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Abstract 23 

Multiplexed imaging offers a powerful approach to characterize the spatial topography of tissues in both 24 

health and disease. To analyze such data, the specific combination of markers that are present in each 25 

cell must be enumerated to enable accurate phenotyping, a process that often relies on unsupervised 26 

clustering. We constructed the Pan-Multiplex (Pan-M) dataset containing 197 million distinct annotations 27 

of marker expression across 15 different cell types. We used Pan-M to create Nimbus, a deep learning 28 

model to predict marker positivity from multiplexed image data. Nimbus is a pre-trained model that uses 29 

the underlying images to classify marker expression across distinct cell types, from different tissues, 30 

acquired using different microscope platforms, without requiring any retraining. We demonstrate that 31 

Nimbus predictions capture the underlying staining patterns of the full diversity of markers present in 32 

Pan-M. We then show how Nimbus predictions can be integrated with downstream clustering algorithms 33 

to robustly identify cell subtypes in image data. We have open-sourced Nimbus and Pan-M to enable 34 

community use at https://github.com/angelolab/Nimbus-Inference.  35 

 36 
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Introduction 37 

Recent developments in instrumentation have made highly multiplexed protein imaging more routine, 38 

with multiple mass spectrometry and optical microscopy platforms capable of measuring 10s to 100s of 39 

proteins on large, intact tissue sections1–4. This increase in throughput and multiplexing have added a 40 

spatial domain to the single-cell revolution, unlocking the ability to catalogue the full complement of 41 

cells present in a sample, understand their spatial organization, and infer their interactions. These 42 

techniques have proven invaluable in understanding how structure and function are interrelated in 43 

tissue homeostasis, the tumor microenvironment, and during infection5–7. This deluge of data has 44 

necessitated the development of algorithms across the full spectrum of the analysis pipeline to translate 45 

the raw imaging measurements into biological insights. 46 

Cell type assignment is a crucial step in the analysis and interpretation of single-cell spatial data. This 47 

core step is shared across nearly all single cell technologies—including flow cytometry, mass cytometry, 48 

single cell RNA-seq, and single cell ATAC-seq. Although the approach, data modality, and biomolecules of 49 

interest can vary significantly, the end goal is the same: to assign cells to a cell type based on the 50 

combinatorial expression of the detected biomolecules. In line with the importance of this task, 51 

substantial effort has been devoted to developing more robust and automated methods for cell type 52 

assignment. These include approaches based on decision trees, hierarchical clustering, self-organizing 53 

maps, unsupervised graph-based clustering, and mapping to reference atlases8–16.  54 

Although single cell information can be extracted from spatial data, there is a key difference from other 55 

single cell techniques—there is no dissociation step that physically separates adjacent cells from one 56 

another. Thus, images of intact tissue are not inherently single cell when generated. Instead, cells in the 57 

image must be identified through a process known as cell segmentation, where the border of individual 58 

cells is detected, labeled, and disambiguated from overlapping and adjacent cells. There are now deep 59 

learning models that can generate high-quality cell segmentations with human-level accuracy for most 60 

tissue types 17–19. Once cell segmentation labels have been generated, the co-occurrence of protein or 61 

RNA expression within each cell can be quantified. This is typically calculated by averaging the intensity 62 

of a given marker across all pixels within the cell, otherwise known as integrated expression. 63 

Despite these advances, cell segmentation using software or by a human is rarely perfect, and some 64 

degree of error is inevitable. Even with perfect segmentation, multiple confounders inherent to imaging 65 

data make accurate cell type assignments a challenge in two-dimensional imaging data. For example, 66 

shared boundaries between bordering cells can cause signal to spill over into adjacent cells, especially 67 

for markers localized to the cell membrane. Furthermore, tissues can have background staining that does 68 

not represent biological signal, such as autofluorescence or non-specific staining. Additionally, marker 69 

intensities can vary over several orders of magnitude such that universal cut points for assigning marker 70 

positivity cannot be used. As a result, simply averaging the expression across all the pixels within a cell, 71 

via integrated expression, is often an unreliable proxy for determining cell positivity. Most of these 72 

confounding factors are readily apparent to trained experts (i.e., pathologists) and can be taken into 73 

account during manual scoring. The subcellular pattern, intensity, and contrast of marker expression with 74 

respect to its nearby surroundings provide a spatial context that is invaluable for determining whether a 75 

cell is positive for a given proteomic marker. However, manually scoring cells in highly multiplexed 76 

imaging data is not scalable. As a result, nearly all existing algorithms use integrated expression for cell 77 

type assignment10,13–16,20,21. This simplification has major benefits in generalization, computational 78 
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efficiency, and interoperability for algorithm developers, and has been the natural choice in the absence 79 

of viable alternatives. Unfortunately, this choice results in the loss of critical spatial information that 80 

could greatly enhance the accuracy of cell type assignment.  81 

Convolutional Neural Networks (CNNs) are a form of deep learning that have achieved human-level 82 

accuracy across a wide range of challenging domains in biological imaging17,22, including super-resolution 83 

imaging23, spot detection24, image denoising18, cell segmentation17,19, and disease classification25,26. CNNs 84 

are appealing because they are trained to make predictions directly using the original image as an input. 85 

Model training typically requires a labeled dataset with many examples of the task the algorithm will 86 

perform in order to learn how to make valid predictions without overfitting. This presents two key 87 

challenges for training a deep learning algorithm for cell classification. First, manual cell type annotation 88 

is laborious and requires significant expertise. Second, models trained for direct cell type prediction20,21,27 89 

will only be valid for the specific set of markers included in their training data, limiting generalization to 90 

other datasets where markers might differ.  91 

Here, we set out to create a single deep learning model for human-like, visual classification of marker 92 

positivity that would generalize across tissue types, image platforms, and markers. To overcome the 93 

challenges outlined above that are inherent to training a deep learning model for direct cell type 94 

prediction, we instead split the task into two separate steps. We first leveraged previously published and 95 

unpublished multiplexed proteomic imaging datasets to create the Pan-Multiplex dataset (Pan-M, Fig. 96 

1c), which contains more than 197 million annotations across 56 proteins and 10 cell lineages (Fig. 1b). 97 

We used Pan-M to train Nimbus, a deep learning model that predicts marker positivity independently for 98 

each channel (Fig. 1a), overcoming the limitations of integrated expression. We then used the 99 

predictions generated by Nimbus, instead of integrated expression, as inputs to conventional clustering 100 

algorithms (Fig. 1c), showing how this workflow achieves accurate cellular phenotyping without 101 

laborious manual scoring or expert-level correction. Importantly, Nimbus can be run on any multiplexed 102 

antibody dataset (without finetuning or retraining) to generate accurate single-cell predictions that are 103 

robust to the confounders that affect integrated expression. This approach addresses the root cause that 104 

makes cell clustering more difficult with spatial data relative to dissociated single-cell assays. We have 105 

open-sourced both the Pan-M dataset and Nimbus to serve as useful tools for the community.  106 

 107 

Main 108 

 109 

Constructing the Pan-M dataset 110 

Deep learning models require large amounts of labeled training data. This volume of data is needed in 111 

order to prevent overfitting, and underpins the success of recent efforts to predict protein structures, 112 

identify transcription factor binding sites, and segment cells17,28,29. Our goal was to construct a dataset 113 

which would facilitate the training of accurate deep learning models to predict marker positivity on a 114 
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single-cell basis. Given the pivotal role that training data plays in enabling accurate models, it is crucial to 115 

construct a training dataset that captures the breadth and diversity of data that the final trained model 116 

will be run on to ensure that it makes accurate predictions. 117 

To create a sufficiently large and diverse dataset, we built a pipeline to extract training data from 118 

published5,30 and unpublished multiplexed imaging datasets where the cells had been clustered using 119 

conventional approaches. For each image, we collated 1) the segmentation mask, which denotes the 120 

precise location and shape of every cell, 2) the table of cell assignments, which labels every cell with its 121 

cell type, and 3) the individual channels of imaging data. Based on the cell type assignments, we then 122 

generated an assignment matrix, which mapped cell types to channel positivity (Fig. 2a and Extended 123 

Data Fig. 1 a-c). For example, CD8T cells would be marked as positive for CD3, CD8, and CD45, whereas 124 

CD4T cells would be marked as positive for CD3, CD4, and CD45. This was done for each cell type in the 125 

dataset, across all of the channels used for clustering. This assignment matrix was then used to produce 126 

the silver standard labels (Fig. 2a). We refer to them as silver standard labels because they depend on 127 

the accuracy of the initial clustering, rather than any manual proofreading. 128 

Fig. 1 | NIMBUS improves marker prediction for phenotyping in multiplex images. a, Nimbus enables better 

separation between positive and negative cells by incorporating subcellular expression patterns, compared to 

integrated expression which just uses the average. b, The Nimbus model is a noise-robust U-Net trained on a 

diverse set of publicly available multiplexed imaging datasets (silver standard labels) with subsequent expert 

validation (gold standard labels). c, Drop-in integration of Nimbus in various cell phenotyping pipelines. 
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We used our silver standard label pipeline to generate Pan-M, which contains 197 million annotations 129 

across 15 million cells. The Pan-M dataset includes images from three different image platforms and four 130 

Fig. 2 | Data Annotation. a, Schematic of the pipeline to generate the Pan-M dataset. We mapped single channel 

positivity from previously clustered data to produce the silver standard labels. We then manually curated a subset 

of these images to generate gold standard labels. b, The number of annotations across image platforms and tissue 

types. c, The number of cells of each cell type. d, The subcellular localization of the included markers. e, The 

number of gold standard annotations in Pan-M compared to previously published. f, The number of hours 

required to generate the gold standard and silver standard labels. g-i, Image samples with corresponding gold 

standard labels for the imaging platforms Vectra, CODEX and MIBI-TOF, respectively. 
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different tissue types (Fig. 2b). In addition, it contains a diversity of cell types (Fig. 2c) spanning 131 

epithelial, immune, and stromal populations, as well as a substantial fraction of cells that are negative for 132 

all of the included imaging markers (pan-negative). The dataset contains 56 distinct protein markers with 133 

a range of staining patterns (Fig. 2d). 134 

Following generation of the silver standard labels for the Pan-M dataset, we selected a subset of images 135 

and generated gold standard labels (Fig. 2a). These labels were created via manual correction of the 136 

silver standard labels by directly examining the multiplexed images to confirm cell positivity for each 137 

channel in each cell. In total, we generated over 1 million gold standard annotations, which is 138 

significantly more than all of the previously published manually curated annotations for cell type 139 

assignment combined (Fig. 2e). Although the gold standard annotations are higher quality, they are also 140 

much more labor intensive to generate. Each cell in an image must be manually inspected, which scales 141 

linearly with the number of proofread cells. In contrast, the silver standard labels can be generated far 142 

more efficiently; once the assignment matrix for a given dataset is proofread, it can be applied across all 143 

of the cells. As a result, generating gold standard labels takes approximately 900 times longer for the 144 

same number of annotations (Fig. 2f), which is why we manually annotated only a small subset of the 145 

cells in the Pan-M dataset. In Figs. 2g-i, we highlight representative images of the gold standard 146 

annotation across the three microscopy platforms in Pan-M.  147 

 148 

Nimbus assessment 149 

After constructing the Pan-M dataset, we used it to train Nimbus—a deep learning model to directly 150 

predict cell marker positivity. Nimbus is built off of the U-Net architecture31,32, which was designed for 151 

biomedical image data to capture both high-level features and local details. The inputs to Nimbus are a 152 

segmentation mask and a single channel of image data. The output is a score for each cell in the image, 153 

ranging from 0 to 1, corresponding to whether that cell is positive for the supplied marker (Fig. 1a). We 154 

intentionally designed Nimbus to have a simple workflow, with only a single channel of image data 155 

required to make predictions. As a result, Nimbus can be run on any multiplexed dataset with any 156 

combination of markers, since each marker is treated independently. This is in contrast to previous deep 157 

learning algorithms for cell classification20,21,27 which require the model to be retrained, since they have 158 

learned the specific mapping between markers and cell types present in each dataset.  159 

Nimbus was trained on the silver standard labels in Pan-M (see Methods), which were derived from 160 

cluster assignments generated by the original study authors using previous approaches for cell 161 

clustering. This is a laborious process which often involves comparisons of different clustering 162 

algorithms, multiple rounds of optimization and parameter fine-tuning, along with substantial manual 163 

intervention and adjustment in order to get sufficiently accurate cell labels. As a result, generating 164 

accurate clustering can take weeks for large datasets. In contrast to this bespoke approach, we trained a 165 

single Nimbus model using the same settings across all the underlying data at once. Across the five 166 

distinct datasets which make up Pan-M, Nimbus generates predictions which correspond visually to the 167 

underlying data (Fig. 3). Nimbus accurately identifies marker positivity across different datasets, tissue 168 

types, and channels, producing output that corresponds with the underlying shape and structure of the 169 

data. For example, Nimbus correctly identifies concentric layers of smooth muscle (SMA+) and 170 
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endothelium (CD31+) in 171 

decidual spiral arteries (Fig. 3a), 172 

as well as scattered CD45+ 173 

immune cells in the   174 

surrounding tissue. In the colon 175 

(Fig. 3c), Nimbus is able to 176 

demarcate the MUC1+ epithelial 177 

cells from the surrounding VIM+ 178 

stromal cells, as well as CD4+ 179 

immune cell aggregates.  180 

Moving beyond a qualitative 181 

assessment, we next 182 

systematically evaluated the 183 

accuracy of the Nimbus 184 

predictions. We used the gold 185 

standard annotations from the 186 

held-out test set as our ground 187 

truth, comparing the accuracy of 188 

the Nimbus scores as well as the 189 

original clustering using a 190 

number of distinct metrics (see 191 

Methods). Across each of these 192 

metrics, we see that the Nimbus 193 

predictions on the gold standard 194 

labels are as accurate as the 195 

silver standard labels (Fig. 4a). 196 

This is true across the different 197 

tissue types present in Pan-M 198 

(Fig. 4b), and across nearly every 199 

cell type as well (Fig. 4c). Thus, 200 

Nimbus represents a single, pre-201 

trained deep learning model for 202 

marker classification with 203 

accuracy that matches each of 204 

the individual clustering 205 

solutions employed by the 206 

different study authors in the 207 

datasets that went into Pan-M.  208 

We next sought to identify 209 

factors that impacted model performance. We calculated metrics to define cell density, cell size, marker 210 

heterogeneity, and marker sparsity across the test set (see Methods). We then assessed how these 211 

features impacted the accuracy of the model. Overall, we observed little impact on performance for the 212 

 

Fig. 3 | Qualitative Evaluation. a-e, Representative images across the five 

datasets in Pan-M showcasing Nimbus predictions. The left column 

contains three distinct channels from each dataset. The middle column 

shows Nimbus predictions for the same three channels, pseudo-colored to 

align with the color of the imaging channel. The right column shows F1 

scores averaged over all markers. 
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confounders we measured (Fig. 4d), suggesting that Nimbus will be able to generalize beyond the 213 

specific data it was trained on. Looking at the model architecture itself, we tested the impact of changing 214 

the backbone, changing the resolution of the input data, and changing the training schema, none of 215 

which significantly affected performance (Extended Data Fig 1d-g, Supplementary Table 1).  216 

 217 

Nimbus scores enable accurate cellular phenotyping 218 

Having shown that Nimbus generalizes across datasets, tissues, and cell types to predict marker 219 

expression, we next sought to show the advantages of using Nimbus-derived estimates of marker 220 

positivity. As discussed in the Introduction, nearly all algorithms developed for clustering image data take 221 

the average value of each marker in each cell, which we refer to as integrated expression, as their input. 222 

Although easy to compute and convenient to work with, using integrated expression as an input 223 

necessarily discards spatial information present for a given marker.  224 

To demonstrate the improvement that Nimbus scores represent over integrated expression, we analyzed 225 

the distributions of both metrics in the gold standard test set. Across all channels in all images, Nimbus 226 

scores showed clear separation between the gold standard positive and negative populations (Fig. 5a, 227 

left), indicating that a higher Nimbus score was a reliable proxy for true cell positivity. In contrast, 228 

integrated expression did not exhibit the same pattern (Fig. 5a, right). In particular, due to the challenges 229 

of capturing complex spatial information with a simple average, there was substantial overlap between 230 

the gold standard positive and negative populations. Studying a specific channel, we saw the same 231 

pattern with Cytokeratin; the Nimbus scores were well-separated between the gold standard positive 232 

and negative cells with two almost completely non-overlapping distributions of predicted positivity for 233 

Cytokeratin (Figure 5b, left). In contrast, when looking at integrated expression, the distributions 234 

overlapped substantially (Figure 5b, right).  235 

 

Fig. 4 | Quantitative Evaluation. a, Performance metrics of the Nimbus model and the silver standard labels are 

compared to gold standard annotations b-c, Performance metrics split by tissue type and cell type. d, The effect 

of confounders on the model performance in terms of mutual information. 
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To highlight why Nimbus outperformed integrated expression, we identified specific cells that exemplify 236 

the source of this discrepancy. When marker staining is dim, and located at the periphery of a cell, the 237 

value of integrated expression will be quite low. However, visually inspecting the image shows that even 238 

though the signal contained with the segmented cell is low, the cell is indeed positive for that marker. 239 

This is what is highlighted in the top row of Fig. 5c, where Nimbus accurately identified positive 240 

expression in a cell with low integrated expression. Alternatively, when very bright signal from one cell 241 

spills over into an adjacent cell, the integrated expression resulting from that spillover can be quite high. 242 

However, inspecting the image demonstrates that this cell is not actually positive for the marker, it is 243 

simply in close physical proximity to the cell with the real signal. This is highlighted in the bottom row of 244 

Fig. 5c, where Nimbus accurately identified negative expression of Cytokeratin in the highlighted cell 245 

despite a high value for integrated expression.  246 

Given that Nimbus scores better delineate positive and negative cells from one another compared to 247 

integrated expression, we hypothesized that using these scores instead of integrated expression would 248 

make unsupervised clustering significantly faster and require less manual adjustment and finetuning. To 249 

demonstrate this, we first generated Nimbus scores for all markers and cells in a Multiplexed Ion Beam 250 

Imaging (MIBI) breast cancer dataset. We then used the Nimbus scores as inputs to unsupervised 251 

Fig. 5 | Bi-modality of Nimbus confidence scores. a, Kernel density estimate plots of the distribution of Nimbus 

confidence scores on the left and integrated expression on the right for all gold standard annotated cells. b, 

Kernel density estimate plot of the Nimbus scores and integrated expression for the Cytokeratin channel in a 

CODEX colon cancer dataset shown in c. d-e Cellular phenotypes assigned based on Nimbus scores for a TNBC 

and a DCIS cohort, which were not part of the training data. 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 3, 2024. ; https://doi.org/10.1101/2024.06.02.597062doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.02.597062
http://creativecommons.org/licenses/by/4.0/


clustering using a self-organizing map12. We found that this approach enabled us to accurately identify 252 

the cell subtypes in the images, which we grouped broadly into cancer, immune, and stromal 253 

populations (Fig. 5d). Nimbus scores reflected the expected marker staining patterns, with high 254 

expression of key lineage defining markers in the appropriate populations such as CD3 in T cells and 255 

Ecadherin in Cancer cells (Fig. 5d). In addition to these broad lineages, this approach successfully 256 

identified more granular subpopulations of cells, such as regulatory T cells (CD3+CD4+FOXP3+) and 257 

antigen presenting cells (HLADR+CD11c+).  258 

As a second validation, we used Nimbus to generate per-cell scores for a different MIBI dataset 259 

consisting of breast cancer precursor lesions, which we then fed into the same clustering pipeline as 260 

above (Fig. 5e). Following unsupervised clustering of Nimbus predictions (Fig. 5e), we successfully 261 

identified the major cell lineages in the image, such as lymphoid cells positive for CD45, and endothelial 262 

cells positive for CD31. We also identified granular cell populations such as KRT7+ KRT15+ KRT81+ 263 

epithelial cells, CD206+ CD209+ myeloid cells, and KRT14+ SMA+ myoepithelial cells. Across the two 264 

datasets, we were able to combine Nimbus with unsupervised clustering to assign 94.66% of the cells to 265 

a specific cluster, with only 5.34% of unassigned cells, highlighting the utility of this approach for 266 

unsupervised cell population identification. 267 

 268 

Discussion 269 

Robust cell type assignment in spatial data has remained a significant bottleneck in image analysis 270 

pipelines. The customization that goes into constructing antibody panels across distinct studies means 271 

there is substantial variation in the markers used to define cell types. This prevents the creation of 272 

pretrained deep learning models that can generalize beyond the markers they were trained on. Here, we 273 

addressed this problem by predicting positivity on a per marker basis, rather than directly predicting cell 274 

type. We constructed the Pan-M dataset, containing more than 197 million annotations across 15 million 275 

cells. We used Pan-M to train Nimbus, a deep learning model to predict marker positivity one channel at 276 

a time. Nimbus can accurately predict marker positivity across the four tissues, three imaging platforms, 277 

10 cell lineages, and 56 markers in Pan-M. These predictions can be leveraged in traditional clustering 278 

algorithms to easily identify cell types.  279 

Despite the wealth of spatial information contained within imaging data, nearly all previously developed 280 

algorithms to cluster cells in image data operate on the extracted counts per cell, not the actual images. 281 

This is in contrast to how experts evaluate the accuracy of clustering, where visual inspection of the 282 

underlying images is crucial in order to assign cells to the correct lineage. By training Nimbus directly on 283 

a diversity of multiplexed images, we have created an algorithm that much more closely mirrors the 284 

workflow of a human expert, but with the scalability inherent to a fully automated deep learning 285 

solution.  286 

Although pretrained deep learning models are now available for a wide range of biological image 287 

analysis tasks, prior to this work there were none for cell classification. This was not because of an 288 

inherent technical barrier, but rather because of how the problem had been posed. Training a model to 289 

directly predict cell types based off combinations of markers means that the model must learn which 290 

markers are associated with cell types; as a result, study-to-study variation in which markers are used to 291 

identify specific cell populations, and which cell populations are being profiled, would necessitate the 292 
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development of new models. For example, CellSighter27 is a recently published deep learning algorithm 293 

for cell type prediction, and is one of the only other approaches for cell classification in image data that 294 

operates directly at the image level. However, the model must be retrained for each dataset it is applied 295 

to. MAPS21, another recently published deep learning algorithm for cell classification, likewise must be 296 

retrained on each new dataset. Custom models have the potential to generate classifications that 297 

precisely conform to the specifics of a given dataset, but the time and effort to accomplish such a task is 298 

significant.  299 

Our insight was that clustering image data is more challenging than clustering other types of single cell 300 

data not because the cell types themselves are harder to distinguish, but rather because the integrated 301 

expression of counts in each cell is noisier due to the spatial nature of the data. As a result, by reframing 302 

the task from predicting cell types to predicting marker positivity, we developed a model which 303 

exclusively solves the image-specific challenges for cell assignment. Following marker positivity 304 

prediction, the single cell imaging data is no more challenging to work with than any other type of data. 305 

This means that following single-marker predictions with Nimbus, the data can be clustered using a non-306 

spatial clustering algorithm, taking advantage of the infrastructure that has been developed for other 307 

modalities of single-cell data.  308 

Given that Nimbus was trained on Pan-M, a natural question is whether it learned the same biases and 309 

errors present in the underlying data. This is a major concern when training models which directly 310 

predict cell type, as any inaccuracies in the training data will be baked into the final model. However, the 311 

structure of the prediction task we used for Nimbus helps to alleviates this issue. Because we split each 312 

cell up into its constitutive channels during training, and only ever predict a single channel at a time, 313 

Nimbus never sees the cell-level biases that exist in the dataset, making it harder for these biases to be 314 

learned during training. For example, if one dataset tended to incorrectly label regulatory T cells (Tregs) 315 

as helper T cells (CD4T), a model trained to directly predict cell type would learn that same bias. 316 

However, because Nimbus was only trained to predict channel scores, rather than cell types, it doesn’t 317 

see that the specific combination of markers that define a Treg (CD3, CD4, FOXP3) have been incorrectly 318 

labeled a CD4T (CD3, CD4). Instead, it just sees some examples where the silver standard label for FOXP3 319 

is negative, when in fact the true label is positive. Rather than representing a source of systematic bias in 320 

the training dataset, this just contributes to the overall error rate of the silver standard dataset; we 321 

utilize a training schema which reduces the impact of incorrect labels33 to account for this (see 322 

Methods).  323 

Although Pan-M and Nimbus represent a major step forward in our ability to analyze multiplexed 324 

imaging data, our study has several important limitations. Foremost of these would be the data types 325 

that should be analyzed with Nimbus. Nimbus will not perform well on data types not seen during 326 

training, such as H&E, immunohistochemistry, or spatial transcriptomics. Additionally, though we 327 

attempted to include a wide representation of different tissue types and markers in Pan-M, we were not 328 

able to generate an exhaustive training dataset. Given that Nimbus is only as accurate as the data it was 329 

trained on, it is likely that Nimbus will not perform well on tissues or markers with very different staining 330 

patterns from those present in Pan-M. Finally, since Nimbus does not directly perform downstream cell 331 

clustering, it does not solve the issues inherent to current clustering algorithms for high-dimensional 332 

data, such as determining the number of distinct clusters, the challenges with identifying rare 333 

subpopulations, and variation from non-deterministic algorithms. We anticipate that future work will be 334 

able to leverage the template we established here to address many of these shortcomings, setting the 335 
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stage for further improvements in the robustness, accuracy, and generalizability of biological image 336 

analysis algorithms.  337 

 338 

Methods 339 

Creating the Pan-M Dataset 340 

Our aim was to create a robust computer vision model for multiplexed image analysis, generalizing to 341 

diverse cell types, tissue types, and imaging platforms. This required us to create a comprehensive and 342 

heterogeneous dataset that encapsulated the variability observed in multiplexed imaging studies. This 343 

heterogeneity spanned multiple axes, including four organ systems, three imaging platforms, 10 cell 344 

lineages, and 56 markers. Of the three imaging platforms, Vectra and CODEX are both 345 

immunofluorescence-based, whereas MIBI-TOF uses mass spectrometry as a readout. We included 346 

images from tissue microarrays, as well as whole tissue sections composed of stitched and tiled images, 347 

to ensure that the Pan-M dataset was as representative as possible.  348 

To account for diversity introduced by varying computational processing pipelines, the Pan-M dataset 349 

incorporates variations in cell segmentation algorithms and cell phenotyping pipelines. Different versions 350 

of Mesmer17 were used for the MIBI-TOF datasets, whereas the CODEX colon dataset was segmented 351 

using the CODEX Segmenter34. Cell phenotyping was done via manual gating of individual channels for 352 

the two Vectra datasets, using FlowSOM15 for the MIBI-TOF decidua dataset, using Pixie12 for the MIBI-353 

TOF TNBC dataset, and with STELLAR20 for the CODEX dataset. For a full description of the parameters for 354 

each dataset, see Supplementary Table 2. 355 

Preprocessing 356 

To harmonize marker intensities across all datasets, the individual channels within each dataset were 357 

normalized based on the channel-wide 99.99th percentile of their intensity values. Then, images were 358 

resized to 1/4th of their original resolution, to balance computational efficiency without compromising 359 

prediction quality (see Extended Data Fig. 1f). Images were then cropped to 512² sized tiles with 16 360 

pixels overlap and stored as .tfrecord files for fast loading and model training.  361 

Automatic creation of silver standard labels 362 

For the MIBI-TOF and CODEX datasets, we generated silver standard labels for individual cells using a 363 

semi-automatic approach. For each dataset, we first constructed an assignment matrix that mapped cell 364 

types to their specific marker expression patterns. For each cell type, we identify which markers should 365 

be positive in that cell, which markers should be negative, and which markers are undefined for that cell 366 

type (Extended Data Fig. 1a-c). For example, cytotoxic T-cells are mapped to positive marker expression 367 

for their lineage defining markers CD45 (lymphocytes), CD3 (T-cells) and CD8 (cytotoxic T-cells), negative 368 

marker expression for lineage defining markers of other cell types (e.g. CD14 which is lineage defining for 369 

monocytes) and undetermined marker expression for markers whose expression is not uniform across 370 

that cell type (e.g. Ki67 as a marker for proliferating cells; see Supplementary Table 2 for a list of markers 371 

that were undefined for all cell types and excluded).  372 

We then validated that the resulting marker profiles for each cell type aligned with the per-cell 373 

intensities from the original clustering, and consulted with the original study authors as needed. We 374 
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used the assignment matrices to map cell types to marker positivity for each marker, and then used the 375 

location information of each cell to generate an image-level semantic segmentation mask where the 376 

pixels belonging to each cell that was positive for a given marker were positive, and the pixels belonging 377 

to cells negative for a given marker were negative.  378 

The two Vectra datasets came with manually assigned per-channel integrated expression thresholds. We 379 

used these thresholds to assign cells into marker positive and negative classes for both datasets and 380 

generated silver standard semantic segmentations maps. 381 

Finally, we visually examined the silver standard labels of all datasets by comparing them with their 382 

corresponding marker images, and identified channels with a high disparity between silver standard 383 

labels and marker expression. Since cell type annotations were done with manual gating or unsupervised 384 

clustering, we expect that some cells are false positive or negative, thus adding label noise to the 385 

dataset. We gauged the amount of label noise by comparing the silver standard annotations against the 386 

manually proofread gold standard annotations and report quality metrics in Fig. 2d. See Supplementary 387 

Table 2 for a list of markers that were excluded due to poor visual agreement. 388 

Manual annotation to construct gold standard labels 389 

For three randomly selected images from each of the five studies, we generated gold standard 390 

annotations via manual proofreading of the silver standard labels. The silver standard labels were 391 

exported to QuPath35, and expert annotators looked at each channel and its silver standard annotations 392 

individually. The silver standard annotations were systematically corrected by flipping labels from one of 393 

(positive, negative, undetermined) to one of (positive, negative, likely positive, likely negative). A 394 

consensus mechanism was adopted, where annotators met for weekly discussions to resolve borderline 395 

cases and ensure consistent scoring. Following the first round of manual scoring, an independent 396 

annotator proofread all annotations a second time to ensure consistency among annotations. We used 397 

these gold standard labels only for assessing the accuracy of the model, not for training. 398 

Nimbus model design  399 

Our goal was to have a model which could implement a coordinate transform from image space (which is 400 

confounded by signal intensity, subcellular expression patterns, noise, and other artifacts) to marker 401 

confidence scores (which would ideally be free of those confounders and accurately represent the 402 

expression of a marker in each cell). Rather than constraining the model to a fixed number or sequence of 403 

markers, which would limit general applicability and require retraining, we opted for a design that would 404 

compute a score for each marker separately. This design decision allowed for adaptability to different 405 

marker sets and enhanced the model's general applicability across diverse experimental scenarios.  406 

Based on our model design considerations, we opted for a U-Net architecture31,32, which takes the 407 

normalized tiles of antibody-stained images along with foreground / background cell segmentation maps 408 

as the inputs, and outputs pixelwise confidence scores, calculated as the sigmoid of the last layer of the 409 

network. These confidence scores capture the chance that a cell is positive for the given antibody in the 410 

input image. We compute the average of the per-pixel confidence scores across all pixels in each cell.  The 411 

U-Net is a convolutional neural network commonly used for biomedical image analysis, due to its ability 412 

to capture features at multiple scales. We tested several pre-trained backbones, such as variants of 413 

NASnet36, EfficientNet37 and ResNet38, and found that the regular Residual U-Net32 achieved the highest 414 
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accuracy for our task (Extended Data Fig. 1g). We also tested whether having additional inputs, such as a 415 

nuclei or membrane channel, would increase performance, but saw no difference in accuracy (Extended 416 

Data Fig. 1e). 417 

Noise-robust training procedure 418 

Given that the silver standard labels contain errors from the original clustering, we adapted a noise-robust 419 

training procedure33 originally developed for image classification to help the model avoid overfitting to the 420 

erroneous labels in the dataset. An initial model was first pre-trained with a cross-entropy loss on the silver 421 

standard labelled dataset using high weight decay to prevent overfitting, but low enough to still enable 422 

the model to learn from the data and make predictions. The model was then finetuned by excluding cells 423 

from the loss calculation where the model has low confidence or high loss (i.e. confidently disagrees with 424 

the noisy labels). Cells were excluded if their loss was above the 85th-percentile of the exponential moving 425 

average (EMA) of the loss. This percentile-based EMA threshold is calculated separately for each dataset 426 

and marker combination, to ensure that similar proportions of labels for each were retained. In addition 427 

to excluding cells with high loss, we specifically selected cells to include using a matched-high confidence 428 

selection mechanism33. Here, cells were included if the model’s cell-wise predictions and silver standard 429 

labels agreed, and the predicted confidence was above 0.9 for positive cells and below 0.1 for negative 430 

cells. Using this noise robust training procedure resulted in a modest increase in model accuracy (Extended 431 

Data Fig. 1d). 432 

Training details 433 

The fields of view (FOVs) in the datasets were initially split into subsets, with 80% of FOVs assigned to the 434 

training dataset and 10% assigned to the validation and test set each. The FOVs that were annotated with 435 

the gold standard labels were assigned to the test set. We used the Adam optimizer39, a cosine decay 436 

learning rate scheduler starting from a learning rate of 3e-4, a weight decay with weight 1e-3, and 437 

optimized the model with batchsize 16. To increase the robustness in training, we augmented the data 438 

using elastic deformations, flips, rotations, random brightness and contrast, additive gaussian noise and 439 

gaussian blurring, implemented via the imgaug library40. 440 

The model was first trained with the noise-naïve training procedure for 300,000 steps, then the noise-441 

robust finetuning was applied for 100,000 steps. No early stopping was employed, and the training was 442 

continued throughout. The checkpoint with the highest silver standard validation dataset F1-score was 443 

selected. The training was conducted using TensorFlow 2.8 on NVIDIA A40 and H100 GPUs. 444 

Model inference 445 

For inference, we first calculate channel-wise 99.99% pixel intensity percentiles over the whole dataset for 446 

normalization. Then, input images are normalized and resized to 1/4th resolution. Additionally, we 447 

transform the instance map into a binary representation with eroded boundaries and average predictions 448 

over multiple views generated by flipping and 90°-rotations, a technique called test time augmentation 449 

that is known to improve performance. Subsequently, post-processing includes the application of inverse 450 

augmentations and averaging over test-time augmented predictions. Furthermore, we employ artifact-451 

free tile and stitch inference41 for large Fields of View (FOVs) and integrate the Nimbus score per cell 452 

segment, storing the channel-wise results in a tabular format which can then be easily used for 453 

downstream analysis. 454 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 3, 2024. ; https://doi.org/10.1101/2024.06.02.597062doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.02.597062
http://creativecommons.org/licenses/by/4.0/


Validation and benchmarking 455 

To evaluate and benchmark Nimbus confidence scores, we computed the precision, recall, specificity, and 456 

F1 scores between Nimbus predictions and the gold standard annotations, as these metrics are robust to 457 

class imbalance. Of note, in multiplexed proteomic imaging datasets, class imbalance arises as a result of 458 

antibody panel design, where most cells are negative for most markers. A quick guide on interpreting these 459 

metrics is as follows: precision represents the share of true positives among all positive predictions, recall 460 

indicates the share of true positives among all ground truth positives, specificity reflects the share of true 461 

negatives among all negative predictions, and the F1 score combines precision and recall by taking their 462 

geometric mean. We benchmarked Nimbus and the silver standard labels using these metrics against the 463 

gold standard annotations to assess model accuracy, as well as establish a baseline for the underlying 464 

training data. Reported metrics were averaged over the five individual datasets within Pan-M. 465 

Confounders analysis 466 

We calculated cell-level metrics that we hypothesized might correlate with model accuracy to understand 467 

the factors that influence model performance. We used the mutual information criterion42 to capture the 468 

relationship between possible confounders and errors in the predictions of Nimbus and the silver standard 469 

annotations on the gold standard test set. We defined the possible confounders as follows: Cell size was 470 

defined as the number of pixels in the segmentation mask of each cell. Marker heterogeneity was defined 471 

as the coefficient of variation, which scales the standard deviation by the mean, of the integrated 472 

expression for each channel in each FOV. Marker rarity was defined as the share of marker positive cells 473 

for a given marker and FOV. Marker sparsity was defined as the number of marker positive cells within a 474 

120 pixel radius of a given cell. Cell density was defined as the total number of cells within a 120 pixel 475 

radius of a given cell. 476 

Cell clustering 477 

To demonstrate the potential of Nimbus in improving cell population identification, we performed 478 

unsupervised clustering of cells according to their Nimbus confidence scores using a self-organizing map 479 

(SOM)15. The SOM is an artificial neural network that aggregates similar cells to one another, resulting in 480 

a fixed number of distinct clusters. Here, we “over cluster” the data by specifying a large number (200+) 481 

of distinct groups, and then performed hierarchical clustering with manual adjustment to combine these 482 

groups together where they represented the same underlying cell type. We took advantage of a workflow 483 

and corresponding GUI we recently developed for this task12, which significantly speeds up this process 484 

and allows for easy manual inspection and correction of the over-clustered data. 485 

The resulting cluster assignments were then manually inspected to identify potential issues with the 486 

clustering using both Python scripts and Mantis Viewer43. For example, cells in close physical proximity to 487 

one another were inspected to ensure that signal spillover did not influence the results, markers with dim 488 

expression were double checked to ensure that they were not dwarfed by brighter markers, etc. Following 489 

manual inspection, the combination of the over clustered data was modified as necessary to generate the 490 

appropriate per-cell assignments.  491 

Code and data availability 492 

Light-weight and easy to use inference code for Nimbus is available at github.com/angelolab/Nimbus-493 

Inference. Code for preparing the dataset, model training and evaluation is available at 494 
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github.com/angelolab/Nimbus, and code for figure generation is available at 495 

https://github.com/angelolab/publications/tree/main/2024-Rumberger_Greenwald_etal_Nimbus. Our 496 

Pan-M dataset can be downloaded at https://huggingface.co/datasets/JLrumberger/Pan-Multiplex.  497 

 498 
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