complex batch effects using a tunable combination of conditional and adversarial training, which can be optimized using replicate 
information while retaining selected biological variation. We demonstrate liam’s superior performance on multiple paired multimodal data types, 
including Multiome and CITE-seq data, and in mosaic integration scenarios. Our detailed benchmarking experiments illustrate the complexities 
and challenges remaining for integration and the meaningful assessment of its success. 
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ingle-cell omics technologies have transformed how we study
ellular systems and are now integral to the biomedical re-
earch landscape. Recent advances allow measuring multi-
le modalities, such as gene expression and chromatin ac-
essibility, from a single cell ( 1–3 ). Data from such paired
ultimodal assays promise unprecedented insight into cellu-

ar diversity, the relationships between molecular layers and
egulatory processes. However, they also pose complex chal-
enges for data integration. As is the case for unimodal data,
ntricate study designs and meta-analyses require sophisti-
ated non-linear batch effect removal (horizontal integra-
eceived: August 21, 2023. Revised: March 8, 2024. Editorial Decision: April 20
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tion, also known as batch effect correction). For paired mul-
timodal data, we additionally need to combine data from
distinct modalities that provide complementary information,
each with unique dimensionality and statistical properties
(vertical integration). Lastly, it is an open challenge to com-
bine paired and unimodal data sets, e.g. from previous stud-
ies, into a single representation. Here, we face the additional
problem of only partially overlapping cells or features (mosaic
integration) ( 4 ). 

So far, several methods have been developed to solve as-
pects of these integration problems. For instance, solutions
proposed for different unimodal data types ( 5–8 ) can be
, 2024. Accepted: May 29, 2024 
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applied to individual modalities of multimodal data. However,
they showed varying success on complex horizontal integra-
tion tasks in a comprehensive benchmark ( 5 ). Likewise, sev-
eral methods for the vertical integration of multimodal single-
cell data are available, but most do not explicitly allow for or
have evaluated the success of complex batch effect removal
( 9–16 ). If working with more than a single data set, users
currently thus have to independently perform horizontal in-
tegration of data before applying these tools. A notable ex-
ception is the model totalVI, which performs simultaneous
horizontal and vertical integration of CITE-seq data using a
conditional variational autoencoder (CVAE) ( 17 ). Many mod-
els for mosaic integration of paired and unimodal data sets
( 18–22 ) project the data into a common latent space and ex-
plicitly model horizontal integration, but some require addi-
tional horizontal integration in the common space ( 23 ). Due
to their design and underlying assumptions, many of these
methods can be expected to be inherently sensitive to large dif-
ferences in data quality between modalities, a common issue
with multimodal data. Related tasks under the umbrella term
‘integration’ include the mapping of multimodal data from a
source to a distinct reference modality, e.g. scA T AC-seq data
to a scRNA-seq reference (‘bridge integration’ ( 24 )), which re-
quires separate batch effect correction for the different modal-
ities and does not take advantage of potential complementary
information. Another line of research concerns the imputa-
tion of data for non-measured modalities, also called modal-
ity translation ( 25 ), which can go hand in hand with deriving
a shared embedding ( 19 , 20 , 22 , 23 ). 

As complex integration scenarios become more common,
the performance and generalizability of methods are increas-
ingly important. To this end, identifying modeling choices for
successful integration of data of varying complexity and qual-
ity is critical. Many aspects of multimodal single-cell data inte-
gration remain unsolved: it is unclear whether and when pro-
jecting data into a common latent space might be more benefi-
cial than separate analyses of different modalities. In addition,
managing the trade-off between preserving biological varia-
tion and removing undesired batch effects is an open prob-
lem, where exploiting meta-information on the experimental
design could allow for more principled horizontal data inte-
gration. 

To tackle these challenges, we develop liam ( l everaging
i nformation a cross m odalities), an adversarial variational
autoencoder-based model for paired multimodal single-cell
data and mosaic integration, show which modeling choices
drive successful integration, and devise new strategies for eval-
uating integration. To our knowledge, liam is the first ap-
proach that allows for a principled tuning of the strength of
batch effect removal via combining a conditional VAE with an
adversarial training strategy that we recently introduced for
the horizontal integration of scA T AC-seq data ( 7 ), for which
we enable scaling. Sample information, such as replicate status
or other available meta-information, can guide optimal scal-
ing parameter selection. We apply liam to complex experimen-
tal designs with replicate data to confidently assess its integra-
tion performance. Liam exhibits state-of-the-art performance,
and its early-stage integration strategy leads to superior ro-
bustness towards low-quality modalities. We demonstrate its
competitive performance on multiple distinct multimodal data
sets that include DNA, RNA, and protein measurements. Our
contribution exposes and meets the need for models that ac-
count for complex real-world study designs with data of vary-
ing quality, explores novel avenues for method evaluation, and 

defines challenges of current benchmarking and evaluation 

strategies. 

Materials and methods

Liam: model and software

Model description 

VAEs have been successfully employed for the horizontal in- 
tegration of unimodal data ( 7 , 26 , 27 ). Here we modify the 
prototypical VAE framework, building on recent advances 
in modeling scRNA-seq and scA T A C-seq data ( 7 , 26 , 27 ) and
introduce liam ( l everaging i nformation a cross m odalities),
a model for paired multimodal single-cell data integration 

(horizontal and vertical) and mosaic integration of paired 

with unimodal data, simultaneously solving these integration 

tasks (cf. Results section ‘The model liam’, and Figure 1 and 

Supplementary Figure S1 ). 

Encoding 

Liam’s encoder has two separate input layers for the two 

modalities of each cell n , followed by one hidden layer each.
For cells with a single modality measured (mosaic integra- 
tion case), we set the input to the non-corresponding net- 
work branch to all zero. The output of these hidden layers 
is fed to separate network branches for modeling cell- and 

modality-specific size factors, with batch-specific priors ( l n 
for rna and d n for atac / adt), which are part of our horizon- 
tal data integration strategy . Additionally , we concatenate the 
output of the two modality-specific hidden layers to model 
the k -dimensional (default: 20) latent variable z n , the low- 
dimensional cell representation, allowing the model to com- 
bine information from both modalities. 

Decoding 
We employ two separate decoders, one per modality. These 
consist of two hidden layers each, which take a sample from 

the latent variable z n and the one-hot encoded batch variable 
s n (conditional decoder) as input. In this context, ‘batch’ refers 
to a meta-information variable, such as the condition or sam- 
ple of a cell. This way, the model can use the batch information 

for reconstructing the input data without needing to encode 
batch-related information in the embedding, which is part of 
our horizontal data integration strategy. We model gene ex- 
pression and the CLR-transformed adt counts with a nega- 
tive binomial distribution, using the implementation of ( 26 ) 
that uses the cell-specific size factor l n . For the chromatin ac- 
cessibility data, we use the negative multinomial loss, which 

jointly models a cell’s entire chromatin accessibility profile as 
introduced in BAVARIA ( 7 ), with the modification that we add 

an extra node to the penultimate fully connected layer, which 

takes the value of the learned cell-specific atac size factor ( d n ).

Latent factor distributions and inferred parameters 

We model cell-specific size factors as log-normally distributed 

and the latent variable z n as logistic-normal distributed 

( 17 ,27 ), which has the benefit of the latent factors summing 
to one, allowing for archetype analysis ( 17 ,27 ). Addition- 
ally, there are several inferred parameters in the model: the 
batch-specific per gene / adt dispersion of the negative bino- 
mial distribution and the batch-specific dispersion of the neg- 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae409#supplementary-data
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tive multinomial loss (batch-specific parameters are part of
ur horizontal data integration strategy). 

dv er sarial training strategy 
o further encourage the model to learn latent representations
evoid of batch effects and provide a way of tuning batch-
ixing, we employ a batch adversarial training strategy. In
articular, we introduce an additional neural network, a batch
lassifier, as a part of our framework that is trained together
ith the VAE model. The batch classifier has a single fully-

onnected hidden layer with 32 nodes that takes as input a
ample from z n , which is fed through a gradient reversal layer
nd predicts the batch from which the sample stems. Using a
radient reversal layer allows us to send a negative feedback to
he encoder during joint training when the batch classifier gets
etter at predicting the batch. We call this default architecture
f liam, combining a conditional decoder with the described
dversarial training strategy, BAVAE. 

urther architecture details 

ll layers are fully-connected layers. We employ dropout lay-
rs for the encoder, not for the decoder and batch classifier. We
se layer norm and the ReLu activation function for all lay-
rs, except for the respective output layers, in which we use
ther specified nonlinearities (cf. Supplementary Figure S1 ). A
omplete schematic representation of the model’s architecture
or Multiome data is shown in Supplementary Figure S1 . The
gure also details all layer dimensions. 

ifference between Multiome and CITE-seq architecture 

or CITE-seq data, the only difference is that the adt-specific
ncoder has input dimensions equal to the number of adt fea-
ures, and that the decoder mirrors the rna-specific decoder,
ith output dimensionality equal to the number of adt fea-

ures. 

oss function fully paired data 
he model’s loss function comprises regularization terms

or the learned latent factors. In particular, we use the
ullback–Leibler divergence for z n , encouraging z n to follow a

ogistic-normal distribution ( z n ∼ Logisticnormal (0 , I) ),
nd for the cell-specific size factors of the distinct modal-
ties l n and d n , encouraging them to follow a log-normal
istribution, using the real mean ( l μ , d μ) and variance
 l σ 2 , d σ 2 ) of the log of the mean library size per batch
 s n ) as priors ( l n | s n ∼ Lognormal (l � 

μ s n , l �σ 2 s n ) ; d n | s n ∼
ognormal (d 

� 

μ s n , d 

� 

σ 2 s n ) ). The total regularization loss is: 

loss KL = K L z + K L l + K L d

dditionally, the model’s loss function comprises reconstruc-
ion loss terms for the distinct modalities. They score the di-
ergence between the input data and the reconstruction with: 

1. loss rna & loss adt := Negative binomial loss ( 26 )
2. loss atac := Negative multinomial loss ( 7 ).

Lastly, the loss function comprises an adversarial term that
tems from a batch classifier for which we employ a cross-
ntropy loss between the predicted class (batch) probability
nd the real batch ( loss adv ). In some experiments, we use a
unable scaling parameter α, with which we can up-weight
he contribution of the loss of the batch classifier in the total
oss ( α = 1 in liam’s default mode). 
We minimize the total loss:  
1. For Multiome data: loss total = loss rna + loss atac + loss KL

+ α × loss adv
2. For CITE-seq data: loss total = loss rna + loss adt + loss KL

+ α × loss adv

If the batch classifier gets better at predicting the correct
batch, this gets fed back to the encoder as negative feedback
during the backward pass of model training through a gradi-
ent reversal layer ( 28 ). 

Loss function mosaic integration 

When combining paired and unimodal data (mosaic integra-
tion), we set terms with no correspondence in the loss function
for cells with only a single modality measured during model
training to 0. 

CVAE variant 
For the CVAE variant of liam, we remove the batch classifier
network. In addition to feeding the one-hot encoded batch
variable to the decoder, we feed it to the encoder layers (except
for the bottleneck layer) (conditional encoder). 

Single-modality model variant 
Liam can also be run in a single-modality mode. For this
model variant, only the leg of the encoder corresponding to
the modality in question is used, and the other is disabled. For
the decoder, only the decoder for the respective modality is
used. 

Model training 
For training all variants of liam, we chose a mini-batch size of
128 and split the data into a training set comprising 95% of
the data and a validation set comprising 5% of the data. We
use Adam for optimizing our model parameters, with a learn-
ing rate of 1e-3 and weight decay of 1e-6. We employ early
stopping with a patience of ten epochs with respect to the val-
idation loss, using the best model for our analyses. We chose
20 dimensions for the latent space for all models, except for
the single-modality models used for the concat baseline, for
which we used 10. These hyperparameters are set as defaults
in the liam package. Models for the competition and mo-
saic use case were trained using a Tesla-T4 graphic card with
CUDA 11.3. Training liam on the competition data set with
default parameters took ∼1 h 12 min for random seed 0 (cf.
Supplementary note 1.3 ). Models for the treatment-control
and extended treatment-control use case were trained using
a Tesla-V100-SXM2-32GB graphic card with CUDA 11.3. 

Model implementation 

Liam is implemented in Python. It employs the scvi-tools
library (version 0.14.3) ( 29 ), and we used the scvi-tools-
skeleton repository (version 0.4.0) as a starting template for
package development. It is available as a readily installable
open-source Python package with tutorials on GitHub ( https:
// github.com/ ohlerlab/ liam ). The input data to the model
needs to adhere to the AnnData format ( 30 ). 

Data sets

NeurIPS competition data set 
The competition use case is based on the phase 2 data
of the Multimodal Single-Cell Data Integration NeurIPS
competition 2021, accessible through AWS S3. We use
this data set to reproduce the competition result, as the

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae409#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae409#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae409#supplementary-data
https://github.com/ohlerlab/liam
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preprocessed data available via GEO contains additional
data held out during the competition. The data set contains
Multiome and CITE-seq data, which comprise gene expres-
sion and chromatin accessibility measurements, and gene
expression and cell surface protein expression (captured
via antibody-derived tags (adt)) measurements, respec-
tively. The data can be retrieved via s3://openproblems-
bio/ public/ phase2- private- data/joint _ embedding/ 
openproblems _ bmmc _ multiome _ phase2/ (Multiome)
and s3:// openproblems-bio/ public/ phase2-private-data/
joint _ embedding/openproblems _ bmmc _ cite _ phase2/ (CITE-
seq). 

The competition organizers purposefully introduced nested
batch effects in the study design. This allows for testing the
generalization capabilities of computational approaches for
horizontal data integration by investigating different levels
of batch effects removal, e.g. the removal of inter- versus
intra-donor and -site variation. The samples stem from bone
marrow mononuclear cells (BMMCs), a complex, disease-
relevant, and easily accessible system and 10 distinct donors.
The data was generated at four different sites, with samples
from one particular donor being measured at four (CITE-
seq) and three out of the four (Multiome) sites. For all
other donors, a single sample at one site was measured (cf.
Supplementary Figure S2 C). Each sample is identifiable by a
donor site combination (d*s*, with ‘*’ being a wildcard for
an identifier for a particular donor and site). Each sample was
preprocessed and annotated independently: distinct modali-
ties were preprocessed separately, deriving independent cell
type annotations per modality, which were harmonized af-
terward into one unified annotation per sample. Of note, the
cell type annotations are generally marker gene- or cell sur-
face protein marker-based, including the chromatin accessi-
bility modality, for which the organizers derived gene activity
matrices from the chromatin accessibility data before marker
gene-based annotation (cf. Supplementary note 1.4 ). A more
detailed description of the data set and its preprocessing can
be found in appendix A1 of ( 31 ). 

Treatment-control data sets from DOGMA-seq 

The treatment-control use case is based on data sets from ( 32 ),
which are available on GEO (GSE156478). The data sets are
multimodal single-cell data sets of peripheral blood mononu-
clear cells (PBMCs) that were in vitro stimulated with anti-
CD3 / CD28 and a control (unstimulated). We use data from
the DOGMA-seq protocol, which measures three modalities
at a time, chromatin accessibility, gene expression, and cell
surface protein (adt) expression. Two replicates from two dif-
ferent lysis conditions are available (abbreviated as DIG and
LLL), which we refer to as Rep1 and Rep2, respectively, result-
ing in four samples: Rep1_Stim, Rep1_Ctrl, Rep2_Stim and
Rep2_Ctrl. For the sole purpose of deriving a feature set for
the chromatin accessibility data, we also considered samples
from the ASAP-seq technology from the same manuscript,
which simultaneously profiles chromatin accessibility and cell
surface protein levels, as described below. For more informa-
tion, see ( 32 ). 

Data sets for the extended treatment-control use case 
For the extended treatment-control use case, we collected
additional publicly available Multiome data sets of PBMCs.
In particular, we use PBMC data from permeabilized cells
from ( 33 ), available on GEO (GSM5123950) and nuclei from
10x Genomics ( https:// www.10xgenomics.com/ resources/ 
datasets/pbmc- from- a- healthy- donor- granulocytes- 
removed- through- cell- sorting- 10- k- 1- standard- 1- 0- 0 ). We 
refer to these data sets as Swanson_Multiome_cells and 

10x_Multiome_nuclei, respectively . For identifiability , we add 

the prefix ‘DOGMA’ to the sample names from the treatment- 
control use case. For the 10x_Multiome_nuclei data set, we 
obtained expert-derived annotations from ftp://ftp.ebi.ac.uk/ 
pub/ databases/ mofa/ 10x _ rna _ atac _ vignette/seurat.rds intro- 
duced in https:// raw.githack.com/ bioFAM/ MOFA2 _ tutorials/ 
master/ R _ tutorials/ 10x _ scRNA _ scA T AC.html . 

Data preprocessing

Competition data sets 
We used the competition data provided as part of the NeurIPS 
competition. For ADT counts, we used CLR transformed 

data (across features) (stored in the field adata.X of the pro- 
vided AnnData object). For gene expression, we used raw 

counts, and for A T AC, binarized counts (stored in the field 

adata.layers [‘counts’] in the provided AnnData objects, re- 
spectively). The structure of the data set is described in detail 
in the competition documentation: https://openproblems.bio/ 
neurips _ docs/ data/ dataset/ . 

Derivation of mosaic data set from competition data 
We create a mosaic data set from the competition data sets by 
splitting the data by sequencing site and dropping either all 
gene expression or all chromatin accessibility features for sam- 
ples of all but one of the sequencing sites, for which we retain 

a paired data set. In particular, we drop gene expression fea- 
tures for all samples from sequencing sites 1 and 3 and chro- 
matin accessibility features from samples from sequencing site 
2. Samples from site 4 are left unchanged (cf. Figure 6 A; cor- 
responds to mosaic scenario: ‘mosaic full’). We split by site to
generate an as realistic as possible data set, as we expect tech- 
nical variation between sites to be larger than between donor
variation per site. Additionally, our split retains samples from
donor 1 for one of the unimodal chromatin accessibility data
sets, the unimodal gene expression data set, and the paired
data set, allowing us to more reliably evaluate how well we
can integrate these distinct modalities (rna only, atac only and
paired).

Treatment-control data sets from DOGMA-seq 

For the treatment-control use case, we reprocessed the author- 
provided data. Our reprocessing is loosely based on the pre- 
processing of the original publication ( 32 ) but was modified 

to enable the joint analysis of all DOGMA-seq data sets (sam- 
ples). Each modality underwent separate quality control, and 

we retain only cells for which all modalities pass it. 

Chromatin accessibility 

To derive a shared feature set for the chromatin accessibility 
data from the distinct samples, we jointly analyzed the data 
from all four DOGMA-seq samples and included chromatin 

accessibility data from the two ASAP-seq samples from the 
same study. Starting from the author-provided fragment files,
we use an alternative approach to peak calling for feature se- 
lection which segments the genome according to cross-cell ac- 
cessibility profiles called ScregSeg-fi ( 34 ). First, we filter each 

data set independently using ArchR, only retaining cells with 

a TSS score exceeding four and a minimum of 1000 fragments 

s3://openproblems-bio/public/phase2-private-data/joint_embedding/openproblems_bmmc_multiome_phase2/
s3://openproblems-bio/public/phase2-private-data/joint_embedding/openproblems_bmmc_cite_phase2/
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae409#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae409#supplementary-data
https://www.10xgenomics.com/resources/datasets/pbmc-from-a-healthy-donor-granulocytes-removed-through-cell-sorting-10-k-1-standard-1-0-0
ftp://ftp.ebi.ac.uk/pub/databases/mofa/10x_rna_atac_vignette/seurat.rds
https://raw.githack.com/bioFAM/MOFA2_tutorials/master/R_tutorials/10x_scRNA_scATAC.html
https://openproblems.bio/neurips_docs/data/dataset/
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ArchR version 1.0.0, R version 4.1.2, reference annotation:
g38 from package BSgenome.Hsapiens.UCSC.hg38 version
.4.1). Next, we remove cells with high counts exceeding Q3
1.5 × IQR for each data set. Afterward, data from all data

ets were combined and used for shared feature calling with
cregSeg-fi. We selected 1000 bp bins, only autosomes, and
nly considered regions with at least one count across all cells
nd binarized the data. We chose the following parameters for
cregSeg-fi: 7 random runs, HMM with 50 states, and 3000 it-
rations starting from random initial parameters for each run.
s the threshold for informative regions, we chose regions of

tates that cover at most 1 . 5% of the genome and that reach
 posterior decoding probability of at least 0.9.

ene expression 

tarting from author-provided cell-by-feature count matrices,
e process each data set separately. First, we remove cells with
 total number of unique molecular identifiers (umis) smaller
han 1001. After removing low-count cells, we exclude cells
ith high umi counts. In particular, those that exceed Q3 +
.5 × IQR. Lastly, we ensure that a minimum of 500 genes
as captured per cell and that the percentage of mitochondrial

eads is below 30%. As the last step, we exclude mitochondrial
enes from the analysis. 

ell surface protein expression 

tarting from author-provided cell-by-feature count matrices,
or each data set, we remove cells that have < 101 or > 25000
ounts, that exceed nine control counts, and that have high
D8 and CD4 expression in the same cell. In particular, a cell

annot have more than 30 CD8 counts and 100 CD4 counts
t the same time, considering the antibodies for ‘CD8’ and
CD4-1’. 

xtended treatment-control use case 
or the extended treatment-control use case, we reprocessed
he additional data to obtain the same feature set across all
ata sets as input to our model and to mimic the quality con-
rol of the original studies, where possible. Each modality un-
erwent separate quality control, and we retain only cells for
hich all modalities pass it. 

hromatin accessibility 

or the extended treatment-control use case, we use the same
eature set (informative regions) that we previously derived
or the treatment-control use case. We create an initial feature
ount matrix from the provided fragments files with ScregSeg-
using the scregseg fragments_to_counts function. For the

0x_Multiome_nuclei data, we only keep barcodes called as
 cell by the 10x Genomics Cell Ranger ARC pipeline and
inarize the data. For the Swanson_Multiome_cells data, we
nly keep barcodes called as a cell by the 10x Genomics Cell
anger ARC pipeline and cells that have an ArchR doublet

core < 1 as reported in the author-provided meta-data file and
inarize the data. 

ene expression 

or the 10x_Multiome_nuclei data, we only retained cells for
hich a cell type label was available, corresponding to cells

hat passed the quality control from the original analysis.
or the Swanson_Multiome_cells data, we retained cells with

 500 and < 2750750 feature counts.
Analyses

For visualizations and analyses, we use scanpy ( 35 ), Mat-
plotlib ( 36 ) and pandas ( 37 ), amongst other Python libraries.
Consider the accompanying analysis scripts for a complete
list of software dependencies. The graphical abstract and
Figures 1 , 6 A and Supplementary Figure S6 A were cre-
ated with BioRender.com. The leftmost panel of Figure 1 is
adapted from ‘ A T AC Sequencing’, created by Samara Ona
using BioRender.com, and ‘CITE-seq (Cellular Indexing of
Transcriptomes and Epitopes by Sequencing) Workflow’, by
BioRender.com (2024). Retrieved from https://app.biorender.
com/biorender-templates . 

Treatment-control use case 
For the treatment-control use case, we trained several variants
of liam, assigning either ‘replicate’ or ‘sample’ as the batch
variable. Additionally, we varied the adversarial scaling pa-
rameter α ( α ∈ {1, 5, 10, 25, 50, 100, 1000}). We trained one
model per setting with a random seed of 0. 

For visualization purposes, we color cells by CLR trans-
formed, scaled ADT counts not used during model training in
Figure 2 C, and raw gene expression values in Supplementary 
Figure S3 . We base our broad cell type annotation in Fig-
ure 2 C on cell surface protein marker expression. Activated T
cells: CD69; Naive CD4+ T cells: CD4+, CD27+, CD45RA+,
CD45RO −; Naive CD8+ T cells: CD8+, CD27+, CD45RA+,
CD45RO −. 

Extended treatment-control use case 
For the extended treatment-control use case, we trained sev-
eral variants of liam, assigning ‘sample’ as the batch variable
and distinct adversarial scaling parameters α ( α ∈ {1, 5, 10,
25, 50, 100}). We trained one model per setting with a ran-
dom seed of 0. 

For visualization purposes, we show CLR transformed,
scaled ADT counts not used during model training to color
cells in Figure 3 B. 

Competition use case 
For the competition use case (exception: subsampling analy-
sis, described below), we compare the performance in the joint
integration task of liam to variants of liam and several other
models. To account for stochasticity in the training processes,
we trained five models each, setting a random state compo-
nent of the respective frameworks to 0, 994, 236, 71 and 415.
All corresponding UMAPs show embeddings obtained with
a random seed of 0. An exception is the baseline model liam
VAE, which was only trained with a random seed of 0. 

Vertical integration 

We compare liam, in which we employ early-stage joint mod-
eling (vertical integration), to simpler baselines. In particular,
we compare liam to two single-modality variants of liam with
the same dimensionality of the latent space each and a ‘con-
cat’ model. For the concat model, we train two single-modality
variants of liam with a latent space dimensionality of half the
size of the default model. We concatenate the embeddings ob-
tained from the independently trained single-modality models
such that the latent space of the ‘concat’ model space has an
equal number of dimensions as liam (default). 

• BAVAE rna only (same dimensionality as joint / default;
k = 20)

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae409#supplementary-data
https://app.biorender.com/biorender-templates
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae409#supplementary-data
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dom seed of 11. 
• BAVAE atac / adt only (same dimensionality as
joint / default; k = 20)

• BAVAE concat (concatenation of latent spaces of BAVAE
rna + atac / adt only (half dimensionality as joint each;
k = 10, each)

Horizontal integration 

To analyze the contribution of individual modeling choices
to the model’s horizontal integration capabilities, we system-
atically ablate individual model components with all models
having batch-specific size factors and dispersion parameters
(except for VAE). Additionally, we vary the adversarial scal-
ing parameter α. We compare a: 

• VAE: no batch correction at all
• batchV AE: V AE + batch-specific cell size factors and dis-

persion parameters
• CEVAE: conditional encoder only
• CDVAE: conditional decoder only
• CVAE: conditional encoder and decoder
• AVAE x1, x50, x100, x1000*; batch adversarial term

only + scaled batch adversarial terms
• BAVAE x1 (default), x5, x10, x25, x50, x100, x1000*;

conditional decoder + scaled batch adversarial terms

* numbers indicate scaling parameter α for the adversarial
loss 

Subsampling analysis 
Data quality differences pose challenges for data integration.
To assess liam’s early-stage vertical integration strategy, we
simulate a scenario with substantial quality differences be-
tween modalities exploiting the competition data set. For this
subsampling analysis, we fix the random seed of the training
process to 0 but introduce stochasticity by using five distinct
random subsets of the chromatin accessibility data, simulating
low-quality data. In particular, we retain 25% of the binarized
A T AC feature values per cell, setting the remainder to 0 (ran-
dom seeds for subsampling: 8831, 234, 11, 9631, 94). We re-
peat the same procedure retaining 10% of the binarized A T AC
feature values per cell. Note that this strategy preserves the
overall feature set of the A T AC data; we subsample only indi-
vidual feature values per cell. The UMAPs in the correspond-
ing figures show embeddings obtained with a random train-
ing seed 0 using the random A T AC subsample obtained with
seed 8831. This implies that for the concat variant of liam in
the subsampling analysis, the 10-dimensional RNA-only data
representation is constant (trained with random seed 0), and
only the A T AC-only representation has varying input obtained
with different random seeds but is trained with a random seed
of 0. 

Comparison with other models 
MultiVI 
We ran MultiVI ( 22 ) (scvi-tools version 0.14.3) with default
parameters following a tutorial provided by the authors
( https:// docs.scvi-tools.org/ en/ stable/ tutorials/ notebooks/ 
MultiVI _ tutorial.html , as of 15 April 2022). Version 0.14.3
was available when we conducted the analysis, and MultiVI
was first presented as a preprint ( 38 ). The results we obtained
with this version of the model should be highly consistent
with results one would obtain with the version at the time of
MultiVI’s publication ( 22 ), as the model itself has not changed
(concerning the use case presented), but only its implementa- 
tion. Of note, this includes a feature preselection step before 
training the model (also applied in the preprint and final 
manuscript). In particular, features present in less than 1% of 
the cells are removed before training. For comparability with 

liam, we also run a model without feature preselection. The 
dimensions of the latent space are determined automatically 
by the model and are dependent on the number of input 
features. For the model with feature preselection, the latent 
space has 16 dimensions, for the model without feature 
preselection, 18 (cf. Supplementary note 1.2 ). 

totalVI 
We ran totalVI ( 17 ) (scvi-tools version 0.14.3) with default 
parameters following a tutorial provided by the authors 
( https:// docs.scvi-tools.org/ en/ stable/ tutorials/ notebooks/ 
totalVI.html , as of 15 April 2022). Of note, this includes 
total count normalization to 10 000 reads per cell, followed 

by logarithmization and a feature preselection step before 
running the model (scanpy version 1.8.2). In particular, for 
the gene expression modality, the top 4000 highly variable 
genes were determined with the parameter ‘flavor: seurat_v3’.
The latent space dimensionality defaults to 20 dimensions. 

LSL_AE 
Best performing model in original competition framework for 
task 3 Multiome online category according to competition 

evaluation criteria (Team name: Living-Systems-Lab; method 

name: LSL_AE). We adapted the publicly available code 
from the submissions to the competition ( https://github.com/ 
openproblems-bio/neurips2021 _ multimodal _ topmethods/ 
blob/ main/ src/ joint _ embedding/ methods/ lsl _ ae/ run/ script.py ) 
to be compatible with our analyses. The embedding generated 

by the model has 64 dimensions. 

Guanlab-dengkw 

Best performing model in original competition frame- 
work for task 3 CITE-seq online category according to 

competition evaluation criteria (Team name: Guanlab- 
dengkw; method name: Guanlab-dengkw (GD)). We 
adapted the publicly available code from the submis- 
sions to the competition https:// github.com/ openproblems- 
bio/neurips2021 _ multimodal _ topmethods/blob/main/src/ 
joint _ embedding/ methods/ Guanlab-dengkw/ run/ script.py to 

be compatible with our analyses. The embedding generated 

by the model has 100 dimensions. 

scVI 
scVI ( 26 ) is a model for unimodal data integration of scRNA- 
seq data. We thus apply it to the scRNA-seq modality of the 
benchmark data set only. We set up two variants of scVI (scvi- 
tools version 0.14.3). One with default parameters and one 
with layer norm instead of the default batch norm for the en- 
coder and decoder (cf. Supplementary note 1.1 ). The latent 
space dimensionality defaults to 10 dimensions. For training,
we selected the same user-defined parameters we used for liam.

Mosaic use case 
For the scenario ‘mosaic full’, we trained five models each 

(liam and MultiVI) setting a random state component of the 
respective frameworks to 8831, 234, 11, 9631 and 94. All cor- 
responding UMAPs show embeddings obtained with a ran- 

https://docs.scvi-tools.org/en/stable/tutorials/notebooks/MultiVI_tutorial.html
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae409#supplementary-data
https://docs.scvi-tools.org/en/stable/tutorials/notebooks/totalVI.html
https://github.com/openproblems-bio/neurips2021_multimodal_topmethods/blob/main/src/joint_embedding/methods/lsl_ae/run/script.py
https://github.com/openproblems-bio/neurips2021_multimodal_topmethods/blob/main/src/joint_embedding/methods/Guanlab-dengkw/run/script.py
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae409#supplementary-data
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ubsampling analysis 

urther building upon our idea of subsampling the original
ata to mimic challenging real-world scenarios with poor data
uality, we devise two additional scenarios starting from the
ase scenario ‘mosaic full’. We fix the random seed of the
raining process to 0 but introduce stochasticity by using five
istinct random subsets of the chromatin accessibility data, re-
aining 10% of the binarized A T AC feature values per cell, set-
ing the remainder to 0 (random seeds for subsampling: 8831,
34, 11, 9631, 94) for either the unimodal chromatin acces-
ibility samples (‘mosaic a’) or the paired modality data sets
‘mosaic b’) (cf. Figure 6 A). Note that this strategy preserves
he overall feature set of the A T AC data; we subsample only
ndividual feature values per cell, simulating low-quality data.
he UMAPs in the corresponding figures show embeddings
btained with a random training seed 0 using the random
 T AC subsample obtained with seed 11. Additionally, we in-
estigate whether a joint or separate analysis of paired data
ith unimodal data of varying quality is more advisable. To

his end, we consider different data (sub)sets for the scenarios
mosaic a’ and ‘b’. In particular, we train models using the en-
ire mosaic data set (mosaic), unimodal chromatin accessibil-
ty data only (atac only), and the paired data and the unimodal
ene expression data (rest) (cf. Supplementary Figure S6 A). 

dv er sarial loss scaling 
e test a range of adversarial scaling parameters α ( α ∈ {1, 5,

0, 25}) for the three mosaic scenarios (‘full’, ‘a’, ‘b’) consider-
ng the mosaic data (sub)set (cf. Supplementary Figure S6 A). 

omparison with other models 
ultiVI 
.f. description of MultiVI in section ‘Competition use case’.
or the mosaic scenarios, the models’ latent spaces have 15
‘mosaic full’) and 14 (‘mosaic a’ and ‘mosaic b’) dimensions,
e only trained models with feature preselection.

etrics: competition use case 
s in the NeurIPS competition, we score batch effect removal

batch removal) and the preservation of biological variation
bio-conservation), to assess model performance. A successful
odel should rank high for both tasks. We employ the met-

ics from the NeurIPS competition for bio-conservation but
evise its batch removal metrics due to confounding or poor
iscriminative power ( 39 ). For reproducibility, we also report
he original batch removal metrics ( Supplementary Figures S7 -
9 ) but use less confounded metrics in this study, as explained
elow. All metrics are implemented in the scib Python pack-
ge (comprehensively described in ( 5 )) (scib version 1.0.1).
e use the full competition metric name here and denote the

horthand used in the manuscript figures and text in paren-
heses. Overall, we use four metrics to score bio-conservation.
wo of them depend on cell type annotations provided by
he competition organizers, namely NMI cluster / label (nmi)
nd cell type ASW (average silhouette width; asw_label).
he other two are cell cycle conservation (cc_cons) and tra-

ectory conservation (ti_cons). For batch removal, we re-
ort two metrics from the competition for legacy reasons,
ut disregard them for our performance evaluations: batch
SW (asw_batch_sample), using the sample id as the batch
ariable, and graph connectivity (graph_conn). We employ
atch removal metrics less prone to confounding for per-
formance evaluation. In particular, we use a complementary
batch removal metric- iLISI (graph iLISI as implemented in
scib v1.0.1 ( 5 )) on the meta-variables site (iLISI_site), and
sample id when only considering data from d1 (iLISI_d1).
Additionally, we compute the competition metric batch ASW
on the variables site (asw_batch_site), and sample id when
only considering data from donor 1 (asw_batch_d1). Note
that, like the cell type annotation-dependent bio-conservation
metrics, the metric batch ASW also requires expert-derived
cell type annotations. For donor 1, samples were measured
at each site (except for one technical dropout for Multi-
ome data). We compute the batch effect removal metrics
only on data from donor 1, as we presume that biological
variation between samples from the same donor are mini-
mal. We reckon that subsetting the data to data from the
same donor is a good proxy for scoring technical batch ef-
fect removal, not penalizing the retention of potential re-
maining inter-donor variation. For the mosaic integration sce-
narios, we also compute the metrics iLISI (iLISI_modality)
and batch ASW (asw_batch_modality) on the meta-variable
modality. 

We present absolute metric values in strip plots, where each
point represents a model’s performance with a random seed,
and horizontal lines denote mean performance across seeds.
Additionally, we provide rank-based model comparisons, av-
eraging ranks per metric across random seeds indicative of
model consistency. Overall means per model per metric cate-
gory (bio-conservation and batch removal) highlight relative
overall performance. 

Metrics: treatment-control use case 
For quantitatively evaluating horizontal integration success,
we computed the iLISI metric (graph iLISI as implemented
in scib v1.0.1 ( 5 )) on distinct variables available as meta-
information - condition, as a proxy for bio-conservation, and
replicate, as a proxy for batch effect removal. 

Metrics: extended treatment-control use case 
For quantitatively evaluating horizontal integration success,
we compute several metrics for subsets of the data for which
specific meta-information is available. In particular, we com-
pute the iLISI condition and replicate for the treatment-
control data, as a proxy for bio-conservation and batch
removal. Additionally, we compute the iLISI on the meta-
variable sample, available for every data set. Lastly, we com-
pute the clustering metrics nmi and asw_label on cell type an-
notations available for the 10x data subset, as another proxy
for bio-conservation on the cell type level. 

Results

The model liam

Liam ( l everaging i nformation a cross m odalities) is a model for
the simultaneous horizontal and vertical integration of paired
multimodal single-cell data and mosaic integration of paired
with unimodal data (Figure 1 ; Supplementary Figure S1 de-
tails architecture). It builds on prior work using variational
autoencoders for dimensionality reduction and horizontal in-
tegration of unimodal single-cell data ( 7 , 26 , 27 ) and learns
a joint low-dimensional representation (embedding) of two
single-cell modalities while accounting for batch effects. Liam
currently supports all pairwise combinations of gene expres-

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae409#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae409#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae409#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae409#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae409#supplementary-data


PAGE 8 OF 17 Nucleic Acids Research , 2024, Vol. 52, No. 12, e52 

Figure 1. Multimodal single-cell data integration with liam. Liam supports multimodal and unimodal single-cell gene expression, chromatin accessibility, 
and cell surface protein data. We designed liam for integrating fully paired data sets, or at least one paired with unimodal data sets in a mosaic 
integration scenario for any number of samples. Given a ‘batch variable’ whose effect to remove from its output, liam performs horizontal (batch) and 
vertical integration simultaneously. Its output is a batch-corrected joint low-dimensional representation (embedding) of the input modalities. Liam is a 
variational autoencoder-based model that combines a conditional decoder with a tunable batch adversarial training strategy for horizontal data 
integration. Other k e y features are its shared la y ers in the encoder (‘early-stage integration’), conferring robustness to differences in data quality across 
integration scenarios, and its modality-specific loss functions. Mod: modality. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

sion, chromatin accessibility, and cell surface protein measure-
ments, demonstrated on Multiome and CITE-seq data. We use
the negative binomial loss for raw gene expression and CLR-
normalized cell surface protein counts and the recently pro-
posed negative multinomial loss for chromatin accessibility
data ( 7 ). 

As we wanted our model to be able to exploit poten-
tial correlations and complementarity between modalities,
we chose an architecture where the modalities share multi-
ple layers in the encoder that project the data into a joint
latent space (‘early-stage integration’; vertical integration).
To account for complex batch effects, we model size fac-
tors and use a conditional decoder combined with an ad-
versarial training strategy to remove the influence of a spec-
ified ‘batch variable’ on the embedding (horizontal integra-
tion) ( 7 ,28 ). We introduce a tunable scaling parameter α for
the adversarial training strategy, with which we can increase
the contribution of the adversarial loss term, allowing us
to encourage the mixing of cells with respect to the speci-
fied batch variable. By exploiting available meta-information
like replicate status, we can choose a parameter that op-
timizes batch effect removal while preserving biological
information. 

As in the works of ( 27 ) and ( 17 ), we employ a logistic-
normal distribution for the latent cell variable, making the
latent factor loadings interpretable as probabilities. We use
layer norm for each layer, as we found that the single modality
model scVI ( 26 ) achieved better horizontal integration when
we chose layer norm instead of batch norm (scVI default)
( Supplementary note 1.1 ). When combining paired and uni-
modal data (mosaic integration), we set terms with no cor-
respondence in the loss function for cells with only a single
modality measured during model training to 0. Note that we
also provide variants of liam for unimodal data alone, e.g.,
gene expression data via scRNA-seq. Liam is available as a
readily installable open-source Python package via GitHub,
where we provide usage tutorials, and is compatible with the
widely-used AnnData data structure ( 30 ). Further details on
liam’s implementation are provided in the Materials and meth- 
ods section. 

Preserving selected treatment effects by exploiting
replicates

The increasing complexity of study designs requires flexible 
integration methods that reduce unwanted batch effects while 
preserving biologically meaningful differences. We designed 

liam such that it can exploit nested batch effect structure and 

disentangle technical from biological variation. To illustrate 
this feature, we apply liam to four data sets from the stimula- 
tion of T cells, with two replicates each of treatment and con- 
trol conditions ( 32 ) (Figure 2 A and B). It comprises measure- 
ments of three modalities from the same cell, chromatin ac- 
cessibility and gene expression (used for model training), and 

cell surface proteins (used for model validation). Using meta- 
information collected during sample preparation, we conduct 
experiments assigning distinct variables as the ‘batch variable’ 
in the model (i.e. the variable whose effects to remove from the 
latent representation), with a batch adversarial training pa- 
rameter of α set to 1. We can also use this meta-information 

as a proxy for batch effect removal and biological signal con- 
servation by evaluating how well cells from the different repli- 
cates or conditions mix. We assess mixing with the diversity 
score iLISI ( 5 ,40 ), for which a higher score indicates stronger 
mixing with respect to the chosen variable. 

When assigning the experimental replicate pairs as batch 

variable, liam removes technical variation between replicates 
(high iLISI score for variable ‘replicate’) while retaining dif- 
ferences between conditions (i.e. stimulation and control; low 

iLISI score for variable ‘condition’) (Figure 2 E). By contrast,
when assigning each sample as a distinct batch, cells from 

stimulation and control samples within and between repli- 
cates are mostly mixed (high iLISI scores for variables ‘repli- 
cate’ and ‘condition’), potentially resulting in a loss of biolog- 
ical signal induced by the stimulation (Figure 2 F). Both set- 
tings preserve known treatment effects, e.g. the emergence of 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae409#supplementary-data
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E F

Figure 2. Liam preserves selected treatment effects and improves batch effect removal by exploiting replicates with its adversarial training strategy. 
Data for all figure panels stems from a treatment-control experiment (T cell stimulation) with replicates ( 32 ). ( A ) Experimental design. ( B ) UMAP of an 
embedding without batch correction. ( C ) UMAPs of embeddings of two models trained with different variables assigned as the batch variable to be 
remo v ed from the embedding; one uses ‘replicate’ (top row) and the other ‘sample’ (bottom row). Cells are colored by sample and scaled 
CLR-normalized cell surface protein counts of the T cell activation marker CD69 and another marker predictive of the treatment, CD3-2; different dashed 
circles highlight cell populations of interest; values outside the p1–p99 percentile range get assigned the min / max value, respectively. ( D ) UMAPs of 
model variants with increased contribution of the adversarial loss ( α: 50) and distinct batch variables colored by sample. ( E, F ) Diversity score iLISI 
computed for distinct target variables (replicate and condition) for the different variants of liam and increasing contribution of the adversarial loss. The 
larger the iLISI score, the more mixed samples are for the chosen variable. 
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ctivated T cells marked by the expression of the cell surface
rotein CD69 after T cell stimulation (Figure 2 C). However,
ore subtle biological differences are only captured by the
odel penalizing differences between replicates, but not sam-
les. This is reflected in the split of cell populations by condi-
ion, coinciding with stimulation-affected cell surface marker
xpression not used for training (e.g. the selective depletion of
D3-2 cell surface marker expression in stimulated samples)

cf. Figure 2 C). In summary, liam can exploit nested batch ef-
ect structure to capture more nuanced differences when repli-
ates serve as the batch variable . Nevertheless, even when us-
ng individual samples as the batch variable, liam retains cell
ype-level biological differences, showcasing its applicability
or any experimental design. 

uning batch adversarial training improves batch
ffect removal

he presented analyses highlight a common issue of integrat-
ng data sets without replicates: When removing batch effects
etween samples, we face a trade-off between preserving bi-
logical variation and removing unwanted batch effects. As-
uming that shared variation between multiple replicates pro-
led under the same condition is more likely to be of biological
han of technical origin, we run a low risk of removing bio-
ogical signal between replicates beyond sampling variation.
We thus investigate how tuning the contribution of the ad-
versarial loss compares between choosing replicate or sample
as the batch variable. In particular, we test different penaliza-
tion strengths of batch effects via the scaling parameter α ( α ∈
{1, 5, 10, 25, 50, 100, 1000}). Figure 2 D–F demonstrates that
replicate mixing improves when increasing the contribution of
the adversarial component for both model variants (increase
of iLISI ‘replicate’). At the same time, liam retains condition-
specific (biological) differences across a wide range of scal-
ing parameters when choosing ‘replicate’ as the batch variable
(constant value for iLISI ‘condition’ (cf. Figure 2 E), and grad-
ually loses them for the model with batch variable ‘sample’
for increasing α (increasing value for iLISI ‘condition’ (cf. Fig-
ure 2 F). These results demonstrate that liam’s tunable adver-
sarial training effectively preserves biological information and
improves batch effect removal across different scaling parame-
ters by utilizing replicate status. If replicates are lacking, other
meta-information about the sample, like monitoring the re-
tention of sample-specific cell types (here, stimulated T cells),
can guide optimal parameter selection for specific downstream
applications. 

In typical integration scenarios, batch effects can vary dras-
tically across samples, and replicates are typically unavail-
able. To assess liam’s performance in such situations, we ex-
tended the treatment-control use case to include two addi-
tional published PBMC samples with substantial batch ef-
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A B

C D E

Figure 3. Liam’s batch adversarial training strategy improves batch effect removal while retaining data set-specific variation at the cell type le v el. Data f or 
all figure panels are PBMC samples from diverse sources (cf. Materials and methods). ( A ) UMAP of an embedding without batch correction. ( B ) UMAPs 
of embeddings of liam trained with ‘sample’ as batch variable and α: 50. Cells are colored by sample and scaled CLR-normalized cell surface protein 
counts of the T cell activation marker CD69 and another marker predictive of the treatment, CD3-2; values outside the p1–p99 percentile range get 
assigned the min / max value, respectively. ( C ) as (B), but cells are colored by expert-derived annotations available for one data set 
(10x_Multiome_nuclei). ( D, E ) Batch effect removal and bio-conservation performance of model variants with increasing contribution of the adversarial 
loss across se v eral metrics relying on meta-information available for subsets of the data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

fects (10x_Multiome_nuclei, Swanson_Multiome_cells) (cf.
Figure 3 A). We train liam on this data with ‘sample’ as the
batch variable, varying the adversarial scaling parameter α
( α ∈ {1, 5, 10, 25, 50, 100}). Besides using the iLISI met-
ric for distinct meta-variables available for (sub)sets of the
data as a proxy for batch removal and bio-conservation,
we score bio-conservation with the clustering metrics Nor-
malized Mutual Information (nmi) and average silhouette
width (asw_label) on cell type annotations provided for the
10x_Multiome_nuclei sample. Despite the absence of repli-
cates, increasing the adversarial loss enhances batch effect re-
moval (as indicated by increased iLISI ‘sample’ and ‘repli-
cate’) (cf. Figure 3 D) while preserving biological variation on
the cell type level (nmi and asw_label) and gradually dimin-
ishing condition-specific differences (iLISI ‘condition’; cf. Fig-
ure 3 E). At α: 25, with nearly maximal observed batch re-
moval and remaining condition-specific variation, data set-
specific cell types are preserved. In particular, we observe dis-
tinct clusters for activated T cells for DOGMA_Rep1_Stim
and DOGMA_Rep2_Stim, reflected by CD69 protein expres-
sion (cf. Figure 3 B), and monocytes, depleted in the DOGMA-
but present in the 10x_Multiome_nuclei (annotated) and
Swanson_Multiome_cells (un-annotated) data sets (cf. Fig-
ure 3 C). In summary, these analyses demonstrate the benefits
of liam’s tunable batch adversarial training strategy across di-
verse integration scenarios. 

Liam excels in a comprehensive benchmark across
distinct data types

To further test liam’s capabilities, we use a benchmark data
set from the NeurIPS 2021 competition specifically designed
for ‘Multimodal Single-Cell Data Integration’ ( 31 ). This data
set comprises samples from multiple donors measured at
four sites, thus containing within- and across-site and donor-
variation (nested batch effects) and reflecting real-world chal- 
lenges (cf. Supplementary Figure S2 C; sample: unique donor- 
site combination). Its experimental design allows for assess- 
ing if methods can handle batch effects of distinct sources and 

scales. Lastly, the organizers provide expert-derived cell type 
annotations as a surrogate for ground truth for cellular state,
allowing us to evaluate our modeling choices beyond batch 

effect removal. 
Liam participated in the NeurIPS 2021 competition for 

the task: ‘Jointly learning representations of cellular identity’ 
(Task 3) and ranked 4th for Multiome and 2nd for CITE-seq 

data in the online training category. The aim of this task was 
to learn a low-dimensional data representation from multi- 
ple modalities, whose quality was scored with biology con- 
servation and batch removal metrics. Working with the com- 
petition organizers, we realized that the competition metrics 
for evaluating batch effect removal were, unfortunately, ei- 
ther confounded by the nested batch effect structure of the 
data or had low discriminative power ( 39 ). Here, we con- 
duct additional evaluations with batch removal metrics less 
prone to confounding, complementing the competition’s bio- 
conservation metrics (cf. Materials and methods). In addi- 
tion to the models that performed best according to the com- 
petition’s evaluation criteria, we considered alternative VAE- 
based approaches—LSL_AE and MultiVI ( 22 ) for Multiome 
and Guanlab-dengkw (GD) and totalVI ( 17 ) for CITE-seq 

data, respectively. We trained all models using the sample id 

(composite of site and donor) as the batch variable with no 

constraints on resource usage. 
Figures 4 B and D illustrate that liam is highly effective in 

removing nested batch effects while retaining biological vari- 
ation for both Multiome and CITE-seq data (absolute scores 
for all metrics shown in Supplementary Figures S7 and S9 ).
On Multiome data, liam outperforms MultiVI on all and 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae409#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae409#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae409#supplementary-data
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A

B

C

D

Figure 4. Liam e x cels in a comprehensive benchmark across distinct data types. Data for all figure panels stems from the NeurIPS 2021 Multimodal 
Single-Cell Data Integration competition. ( A, C ) UMAPs of embeddings obtained with liam and competitors for (A) Multiome and (C) CITE-seq data; cells 
are colored by provided cell type annotation (cell type), sample id (sample), and sequencing site (site). ( B, D ) Rank-based model performance on 
bio-conservation and batch removal metrics for (B) Multiome and (D) CITE-seq data. Each entry corresponds to the mean rank of the model for the 
respective metric across five random seeds. The absolute metrics scores, including all competition metrics, are shown in Supplementary Figures S7 
and S9 . 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae409#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae409#supplementary-data
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LSL_AE on most bio-conservation metrics (Figure 4 B and
Supplementary Figure S7 ). Liam and MultiVI take the lead
on one of the two donor 1-specific batch effect removal met-
rics each (cf. Materials and methods). Both clearly outper-
form LSL_AE, which fails to remove the nested batch effects
between sites (Figure 4 B), reflected by the stratification of
cells by the site (Figure 4 A). The performance advantage over
MultiVI is robust to the author-recommended preprocessing
choice of feature preselection ( Supplementary note 1.2 ), and
liam is around twofold faster than MultiVI ( Supplementary 
note 1.3 ). On CITE-seq data, liam performs favorably for the
annotation-based bio-conservation metrics nmi and asw_label
(Figure 4 D). For the bio-conservation metrics cc_cons and
ti_cons (Figure 4 D), GD achieves the best results. Yet, this is
rendered irrelevant by the model’s low success in removing
nested batch effects and integrating data from different sites,
again reflected by the stratification of cells by the site (Fig-
ure 4 C) and poor performance on the employed batch removal
metrics. As for the Multiome data, liam and totalVI outper-
form the best model from the competition concerning batch
integration (GD), with totalVI overall performing slightly bet-
ter than liam. In summary, liam successfully removes complex
batch effects while preserving biological signal for Multiome
and CITE-seq data. 

All of this comparative benchmarking needs to be consid-
ered in the context of a striking observation: a baseline vari-
ant of liam, for which we only use RNA as a single modality
from the Multiome data (cf. Supplementary Figure S2 ), per-
forms equally well. We address this observation in detail in
Supplementary note 1.4 . While this observation does not af-
fect the evaluation of horizontal integration and comparison
between alternative approaches, it points to the limit of in-
sights that can be gained from benchmarks, especially con-
cerning minor performance differences. Data availability and
quality of the individual modalities, the dynamics of the bi-
ological system, the granularity and quality of expert anno-
tations, and assumptions behind evaluation metrics may all
limit what conclusions can be drawn. 

The issue of annotation is also illustrated by liam readily
discovering cell types not present in the competition ‘ground
truth’. Silhouette scores of individual cells with respect to
cell type annotations are typically low in regions in-between
cell types. However, we also find a prominent example of a
low agreement between the reference annotation and obtained
clustering for a group of cells annotated as CD8+ T cells.
This group of cells expresses the well-characterized MAIT
cell markers KLRB1 and SLC4A10 ( 41 ) ( Supplementary 
Figure S3 ). Combined with the best concordance with the pro-
vided cell type annotations, this suggests that the embedding
learned by liam captures the cellular states present in the data
sets well. 

Examining modeling choices

While the scope of possible evaluations in competitions is lim-
ited, the controlled setup of the NeurIPS competition allows
us to further dissect modeling choices and gain insights into
liam’s strengths. Specifically, we systematically ablate individ-
ual model components, with all models except VAE using at
least batch-specific cell size factors and dispersion parameters
(Materials and methods). The conditional decoder (CDVAE)
mainly contributes to the horizontal integration performance,
with no clear advantage of adding the adversarial compo-
nent (BAVAE, default value α: ×1) or a conditional encoder 
(CVAE), as suggested by the minor performance improve- 
ments on the donor 1-specific batch removal metrics (cf. Fig- 
ure 5 A). A conditional encoder V AE (CEV AE) and adversarial 
V AE (AV AE; α: ×1) alone cannot remove batch effects (Fig- 
ure 5 A and Supplementary Figure S5 ). We observe compara- 
ble performance between scaled variants of the AVAE and our 
BAVAE (default) model for some bio-conservation and batch 

removal metrics ( α ∈ {50, 100}) ( Supplementary Figure S4 ).
Nonetheless, the BAVAE (default) model outperforms all 
AVAE variants. When assessing the impact of scaling the ad- 
versarial contribution in the loss function of liam (BAVAE α ∈ 

{5, 10, 25, 50, 100, 1000}), we observe considerable improve- 
ments of batch effect removal (higher scores for asw_batch_d1 

and iLISI_d1), albeit at markedly decreasing performance on 

the cell type label-dependent metrics nmi and asw_label for α
> 25 (cf. Figure 5 B and Supplementary Figure S7 ). We observe
excellent bio-conservation at considerably improved batch re- 
moval performance across a range of recommendable values α
∈ {5, 10, 25}. This evaluation suggests that liam’s conditional
decoder drives horizontal data integration success and can be
enhanced by liam’s new tunable adversarial training strategy.

When integrating multimodal samples from distinct 
sources, data quality can vary considerably between samples 
and modalities. We reasoned that liam might compensate for 
technical dropouts by exploiting correlation and complemen- 
tarity between distinct modalities due to its early-stage (ver- 
tical) integration strategy, which contrasts later-stage integra- 
tion strategies as in MultiVI or in the baseline liam concat.
As the evaluation of liam and liam concat led to highly sim- 
ilar results for the high-quality competition Multiome data 
( Supplementary Figure S5 B), we deliberately decreased the 
information content of the chromatin accessibility modality 
(atac) by subsampling the atac feature values (peaks) per cell 
to simulate a scenario where we combine a high-quality with 

a low-quality modality. In particular, we derive two scenar- 
ios, randomly selecting only 25% and 10% of the feature 
values of the binarized chromatin accessibility data per cell 
(cf. Materials and methods). This severely diminishes the in- 
formation content of the chromatin accessibility modality,
mimicking low-quality data (cf. Figure 5 D). For model train- 
ing, we provide the unmodified gene expression (rna) and 

subsampled atac data. In these scenarios, liam performs bet- 
ter on bio-conservation than the concat baseline or MultiVI,
with trends reinforcing with diminishing information con- 
tent (Figure 5 C and Supplementary Figure S7 ). At the same 
time, we observe a better mixing of batches for all mod- 
els (asw_batch_d1 and iLISI_d1) with diminishing informa- 
tion content, yet again highlighting the trade-off between bio- 
conservation and batch effect removal. Importantly, in con- 
trast to MultiVI, liam jointly modeling two modalities per- 
forms consistently at least as well as the best performing 
single modality liam model variant (rna only, 10 or 20 di- 
mensions) ( Supplementary Figure S7 ). This finding suggests 
that liam’s early-stage integration strategy does not impair 
the model’s performance when jointly modeling a high- and 

low-quality modality, which we expect to be critical in real- 
world settings. 

Liam for mosaic integration

While paired data provides a ground truth on the relationship 

between distinct modalities, obtaining them remains resource- 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae409#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae409#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae409#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae409#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae409#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae409#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae409#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae409#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae409#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae409#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae409#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae409#supplementary-data
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A B C

D

E

Figure 5. Examining modeling choices exploiting the competition data set. Data for all figure panels stems from the NeurIPS 2021 Multimodal 
Single-Cell Data Integration competition Multiome data set. ( A ) Evaluation of the influence of modeling choices on batch effect remo v al through model 
component ablation via selected performance metrics (bio-conservation: nmi, cc_cons, batch effect remo v al: asw_batch_d1, iLISI_d1) with the horiz ontal 
line indicating the mean. ( B ) Evaluation of the influence of adversarial loss scaling on model performance (Liam: BA V AE). P erformance metrics as in (A). 
( C–E ) Evaluating model performance when combining modalities of differing quality. (D) and (E) UMAPs of embeddings obtained with distinct models. 
(D) Left: a variant of liam trained on rna data only, using the entire rna data. Right: variants of liam trained on atac data only using atac subsampled to
25% and 10% of feature values per cell. (E) Models using the unmodified rna data and atac data subsampled to 25% and 10% of feature values per cell,
respectively. Liam (default, trained on both modalities), Liam concat (concatenation of embeddings from an rna only (10 dims) and atac only model (10
dims)), and MultiVI. (C) Performance metrics as in (A) for models in (E). All computed metrics, including all competition metrics, are shown in
Supplementary Figure S7 .

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae409#supplementary-data
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A

B C

D

Figure 6. Liam e x cels at mosaic integration of data with differing quality. We derived data for all figure panels from the NeurIPS 2021 Multimodal 
Single-Cell Data Integration competition Multiome data set. ( A ) Derivation of the mosaic scenarios from the original data: Dropping entire modalities for 
samples of some sites (s*) and additionally subsampling the feature values of the atac modality to 10% per cell (cf. Materials and methods). ( B ) UMAPs 
of embeddings obtained with liam ( α: 5) and MultiVI for the scenario ‘mosaic b’ on the entire mosaic data set; cells are colored by provided cell type 
annotations and modality. ( C ) Selected performance metrics of models for all scenarios (bio-conservation: nmi, cc_cons, batch effect removal: 
asw_batch_d1, iLISI_d1) with the horizontal line indicating the mean. ( D ) Rank-based performance evaluation of model variants with varying adversarial 
scaling parameter using bio-conservation and batch removal metrics. Each entry corresponds to the mean rank of the model for the respective metric 
across five random seeds. All computed metrics, including all competition metrics, are shown in Supplementary Figure S8 . 

 

 

 

 

 

 

 

 

 

 

 

intensive. Current protocols also frequently require extensive
adaptation to new cell types or model systems, especially to
ensure sufficient coverage for each of the modalities. Mo-
saic integration, the integration of samples with only partially
overlapping cells or features, is thus not only relevant in light
of integrating existing unimodal data sets with paired data
but, if successful, also an attractive option for future exper-
imental designs. To evaluate liam’s mosaic integration capa-
bilities, we derive three challenging mosaic scenarios from the
NeurIPS competition data. These include two scenarios that 
revisit our idea of subsampling the original data of one of 
the modalities per cell. We reciprocally test whether we can 

integrate a low-quality data modality (subsampled to 10% 

of atac features values per cell) from a unimodal (‘mosaic 
a’) or paired assay (‘mosaic b’) with high-quality, unmodi- 
fied counterparts (cf. Materials and methods and Figure 6 A).
We compare liam with MultiVI and also address whether 
jointly or separately analyzing the mosaic data (sub)sets (cf.

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae409#supplementary-data
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upplementary Figure S6 A) is more advisable. Based on the
atch removal performance across scenarios (Figure 6 D and
upplementary Figure S6 D and E), we set the liam scaling
arameter α to ×5. This is a feasible strategy in real-world
cenarios since the required meta-information is commonly
vailable. For the presented scenarios, this strategy results in
avorable batch removal and bio-conservation performance. 

For mosaic integration, liam consistently outperforms Mul-
iVI on bio-conservation, scoring better on all metrics and
cenarios except for cc_cons for the ‘mosaic a’ scenario
Figure 6 C and Supplementary Figure S8 ). Concerning
atch effect removal (horizontal integration), MultiVI per-
orms slightly better than liam for ‘mosaic full’ but shows
lear deficiency when data quality suffers (Figure 6 B and
upplementary Figure S6 C), with liam outperforming Mul-
iVI for scenarios ‘mosaic a’ and ‘b’ (Figure 6 C). In con-
rast to liam, which achieves stable horizontal integration per-
ormance across both subsampling scenarios, MultiVI’s per-
ormance markedly decreases for scenario ‘mosaic a’, where
e integrate low-quality single modality data sets (cf. Fig-
re 6 C and Supplementary Figure S6 C). 
Concerning the question of whether a joint or sepa-

ate analysis of the data (sub)sets is more favorable, liam
eaches the highest score for the bio-conservation metric nmi
n the paired and rna data subset (rest) for all scenarios
 Supplementary Figure S6 B). While this reflects that integrat-
ng the chromatin accessibility data leads to worse preser-
ation of the reference annotations in all scenarios, we be-
ieve that integrating high-quality unimodal chromatin ac-
essibility in the ‘mosaic b’ scenario is beneficial for down-
tream analyses such as transcription factor motif analysis (cf.
upplementary note 1.4 , where we discuss issues with gene-
xpression centric annotation strategies). In both mosaic sce-
arios, we gain by integrating unimodal with paired data (mo-
aic (sub)set) compared to analyzing the unimodal chromatin
ccessibility data alone (atac only, Supplementary Figure S6 B).
verall, liam shows excellent performance on mosaic integra-

ion, and its early-stage integration renders it more robust to
ifferences in data quality than later-stage integration as in
ultiVI. 

iscussion

iam is a highly flexible model for the simultaneous horizontal
nd vertical integration of single-cell multimodal data, includ-
ng mosaic integration of paired multimodal and unimodal
ata. In contrast to many established models for paired mul-
imodal single-cell data, which require an independent hori-
ontal integration of the distinct modalities before vertical in-
egration ( 9–11 ), liam and other VAE-based approaches solve
oth tasks at once. 
Available multi-omics (benchmark) profiling is strongly bi-

sed towards well-studied cell types in human, such as periph-
ral blood mononuclear cells (PBMCs), for which high-quality
ata has been obtained on different platforms. Recent work
n a wider range of cell types and species shows that gen-
rating similar-quality data proves difficult. Simulating low-
uality data allowed us to distinguish architectural choices.
e find that liam’s early-stage integration strategy confers ro-

ustness to differences in data quality, with liam outperform-
ng current alternatives on both the paired and mosaic inte-
ration scenario. Liam is thus a much-needed complementary
pproach. 
A problem for current multimodal method development
and evaluation remains the considerable uncertainty associ-
ated with annotations of cellular identity used as a surro-
gate for ground truth. Since they are usually expert-derived
from the data itself, they are subject to available knowledge
and varying data quality and will, as such, be biased towards
specific preprocessing strategies and better-studied modalities.
For the NeurIPS competition data set, which we chose to il-
lustrate liam’s capabilities, the organizers aimed to minimize
biasing choices concerning integration approaches and modal-
ity. Regardless, the data set remains vulnerable to the problems
mentioned, highlighted by the unannotated MAIT cell popu-
lation in the Multiome data set and the on par performance
of an RNA-only model with the joint model on the Multiome
data (see Supplementary note 1.4 ). To combat this problem,
we suggest scrutinizing and updating benchmarks with new
insights (e.g., our use of revised batch removal metrics), con-
sidering multiple independent use cases, and possibly limit-
ing future evaluations to cells that can be reliably annotated
across several preprocessing strategies. In general, cell type an-
notation may not be the most insightful benchmark task for
multimodal methods, where the impact of successful integra-
tion may be better discernible in downstream tasks such as
trajectory inference or network reconstruction ( 42 ). However,
ground truth annotations for those are even harder to obtain.

Increasingly complex study designs require flexible hori-
zontal data integration strategies. Liam can generally account
for complex batch effects, and its tunable adversarial training
strategy allows for further optimizing batch effect removal,
leveraging available meta-information. While acknowledging
limitations related to the availability of meta-information and
the trade-off of bio-conservation vs. batch effect removal, we
provide a first-of-its-kind tunable solution, and our extended
experiments support the effectiveness, robustness, and adapt-
ability of liam’s batch adversarial training strategy across di-
verse use cases. Our experiments suggest that upscaling the
adversarial loss is beneficial in various scenarios, improving
batch effect removal and demonstrably retaining biological
variation on the cell type level across wide parameter ranges.
Notably, even without batch adversarial scaling, liam consis-
tently outperforms alternative models in most of our evalua-
tions. 

Generative models, like liam, inherently lend themselves to
imputing missing data ( 17 , 20 , 22 ). For instance, ( 25 ) treat data
imputation as a translation problem and develop an inter-
operable model trained on paired data. Other methods pre-
dict multimodal measurements by averaging across neighbor-
ing cells in the joint embedding with the respective modality
measured ( 19 ,23 ). This approach can, in principle, be applied
to any method deriving a common embedding. However, the
value of data imputation is arguably the largest once it gen-
eralizes to unmeasured cell types or conditions, which is still
an open problem even for single modalities. Undoubtedly, ad-
ditional simultaneously measured modalities offer new possi-
bilities for downstream analyses, and some approaches pro-
vide trimodal data integration ( 20–23 ). Whether deriving a
common embedding is advisable has not been systematically
investigated. Lastly, the rapid developments in the field of nat-
ural language processing have found their way into genomics.
First studies hint at the potential of transformer-based models
for single-cell data integration ( 43 ,44 ). We believe that stan-
dardized benchmarking is critical to making the most of these
exciting advances and enabling their application in practice. 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae409#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae409#supplementary-data
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https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae409#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae409#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae409#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae409#supplementary-data
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In summary, liam provides a robust, flexible, and extend-
able framework for multimodal data integration. Its early-
stage integration and tunable batch adversarial training strat-
egy provide demonstrable competitive strengths, making it
a method of choice for multimodal single-cell data integra-
tion, especially when data quality is uneven among samples
or modalities. Further, our analyses highlight significant issues
for benchmarking multimodal data integration and provide
initial suggestions for meaningful evaluation. 

Data availability

The liam software is freely available under a BSD-
3-Clause License at https:// github.com/ ohlerlab/ liam .
For reference, we make scripts and notebooks for
data preprocessing, analyses, and figures available
at: https:// doi.org/ 10.5281/ zenodo.11084186 . Legacy
software used for the analyses is available at: https:
// github.com/ ohlerlab/ liam _ challenge _ reproducibility and
https:// doi.org/ 10.5281/ zenodo.11085436 . All data used
in this manuscript is publicly available. The data for the
competition use case is available via s3: // openproblems-
bio / public / phase2-private-data / joint embedding / . The data
for the treatment-control use case is available via GEO
(GSE156478). The data sets for the extended treatment-
control use case are available via GEO (GSM5123950),
and https:// www.10xgenomics.com/ resources/ datasets/ pbmc- 
from- a- healthy- donor- granulocytes- removed- through- cell- 
sorting- 10- k- 1- standard- 1- 0- 0. For more details, refer to
Materials and methods.

Supplementary data

Supplementary Data are available at NAR Online. 
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