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Abstract

A wealth of data is available from electronic health records (EHR) that are collected as part

of routine clinical care in hospitals worldwide. These rich, longitudinal data offer an attractive

object of study for the field of circadian medicine, which aims to translate knowledge of circa-

dian rhythms to improve patient health. This narrative review aims to discuss opportunities

for EHR in studies of circadian medicine, highlight the methodological challenges, and pro-

vide recommendations for using these data to advance the field. In the existing literature, we

find that data collected in real-world clinical settings have the potential to shed light on key

questions in circadian medicine, including how 24-hour rhythms in clinical features are asso-

ciated with—or even predictive of—health outcomes, whether the effect of medication or

other clinical activities depend on time of day, and how circadian rhythms in physiology may

influence clinical reference ranges or sampling protocols. However, optimal use of EHR to

advance circadian medicine requires careful consideration of the limitations and sources of

bias that are inherent to these data sources. In particular, time of day influences almost

every interaction between a patient and the healthcare system, creating operational 24-hour

patterns in the data that have little or nothing to do with biology. Addressing these chal-

lenges could help to expand the evidence base for the use of EHR in the field of circadian

medicine.
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Introduction

Thousands of data points may be generated and digitally stored each day a patient is in the

hospital [1]. These electronic health records (EHR) often include vital signs, imaging and labo-

ratory results, diagnoses, medications, medical history, demographic information, and clinical

notes. Although EHR, by definition, are built for patient care [2], the data are increasingly

used to address a wide range of biomedical research questions.

One area of research that may benefit from routinely collected clinical data is the burgeon-

ing field of circadian medicine, which aims to translate findings from circadian biology to clin-

ical practice. Owing to their high resolution and longitudinal nature, EHR data have been

referred to as a “treasure trove of information” that can support all facets of research in circa-

dian medicine [3]. However, repurposing real-world clinical data for biomedical research

requires a great deal of consideration. In addition to the general challenges facing all EHR-

based research [4–6], efforts to understand the role of time of day present unique challenges,

which have received only limited attention.

In this narrative review, our goal is to (i) provide an overview of the potential for EHR to

advance circadian medicine; (ii) to highlight the challenges pertaining to responsible use of

these data; and (iii) offer recommendations for researchers who are planning to use EHR data

in the field of circadian medicine.

Literature search methodology

This narrative review was prepared by identifying peer-reviewed articles in electronic data-

bases (PubMed and Google Scholar) using search terms including “circadian” and “electronic

health records” or “routinely-collected clinical data” and variants of those terms. Inclusion cri-

teria were research articles that describe 24-hour patterns in physiological readouts collected

using routinely collected clinical data, focusing on EHR data from inpatient hospital stays

since these patients are monitored around the clock. However, many of the points we discuss

are applicable to EHR data from outpatient clinics, disease registries, and other sources. In

addition, to provide an overview of the limitations and challenges related to the use of elec-

tronic health records, we searched PubMed and Google Scholar for peer-reviewed articles on

this topic. In principle, all literature available on these topics were considered without an

explicit date range, although priority was given to recent literature due to constraints in word

count and number of references set by the journal.

Daily rhythms in physiology

Human physiology and behavior change profoundly between day and night. The most obvious

example is the sleep–wake cycle, but also a broad range of other behaviors (e.g., food intake,

mood) and physiology including cardiac (e.g., blood pressure, heart rate, thrombus forma-

tion), metabolic (e.g., glucose and lipid metabolism, insulin secretion, metabolic rate), immune

and inflammatory (e.g., cytokine secretion, circulating leukocytes), gastrointestinal (e.g., diges-

tion, absorption, and electrolyte balance), thermoregulatory, and hormonal functions vary

with predictable patterns over 24 hours [7–12]. Consequently, many clinical tests or measures

may depend on the time of day of data collection.

These daily fluctuations in physiology are in part driven by the circadian clock [13], an

internal timing system built from 24-hour molecular oscillators that exist in virtually every cell

in the body [14]. These oscillators drive circa 24-hour rhythms in gene transcription and trans-

lation that synchronize with salient 24-hour rhythms in the environment, such as light–dark

or feeding-fasting cycles. In this way, the circadian system anticipates predictable changes in

the environment and helps to enact the right physiology at the right time, while also keeping

PLOS DIGITAL HEALTH Using routinely-collected clinical data for circadian medicine

PLOS Digital Health | https://doi.org/10.1371/journal.pdig.0000511 May 23, 2024 2 / 15

https://doi.org/10.1371/journal.pdig.0000511


an internal temporal order [15]. For example, blood pressure follows a 24-hour rhythm char-

acterized by a morning rise, afternoon peak, and overnight dip, with a typical daily variation

from 10% to 20% over the course of a day [16]. This variation is thought to reflect the differing

demands for blood flow during the day (physical and mental exertion) versus the night (recov-

ery, repair, efficiency) [17].

Circadian rhythms can be uncovered in highly controlled laboratory conditions using con-

stant routine or forced desynchrony protocols [18,19]. For example, core body temperature

exhibits endogenous circadian rhythmicity that continues to oscillate with a period of approxi-

mately 24 hours, even in the absence of external timing cues [20,21]. Under entrained condi-

tions, i.e., in the presence of cues from a 24-hour light–dark cycle, circadian-regulated

physiology will cycle with a period of exactly 24 hours. However, the endogenous circadian

cycle is not the only contributor to day–night variation in physiology. Changes in activity, pos-

ture, meals, sleep, room temperature, light, and potentially many other factors can contribute

to daily patterns in physiology [19]. For example, any periodic fluctuation in core body tem-

perature observed in daily life may be caused by diet-induced thermogenesis or physical activ-

ity, leading to an increase in core body temperature during the active phase when food intake

occurs and a decrease during the resting phase. In the context of distal skin temperature rhyth-

micity, the peak-to-trough difference of the endogenous circadian rhythm, measured in highly

controlled conditions, is about 3.5˚C, while this is 6˚C in freely living conditions, likely condi-

tioned by behavioral and environmental components [22]. In clinical settings, medical activi-

ties such as drug administration, mechanical ventilation, nutritional support, or physical

therapy as well as excess sound and artificial light may impose daily rhythms on physiology or

completely mask or abolish them. Although the relevance of the interaction between circadian

rhythms and behavioral and environmental factors remains to be determined, conceptually,

EHR data offer an opportunity to study this at scale and close to the clinical reality. Patient-

derived data are inherently noisier than data collected from well-controlled experiments but

may contain time-specific signals that are modulated by the circadian clock-behavioral-envi-

ronmental interaction. The question is: Can novel variables be extracted from this parameter

space and would these be indicative of the patient’s clinical status? Here, the massive amounts

of data stored in EHR offer opportunities to evaluate this in the context of clinical care.

Electronic health records for research

EHR databases store all of the electronic data collected in clinical care. Although EHR are pri-

marily used for patient care (e.g., to inform clinical decision-making) and administrative pur-

poses (e.g., billing and insurance), these data are increasingly being applied to biomedical

research questions. The advantages of EHR seem clear: (1) data are readily available, reducing

costs and burden; (2) data are systematically captured from all patients within the healthcare

system, reducing inclusion bias and potentially improving generalizability; (3) databases are

large and rapidly grow with time, enabling the ascertainment of case–control patient cohorts,

assessment of interactions, and subgroup analyses; (4) data are collected over prolonged peri-

ods of time, enabling longitudinal analyses; (5) data are collected in real-world conditions,

improving ecological validity [23]; and (6) data are multimodal, enabling analyses along many

health measures—medical and nonmedical. However, such advantages should be viewed with

caution as EHR are not primarily intended for research.

Many factors can compromise the validity and generalizability of EHR-based research, as

has been reviewed elsewhere [5,24]. As patients interact with a healthcare system, EHR docu-

ments what happens and when it happens. However, EHR does not explicitly document the

why. Hospital admissions, tests, treatment, and discharge are the result of complex decisions
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made by the patient, clinical staff, and healthcare system. This underlies a key challenge in

EHR analysis: The decision-making (data-generating) process is often unknown. This may

result in sample selection bias, whereby the presence of data is related to its outcome, as a mea-

surement is only made with clinical justification. Similarly, sampling frequency is inevitably

correlated with disease severity; monitoring is more frequent for sicker patients. Furthermore,

information within the EHR may be imprecisely defined or related to billing rather than clini-

cal purpose resulting in patient misclassification. For example, a diagnostic code for sleep

apnea is necessary for the reimbursement of a sleep apnea exam but is not always indicative of

sleep apnea onset [25]. These forms of bias and confounding should be considered when

undertaking EHR-based research; a multidisciplinary team with clinical, epidemiological, and

statistical expertise is indispensable.

Despite these challenges, EHR-based research is increasing dramatically, in part owing to

the release of public databases with deidentified data [26] and technological advances that

allow researchers to use EHR from their own or collaborating institutions. Notable examples

of open-access databases in the intensive care domain are the MIMIC-IV database [27], the

eICU [28], the HiRID database [29], and the AmsterdamUMCdb [30]. Before embarking on a

research project that involves setting up a new database derived from EHR, it is important to

be aware that this process is time-consuming, labor-intensive, and will undoubtedly raise non-

trivial and unexpected issues, as recently described in an honest account of the challenges

encountered while preparing EHR data for secondary use [31]. Extraction and curation of

EHR data requires a specific set of skills, including expertise with (i) usability; (ii) data quality

and validation; (iii) standards for data structuring; (iv) governance (including ethical, security,

and privacy aspects related to the responsible use of clinical data); and (v) data integration

[32,33]. Therefore, the ease with which one can tap into EHR data within an institute depends

on the infrastructure and (programming) support that is available as well as the local legal and

privacy regulations [34].

Opportunities for the use of EHR in circadian medicine

EHR can be used to address key questions in circadian medicine (Fig 1). Variables that are

routinely monitored in patients show robust 24-hour rhythms in healthy individuals, such as

vital signs (e.g., heart rate, blood pressure, and core body temperature) as well as biochemical,

Fig 1. Overview of opportunities for the use of EHR for circadian medicine.

https://doi.org/10.1371/journal.pdig.0000511.g001
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metabolic, and hematological factors [35–40]. Using EHR, researchers can evaluate these fea-

tures in any disease context, providing real-world evidence for the hypothesis that circadian

rhythms are a marker of healthy physiological functioning and that altered rhythms indicate

poor health [41]. For example, an abnormal blood pressure rhythm, in particular the loss of

overnight dipping, has been associated with an increased risk of death and cardiovascular

events [42]. An EHR-based study of approximately 60,000 primary care patients found that

nighttime systolic blood pressure is more informative about the risk of death than clinic or

daytime ambulatory blood pressure, underscoring the value of large 24-hour datasets [43].

The effects of disease onset and hospitalization on 24-hour physiology have historically

been evaluated in small, well-defined groups of patients [44–47]. Recent studies are tackling

this question using large-scale, open-access EHR databases. For example, a study encompass-

ing nearly 200,000 ICU patients spanning multiple hospitals in the United States of America

and the United Kingdom detected population-level 24-hour rhythms in systolic blood pres-

sure, heart rate, respiratory rate, and body temperature in the 24 hours prior to patient dis-

charge. These rhythms were comparable to rhythms in healthy individuals, albeit with reduced

peak-to-trough excursions [48]. This raises many questions, potentially also evaluable with

EHR. For example, do these peak-to-trough excursions correlate with patient health status,

and if so, can they be used as part of the decision-making process in patient discharge? EHR

studies suggest that reduced day–night differences in vital signs are associated with increased

mortality in hospitalized patients [49–53], but not all studies agree [54]. Future research is

needed to understand if and how 24-hour physiology tracks health and predicts outcomes.

EHR-based studies of biomarker variation may also help to refine reference ranges [55].

Analysis of approximately 500,000 blood draws found that the reference interval for thyroid

hormone (the range covering the central 95% of results) differs based on age, sex, ethnicity,

and time of day [56]. Others have suggested that the time of day of sampling may be an impor-

tant factor when assessing glucose control in ICU patients [57,58] or to help minimize under-

or overdiagnosis in the context of adrenal gland disorders [59]. To speculate, the information

gained from any laboratory test about the clinical status of a patient may improve with an

understanding of the expected 24-hour dynamics, analogous to the case for blood pressure dis-

cussed above. EHR offers huge amounts of data to evaluate this, although analysis of time of

day for blood draws is not without its challenges, as discussed in a subsequent section.

A key goal of circadian medicine is to optimize the timing of medication and clinical proce-

dures [3]. Understanding how time of day modifies treatment efficacy and safety may lead to

cost-effective and noninvasive timing-based strategies [60,61]. Although randomized con-

trolled trials (RCTs) will remain the gold standard in this regard, current RCTs have some lim-

itations. A survey of RCTs comparing the effects of medication taken at different times of day

[62] pointed out that many studies (i) did not account for individual variation in circadian

phase (e.g., 8 AM is not morning-time for a shift worker); (ii) often compare only 2 dosing

times, morning versus evening; and (iii) were small and single-sited, leading to concerns about

their replicability. Exploratory studies using EHR offer a practical solution to some of these

shortcomings and may be used to guide confirmatory RCTs. For example, using EHR from a

pediatric hospital, it was found that the clinical response to hydralazine, an acute antihyperten-

sive, is greatest at night [63].

Further, by analyzing breakthrough Coronavirus disease 2019 (COVID-19) infection in 1.5

million patients as a function of time of vaccination, late morning to early afternoon was

found to offer better protection than evening vaccination [64]. The authors of this study were

able to construct a continuous efficacy curve over a 12-hour period using EHR data. It is diffi-

cult to imagine an RCT achieving similar temporal resolution at this scale. These examples
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highlight the potential of everyday healthcare data to deliver insights into the impact of time

on treatment and many other health measures.

In addition to considering time of day as a source of biological variation, the interaction

between time of day and clinical routines, or healthcare processes, is another aspect of circa-

dian medicine. Although clinical care takes place around the clock in hospitals, specific proce-

dures or treatments are provided at specific times of day and not at other times. The timing of

medication orders and administration are influenced by hospital rounding and may not be

driven by the time of greatest clinical need [65,66]. Similarly, sampling for laboratory tests typ-

ically occurs in the early morning hours [67,68] and other care activities are—not surprisingly

—unevenly distributed around the clock [69]. Given that all this information is typically docu-

mented in EHR, there is an opportunity to study how healthcare processes interact with bio-

logical variation.

We expect EHR-based circadian medicine research to grow as technological integration

evolves. Wearable devices, for example, extend close monitoring of physiological and behav-

ioral variables beyond the clinic into patient communities under real-world conditions. First

evidence for this seamless integration of EHR with wearable devices are emergent [70,71],

including wrist accelerometers [72] and sleep-monitoring technologies [73]. Wearable tech-

nology for longitudinal recording of physiological or behavioral variables is extensively

adopted in the field of chronobiology to characterize 24-hour patterns in variables of interest.

Some examples include activity trackers [74,75], continuous glucose monitoring [76], wrist

temperature [22], and heart rate [76,77]. The relevance of using wearables for circadian moni-

toring in patient populations is exemplified by studies showing the predictive value of circa-

dian metrics and clinical outcomes in patient populations, such as circadian features of heart

rate as a prognostic marker for postoperative recovery scores [78] and rest–activity cycles as a

predictor for patient survival [79] in oncology patients.

Furthermore, integration of molecular information with EHR will also pave the way for

precision medicine [80]. For example, variation in circadian genes or genetic profiles related

to circadian rhythms could inform treatment and risk prediction. In addition, further valida-

tion of blood-based circadian phenotyping using a single blood sample may allow for accurate

determination of a patient’s internal circadian time based on transcriptional biomarkers

[80,82]. How best to incorporate those data with EHR and how to make this clinically action-

able remains to be determined.

Challenges for the use of EHR for circadian medicine

EHR studies use data that were not collected to address predefined research questions and

thus require a great deal of care in analysis and interpretation. Besides pitfalls that pertain to

research with EHR in general, the use of these databases for circadian medicine purposes

introduces multiple challenges (Table 1). The COVID-19 vaccine timing study [64] offers a

good example. In that study, an individual’s occupation may have independently influenced

both the time of vaccination and the risk of COVID-19 infection (Fig 2A). To account for this,

the authors carefully estimated a baseline infection rate for each comparison group by calculat-

ing COVID-19 positivity in the 14 days after the first vaccine dose, before any protection from

the vaccine is expected. Although confounding is impossible to rule out, considering all of the

potential causal relationships in the data and measuring them whenever possible increases the

power and interpretability of EHR analyses.

It is easy to underestimate the degree to which time of day influences the interaction

between a patient and the healthcare system. Two recent studies highlight how treatment [65]

and diagnosis [68] follow well-established 24-hour patterns of care in the hospital (Fig 2B).
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For example, blood and urine specimens are routinely collected in the early morning hours so

that the test results are available for clinical team rounding that typically occurs 3 to 4 hours

later. Of course, not all specimens are collected in this routine window. In particular, a patient

with acutely concerning signs or symptoms (and, therefore, a higher likelihood of abnormal

test values compared to more stable patients) may receive off-peak testing. To this point, the

time of day that a lab test is ordered predicts mortality, in some cases even more powerfully

than the test result itself [67]. In other words, the decision to acquire data is influenced by cli-

nicians’ perception of clinical need in a background of operational routine (Fig 2C and 2D).

As a consequence, it may be easy to mistake patterns in hospital operations for rhythms in

biology (Fig 2D). For example, 24-hour variation in glucose levels in EHR data from critically

ill patients was initially attributed to circadian variation in glucose control [57] but was later

shown to be—at least partially—caused by more intensive sampling in sicker patients [58].

When using time-weighted averages, the time of day effect was greatly attenuated [58].

Table 1. Challenges and recommendations on applying EHR to studies of circadian medicine.

Challenges Recommendations Guiding questions

Sample selection bias

EHR are often collected from specific healthcare

systems or patient populations. As such, it may not

represent the entire population.

Always remember that data collection was not

guided by research questions and is greatly

influenced by the functioning of the healthcare

institution.

• Have we properly discussed external validity and

generalizability?

Heterogeneity in data collection

Procedures and type of data collected (e.g., which

patients, sampling frequency, different technologies)

heavily depend on clinical routines and

administrative purposes.

Consider potential biases by drawing out causal

diagrams, and engaging domain and statistical

expertise before, during, and after analysis.

• Could daily patterns of hospital operation have

imprinted daily patterns of clinical values?

• Are there hidden variables (e.g., disease severity) that

may have influenced both the time of day of

measurement and the outcome of interest (e.g., white

blood cell count)?

• Which of all the potentially causal variables can we

account for (and not account for) in our analysis?

Variability in data storage/management

Data management practices may vary significantly

across institutions.

Confirm that event date-time stamps are reliable. • Were date-times shifted to protect privacy?

• Could there be a significant date-time lag between the

event and its electronic entry?

Consider whether the clinical features important to

your study may be imprecisely defined.

• Could the diagnosis code that we used to define a cohort

have been assigned primarily for billing purposes? How

might this affect my results?

Data structure/types

Multilevel data:

Data may involve a single measure from each of N

patients or multiple measures from each of N

patients.

Consider the independence of observations in your

dataset.

• Have we accounted for hierarchical structure in our

dataset? For example, repeated hospital admissions for

the same patient cannot be treated as independent

observations. Similarly, repeated measures on a patient

during an admission cannot be treated as independent

observations.

Time of day is a circular variable:

It represents a cyclical phenomenon.

Avoid discretizing circular variables. • Can we treat time of day as a circular variable in order

to avoid binning observations into wide intervals (e.g.,

day vs. night)?

Reproducibility-related challenges

EHR data has sensitive patient information, and strict

privacy regulations have to be followed when

assessing, using and sharing these data for research

purposes. Data are often stored in different formats

and systems, which make integration difficult.

Preprocessing of data can be undertaken in different

ways.

Follow best-practice statements developed

specifically for EHR-based studies.

• Was CODE-EHR or a similar framework used when

planning and conducting the study?

Determine how to share data, code, and software

needed for someone else to recreate findings and

figures.

• How do we legally and responsibly share the data and

code?

• How do we future-proof this access, for example, how

do we prevent broken web links?

• How do we meet the requirements for journals’ data/

code availability statements?

When drafting a manuscript, follow appropriate

reporting guidelines.

• Have we checked RECORD (observational) or

CONSORT-ROUTINE (intervention studies)?

• Did we openly discuss the biases we are aware of (there

are always plenty of them) in our manuscript?

https://doi.org/10.1371/journal.pdig.0000511.t001
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Considering the potential influences on an outcome, drawing causal diagrams [83], and

engaging domain expertise can help to clarify the clinical process and determine the best statis-

tical approach [84]. Propensity score matching may be used to ensure patient subgroups are

comparable for analyses [85]. Still, propensity matching requires (1) awareness of potential

causal factors and (2) a way to measure them. This can be hard. For example, we may be aware

that health status causes the collection of lab values and, therefore, try to “match” health status

between comparison groups. But how do we measure health status? Can we disentangle these

factors, given that time of day of testing predicts health status, in some cases even better than

the test results themselves [67]? This is an interesting form of confounding that makes it diffi-

cult to ever fully control for health status when trying to study biological rhythms in lab values.

A similar issue may present in studies on medication timing (Fig 2B) where treatment received

“off peak” may describe different types of patient.

Inpatients may receive automated 24-hour continuous monitoring of clinical parameters,

including blood pressure, heart rate, body temperature, respiratory rate, and oxygen satura-

tion. Automation mitigates some but not all concerns of the bias discussed above. Consider

that not all inpatients receive 24-hour monitoring. It is a decision, influenced by operational

routine and perceived clinical need. The patient population that is being closely monitored

may not be representative of all individuals with the condition of interest. In addition, the use

Fig 2. Considering causes in EHR studies of biological rhythms. (A) An individual’s occupation may independently “cause” both the time of

vaccination (scheduling/availability) and the risk of COVID-19 infection (exposure). A way to think about cause in these diagrams is that the

variable being pointed to “listens to” the variable pointing to it. (B) Twenty-four-hour rhythms in hospital operation based on data from

Ruben and colleagues [65] and Caraballo and colleagues [68]. (C) Proposed causal model for the effect of time of day of lab test (or drug

administration) on outcome. This model assumes that health status is a confounder because it independently influences both the time of lab

test (or drug administration) and the outcome of interest. (D) Given the causal model for lab results in panel C, we propose that the

probability of an abnormal result at a particular time is inversely related to the probability of testing at that time. Theoretical curves (gray

color) reflect different scaling, i.e., proposed relationships between the probability of testing and probability of obtaining an abnormal result.

Ground truth is unknown.

https://doi.org/10.1371/journal.pdig.0000511.g002
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of routine dosing times of drugs may impose 24-hour rhythms in monitored parameters; for

example, the administration of vasodilators or vasopressors during a specific time window

may produce a 24-hour pattern in blood pressure. It is possible to exclude data points collected

within the time frame that drug administration occurs to limit this effect [48]; however this

may exclude a substantial amount of data, especially in settings like the ICU where medication

use is high.

In the vaccination study above, and other EHR-based assessments of timing effects [48,50],

data from many individuals are compressed onto a single hypothetical 24-hour cycle and ana-

lyzed. This may involve a single measure from each of N patients or multiple measures from

each of N patients. Either strategy helps to “cover the clock” when individual sampling is

sparse but can create imbalances in statistical power across the 24-hour cycle. Mixed-effects

models or other statistical methods that take into account repeated sampling may be useful to

account for interindividual variability in baseline or responses in case patients contribute mul-

tiple measures [86]. In addition, it should be noted that time of day is circular and, although it

may be tempting to discretize observations into “morning” or “evening” (or something simi-

lar), time is best handled as a circular predictor to avoid information loss. The development of

statistical methods to describe periodic processes is an active area of research [75,87,88].

As a final point, precise definition of the variables under study is crucial. In circadian medi-

cine, it is important to verify that time of day is correctly specified. This may sound trivial but

open-access EHR databases may shift dates and times to protect patient anonymity. For exam-

ple, while time of day information is preserved in the MIMIC-IV, dates have been shifted by a

random number of days, precluding seasonal or day of week analyses [27]. In some databases,

time may be parameterized relative to when the patient was first admitted, making it impossi-

ble to study time of day effects [30].

Conclusions

The promise of circadian medicine is clear: There are numerous opportunities to improve

diagnostics, treatments, and patient care by incorporating circadian principles. A goal of future

research is to expand the evidence base for these approaches in real-world clinical settings.

With this goal in mind, we offer a few recommendations for the use of EHR in circadian medi-

cine (see Table 1).

First, we recommend evaluating the suitability of variables for circadian research based on

data collection methods rather than data type. EHR-based circadian research has mostly

focused on vital signs like heart rate, blood pressure, and body temperature. However, as dis-

cussed throughout this review, the EHR holds data on numerous other variables that could

offer valuable insights into circadian effects on health and disease. These variables include

information about patients’ diet, exercise, posture, sleep, light exposure, urinary output, nurse

call button usage, pain levels, and much more. The collection process is not always transparent

but almost always impacts data quality, resolution, and potential bias, as exemplified by the

distinction between automated and nonautomated data collection. The process of clinical data

collection is evolving, with technological advances allowing continuous recording of physiol-

ogy that is currently measured only at limited time points [76,79]. These advances offer prom-

ising opportunities for circadian medicine research.

Moreover, it is important to know the intricacies of a database before analyzing its content.

Random shuffling of times and dates for deidentification can go unnoticed, jeopardizing stud-

ies. Second, responsible sharing of deidentified raw patient-level data according to FAIR

(Findable, Accessible, Interoperable, Reusable) principles [90] enhances transparency, acceler-

ates the development of data-driven methods, and allows benchmarking across multiple
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cohorts, as is done in the field of sleep research [91]. Institutional or national regulations may

preclude data sharing, especially in the case of sensitive medical data, although informative

examples of data sharing strategies that comply with national privacy regulations exist [30].

To ensure reproducibility, it is considered good practice to share and maintain any code or

applications used to process and analyze the data [92]. When embarking on a study involving

EHR, we encourage authors to follow best-practice statements that have been specifically

developed for this purpose, such as the CODE-EHR framework [93]. Likewise, when drafting

a manuscript, reporting guidelines intended for studies using routinely collected clinical data

should be followed, such as the RECORD guidelines for observational studies [2] or the CON-

SORT-ROUTINE guidelines for intervention studies [94]. This will enhance transparency and

reproducibility of the study and facilitate systematic reviews and meta-analyses.

In general, we expect that the opportunities, challenges, and recommendations discussed in

this review will help to future-proof the research in the field of circadian medicine. EHR may

indeed be a treasure trove for the field, but—like real treasure troves—only if they are handled

with care.
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