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Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association
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Background: The respiratory tract microbiome is essential for human health and

well-being and is determined by genetic, lifestyle, and environmental factors.

Patients with Common Variable Immunodeficiency (CVID) suffer from respiratory

and intestinal tract infections, leading to chronic diseases and increased mortality

rates. While CVID patients’ gut microbiota have been analyzed, data on the

respiratory microbiome ecosystem are limited.

Objective: This study aims to analyze the bacterial composition of the oropharynx of

adults with CVID and its link with clinical and immunological features and risk for

respiratory acute infections.

Methods: Oropharyngeal samples from 72 CVID adults and 26 controls were

collected in a 12-month prospective study. The samples were analyzed by

metagenomic bacterial 16S ribosomal RNA sequencing and processed using the

Quantitative Insights Into Microbial Ecology (QIME) pipeline. Differentially abundant

species were identified and used to build a dysbiosis index. A machine learning

model trained on microbial abundance data was used to test the power of

microbiome alterations to distinguish between healthy individuals and CVID patients.

Results: Compared to controls, the oropharyngeal microbiome of CVID patients

showed lower alpha- and beta-diversity, with a relatively increased abundance of the

order Lactobacillales, including the family Streptococcaceae. Intra-CVID analysis

identified age >45 years, COPD, lack of IgA, and low residual IgM as associatedwith a

reduced alpha diversity. Expansion of Haemophilus and Streptococcus genera was

observed in patients with undetectable IgA and COPD, independent from recent

antibiotic use. Patients receiving azithromycin as antibiotic prophylaxis had a higher

dysbiosis score. Expansion of Haemophilus and Anoxybacillus was associated with

acute respiratory infections within six months.
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Conclusions: CVID patients showed a perturbed oropharynx microbiota

enriched with potentially pathogenic bacteria and decreased protective

species. Low residual levels of IgA/IgM, chronic lung damage, anti antibiotic

prophylaxis contributed to respiratory dysbiosis.
KEYWORDS

common variable immunodeficiency, IgA, IgM, microbiome and dysbiosis,
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1 Introduction

Over the years, the implications of human microbiome changes

in health and diseases have been increasingly recognized (1).

Technological progress in high throughput sequencing led to the

recognition of microbiome-host interactions in maintaining a

homeostatic environment of the human immune system (2).

Moreover, perturbation in the microbiota architecture, called

dysbiosis, has been related to various human diseases (3–5). The

airway microbiome is a crucial driver of respiratory homeostasis (6)

and is associated with susceptibility to infections, hypersensitivity

reactions, and immune-mediated diseases (7). Mucosal

immunoglobulins exert multiple immune effector functions in

regulating microbiome composition (8, 9). Secretory IgA is

crucial to engendering robust host-microbial symbiosis, allowing

colonization in mucosal niches through the exclusion of exogenous

competitors (10). In patients with Inborn Errors of Immunity (IEI),

adaptive or innate immune system defects led to gastrointestinal,

respiratory, and cutaneous involvement frequently associated with

dysbiosis (11, 12). Specifically, changes in gut microbiota have been

described in patients with common variable immunodeficiency

(CVID) due to defects in mucosal immunity and increased

microbial translocation (13, 14), resulting in inflammation and

immune dysregulation (13, 15). CVID is the most common IEI

and is characterized by hypogammaglobulinemia, impaired

antibody responses to vaccination and recurrent respiratory

infections (14). About half of patients develop additional non-

infectious complications such as autoimmune diseases,

lymphoproliferation, and malignancies (14). In CVID, the

coexistence of infection, immune dysregulation, and perturbation

in microbiota-immunity interactions might lead to airway

dysbiosis, contributing to the establishment of lung damage. Data

on the respiratory microbiome in CVID patients are limited (16).

By conventional culture methods, we previously showed the link

between H. influenzae and S. pneumococcus upper respiratory tract

colonization and respiratory comorbidities in CVID (16). In this

single-center study, we investigated the bacterial composition of the

oropharynx by molecular methods. We used the oropharynx as an

easily accessible sampling site as proven to sufficiently reflect the
02
lower airway bacterial microbiome (17–19). Our aim is to

investigate whether clinical and immunological phenotypes and

the extent of recurrent antibiotic use might influence oropharyngeal

dysbiosis. The secondary outcome was to evaluate the link between

oropharyngeal microbiota and respiratory acute infection risk

in CVID.
2 Methods

2.1 Study design

We designed an observational longitudinal 12-month study to

analyze the upper respiratory tract microbiome in adults with CVID

(Figure 1). The study involved CVID patients aged over 18 who

were regularly followed by the Referral Care Centre for Primary

Immunodeficiencies at Sapienza University of Rome, Italy. Patients

were diagnosed according to the ESID criteria for CVID (20).

Twenty-six healthy donors (HD) recruited among administrative

employees of Sapienza University were also invited to participate in

the study. At baseline, we collected demographics, IgG trough

levels, IgA and IgM serum levels, and peripheral immune

phenotype, including frequencies of B cell and Switched Memory

B cells (MBC), to group patients according to the EUROCLASS

classification (21). We stratified patients as having undetectable

(<0.01 g/L) or detectable (≥0.01 g/L) IgA serum levels and as having

IgM serum levels above or upper 0.20 g/L (2 DS lower than the

reference). We also collected CVID-related health issues, including

the presence of bronchiectasis (by CT scan), chronic obstructive

pulmonary disease (COPD) (22), systemic autoimmunity and

autoimmune cytopenia , enteropathy, Granulomatous

and Lymphocytic Interstitial Lung Diseases (GLILD) (23), and

concomitant treatments to allow comparison of outcome

measures. Based on the data collected, we classified patients

according to the prevalent manifestations into the infective or

complicated phenotype (24). After enrolment, clinicians recorded

monthly respiratory infections and antibiotic courses for six months

(T0-T6). Six months after enrollment (T6), oropharyngeal swabs

were collected. Participants were excluded if they had experienced
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symptoms of acute respiratory infections or had taken antibiotics in

the month before the sampling. After swab collection, respiratory

acute infections were monthly recorded for additional six months

(T6-T12) through interviews and clinical evaluations. During the

study time, patients were allowed to continue their therapies,

including immunoglobulin replacement therapy (IgRT) and

antibiotic prophylaxis. The study followed the Good Clinical

Practice guidelines and the Declaration of Helsinki. The Ethical

Board of the Policlinico Umberto I of Rome approved this study.

The patients/participants provided their written informed consent

to participate in this study.
2.2 Sample collection, DNA extraction,
and sequencing

Oropharyngeal sampling was carried out using nylon flocked

swabs (Copan, Brescia, Italy) placed in milk-tryptone-glucose-

glycerol (STGG) medium (25). One swab was collected from each

patient, refrigerated, and transferred to the laboratory at Istituto

Superiore di Sanità within four hours from collection, then stored at

-80°C until further processing. Total DNA was extracted from each

swab using the NucleoBond® AXG DNA kit (MACHEREY-NAGEL

GmbH & Co., Duren, Germany), following the manufacturer’s

instructions. Briefly, samples were vortexed, and 800 ml of STGG
medium was used to extract total DNA. Libraries were prepared by

PCR enrichment of 16S rRNA encoding sequences using universal

primers for the V3-V4 hypervariable region of the 16S rRNA gene

and sequenced by MiSeq technology (Illumina, Harvard, California).
Frontiers in Immunology 03
2.3 Serum levels of immunoglobulins

IgG, IgA and IgM serum levels were assessed by

immunoturbidimetric assay according to the manufacturer’s

instructions (BIO plastics, Rome, Italy).
2.4 B cells and T cells unbiased
population identification

PBMCs were stained with the appropriate combination of

fluorochrome-conjugated antibodies to identify B and T cell

subsets. B cell subsets were identified based on the expression of

CD19, CD27, CD24, and CD38 markers by flow-cytometry. T cells

were identified based on the expression of CD3+, CD4+, CD8+ by

flow-cytometry. FCS files were analyzed using the FlowJo™ v10.8.1

software (BD, Biosciences). Prior to analysis, all samples were

normalized to equal cell numbers.
2.5 Statistical analysis

Continuous variables were described using median and

interquartile ranges (IQR), and categorical variables using

frequencies and percentages. Comparisons of continuous

parameters between treatment groups were calculated with a t-

test if normally distributed and with a Mann-Whitney U test if not

normally distributed (as tested by the Kruskal-Wallis’s test).

Differences in frequencies between groups were calculated by
FIGURE 1

Study design.
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using the c2 exact test. Secondary analyses were performed by

multiple logistic and a binomial regression model to ascertain risk

factors related to alpha diversity (Chao), dysbiosis index, and acute

respiratory infections recorded in the T6-T12. Odds ratios (OD)

and 95% confidence intervals (CIs) were calculated. Differences

were considered significant when p values<0.05. Analyses were

carried out using SPSS software, version 18 (SPSS, Chicago, IL)

and GraphPad Prism version 8.0.0 for Windows, GraphPad

Software, San Diego, CA USA.
2.6 Metagenomic analyses

Sequence data were processed using the Quantitative Insights

Into Microbial Ecology (QIIME) pipeline (v.1.9.1.) (26). Data pre-

processing included sample demultiplexing and trimming of Illumina

adapters and primers. Paired-end reads were first assembled into

longer joined sequences, and then sequences shorter than 200 bp and

greater than 1000 bp were discarded. Chimeric sequences were

removed before downstream processing. Sequences were clustered

de novo into Operational Taxonomic Units (OTUs) using UCLUST

at 97% similarity (As 97% identity in rRNA genes identifies the same

taxa, we clustered sequences from the same taxa together). OTUs

were assigned through a comparison with the SILVA database using

Mothur. Alpha and beta diversity analyses were performed at all

taxonomic levels (Phylum, Class, Order, Family, and Genus) (27).

Samples were first characterized in terms of alpha diversity: sample

richness was explored in terms of the observed number of OTUs and

Chao1 index (Chao, 1987). The t-test and the paired t-test were used

to determine differences between samples. Sample-to-sample

differences in microbiome composition were quantified using beta-

diversity and visualized in low-dimensional space through Principal

Component Analysis (PCA). PERMANOVA was used to detect

global community differences in PCA. Differences in microbiome

composition between CVID patients and HDs were studied by Linear

discriminant analysis effect size (LEfSe) (28) to identify taxa that

differed consistently between sample types. LEfSe employs the non-

parametric factorial Kruskal-Wallis’s sum-rank test (a = 0.05) to

identify taxa with significantly different abundances between

categories, followed by Linear discriminant analysis (LDA) to

estimate the effect size of each feature of the differential abundance.

The differences in abundance were regarded as statistically significant

when the logarithmic LDA score was >2.0. If multiple taxonomic

levels with different ranks showed significance in the same taxon, the

lowest-ranked taxa were regarded as responsible. All sequencing data

associated with this study were uploaded to the NCBI bio project

database: PRJNA747877.
2.7 Dysbiosis index

A CVID-specific microbial dysbiosis index was calculated

according to Gevers et al. (29). We first defined CVID- and HD-

taxa as the taxa enriched in CVID and HD groups, respectively.

Then, we computed CVID- and HD scores by summing the relative

abundance of CVID and HD taxa in each sample, respectively.
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Finally, the dysbiosis index was computed by subtracting the HD-

and the CVID score and multiplying the result by 100, as shown in

the following formula:

The equations should be inserted in editable format from the

equation editor.

DI =   o  CVIDtaxa −o  HDtaxa
� �

*100
2.8 Microbiome classifier for CVID status

Using a linear classification model, we also investigated if

taxonomic global microbial community composition alone would

be sufficient to distinguish CVID patients from HD (CVID vs. HD).

We used SIAMCAT version 1.8.1 (Statistical Inference of

Associations between Microbial Communities And host

phenoTypes, https://siamcat.embl.del/), a pipeline for analyzing

microbiome data (30). SIAMCAT provides a full pipeline

supporting data pre-processing, statistical association testing, and

statistical modeling. Briefly, we first filtered microbial species based

on their maximal abundance in any of the samples using 3% as a

threshold using the filter.features function (parameters:

filter.method = ‘abundance’, cutoff = 0.03). We then log-

normalized microbial abundances using the normalise.features

function (parameters: norm.method = “log.unit”, norm.param =

list (log.n0 = 1e-06, n.p = 2, norm.margin = 1)). After splitting the

data for cross-validation using the create.data.split function

(parameters num.folds = 5, num.resample = 2), we trained a

Random Forest classifier using the train.model function

(parameters: method = “randomForest”). To perform and

evaluate model predictions on the test set, we used the

make.predictions and the evaluate.predictions functions.

Ultimately, we generated the ROC curves and the model

interpretation plot using the model.evaluation.plot and

model.interpretation.plot functions. All statistical analyses were

performed in R.
3 Results

3.1 Patient characteristics

Oropharyngeal samples were obtained from 80 patients. After

sequencing, three samples were excluded owing to the low number

of reads (below 9,000). Five patients were excluded as they had an

infection treated by antibiotics in the month preceding the sampling

(T5-T6). The demographic and clinical data of the 72 CVID

patients included in the analysis are reported in Table 1. As

controls, we enrolled 26 asymptomatic HD, age- and sex-matched

(age, median 47.7 years, range, females 13, 50%). Frequencies of

smokers were comparable among groups (Supplementary Table 1).

All CVID patients were treated by IgRT. Forty-seven percent of

participants had a diagnosis of COPD, and 50% had bronchiectasis

identified at a CT scan. Twenty-eight percent of CVID patients had

undetectable serum IgA (<0.01 g/L) and 28% IgM levels<0.20 g/L.

Fifty-seven percent of patients were classified as having a
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complicated phenotype: 30.6% had one or more autoimmune

diseases 16.7% GLILD, 5.6% enteritis, and 15.2% malignancy

(Table 1). Seven patients (9.7%) received antibiotic prophylaxis

with azithromycin (500 mg thrice weekly). Sixty-three antibiotic

courses (range 1-5 per patient) were prescribed to 34 patients in the

period T0-T5. Details on antibiotic treatments are provided

in Table 1.
3.2 CVID patients showed signs of
oropharyngeal dysbiosis

According to the Chao1 index, the alpha diversity, a measure of

the richness and evenness of a sample, was lower in CVID

compared to HD (p=0.003, Figure 2A). Beta-diversity analysis,

which measures differences between communities, showed a

separation between HD and CVID groups (PERMANOVA

p=0.042, Figure 2B). Microbiome profiles were also investigated

in terms of taxonomic assignment and relative abundance

(Supplementary Figure 1). We found 24 taxa at different

taxonomic levels with significant differential abundance in CVID

patients compared to HD, with the order Lactobacillales, including

the family Streptococcaceae being more abundant in CVID, and the

order Bacteroidales , Flavobacteriales , Fusobacteriales ,

Selenomonadales, Campylobacterales, including the families

P r e v o t e l l a c e a e , Fu s o b a c t e r i a c e a e , Ve i l l o n e l l a c e a e ,

Campylobacteraceae, and Flavobacteriaceae being more abundant

in HD (Figure 2C; Supplementary Table 3). To quantify the

strength of the association between CVID status (CVID vs. HD)

and global oropharyngeal microbiome observed by metagenomic

analysis, we also used a classification concept based on LASSO

regression (30). Cross-validation accuracy was high for CVID status

(mean AUC=82%), confirming a different global oropharyngeal

microbiome composition in CVID and HD (Figure 3).
3.3 Perturbation in oropharyngeal
microbiota in CVID is related to
immunological defects, clinical
manifestations, and antibiotic treatments

Intra-CVID differences in species richness and diversity

(Chao1) were analyzed by univariate analysis, revealing a

decreased microbial alpha diversity associated with age ≥45 years,

low IgM serum levels (<0.20 g/dL), undetectable IgA serum levels

(<0.1 g/dL), low B cells (≤1% of lymphocytes), and severe/moderate

COPD status (Figures 4A–E; Supplementary Table 2). A multiple

logistic regression model using a stepwise selection confirmed that

the Chao1 index was related to IgM defect, age, and COPD

moderate/severe status (Table 2). A reduction trend in Chao1 was

observed in those treated with antibiotic prophylaxis, even if not

statistically significant (Figure 4F). Differently, bronchiectasis, days

of antibiotic treatments (T0-T5), GLILD coexistence, having a
TABLE 1 Demographic, clinical, and immunological data of the
CVID cohort.

CVID n=72

Sex (female), number (%) 34 (47.2)

Age (years), median (IQR) [range] 47 (41-58) [19-77]

IgG trough serum levels (g/L), median
(IQR) [range]

6.7 (6.1-7.7) [5.8-9.9]

IgA serum levels g/L, median (IQR) [range] 0.02 (0.01-0.11) [0-45]

IgA< 0.01 g/L, number (%) 20 (27.8)

IgM serum levels g/L, median (IQR) [range] 0.95 (0.20-0.24) [0-66]

IgM< 0.20 g/L, number (%) 20 (27.8)

MBC (% of lymphocytes), median (IQR) 8 (3.24-12)

Switched MBC (% of B cells) median (IQR) 1 (0-5)

Bronchiectasis, n of patients (%) 35 (50)

Complicated phenotype, n of patients (%) 41 (56.9)

COPD, n of patients (%)

No 38 (52.8)

Yes, mild 16 (22.2)

Yes, moderate/severe 18 (25)

GLILD n of patients (%) 12 (16.7)

Concomitant treatment, n of patients (%)

Steroids (inhalers) 17 (23.9)

Antibiotic prophylaxis 7 (9.7)

Antibiotic use
(T0-T5)

34 (47)

Respiratory infections (T6-T12), n of patients (%) 31 (43)

Antibiotic course (T0-T5)

Yes, patients (%) 28 (45.9)

Days, median (IQR) 7 (0-10)

Amoxicillin/
clavulanate, n of
patients (%)

16 (25)

Trimethoprim/
sulfamethoxazole, n
of patients (%)

2 (3)

Macrolides, n of
patients (%)

11 (16)

Cephalosporin, n of
patients (%)

6 (9)

Quinolones, n of
patients (%)

10 (15)

Lincomycin, n of
patients (%)

3 (4)
CVID, common variable immunodeficiency; COPD, chronic obstructive pulmonary disease;
IQR interquartile range, GLILD Granulomatous and Lymphocytic Interstitial Lung Diseases;
MBC, memory B cells.
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CVID complicated phenotype, and the concomitant treatment with

steroid inhalers were not associated with a reduction in alpha

diversity in this cohort (Supplementary Table 2). At the study

time, all participants were receiving immunoglobulin replacement

treatment (median IgG TL 6.7 g/L, Table 1). No contribution of IgG

TL to the Chao1 index was observed in this cohort (Supplementary

Table 2). Beta-diversity analyses revealed a significant separation

between CVID lacking IgA and CVID with detectable IgA serum

levels (PERMANOVA p = 0.014, Supplementary Figure 2). We

further analyzed the impact of the identified variables on the

bacterial community composition. Compared to those with IgM

≥0.20 g/L, CVID patients with IgM< 0.20 g/L had lower levels of

Prevotella and Veillonella, two genera usually related to a healthy

status (Figure 5A). Furthermore, patients with undetectable IgA

serum levels had a higher relative abundance of the genera

Haemophilus and Streptococcus compared to those with serum

IgA levels ≥0.01 g/L (Figure 5B). A similar pattern was observed

in CVID patients with moderate/severe COPD, who showed higher

relative abundance for Streptococcus, Haemophilus, and Rothia

genera compared with patients with mild or without COPD

(Figure 5C). Compared to controls, patients >45 years had an

even higher abundance of Streptococcus genera and lower levels of

Prevotella and Veillonella than younger patients (Supplementary

Figure 3). No differences in bacterial community composition were

identified among the seven patients treated with azithromycin

prophylaxis. We further analyzed the effect of antibiotic therapy

to treat acute respiratory infection, only identifying a reduced

relative abundance of Prevotella in those treated with one or more

courses of quinolones (p=0,008).
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3.4 CVID-specific dysbiosis index

To explore the possible impact of disease-related variables on

the overall severity of dysbiosis, we calculated a CVID-specific

dysbiosis index. We used the relative abundance of the taxa

differentiating CVID patients and controls to calculate the index

according to the method as previously described (12, 29). The

dysbiosis index was higher in CVID patients than in HD. It was

inversely associated with the alpha diversity (R 0.6 p<0.0001,

Supplementary Figure 4), confirming that the abundance of

selected taxa primarily captures the dysbiosis in CVID patients.

In a linear regression model, the dysbiosis index was directly

related to be treated by prophylaxis with macrolides (OR 31.9,

p=0.009, 95%CI 8,6 to 55.3), and negatively related to being female

(OR -21.4, p=0.006, 95%CI from -36.2 to -6.7) (Table 3). As only

few patients were treated with antibiotic prophylaxis, we also

tested the model after removing its contribution and we further

identified the moderate/severe COPD status as having a direct

relation with dysbiosis index (OR 18.7, p=0.036, 95%CI from 1.3

to 36.1) (Supplementary Table 4).
3.5 Respiratory acute infections correlated
with Haemophilus and Anoxybacillus

Next, we investigated whether the observed oropharyngeal

microbiota differences in CVID patients were associated with

infections in the T6-T12 period. In binomial regression model

including all CVID participants, Haemophilus (p = 0.029, OR
A

B

C

FIGURE 2

Alpha and beta diversity (A, B) and bacterial community composition of the oropharynx in CVID and controls (C). Species richness and diversity index
were estimated by Chao1 (alpha diversity) and represented in CVID vs. controls (A). Bars indicate the median. Non-parametric Mann–Whitney t-test
was used to evaluate statistical significance. Beta diversity by Principal Component Analysis (PCA, B) was calculated to capture inter-sample variation
in microbial composition. Two-tailed P value significances are shown as **p< 0.01. A cladogram (C) illustrating the phylogenetic relationship
between taxa, the central dot representing the kingdom Bacteria, the first circle representing Phylum, then the Class, Order, Family, and Genus
levels. Taxa that are increased in CVID compared with controls are in red, and taxa that are reduced in CVID compared with controls are in green.
Named taxa are significant according to both univariate and multivariate statistics and are marked as small letters in the cladogram referring to
corresponding taxa names in the legend at the right side of the figure. The vertical lines on the left side of the legend define taxa representing
different levels of the same branch. The phylogenetic tree and coloring were made using LEfSe.
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5.52, 95%CI 0.606- 10.427, Supplementary Table 5) positively

correlated with having a respiratory acute infection within 60

days from sampling, whereas Anoxybacillus (p=0.026, OR 1.47,

CI95% 0.18-2.74) positively correlated with having a respiratory

acute infection within six months (Supplementary Table 6).
4 Discussion

Over the last two decades, 16S rRNA amplicon sequencing has

brought significant understanding into the architecture of the
Frontiers in Immunology 07
human microbiome and its role in health and illness (7). Several

reports on respiratory diseases have indicated that the imbalance in

microbiome composition can affect disease progression and

severity, raising inflammation and acute lung damage

accompanied by symptom exacerbations (31). Due to their

immune defect, CVID patients are at high risk for developing

recurrent infections, particularly by encapsulated bacteria (32),

evolving towards lung damage (33) with a negative impact on the

quality of life and survival (34).

In this study, we analyzed the composition of the oropharynx

microbiome in a cohort of CVID adults and the link between
A

B

FIGURE 3

Global microbiome classifier by CVID status. Relative abundances of oropharyngeal microbial taxa associated with CVID status are displayed as a
heatmap of log-abundance z-scores with the direction of association indicated to the left (A). The mean contribution of each marker species to the
classification is shown to the left (bars correspond to the log-odds ratio in logistic regression). Below the heatmap, the classification score of the
microbial signature from cross-validation is shown as a gray scale. (B) The cross-validation accuracy of the microbiota classifier is depicted as a
receiver–operator-characteristic (ROC) curve summarizing mean test predictions made in ten times resampled tenfold cross-validation with the area
under the curve (AUC) indicated inside each plot.
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CVID-associated conditions, recurrent antibiotic use, and altered

respiratory microbiome composition. Our data revealed a strong

association between the oropharyngeal microbiome niche

composition and the CVID status. Compared to healthy controls,

CVID patients exhibited a reduced diversity in the respiratory

microbiome and the expansion of potentially pathogenic bacteria.

This distinct microbiome signature was also confirmed by a

machine-learned-based comparative metagenomics tool, a

classification model recently validated in microbiome analysis (30).

Beta diversity analyses identified that CVID samples

were gathered separately from controls, with CVID having

undetectable IgA serum levels clustering separately. At

taxonomic levels, in CVID, we observed the relative expansion
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of the genus Streptococcus and the decreasing abundance of

the families Prevotellaceae, Fusobacteriaceae, Veillonellaceae,

Campylobacteraceae, and Flavobacteriaceae, the most abundant

phyla of healthy lung microbiomes (6). A similar depletion is

observed in respiratory conditions such as pneumonia, COPD,

and in smokers (32–37), together with the overgrowth of

P.aeruginosa, S.pneumoniae, S.aureus, H. Influenza, and

Burkholderia cepacia complex (11), leading to increased

inflammation and lung injury (29). In our CVID cohort,

respiratory acute infections have been positively related to the

expansion of Haemophilus and Anoxybacillus, which has been

previously associated with lung function worsening in Idiopathic

Pulmonary Fibrosis (35) and exacerbations in asthma and COPD

(38, 39). This data was coherent with the high H.influenzae and

S.pneumoniae mucosal carriage previously identified in CVID by

culture method (40). In healthy airways, low biomass of species

belonging to the Streptococcus and Haemophilus genera are

commonly colonizing pathobionts (41). Chronic inflammation

favors the growth of selected species (42). These can disseminate

and cause infections (43), establishing a vicious cycle between oral

dysbiosis and respiratory diseases (2, 44).

When we stratified CVID patients according to their

immunological characteristics, we found that the lack of IgA, low
A B

D E F

C

FIGURE 4

Intra-CVID differences in alpha diversity in oropharyngeal microbiome. Chao1 (alpha diversity) was compared in CVID patients grouped according to
their age (A), IgM (B) and IgA serum levels (C), EUROCLASS groupin0g (D), COPD status (E), and whether to take or not antibiotic prophylaxis (F).
Bars indicate the median. Non-parametric Mann–Whitney t-test was used to evaluate statistical significance. Two-tailed P value significances are
shown as * p<0.05, **p< 0.01, ***p< 0.001. ****p<0.0001. HD, healthy donors; yrs, years; B-, B cells<1% of lymphocytes; B+Sm-, B cells>1% and
Switched Memory B cells >=2% of lymphocytes; B+Sm+, B cells>1% and Switched Memory B cells >2% of lymphocytes; COPD, chronic obstructive
pulmonary diseases; mod/sev, moderate-severe; AB, prophylaxis antibiotic prophylaxis.
TABLE 2 Variables associated with alpha diversity in CVID patients.

P value OR 95% CI

≥45 years 0,020 -22,250 -40,890 -3,611

COPD mod/severe 0,030 -22,284 -42,372 -2,197

IgM ≥ 0.2 g/L 0,039 0,596 0,030 1,162
CI, confidence intervals; COPD, chronic obstructive pulmonary disease; OR, odds ratio.
A linear logistic regression model using a stepwise selection procedure was calculated. Odds
ratios (OR) and 95% confidence intervals (CI) of multivariate models are reported.
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IgM levels, older age, and reduced circulating B cells affected the

alpha diversity reduction. While IgA defect is included among the

CVID diagnostic criteria, some patients are entirely IgA deficient,

whereas others have a residual IgA production (14). Previously, our

group showed that low IgA levels together with reduced frequencies

of peripheral and mucosal memory B cells represent a risk for a

worse prognosis, infections, and lung damage in CVID (45–47).

Under healthy conditions, secretory IgA shapes the microbiome

and neutralizes toxins and viruses without activating the

complement cascade. Moreover, IgA blocks the colonization of

pathogenic bacteria by binding receptors on the fimbriae, clearing

unwanted particles, and promoting the sampling of antigens (8–10).

Here, we recorded a reduced alpha diversity in the subset of patients

with low IgA, partially confirming the data from Barbers et al. (16).

In addition, we recorded that the lack of IgA was associated with the

expansion of theHaemophilus and Streptococcus genera. The role of

IgM in microbiome homeostasis remains less understood (12).

Here, we recorded a more accentuated microbiological

pathological signature in patients with a severe depletion of IgM,

with lower levels of Prevotella and Veillonella, two genera usually

related to healthy status. In this context, the impossibility of

replacing IgA and IgM at the mucosal level should be considered

(48). This emphasizes the need for possible additional therapeutic

interventions, such as aerosolized IgA/IgM, to prevent bacterial

dysbiosis in the respiratory tract in CVID.

We also observed a lower diversity and dominance of the genera

Haemophilus, Streptococcus and Rothia in patients with co-existing

severe/moderate COPD, in line with data from non-CVID cohorts
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with severe COPD (31). In COPD, Streptococcus expansion and its

associated metabolites have been previously related to worsening

lung function and respiratory exacerbations (49). In addition,

Haemophilus dominance has been associated with airway

neutrophil inflammation and disease severity (49, 50). These data

suggest that perturbation in the respiratory microbiome in CVID

patients with COPD might contribute to lung disease progression

and morbidity.

Given the frequent use of antibiotics in patients with CVID, the

study also aimed to investigate the extent to which recurrent

antibiotic use might influence oropharyngeal dysbiosis. In our

CVID cohort we identified the antibiotic prophylaxis as one of

the main factor influencing dysbiosis. This data was in line with the

observation of reduced a-diversity and lower relative abundance of

respiratory pathogens such as Pseudomonas aeruginosa, Moraxella

catarrhalis and members of family Enterobacteriaceae in the airway

microbiome of COPD patients receiving prophylactic antibiotics,

together with a high frequency of resistance to macrolide and

tetracycline (51). In contrast, there was no difference in microbial

diversity and composition between CVID patients treated with

antibiotics as needed and those who were not treated. This is

probably due to the high complexity of CVID, where the clinical

and immunological factors discussed above lead to changes in the

microbiota even in patients who have not been treated

with antibiotics.

In the gut, the main immunological trait associated with gut

dysbiosis was systemic dysregulation and low IgA (13, 15), leading

to the expansion of Bacilli and Gammaproteobacteria and increased
A

B

C

FIGURE 5

Bacterial community composition of the oropharynx in CVID patients and controls. Patients were grouped by IgM and IgA serum levels (A, B) and
COPD status (C). The first six most frequently identified genera in CVID patients are shown. The horizontal line inside the box represents the median.
The whiskers represent the 10 and 90 percentiles. The non-parametric Mann–Whitney test was used to evaluate statistical significance. Two-tailed P
value significances are shown as *p<0.05, **p< 0.01, ***p< 0.001, ****p<0.0001.
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microbial translocation (13). Our data suggests that oropharyngeal

dysbiosis is influenced mainly by disruption in microbiota-

immunity balance and by local inflammation resulting in COPD.

Similarly, oropharyngeal dysbiosis in CVID has been previously

associated with radiographic lung damage severity (16).

The study’s main limitation is the choice of the oropharynx as a

sampling site. However, in healthy conditions and inflammatory

respiratory diseases (17–20), the lung microbiota community is

similar to the oropharyngeal microbiome. Moreover, the role of

viruses as causative agents of acute respiratory infections was not

explored since the 16S rRNA sequencing method is incapable of

detecting viral DNA. A further limitation is the lack of longitudinal

sampling making a single time point evaluation interesting but not

enough to fully address the microbiome composition since it might

change over time (52).

In conclusion, our results demonstrate that the oropharyngeal

niche of CVID patients exhibits a distinct microbiome structure

characterized by reduced diversity, enrichment of potentially

pathogenic bacteria, and decreased protective species. We have

also found that respiratory acute infections are linked to the

expansion of distinct oropharyngeal bacterial taxa. Additionally,

we have observed that the subset of CVID patients with COPD or

undetectable IgA displays a microbiome ecosystem that is enriched

with Streptococcus and Haemophilus, which may act as a source of

infection and inflammation (Figure 6). Our findings suggest that

manipulating the respiratory microbiota through pharmacological

modification or replacing the immune defect may shape the

microbiota composition and reduce inflammation and damage

progression. Moreover, given the immunological interactions in

the gut-lung axis (53), treatment with immunobiotics might

also gain attention, considering their potential to confer

protection against infections by modulating innate and adaptive

antimicrobial immunity (54). Similarly, as intestinal probiotics have

been shown to reduce the number and duration of upper

respiratory tract infections (55, 56), their use can potentially

contrast respiratory infections.
TABLE 3 Linear logistic model using a stepwise selection procedure to
assess the impact of CVID-related characteristics collected during the
study on dysbiosis index.

OR P value

Final Model

Sex -21.4 .006

Antibiotic prophylaxis 31.9 .009

Excluded variables:

Age >=45 years 0.1 0.681

Smokers (yes) -0.2 0.126

IgA< 0.01 g/L 0.1 0.518

IgM >0.20 g/L -0.1 0.523

IgG TL g/L -0.1 0.550

SwMBC<=2% of B cells 0.1 0.686

Complicated phenotype -0.2 0.298

COPD moderate/severe -0.1 0.515

Bronchiectasis -0.1 0.934

Systemic autoimmunity -0.1 0.953

Antibiotic use (T0-T5) -0.2 0.219

Days of antibiotic therapy -0.2 0.129

Amoxicillin/clavulanate (days) -0.2 0.215

Trimethoprim/sulfamethoxazole (days) -0.1 0.660

Macrolides (days) 0.1 0.590

Cephalosporin (days) -0.3 0.074

Quinolones (days) -0.2 0.183

Lincomycin (days) 0.2 0.252

Corticosteroids treatment by inhaler (T0-T6) 0.0 0.816
COPD, chronic obstructive pulmonary diseases; OR, odds ratio; CI, confidence intervals;
SwMBC, switched memory B cells.
FIGURE 6

Summary of the main results.
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