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A B S T R A C T   

Magnetic resonance elastography (MRE) is an emerging clinical imaging modality for characterizing the visco-
elastic properties of soft biological tissues. MRE shows great promise in the noninvasive diagnosis of various 
diseases, especially those associated with soft tissue changes involving the extracellular matrix, cell density, or 
fluid turnover including altered blood perfusion – all hallmarks of inflammation from early events to cancer 
development. This review covers the fundamental principles of measuring tissue viscoelasticity by MRE, which 
are based on the stimulation and encoding of shear waves and their conversion into parameter maps of me-
chanical properties by inverse problem solutions of the wave equation. Technical challenges posed by real-world 
biological tissue properties such as viscosity, heterogeneity, anisotropy, and nonlinear elastic behavior of tissues 
are discussed. Applications of MRE measurement in both humans and animal models are presented, with 
emphasis on the detection, characterization, and staging of diseases related to the cascade of biomechanical 
property changes from early to chronic inflammation in the liver and brain. Overall, MRE provides valuable 
insights into the biophysics of soft tissues for imaging-based detection and staging of inflammation-associated 
tissue changes.   

1. Introduction 

The mechanical properties of soft tissues play a critical role in the 
development and progression of disease [1,2]. For example, inflamma-
tion, a tissue response to injury, can be triggered by chronic mechanical 
friction, increased vascular pressure, or traumatic mechanical insults 
[3–6]. Inflammatory tissue itself exhibits altered mechanical properties 
resulting from a cascade of mechanically relevant processes. For 
instance, vascular leakage or immune cell infiltration − two hallmarks 
of inflammation − significantly alter coarse-grained mechanical tissue 
properties [7,8]. Beyond early inflammation, further downstream 

pathological processes such as matrix protein accumulation and cross-
linking typically lead to tissue stiffening while tissue degeneration, at-
rophy, and necrosis cause softening. Therefore, many disease processes 
are associated with physical state transitions of the affected tissues over 
property ranges from soft to stiff and from elastic to viscous [9]. 

Although they originate at the microscopic level, the physical traits 
of tissues affect long-range interactions up to and including percolation, 
i.e., global or whole-organ properties [10]. The exceptional sensitivity of 
manual palpation to detecting lesions and tumors (derived from the 
Latin for swelling) stems from the fact that such abnormal formations 
are characterized by a hierarchy of crosslinks and adhesion points that 
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add up to a macroscopic scaffold [11]. Even the physicians of Pharaoh 
Ahmose I used their fingers to detect disease, as described in the Ebers 
Papyrus of 1550 BCE [12]. Elastography was developed to give modern 
medical imaging modalities such as MRI and sonography the tactile 
senses to access the viscoelastic tissue properties that indicate disease 
[13]. 

Whereas ultrasound-based elastography (USE) is widely available, 
cost-effective, and can provide images in real-time [14], magnetic 
resonance elastography (MRE) maps soft tissue in three dimensions [15] 
and is considered the most accurate method for quantifying tissue 
viscoelasticity, particularly for the detection of liver fibrosis [16]. 
Therefore, MRE has significantly advanced our understanding of the in 
vivo biomechanical properties of tissues and their changes during dis-
ease progression. MRE and USE have been cross validated by simulta-
neous acquisitions in phantoms [17,18], liver [19,20] and brain [21] 
showing similar results whenever the same frequency range, inversion 
method and tissue region is considered. 

MRE involves three key technical steps: (i) the stimulation of har-
monic shear waves within the body, (ii) their encoding into the phase of 

the complex MRI signal, and (iii) the conversion of the resulting wave 
images into viscoelastic parameter maps [10]. The viscoelastic param-
eters that can be obtained include complex shear modulus, shear wave 
speed, wave attenuation, loss and storage properties, and model-based 
viscoelasticity [22]. 

Over the years, different techniques with complementary strengths 
and challenges have been developed. Upfront: there is no perfect single 
MRE technique that delivers what is theoretically possible given ideal 
imaging characteristics and tissue properties captured by our continuum 
mechanical models. In fact, biological tissue does not yield a single tone 
upon mechanical excitation but rather generates a full symphony of 
viscoelastic responses that overlap on a continuum of spatiotemporal 
scales. This is attributed to the hierarchical, heterogeneous, anisotropic, 
and nonlinear viscoelastic properties inherent to soft biological tissues. 
In addition, MRE is fundamentally slow, often taking minutes to acquire 
a complete data set, during which endogenous and stochastic motion 
occurs with amplitudes that exceed the induced harmonic deflections, 
while the intrinsic tissue properties can change. 

Thus, MRE must be tailored to different clinical needs to make MRI 

Fig. 1. Basic viscoelastic models that have been used to explain the dispersion of MRE-derived storage modulus G’ and loss modulus G’’ (similar functions can be 
drawn for shear wave speed and penetration rate). Dispersion in the context of MRE often refers to the changes in G’ and G’’ over frequency, which is a result of the 
tissue’s intrinsic viscosity. While a spring models pure elastic behavior, a dashpot stands for a fluid that does not support shear waves and, consequently, cannot be 
assessed by MRE. Nevertheless, in combination with a spring, such as in the KV- or Maxwell model, the dashpot mimics the viscous loss encountered in soft biological 
tissues. The springpot is an interpolation between spring and dashpot with interpolation exponent α. While not supporting static stress, the springpot is the only two- 
parameter viscoelastic model that predicts a continuous increase in both G’ and G’’, as observed in most biological soft tissues. 
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more quantitative, system-independent, and predictive. This article ex-
plains, in a nutshell, the basic concepts of MRE, introduces current ap-
proaches and validated techniques, and reviews clinical applications 
including their preclinical references with a focus on inflammatory 
processes. 

2. Mechanical properties of soft biological tissue 

2.1. Shear and compression modulus 

Like any other mechanical test, MRE exploits Hooke’s law, which 
describes the linear elastic deformation a material undergoes upon 
exposure to mechanical stresses [23]. In the simplest case, this defor-
mation (strain) response is determined by a shear and compression 
modulus, both in units of kPa. While the shear modulus denotes the 
inherent resistance of a material to lateral deformation, meaning that 
the tissue volume does not change, the compression modulus is related 
to compression or dilation, i.e., changes in volume. Although it may 
seem academic to distinguish between shear and volumetric strain, their 
respective moduli are worlds apart. The compression modulus, in the 
range of gigapascals, is relatively uniform throughout the body, while 
the shear modulus varies by more than eight orders of magnitude and is 
in the range of tens to thousands of pascals in soft tissues [24]. Palpating 
fingers test the shear modulus by shifting tissue layers without volume 
changes for sensing the microarchitectural characteristics that are 
associated with disease. By contrast, the compression modulus is mainly 
determined by the tissue’s high water content of 70 to 80 % evoking 
rather incompressible material properties. The situation is different at 
slower time scales when tissue fluid is allowed to be displaced or shifted 
during deformation [25]. At such scales, poroelastic effects provide 
sensitivity to blood perfusion and vascular pressure [26–28], illustrating 
the importance of excitation frequency in MRE. In a nutshell, higher 
stimulation frequencies probe solid-elastic properties, while shear waves 
at lower frequencies are influenced by elements that can permanently 
change position, such as fluids, motile cells, or vesicles [11]. 

2.2. Viscoelasticity 

While strain energy is stored and re-stored in elastic materials, it is 
completely converted to kinetic energy and heat in fluids [29]. Thus, 
elastic solids and viscous fluids represent the two extremes of the 
spectrum of viscoelastic properties; between them, the recovery of shape 
after stress relaxation is delayed [12]. For harmonically oscillating 
stress, as in MRE, this delay causes a phase shift in the strain response 
that is proportional to the phase angle φ of the complex shear modulus 
G* = |G*|expiφ. G* can also be represented by its real part, storage 
modulus G’, and its imaginary part, loss modulus G’’, i.e., G* = Gʹ +
iGʹ́. The phase angle of the complex shear modulus, also called loss 
angle, is then obtained as φ = atanGʹ́/Ǵ  [22]. An elastic solid has no loss 
modulus (G’’=0) or loss angle (φ = 0) and does not exhibit frequency 
dispersion of G*=G’, i.e., elasticity is constant over oscillation fre-
quency. The opposite is true for pure fluids, which have no storage 
modulus (G’=0) and maximum loss angle (φ = π/2), giving rise to 
marked frequency dispersion of G*=G’’. However, this hypothetical 
limit of maximum frequency dispersion with a loss angle of π/2 does not 
satisfy the wave equation because shear waves are not supported by 
fluids, rendering MRE unfeasible. Nevertheless, from solid G*=G’ to 
fluid properties of G*=G’’, G* becomes more and more dispersive, 
indicating increasing fluid material properties. Such a continuous tran-
sition from solid to fluid is nicely represented by an increase in loss angle 
φ from 0 to π/2 with π/4, indicating balanced solid–fluid properties 
[30]. Notably, φ as a measure of tissue fluidity increases with loss 
modulus G’’ regardless of water content, while the fluidity of pure liq-
uids is highest at zero viscosity. In essence, MRE is sensitive to elasticity 
through G’ and viscosity either through G’’ or φ. Because G* is a solid 

property, all MRE-derived parameters are related to the motility of 
particles and structures that transmit shear forces. Viscoelastic models 
are required to infer frequency-independent, intrinsic material param-
eters such as elasticity and viscosity from G’, G’’ or φ. The basic rheo-
logical models that relate two independent viscoelastic parameters to G* 
are the Kelvin-Voigt, the Maxwell, and the spring-pot model. Their 
representations assembled from basic spring and dashpot elements as 
well as dispersion functions are shown in Fig. 1. In biological soft tissues, 
most experiments have shown that G’ and G’’ increase with stimulation 
frequency [31,32]. These observations suggest that there is no inde-
pendent material response of elasticity and viscosity, but rather an 
inherent mixture of the two, measured by MRE as viscoelasticity. 

2.3. Shear waves 

Remote palpation needs waves to transfer elastic energy deep into 
the tissue. While compression waves are polarized longitudinally with 
respect to their propagation direction, shear waves are transversely 
polarized. The first implies changes in density, which are associated 
with compression, the latter type of waves relates to shear modulus. 
Therefore, compression waves travel approximately 1000 times faster in 
soft biological tissue than shear waves (1500 m/s versus 1.5 m/s) [33]. 
As a result, at relatively low drive frequencies as used in MRE, 
compression waves have lengths on the order of 30 m and appear in MRE 
wave images without significant curvature while shorter shear waves of 
approximately 3 cm length are superimposed. The shear wave is the 
desired probe for remote palpation: the longer the shear wave, the 
higher the shear wave speed and corresponding shear modulus. Without 
viscoelastic dispersion, the shear wavenumber grows linearly with 
excitation frequency, making higher frequencies more favorable for 
wave analysis algorithms. However, it is a fundamental principle in 
acoustics that amplitude attenuation through viscous damping increases 
with wavenumber or excitation frequency. Therefore, the optimal range 
of excitation frequencies in MRE needs to be carefully balanced: on the 
one hand, wave analysis algorithms measure strain, i.e., the curvature of 
the waves, which should be sufficiently high relative to the achieved 
spatial resolution. On the other hand, the signal-to-noise ratio (SNR) of 
strain depends on total deflection amplitude [34], which decreases with 
frequency [35]. Therefore, MRE performed in clinical scanners balances 
the range of vibration frequencies between wave damping and shear 
strain, typically between 20 and 50 Hz for the brain [36], while most 
clinical studies investigating liver fibrosis are performed at 50 to 60 Hz 
[37]. Smaller and more heterogeneous organs such as the heart and 
prostate are typically investigated at higher frequencies of 60 to 150 Hz 
[38–40]. Notably, in the same way that viscoelastic damping impedes 
the use of higher frequencies, it supports low frequencies: according to 
the spring-pot viscoelastic model as shown in Fig. 1, tissue often behaves 
very soft at low excitation frequencies, giving rise to surprisingly short 
wavelengths even at extremely low excitation frequencies on the order 
of 10 Hz [41,42]. Adjusting wavelengths and strain SNR by increasing or 
decreasing excitation frequency makes MRE a multiscale method 
[43–45]. In small animals or tissue samples, higher vibration fre-
quencies are required in order to squeeze several wave numbers into the 
smaller field of view [46–48]. Therefore, in the mouse brain, MRE 
operates in the kilohertz range, which provides higher shear modulus 
values than typically obtained in the range of clinical MRE, again due to 
the dispersion of the shear modulus [49]. Even when dispersion of shear 
modulus is ignored, relative conclusions in terms of stiffer or softer can be 
consistently drawn across the hierarchy of scales from the cell scale to 
coarse-grained in vivo properties measured by MRE [50,51]. 

3. Technical key points 

3.1. Mechanical excitation of shear waves 

MRE relies on continuous, time-harmonic vibrations, i.e., sinusoidal 
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motion, in the frequency ranges mentioned above. This does not mean 
that MRE actuators have to perform strictly harmonic motion. MRE can 
also use transient impulses that are converted into harmonic motion 
within the tissue. As a natural protective mechanism, soft biological 
tissue attenuates high-strain shear waves and favors harmonic motion at 
the lowest (fundamental) frequency. Consequently, as the waves prop-
agate through the tissue, the fundamental frequency of 1/TR increas-
ingly dominates any periodic stimulation with repetition time TR. 

Typical TRs between consecutive RF excitations in MRI sequences are in 
the range of tens of milliseconds, resulting in frequencies <100 Hz when 
a mechanical pulse is applied at each TR [10]. 

Although there is flexibility in the way motion is induced, including 
various strategies such as scanner-intrinsic vibrations [52], piezoelectric 
actuators [53,54], Lorentz coils [55–57], loudspeakers [58,59], rotating 
masses [60], or compressed air pulses [61], MRE actuators should meet 
some important requirements: first, they should avoid magnetic field 

Fig. 2. Types of MRE vibration hardware used in clinical MRI scanners, including clinical and preclinical applications with resulting stiffness-related parameter 
maps. Three clinical driver systems are shown. They are based on an acoustic voice coil system [181], compressed air drivers [61], and a rotational eccentric mass 
driver [60]. The use of several drivers allows multidirectional wave excitation, supporting the generation of tomographic stiffness maps, as illustrated by the gray- 
scale shear wave speed image of human abdominal organs. Therefore, no organ-specific region is delineated. The experimental setup for preclinical applications is 
based on a piezoelectrical actuator, which can be driven at higher frequencies (300 to 800 Hz) than used in patients (20 to 80 Hz). 
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interactions [62,63]. Nonmetallic actuators are preferred, while 
nonmagnetic actuators are mandatory for MRI safety. In addition, the 
timing of driver motion should be precisely controllable by the MRI 
sequence, either by resynchronizing each TR with trigger pulses or by 
locking the clock of the wave generator to the MRI [64]. While the first 
principle introduces slight phase distortions that interrupt the contin-
uous flow of shear wave energy, the second principle requires a level of 
precision that is on the order of a µs per second of run time (e.g., 1 µs 
accumulates to 0.24 ms after 4 min of MRE scan time, which adds up to 
nearly 9◦ of phase shift for a 100 Hz vibration). Fig. 2 illustrates the 
current principles of MRE motion generation used in clinical MRI 
scanners for patient studies and preclinical research. Homogeneous 
delivery of vibration amplitudes to the region of interest is desirable to 
achieve sufficient strain SNR over the entire field of view (FoV). Full 
illumination of organs and tissues by shear waves is necessary for MRE 
to generate tomographic maps of mechanical properties across the full 
FoV. Therefore, use of several drivers placed around the region of in-
terest, ideally combined with repeated acquisition at multiple fre-
quencies, provides a wealth of mechanical information, regionally and 
dynamically, that stabilizes the inverse problem solutions as explained 
below [65]. 

3.2. Encoding shear waves by phase-contrast MRI sequences 

Once shear waves have been induced in the tissue, the next step in 
MRE is to encode the resulting tissue deflections using phase-contrast 
MRI. In the presence of magnetic field gradients, the complex MRI 
signal is sensitive to motion. When the spins − the signal-emitting 
particles − move in a spatially varying magnetic field, their frequency 
changes slightly with their position within the field. This results in spins 
experiencing a net phase shift proportional to their displacement [66]. 
In this way, motion is imprinted on the phase of the complex MRI signal. 
In MRE, motion-encoding gradients (MEGs) are bipolar, mimicking a 
sine or cosine function over time to suppress the phase accrual of static 
and continuously moving spins, respectively [41]. Fig. 3 illustrates how 
the accumulated MRI phase increases over the time of the MEG with a 
spin motion that is zero, has constant velocity, is accelerated, or sinu-
soidal. It can be seen that the MEG acts as a finite difference operator in 
time and suppresses static phase shifts (zero moment nulling), flow (first 
moment nulling), or accelerating spins (second moment nulling). 
Consequently, the resulting phase images do not reflect true tissue de-
flections u(t), but rather their first- or second-time derivative depending 
on the shape of the MEG, e.g., displacement velocity u̇(t) in flow MRI or 
phase-shifted oscillatory motion in MRE (first moment nulling: dsin(t)

dt =

cos(t), second moment nulling: d
2sin(t)
dt2 = − sin(t)). Since the MEG can be 

Fig. 3. Motion encoding in phase-contrast MRI, which requires encoding gradients, which in turn result in phase accumulation of the complex-valued MRI signal. As 
the encoding gradient is applied, static particles (blue lines) accumulate spin phase only with unbalanced gradients. In motion-sensitive PC-MRI, these spins are 
suppressed by using balanced gradients with 0th, 1st, or 2nd moment nulls, which suppress the spins of static, flowing (red lines), and accelerated (yellow lines) 
particles, respectively (2nd moment zero not shown). MRE is based on harmonic motion (green lines), whose maximum accumulated phase is indicated by 
green arrows. 
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deployed along any Cartesian axis i = {x, y, z}, MRE has the unique 
ability to encode full 3D vector fields ui(t) [67]. Fig. 4 shows a set of raw 
MRE phase data representing the encoded motion at different time steps 
over one vibration period, in three orthogonal encoding directions, and 
at different frequencies. 

3.3. Postprocessing of raw phase images in MRE 

An MRE experiment typically consists of repeated encodings with 
shifted wave phase in order to capture motion ui(t) at N different time 
points over a vibration period. This allows extraction of fundamental 
frequency f from the phase images by performing a temporal Fourier 
transformation (t-FT) over N time points for each pixel. The generation 
of complex wave images ũi(f) is a key step in MRE postprocessing as it 
suppresses signals from other Fourier components such as induced by 
breathing [68]. Furthermore, t-FT collapses the relevant time informa-
tion into a harmonic wave field that satisfies the complex wave equation 
[29]. In addition, complex wave images ̃ui(f) have a factor 

̅̅̅̅̅̅̅̅̅
N/2

√
higher 

SNR than raw data ui(t). However, t-FT is not the first step in MRE 
postprocessing as it must be applied to unwrapped phase images. Thus, 
elimination of aliased phases as shown in Fig. 4 requires unwrapping 
algorithms to be applied to noisy raw data, which still contain stochastic, 
nonharmonic, motion. Therefore, robust unwrapping algorithms have 
been developed, which deliver smooth phases but do not necessarily 
reflect the ground truth of wave phases in 3D and time. Physically 
correct unwrapped phases are often not easy to attain due to motion 
inconsistencies or rapid patient movements of only a few microns 
occurring between time points, field components, or adjacent image 
slices [69]. Stable unwrapping methods widely used in MRE include 
techniques based on 2D pathfinding, which, however, are sometimes 
disturbed at discontinuities [70] and Laplacian-operator-based 
methods, which generate smooth but sometimes biased wave fields 
[12]. To improve unwrapping, dual encoding strategies have been 
proposed, which basically combine raw phase images encoded with 

different gradient sensitivities to generate images that are widely wrap- 
free, however, at the expense of longer acquisition time [71,72]. In 
essence, MRE wave images should be high-dimensional to mitigate 
phase inconsistencies due to stochastic motion, phase jitter, inefficient 
encoding, or wave attenuation [69,73]. In fact, the overdetermination of 
MRE information by repeated acquisitions of wave phases, components 
and frequencies provides stability for efficient solutions to multidi-
mensional unwrapping and wave inversion [74]. 

3.4. Wave inversion 

The final step in MRE is the conversion of complex wave fields ũi(f)
into parameter maps. Reconstruction of maps of shear modulus from 
harmonic wave fields requires solution of the inverse problem of time- 
harmonic waves [75,76]. In other words, wave inversion infers mate-
rial properties from the curvature and attenuation of local displace-
ments. Both the curvature and attenuation of a wave are determined by 
relative changes in local deflections on a spatial scale. Therefore, clas-
sical MRE reconstruction relies on the determination of spatial gradi-
ents, not absolute deflections. Mathematically, this is prescribed in the 
wave equation, a second-order partial differential equation that in-
corporates Laplacian field Δũi(f). In its simplest form, the wave equation 
is a scalar equation with only one unknown, the shear modulus: G* =

− ρ2πf ũi/Δũi (with ρ denoting mass density). However, to arrive at this 
simplification, known as direct Helmholtz inversion, one must make 
several assumptions which are hard to justify from a rigorous biome-
chanics perspective. These assumptions with their consequences in 
brackets are:  

• Small strain (the MRE-induced deflection amplitudes satisfy the limit 
of linear elasticity of Hooke’s law) [77]  

• Isotropy (any direction dependence is ignored, reducing the number 
of independent elastic coefficients in Hooke’s law from 21 to 2: one 
compression and one shear modulus) [78–82] 

Fig. 4. Information pipeline in multifrequency MRE. Six-dimensional phase data are acquired for three spatial dimensions (a), phase variations over time (b), three 
field components (c), and multiple frequencies (d). MRE data processing includes phase unwrapping, temporal Fourier transform to separate the fundamental 
frequency, and multifrequency inversion. The MRE maps shown here were generated using phase-gradient-based multifrequency inversion (for shear wave speed, 
SWS, and penetration rate, PR), as explained in [182], or phase-angle-based direct inversion (for loss angle or fluidity φ), as explained in [74]. 
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• Incompressibility, no compression wave, no pressure offset in ũi (all 
terms in the motion equation related to volumetric changes can be 
omitted) [83,84]  

• Local homogeneity, viscoelastic properties change only shallowly, no 
distinct interfaces between tissues of different mechanical properties 
(constant G*, spatial derivatives of G* equal zero) [85–87] 

Small strain seems to be a valid assumption given that strain am-
plitudes in MRE are on the order of 10-3 for shear waves and 10-4 for 
compression waves [88,89] as long as we ignore the fact that some tissue 
types, e.g., tumors or dilated lung and myocardium, are pre-strained 
[90–95]. Arguably, the other three assumptions listed above are likely 
to be invalid. Worse, the assumption of homogeneity, for example, calls 
into question the whole approach of generating parameter maps by 
MRE, since the very purpose of these maps is to represent exactly what is 
ignored here: the heterogeneity of viscoelasticity. Additionally, there 
are a few numerical challenges in solving the Helmholtz equation on the 
finite grid that represents the digital support for MRE wave images. First, 
numerical gradient operators have a finite size within which derivatives 
across boundaries are biased. Second, the digital support of waves is 
either too small or too large, causing overestimation of values – the 
discretization bias – or noise-related underestimation, respectively [96]. 
Only in a very narrow window of 8 to 12 pixels per wavelengths do 
discretization bias and noise effects cancel each other in MRE direct 
inversion [96,97]. To illustrate, the estimation of MRE is analogous to 
the attempt to quantify the slope of the local incline of individual steps 
on a staircase, where the height of each step may fluctuate to an un-
known extent. The elastogram is then obtained by dividing the staircase 
by the noisy slopes. Obviously, careful denoising is needed here to 
extract meaningful information. Several robust denoising approaches 
have been reported in the literature, including bandpass filters of desired 
wavenumbers (k) in k-space [98], multidimensional derivative kernels 
of extended sizes in image space [99], wavelets [100], and forward 
model fitting by expanding MRE wave images into sets of harmonic base 
functions [85,101–103]. Artificial neural networks have also been 
trained to mitigate the noise curvature problem in MRE by patch-wise 
comparison of complex wave images with simulated superposition of 
traveling waves [104,105]. Nonetheless, the quest is still open for so-
lutions that avoid a priori assumptions about wanted signal (shear waves 
in a predefined k-band) versus unwanted signal (low-k compression 
waves and high-k noise). It seems as if the wave equation takes its toll: 
second spatial derivatives suffer from noise, while variational ap-
proaches involve closed-path integration that again resembles a differ-
ence operator [85,86]. Forward solutions are computationally expensive 
and require knowledge of boundary conditions [12]. One way to trick 
the wave equation is based on its solution: Manduca et al. proposed to 
derive the phase gradient of a single k-wave (plane wave) [106]. The 
basic idea is that the phase of a complex plane wave accrues linearly 
along the propagation axis x. The slope of this wave phase is equal to the 
wavenumber kx, which is retrieved as the x-derivative, i.e., the plane 
wave phase gradient. Since frequency f is known in MRE, wavenumbers 
are easily converted into shear wave speed SWS, which is a proxy for 
storage modulus (SWS =

̅̅̅̅̅̅̅̅̅̅
Gʹ/ρ

√
). Computing first-order phase gradients 

is indeed a unique way to avoid second-order noise-sensitive derivatives 
as required by other solutions of the wave equation [107]. However, the 
challenge here lies in kx, the wavenumber in x-direction. Since the ac-
quired field ̃ui(f) is a superposition of multidirectional waves, one needs 
directional filtering to decompose the full field into unidirectional 
wavenumbers such as kx and ky before computing the phase gradient 
[108]. A similar approach is local frequency estimation (LFE), in which a 
band of k-space filtered waves is inverted [109]. The lognormal filters 
used in LFE can be tuned to resemble either first or second derivatives in 
k-space. Irrespective of whether first or second derivatives are 
employed, it has been shown that solutions to the inverse problem can 
be stabilized by multifrequency, multi-component averaging prior to 

inversion [61,107]. This multi-inversion approach has been termed 
tomoelastography as it produces viscoelastic parameter maps with a 
detail resolution similar to that of standard MRI (tomographic) images 
(see Fig. 4) [65]. In a nutshell, first-order MRE inversion techniques 
(phase gradient and LFE) fundamentally differ from second-order in-
versions (direct Helmholtz inversion, variational methods) in that they 
operate on solutions of the wave equation (plane waves) instead of 
solving the wave equation itself. Consequently, first-order methods are 
robust against noise but need preprocessing such as directional filtering, 
which can degrade detail resolution in SWS maps. In contrast, second- 
order methods, including Helmholtz inversion, satisfy Huygens’ prin-
ciple of superimposed multisource wave fields and, thus, provide 
G*-maps without prior decomposition of wave fields. The parameters 
that can be retrieved by MRE inversion techniques are summarized in 
Table 1. 

Table 1 
Basic tissue parameters that can be measured by MRE. FE: finite element.  

Parameter Symbol 
(s) 

Unit Explanation Inversion 
type 

Storage 
modulus 

Re(G*), 
Gʹ 

kPa Real part of complex 
shear modulus G*, 
related to elasticity 
(colloquially known as 
stiffness) 

Direct 
inversion, 
FE inversion 

Loss modulus Im(G*), 
Ǵʹ 

kPa Imaginary part of G*, 
related to viscous loss 

Direct 
inversion, 
FE inversion 

Magnitude 
modulus 

|G* | kPa Magnitude of G*, which 
mixes elastic and viscous 
properties, equivalent to 
stiffness only if Gʹ́ = 0 

Magnitude- 
based 
direct 
inversion 

Loss angle / 
Fluidity 

φ rad Phase angle of the 
complex modulus, which 
is zero in purely elastic 
materials and π/2 in 
viscous fluids 

Phase-angle- 
based 
direct 
inversion 

Shear wave 
speed 

SWS m/s Propagation speed of the 
induced shear waves 
(used as a surrogate 
parameter of stiffness) 

Phase 
gradient 

Penetration 
rate 

PR m/s Penetration depth of 
shear waves at ω/2π 
(used as a surrogate 
parameter of inverse 
viscous loss) 

Phase 
gradient 

Wavenumber k 1/m Local wavenumber at 
frequency ω 

Phase 
gradient 

Wavelength λ m Spatial extension of shear 
waves (used as a simple 
ruler for stiffness) 

Ruler of 
stiffness 

Damping ratio γ − Ratio of loss to storage 
properties: γ = Gʹ́/(2Gʹ) 

Derived from 
G* 

Young’s 
modulus 

E kPa Elastic modulus for axial 
deformation, obtained by 
E = 3G* assuming 
isotropy and 
incompressibility 

Derived from 
G* 

Kelvin–Voigt 
model 
parameters 

μ,η kPa, 
Pa•s 

Elasticity µ and viscosity 
η based on the 
Kelvin–Voigt model 

Fitting 
frequency 
dispersion of 
G* 

Maxwell model 
parameters 

μ,η kPa, 
Pa•s 

Elasticity and viscosity 
based on the Maxwell 
model 

Fitting 
frequency 
dispersion of 
G* 

Spring-pot 
model 
parameters 

μ,α kPa, 
N/A 

Elasticity and power law 
exponent α based on the 
spring-pot model 

Fitting 
frequency 
dispersion of 
G*  
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4. Applications 

In vivo MRE opens the door to a world of biomechanical interactions 
that are not yet fully understood. According to what we currently know, 
the convergence of mechanobiology and continuum mechanics is pri-
marily driven by observational studies that address monocausal corre-
lations. Nevertheless, these studies contribute important pieces to the 
puzzle of which MRE parameters can be used to detect and stage diseases 
and ultimately predict disease courses. Much insight has been gained 
from experiments in well-defined phantoms that mimic basic structural 
features of biological tissues [7,110,111] or modified ex vivo specimens 
that simulate mechanically relevant processes in vivo [28,112–117]. To 
provide a hands-on understanding of the basic interactions to which 
MRE is potentially sensitive, we will not list here the large body of 
literature on MRE applications but briefly discuss a few studies that 
highlight the biomechanical effects to be harnessed as diagnostic MRE 
markers. Moreover, in doing so, we will only discuss pathophysiological 
hallmarks related to inflammation, from early events in the inflamma-
tory cascade to tissue remodeling at the stage of chronic inflammation. 
Finally, we attempt to disentangle the mechanical signature of 
inflammation-affected tissues with a focus on the liver and the brain. 

4.1. Vascular leakage, blood perfusion, and pressure 

Vascular leakage is a critical initial response of biological tissues to 
injury and can be seen as a precursor to several subsequent inflamma-
tory and healing processes. The immediate response to tissue injury 
involves disruption of endothelial glycocalyx and cell junctions at the 
microvascular level. The resulting increase in vascular permeability 
fosters the exudation of plasma proteins and fluids into the interstitial 

space, contributing to the formation of edema. Such edematous accu-
mulation of fluid within soft tissues not only dilutes local toxins and 
facilitates the entry of immune cells including neutrophils and macro-
phages but also results in the characteristic swelling of the affected 
tissue. 

While fluid accumulation clearly has a mechanical effect, immune 
cell migration is unlikely to alter the macroscopic mechanical tissue 
properties to any degree [118]. Fig. 5 illustrates the different effects of 
fluid accumulation on the mechanical properties of soft tissues: encap-
sulated tissues, such as those surrounded by connective tissue and lig-
aments, cannot expand freely upon fluid infiltration. Therefore, edema is 
often felt as a firm bump resulting from nonlinear stretching of con-
nective tissue. Similarly, overstretched cell membranes or pressurized 
blood vessels have been seen as macroscopic stiffening in several MRE 
studies investigating different scenarios and entities [26]. Fundamental 
research was performed by Parker et al. who developed a microfluid- 
flow model and validated it in liver tissue [27,28] and placenta [119]. 
While a study in sheep livers demonstrated an increase in whole-organ 
stiffness and elucidated the way in which this was brought about by 
vascular expansion at higher portal pressure [88], the opposite was 
observed in smaller specimens such as rat livers [114]. Without the 
constriction imposed by bulky tissues and promoted by vascular 
leakage, liver tissue was observed to become softer with increased portal 
pressure [114]. These two studies nicely illustrate the bidirectional ef-
fect of fluids on soft tissue stiffness: confinement promotes stiffening, 
which is likely related to the generation of tissue pressure, whereas an 
increase in the fluid content of distensible tissue leads to its expansion 
and softening [65]. Because the liver capsule prevents expansion, 
studies in both patients and animal models show correlations between 
portal pressure and tissue stiffness [120,121]. In healthy volunteers, the 

Fig. 5. Fundamental effects of inflammation are associated with stiffness changes in the liver and brain. While hepatic inflammation has been observed to cause 
tissue stiffening, neuroinflammatory diseases have been associated with softening. Reasons for the different tissue responses are discussed in the text. 
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amount of blood perfusing the liver, which can be modulated by 
breathing [64], abdominal pressure [122,123], eating [124,125], or 
water intake [65,126], has been found to be an influencing factor 
affecting liver stiffness. These observations suggest that any change in 
blood perfusion, including edematous water accumulation, congestion, 
or increased perfusion pressure, as often associated with inflammation, 
leads to higher liver stiffness. Since stiffening is also a hallmark of 
fibrosis, viscosity-related markers such as loss modulus or damping ratio 
(see Table 1) raise the exciting prospect of distinguishing fluid-driven 
inflammatory processes from matrix accumulation in fibrosis [120]. 
Indeed, recent studies in patients have corroborated these findings by 
demonstrating liver tissue fluidity and damping ratio to be sensitive to 
inflammation independent of fibrosis [127,128]. 

In the brain, tissue stiffening generated by vascular effects or driven 
by fluid accumulation has been observed after formation of cytotoxic 
edema [129], hypercapnia [130,131], Valsalva maneuver [130], venous 
drainage [132], functional activation [133,134], elevated intracranial 
pressure [135,136], and arterial pulsation [137]. All of these stiffening 
effects may be explained by hyperelastic dilatation of cell membranes or 
blood vessels, resulting in an overall increase in brain stiffness on a 
coarse-grained scale. The opposite was reported in scenarios of impaired 
vascular integrity as a symptom of a disrupted blood–brain barrier [8] or 
reduced cerebral blood flow due to dehydration [138] or hypothermia 
[139]. Unlike higher blood perfusion, increased tissue water, as in 
peritumoral edema, was not associated with marked changes in visco-
elasticity, suggesting a fine balance between confinement and expansion 
of brain tissue [140]. However, in cortical areas, where brain tissue can 
better expand than in the bulk, the amount of tissue water was nega-
tively associated with stiffness [141]. This observation supports the 
hypothesis that water content or fluid fraction in the absence of pressure 
correlates with tissue softening. 

Notably, MRE in other organs than the liver and brain revealed 
similar mechanical patterns upon inflammation, with a tendency toward 
either liver-like stiffening or brain-like softening. For example, pancre-
atitis [142,143] and inflammatory bowel disease [144] were associated 
with markedly elevated tissue stiffness, which, against the soft back-
ground of normal pancreatic or colon tissue, provided excellent MRE 
contrast for detecting local inflammatory activity [145]. Otherwise, 
nephritis was shown to be associated with significant softening even at 
asymptomatic filtration rates based on blood markers [146,147]. This 
soft signature of renal inflammation was likely associated with 
decreased capillary perfusion pressure and increased free water pools, as 
discussed above for the brain [148,149]. 

4.2. Matrix accumulation, crosslinking, and cellular changes 

Chronic inflammation of the liver causes matrix accumulation, 
which is associated with tissue stiffening, making MRE a sensitive 
biomarker for the noninvasive staging of hepatic fibrosis [59,150–155]. 
However, collagen deposition in the liver is not a uniform process but 
exhibits spatial variance and heterogeneous mechanical effects. For 
example, the outgrowth of collagen fibers from the portal triad into the 
liver parenchyma establishes a basic network of fiber bundles and can 
occur without crosslinking [156]. Therefore, the overall effect of septal 
infiltration on liver stiffness is not necessarily larger than in pericellular 
fibrosis, where loose collagen aggregates are mainly deposited in the 
interstitial spaces between hepatocytes [118]. Otherwise, pericellular 
fibrosis has been associated with increased vascular resistance, which 
may contribute to the aforementioned cascade of vascular effects on 
liver stiffness [157]. Beyond the sheer amount of matrix proteins that 
contribute to the expansion of ECM from 0.3 % in healthy livers to 30 % 
in cirrhosis, crosslinking and fiber bridging are the critical steps that are 
expected to increase tissue stiffness by orders of magnitude [47,158]. 
Therefore, significant stiffening is seen in bridging fibrosis, which is 
characterized by uninterrupted collagenous septa that form a contin-
uous mechanical mesh over great distances. Although, in histologic 

slides, bridging fibrosis can be as delicate as septal infiltration or peri-
cellular fibrosis, it represents mechanical gap closures, which usually 
have larger effects on the stiffness of scaffolds [118]. On the cellular 
level, inflammation triggers an influx of immune cells into the liver, 
including macrophages, neutrophils, and lymphocytes, which aim to 
eliminate pathogens or toxins. In the liver, portal and lobular inflam-
mation are features of Metabolic Dysfunction-associated Steatotic Liver 
Disease (MASLD), which describes the inflammatory infiltration of the 
portal triad, primarily by lymphocytes. This cell infiltration is often 
associated with the formation of edema and, as discussed earlier, may 
alter the mechanical properties of the tissue, but is unlikely to cause a 
direct mechanical response related to cell number [118]. Also, in the 
brain, changes in mechanical properties in cortical areas were not 
correlated with leukocyte infiltration in experimental autoimmune 
encephalomyelitis, a mouse model of multiple sclerosis, but rather with 
chondroitin sulfate remodeling [159]. Because the number of leukocytes 
in perivascular spaces increases with vascular permeability [160] a 
significant correlation was found between leukocyte infiltration and 
brain tissue softening, which, however, is most likely driven by water 
content rather than cell number [8]. 

Direct intrinsic cellular responses such as hepatocytic ballooning in 
MASLD have been observed to increase liver stiffness, probably due to 
the hyperelastic prestretch of cell membranes and intracellular fluid 
retention [118]. Moreover, liver stiffness is also affected by metabolic 
cell function. For example, Shahryari et al. showed that stiff livers in 
rabbits had a reduced capacity for triacylglycerol storage, but increased 
gluconeogenesis capacities and increased cholesterol synthesis [161]. In 
particular, triacylglycerides and cholesterol esters have a role in the 
production of infectious viruses such as hepatitis C [162]. Antiviral 
therapy in hepatitis C improves hepatocyte function [163], prompting 
liver softening as a promising marker for monitoring antiviral therapy 
[164,165]. It should be noted, though, that aberrant metabolic activity 
of hepatocytes due to inflammation overlaps with fibrosis, making blood 
markers such as glutamate–oxaloacetate transaminase for lipotoxicity 
an important tool for obtaining additional information [166,167]. Also, 
the hormones released during pregnancy affect the function and activity 
of the gallbladder and of hepatocytes, leading to reversible stiffening of 
the liver in pregnant women [168]. Here, bile accumulation, hepatocyte 
apoptosis, and hypertrophy have been discussed as possible factors 
causing the observed stiffening of liver tissue [169,170]. Although the 
specific mechanisms of how cell metabolism relates to tissue mechanics 
are still vague, we may assume that cellular swelling, prestretched cell 
membranes, and a shift of water from the extracellular pool into cells 
partially contribute to the sensitivity of MRE to liver function [169]. 
How drastically the macroscopic biomechanical properties of the liver 
change upon disruption of cell membranes can be seen after freezing and 
thawing liver tissue. MRE and histology showed that cell membrane 
disruption and sinusoidal endothelial cell detachment reduce tissue 
stiffness by a factor of 10 [116]. Similar mechanisms occur in the brain, 
where neuronal swelling and cytotoxic edema formation in the course of 
dying were found to lead to a marked increase in tissue stiffness [129]. 

Conversely, processes involved in neuroinflammation underlying 
multiple sclerosis (MS) or neuromyelitis optica have been shown to be 
associated with brain softening [171–174]. In experimental autoim-
mune encephalomyelitis (EAE), the animal model of MS, MRE detected 
softening in areas where contrast-enhanced MRI showed typical hall-
marks of neuroinflammation, such as gliosis, leukocyte extravasation, 
and reduced sulfation of glycosaminoglycans [8]. Similarly, the extent 
of tissue remodeling at sites of blood–brain barrier disruption, as indi-
cated by fibronectin overexpression in acute EAE lesions, correlated 
with the degree of tissue softening in the mouse cerebellum [175,176]. 
In EAE, fibronectin reflects the detachment of astrocytic endfeet from 
blood vessels with weakening of glial-vascular mechanical cross-links 
and thus tissue softening. This mechanism partially explains why the 
brain softens during the acute phase of EAE and stiffens during EAE 
remission [176,177]. In addition, adhesion of neurons to their matrix 
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through perineuronal networks (PNN) plays a critical role in brain 
stiffness. Therefore, PNN degradation has been shown to be associated 
with tissue softening following the remitting-relapsing course of EAE 
[159]. This loss of PNN integrity in cortical brain regions is specific to 
inflammation and is associated with marked tissue softening, which is 
why MRE has been proposed as an imaging marker of cortical tissue 
involvement in MS patients [159]. Neuroinflammation is a good 
example of the emergent effects of different substructures on coarse- 
grained mechanical tissue properties. Mechanical weakening of den-
drites through demyelination [178], detachment of astrocytic endfeet 
from microvessels [176], and PNN degradation [159] − these processes 
collectively shape the mechanical response of the brain to neuro-
inflammation and prompt tissue softening as an MRE marker for treat-
ment monitoring in MS. 

Fig. 6 summarizes viscoelastic matrix remodeling and cellular 
changes reported in association with hepatic and neuronal 
inflammation. 

Overall, the reports discussed here illustrate the sensitivity of MRE to 
tissue remodeling and inflammation-related processes. Soft tissues 
affected by inflammation develop their own specific signatures of 
changes in mechanical properties, which are potentially detectable by 
MRE. Detection and staging of inflammation could provide early 
warning of many diseases and thus allow initiation of individualized 
therapies before the development of serious symptoms, end-stage dis-
eases, such as cancer, or whole-organ failure. However, it remains to be 
seen how MRE can be further sensitized to the discussed mechanical 
features of inflammation − from vascular leakage to cell swelling, to 
matrix changes. For example, MRE could be tailored towards higher 
sensitivities to fluid–solid interactions by the use of low-frequency vi-
brations [25,179] or shear wave dispersion quantification as a measure 
of tissue fluidity [180]. 

5. Brief summary 

MRE is a versatile technique for imaging the biomechanical prop-
erties of soft tissues across a wide range of resolutions, mechanical fre-
quencies, and applications in both clinical diagnosis and biomedical 
research. By encoding time-harmonic mechanical vibrations using 

phase-contrast MRI techniques, MRE is an imaging modality that works 
by capturing shear waves propagating through body tissues. MRE relies 
on the inversion of shear wave images into viscoelastic parameter maps. 
The setup of an MRE experiment on clinical MRI scanners is now a 
standardized procedure that adds diagnostic value to the detection and 
staging of diseases along the entire pathological cascade of 
inflammation-associated tissue remodeling from early edema to chronic 
fibrosis, cirrhosis, and cancer. Despite the overwhelming evidence for 
MRE sensitivity to inflammation, further research is needed to disen-
tangle the biomechanical hallmarks of inflammation discussed in this 
article: vascular leakage, altered blood flow, elevated tissue pressure, 
increased fluid fraction, cellular edema, matrix accumulation, and 
remodeling. 
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Fig. 6. Biomechanical effects of abnormal events related to inflammatory processes in the liver and the brain. As discussed, MRE has been proven sensitive to all of 
these changes in tissue structure. 
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