A single dose of cocaine rewires the 3D genome structure of midbrain dopamine neurons

Dominik Szabó^{1,2}[†], Vedran Franke³[†], Simona Bianco⁴, Mykhailo Y. Batiuk⁵§, Eleanor J. Paul^{6,7}[‡], Alexander Kukalev¹, Ulrich G. Pfisterer⁵¶, Ibai Irastorza-Azcarate¹, Andrea M. Chiariello⁴, Samuel Demharter⁵, Luna Zea-Redondo^{1,2}, Jose P. Lopez-Atalaya⁸, Mario Nicodemi^{4,9}, Altuna Akalin³, Konstantin Khodosevich⁵, Mark A. Ungless^{6,7}, Warren Winick-Ng^{1,10}[†][†][†], * Ana Pombo^{1,2}[†][†], *

¹Max-Delbrück Centre for Molecular Medicine, Berlin Institute for Medical Systems Biology, Epigenetic Regulation and Chromatin Architecture Group, 10115 Berlin, Germany

²Humboldt-Universität zu Berlin, 10117 Berlin, Germany

³Bioinformatics & Omics Data Science platform, Max-Delbrück Centre for Molecular Medicine, Berlin Institute for Medical Systems Biology, 10115 Berlin, Germany

⁴Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli,

Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy

⁵Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, DK-2200, Denmark

⁶MRC London Institute of Medical Sciences (LMS), London W12 0HS, UK ⁷Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London SW7 2AZ, UK

⁸Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), 03550, Sant Joan d'Alacant, Spain ⁹Berlin Institute of Health, 10178 Berlin, Germany

¹⁰Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Toronto, Canada

[†] These authors contributed equally to this work

‡ current addresses: Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK. Medical Research Council Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK

§ current address: Laboratory of Neuroepigenetics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale Lausanne, Lausanne, 1015 Switzerland ¶ current address: Center for Translational Genomics, Lund University, Lund, 221 85 Sweden

*††*These authors jointly supervised this work

*Corresponding authors: <u>ana.pombo@mdc-berlin.de;</u> <u>warren.winickng@utoronto.ca</u>

Abstract

1	Midbrain dopamine neurons (DNs) respond to a first exposure to addictive
2	drugs and play key roles in chronic drug usage ^{1–3} . As the synaptic and transcriptional
3	changes that follow an acute cocaine exposure are mostly resolved within a few
4	days ^{4,5} , the molecular changes that encode the long-term cellular memory of the
5	exposure within DNs remain unknown. To investigate whether a single cocaine
6	exposure induces long-term changes in the 3D genome structure of DNs, we applied
7	Genome Architecture Mapping and single nucleus transcriptomic analyses in the
8	mouse midbrain. We found extensive rewiring of 3D genome architecture at 24 hours
9	past exposure which remains or worsens by 14 days, outlasting transcriptional
10	responses. The cocaine-induced chromatin rewiring occurs at all genomic scales and
11	affects genes with major roles in cocaine-induced synaptic changes. A single cocaine
12	exposure triggers extensive long-lasting changes in chromatin condensation in post-
13	synaptic and post-transcriptional regulatory genes, for example the unfolding of
14	Rbfox1 which becomes most prominent 14 days post exposure. Finally, structurally
15	remodeled genes are most expressed in a specific DN sub-type characterized by low
16	expression of the dopamine auto-receptor Drd2, a key feature of highly cocaine-
17	sensitive cells. These results reveal an important role for long-lasting 3D genome
18	remodelling in the cellular memory of a single cocaine exposure, providing new
19	hypotheses for understanding the inception of drug addiction and 3D genome
20	plasticity.

21

22 Main

23	How is an initial exposure to addictive drugs encoded in cellular memory?
24	Dopaminergic neurons (DNs) are critical players in the first response to drug-
25	associated reward learning and reinforcement; a single exposure to cocaine induces
26	long-term potentiation (LTP) of DN synapses in the midbrain ventral tegmental region
27	(VTA), lasting up to 10 days ¹ . These long-term effects of an initial exposure to
28	addictive drugs, or other LTP activation events, are independent of long-lasting
29	changes in gene expression, which are reported to occur and be resolved within the
30	first 6-24 hours ^{4–7} . The first drug exposure is thought to alter the state of DNs, priming
31	them for a much stronger and persistent, memory-associated, LTP induction that
32	occurs after a second or multiple doses ⁸ , reflecting long-term responses seen in models
33	of addiction learning paradigms ⁹ . However, without detectable lasting transcriptional
34	or electrophysiological changes, it remains unknown how the cellular memory of a
35	single drug exposure is encoded in DNs.

36

37 Our prior work mapping 3D genome structures in the adult mouse brain 38 showed that addiction genes establish specific chromatin structures in VTA DNs, that are absent in other brain cell types¹⁰. Recent reports show that multiple cocaine 39 40 exposures alter chromatin organization and the epigenetic state of addiction loci in brain regions involved in secondary cocaine-responses and which receive input from 41 VTA DNs^{11,12}. Altered chromatin looping has also been reported *in vitro*, after chronic 42 43 pharmacological activation of glutamate neurons for 1 day, at immediate-early genes (IEGs)¹³. Regardless of all current efforts to understand the onset of addiction¹⁴, it 44 45 remains unknown whether a single exposure to an addictive drug is sufficient to induce changes in chromatin structure in vivo in VTA DNs, whether and which chromatin 46 47 changes are long lasting, and which genes are affected. In this study, we show that the

48	3D genome structure of VTA DNs is extensively rewired 24 hours after a single
49	exposure to cocaine, with structural changes that can last or become more extensive
50	after 14 days, a time-frame that is well beyond the resolution of transient
51	transcriptional ^{4,5} and LTP-associated ¹ effects. Our work implicates the remodelling of
52	3D genome structure as a mechanism for the cellular memory of a first drug exposure
53	and as a basis for the onset of addiction, and identifies susceptible genes.
54	
55	Mapping the 3D genome structure and transcriptome of midbrain dopamine
56	neurons upon a single cocaine exposure
57	To study the short- and long-term effects of a single exposure to cocaine on 3D
58	genome structure and gene expression, we injected mice with either cocaine (15
59	mg/kg) ^{1,15} or saline, and isolated DNs from the midbrain VTA after 1 or 14 days (in
60	total 26 adult mice; Fig. 1a). We chose 1 day post-exposure to identify rewired 3D
61	genomic structures that would persist beyond the timeframe of previously reported
62	transcriptional changes ^{4,5} , and also analyzed changes at 14 days to discover long-
63	lasting effects well past reported LTP responses ^{1,16} .
64	
65	To map 3D genome structure while avoiding tissue dissociation, we applied
66	Genome Architecture Mapping with immunoselection (immunoGAM) to DNs in VTA
67	samples, using tyrosine hydroxylase immunodetection as a marker. We collected
68	immuno-GAM data from 4 cocaine-treated and 2 saline-treated animals, the latter
69	datasets previously reported in Winick-Ng et al. 2021 ¹⁰ . The GAM samples were
70	produced from a total of 6774 DNs (4146 cocaine-treated and 2628 saline-treated; Fig.
71	1b, see Extended Data Fig. 1a-d for quality control metrics).

72

Figure 1. A single cocaine exposure induces large-scale disruption of 3D genome structure.

75 a, 3D genome structure (immunoGAM) and single transcriptomes (single-nucleus RNA 76 sequencing) in mouse dopamine neurons (DNs) from the ventral tegmental area (VTA), 1 or 77 14 days following single cocaine or saline exposure. **b**, Number of replicates (animals) and 78 cells profiled. c, Example of long-term cocaine-induced 3D genome reorganization (chr10: 4.4 79 - 24.0 Mb; 40 kb resolution). NPMI, normalized pointwise mutual information. Contact 80 density heatmaps represent insulation scores calculated with square boxes ranging 240-1040 81 kb (bottom to top, respectively). **d**, Cocaine-induced disruption of a domain demarcated by 82 putative addiction single-nucleotide polymorphisms (SNPs) leads to long-term rewiring of 83 flanking addiction-associated genes (chr10: 5.2 – 7.4 Mb). e, Representative Uniform 84 Manifold Approximation and Projection (UMAP) expression profiles of DNs for a marker 85 gene (Th) and other neuronal genes (Grial and Grin3a). f, Projected distribution of cells according to treatment and DN subtype. g, Fold change representing differential gene 86 87 expression 1- or 14-days following cocaine. No significant transcriptional differences of 88 individual genes are detected 1- or 14-days following cocaine exposure, compared to saline 89 treatment. Immediate early genes (IEGs) are highlighted in pink. The expression of IEGs, 90 considered as a group, is downregulated 1 and 14 days after cocaine (two-sided Wilcoxon signed-rank test, $P = 1.6 \times 10^{-2}$ and 4.8×10^{-3} , respectively; n.s., not significant). CAGs, 91 92 Cocaine addiction genes.

94	To characterise gene expression, we profiled single nuclear transcriptomes in
95	the same conditions and time points. We collected VTAs from 20 wildtype mouse
96	littermates, 1 or 14 days following treatment with saline or cocaine (Fig. 1b), and
97	applied single nucleus RNA-seq (snRNA-seq) ¹⁷ to neurons positive for the neuronal
98	marker NeuN (Extended Data Fig. 1e), collecting high quality transcriptomes of
99	115,211 nuclei (see Extended Data Fig. 1f-i for quality control metrics) ¹⁸ .
100	
101	A single exposure to cocaine induces large-scale changes in DN chromatin
102	topology
103	Inspection of chromatin contact matrices revealed many events of striking
104	reorganization of 3D genome structure, at multiple genomic scales, upon cocaine
105	exposure. For example, a representative 20 Mb region on chromosome 10 displays
106	marked differences in chromatin contacts both at 1 and 14 days following cocaine
107	exposure compared with saline injection (Fig. 1c, see Extended Data Fig. 2a, b for
108	wildtype replicates and TH-GFP genotype). To assess whether genes previously
109	associated with chronic cocaine exposure were amongst those affected by the
110	extensive topological changes observed, we compiled a list of cocaine-associated
111	genes (CAGs) from publicly available resources (Supplementary Table 1) ^{19,20} . At 1-
112	day post-exposure, contact matrices show extensive losses and gains of contacts at
113	both short and long genomic ranges with clear disruption of self-interacting
114	topologically associating domains (TADs). By 14 days, remarkably, long-lasting
115	differences in chromatin topology are evident, including at regions overlapping CAGs,
116	such as Vip, involved in both neurotransmission and neuromodulation, and Oprm1, an
117	opioid receptor gene (Fig. 1c). Some regions revert to their pre-cocaine state, while
118	others show new structural alterations not present at 1 day.

To assess differences in contact density at different local scales, we measured insulation scores (average contact density) at genomic distances ranging 240 to 1040 kb, in saline, 1- and 14-day matrices^{10,21} (**Fig. 1c**, lower contact density panels). In some genomic regions, extensive decondensation seen 1-day post exposure reverts to pre-cocaine states by 14 days, while in many other regions, chromatin decondensation or condensation lasts or becomes more prominent by 14 days.

125

126 One exemplar locus with strong cocaine-induced reorganization contains the 127 addiction genes Oprm1 and Vip, separated by a large domain which is flanked by 128 multiple putative conserved single nucleotide polymorphisms (SNPs) associated with 129 cocaine and other comorbid addictions (Fig. 1d, see Extended Data Fig. 2c, d for 130 replicates)^{22,23}. The SNP list was compiled from publicly available resources and curated for human-mouse conservation (Supplementary Table 1)^{19,24}. Cocaine 131 132 exposure results in increased contacts between Rgs17, a modulator of the G-protein coupled receptor signaling pathway²⁵, and *Cnksr3* or *Vip* after 1 day, which recovers 133 134 after 14 days. In contrast, contacts between Rgs17 and Oprm1 are disrupted after 1 135 day, and do not recover even by 14 days. These observations show that a single 136 exposure to cocaine results in changes in 3D genome topology that outlast 137 transcriptional and synaptic effects, which occur throughout the genome including at 138 genomic regions that contain addiction genes and non-coding addiction-associated 139 SNPs.

140

To characterize gene expression genome-wide in VTA DNs treated in the same
conditions, we selected a total of 5,537 DNs selected from VTA snRNA-seq
transcriptomes using the marker genes *Th*, *Slc6a3*, *Slc18a2*, *Lmx1b*, *Foxa2*, *Nr4a2*, *Snca* and *Kcnj6* (Extended Data Fig. 3a-i)²⁶. We confirmed DN identity by uniform

145 expression of *Th*, which encodes tyrosine hydroxylase (Fig. 1e). Genes with synaptic plasticity-related functions, which are involved in cocaine-induced LTP¹, were also 146 147 highly expressed, such as Grial, encoding an AMPA receptor subunit, or the NMDA 148 receptor subunit Grin3a (Fig. 1e), while low expression of the cocaine response gene 149 *Cartpt*¹² indicated the DNs are not undergoing an active cocaine response (Extended 150 Data Fig. 3j). We also find that the overall DN cluster substructure is not affected by 151 cocaine exposure, and can be classified into 27 sub-populations, similar to recent DN 152 subtype classifications²⁷ (Fig. 1f, Extended Data Fig. 3k, Supplementary Table 2). We find that no individual gene is significantly differentially expressed 1 or 14 days 153 154 following cocaine exposure, compared to saline treatment (Supplementary Table 3), 155 in line with previous transcriptomic analyses performed 1 day after in vivo exposure to 156 cocaine⁹. To search for more subtle long-term transcriptional changes, we considered 157 the group of immediate early genes (IEGs), known to be upregulated within the first hours following neuronal activation after cocaine exposure⁹. We find a tendency for 158 159 downregulation of IEGs at both 1 and 14 days, such as Fos, Nr4a1 and Homer1, 160 whereas CAGs, NMDA receptor (NMDAR) and AMPA receptor (AMPAR) genes are 161 not affected (Fig. 1g, Extended Data Fig. 3l-o). These results suggest that a single 162 cocaine exposure may result in a homeostatic response that overcompensates for the 163 initial strong, cocaine-induced activation²⁸. 164

165 Cocaine exposure induces new TAD boundaries at postsynaptic genes

To investigate the extent of cocaine-induced large-scale changes in 3D genome
structure and the affected genes, we started by comparing the organization of
topologically associating domains (TAD)^{10,21,29}. Cocaine exposure led to extensive
genome-wide reorganization of TADs, with only 27% remaining unaffected by
cocaine exposure, 49% appearing *de-novo* after cocaine exposure, 14% lost at 1 day

171	but recovered at 14 days, and finally 10% lost and not recovered by 14 days (Fig. 2a).
172	Remarkably, cocaine-induced TAD boundaries overlap with many neuronal genes,
173	including IEGs (e.g. Homer1) as well as cocaine addiction genes (e.g. Grin2b, Actb,
174	$Nlgn1)^{30-32}$ (Supplementary Table 4), suggesting that the immediate transcriptional
175	response to cocaine exposure leads to long-term domain reorganization that affects
176	IEG responsive genes and cocaine addiction genes. We find that boundaries uniquely
177	identified 1 or 14 days after cocaine exposure appear at neuronal-relevant genes,
178	including the IEG Bdnf, or CAGs such as Epha4, Grip1 and Nlgn1, and are
179	characterized by gene ontologies (GOs) such as 'synapse organization' (e.g. Lrk2 or
180	Bdnf, respectively), 'cell adhesion' (at 1 day; e.g. Ache) or 'localization within
181	membrane' (at 14 days; e.g. Grip1; Fig. 2b, Extended Data Fig. 4a).
182	
183	Next, we applied SynGO (Synaptic Gene Ontology) enrichment analyses and
184	found that TAD boundaries which are unique to cocaine exposure at 1 or 14 days were
185	especially enriched for specialized postsynaptic functions (Fig. 2c, Extended Data
186	Fig. 4b) ³³ . Postsynaptic plasticity at glutamatergic synapses are largely responsible for
187	the LTP effects observed after a single cocaine exposure ^{1,34} . For example, the TAD
188	containing Grip1, a scaffolding protein gene critical for AMPAR trafficking during
189	LTP ³⁵ , is largely disrupted 1 day post-cocaine exposure, even though the flanking
190	TAD borders remain stable (Fig. 2d, Extended Data Fig. 4c, d). By 14 days post-
191	exposure, contacts are recovered only downstream of the first Grip1 intron,
192	establishing a smaller TAD and a new TAD boundary inside Grip1, while the first
193	exon and intron remain highly decondensed. Together, these results show complex loss
194	and gain of TAD boundaries, 1- and 14-days following cocaine exposure, which affect
195	genes with synaptic functions and known roles in the cocaine-induced plasticity
196	response, with potential long-term consequences for gene activity.

Figure 2. TAD borders and contact density are extensively rewired following a single cocaine exposure.

a, UpSet plot of multi-way TAD boundary comparisons, considering 14-day boundaries found 200 201 in either biological replicate. Sal, saline; Coc 1d, 1 day after cocaine; Coc 14d, 14 days after 202 cocaine. b, Cocaine-response genes overlap cocaine-specific TAD boundaries. c, Genes 203 overlapping cocaine-induced TAD boundaries have postsynaptic functions (synaptic gene 204 ontology analysis; SynGO). d, Grip1 overlaps a 14-day specific boundary (coloured boxes 205 below contact density heatmap; chr10: 118 - 122 Mb). Dashed boxes on the contact density 206 heatmap represent 400kb insulation scores, used to determine boundaries. Replicate 1 is shown 207 for 14 days. e, Genome-wide melting and condensing, computed across a 120 kb sliding 208 window, based on melting scores >5 or <-5, respectively (one-sided Kolmogorov–Smirnov 209 test, $P < 1 \times 10^{-5}$). f, Example region showing melting of *Kcnj16* and *Kcnj2*, and condensing 210 downstream of Sox9, at 1- and 14-days post-cocaine (chr11: 110 - 115 Mb). g, Melting and 211 condensing dynamics following cocaine exposure, considering only events common to both 14- day replicates. **h**, Addiction-associated SNPs are enriched in condensing regions (χ^2 212 213 distribution test, **P = 0.0042). In **b** and **g**, top gene ontology (GO) terms were selected by 214 adjusted P-value (p-adj) and enrichment ratio (observed over expected ratio of expressed 215 genes). 216

217 Widespread changes in chromatin condensation upon cocaine exposure

218 Next, to quantify the broad changes in chromatin compaction genome-wide, we 219 developed MELTRONIC (genomIC MELTRON), an approach based on the 220 MELTRON pipeline which we previously developed to detect melting at long genes¹⁰. 221 MELTRONIC quantifies gain (condensation) or loss (melting) of contacts genome-222 wide by applying a sliding window of differential insulation scores across the genome. 223 Using insulation boxes from 240 to 1040 kb, and a sliding window of 120kb, 224 MELTRONIC detected chromatin melting and condensation on all chromosomes at 225 both 1 and 14 days in comparison with saline (Fig. 2e, Extended Data Fig. 5a, b, 226 Supplementary Table 5). Condensing and melting regions were defined using 227 conservative melting score thresholds of -5/5 (equivalent to an adjusted $P < 1 \ge 10^{-5}$), in line with previous work¹⁰ (Extended Data Fig. 5c, d). Melting and condensing 228 229 events are stronger at 1 compared to 14 days after cocaine exposure, but many 230 genomic regions remain or become *de-novo* melted or decondensed by 14 days. The 231 prevalence of melting and condensing states at 14-days post exposure are confirmed by 232 separate analyses of the two biological replicates, which showed high conservation 233 (61.6%, Extended Data Fig. 5e). 234

235 Genomic regions affected by long-term changes in chromatin compaction after 236 cocaine exposure include the genomic regions containing the Kcnj2 and Kcnj16 locus, two potassium ion channel genes that modulate LTP sensitivity³⁶, as well as several 237 238 addiction-associated SNPs (Fig. 2f, Extended Data Fig. 5f, g). The region also 239 contains Sox9, a neural stem cell fate gene, which has been extensively studied in the 240 context of genetic rearrangements that alter 3D genome topology and gene expression, leading to human developmental diseases^{37,38}. We show that a single exposure to 241 242 cocaine results in the loss of the TAD boundary separating Kcnj2/16 from Sox9 and its

243	enhancers by 1 day post exposure, coinciding with melting events upstream of
244	Kcnj2/16, across a large 1.5 Mb genomic region that also contains Map2k6, a mitogen-
245	activated protein kinase gene, and other highly expressed genes. By 14 days,
246	chromatin melting extends downstream of $Kcnj2/16$, across the region surrounding the
247	Sox9 locus. Long-term condensation events are also observed in the same region and
248	affect for example $Sdk2$, a paralog of $Sdk1$ which is upregulated after chronic cocaine
249	use in the Nucleus accumbens (NAc) ³⁹ . These long-lasting chromatin compaction
250	changes suggest the long-term cocaine-induced propagation of melting and
251	condensation of genes related to neuronal activity, including at many SNP containing
252	regions.
253	
254	Next, we performed GO analyses to explore which genes are affected by the
255	different dynamics of melting/condensing at 1- and 14-days post cocaine exposure
256	(Fig. 2g). For example, 1-day melted regions contain genes with functions in the
257	STAT cascade and potassium ion transport, with the latter typically remaining melted
258	at 14 days. Condensing regions at 1-day post exposure are enriched for genes
259	associated with neuron projection development and limbic system development, with
260	the latter remaining condensed at 14 days. SynGO enrichment analyses identify genes
261	with roles in synaptic organisation enriched in 1-day melting regions and in 14-day
262	condensing regions (Extended Data Fig. 5h). For example, the receptor tyrosine
263	kinase Alk, which concentrates in post-synaptic domains and contains multiple
264	addiction-associated SNPs in its intronic regions ⁴⁰ , condenses at 1 day and remains
265	condensed at 14 days (Extended Data Fig. 5i, j). Interestingly, 1- and 14-days
266	condensing regions are also significantly enriched in addiction-associated SNPs ($P =$
267	0.0042, Chi-squared test; Fig. 2h). Taken together, long-term chromatin melting and
268	condensing are widespread cocaine-associated phenomena that affect a significant

fraction of the genome, occurring both at coding regions of genes with important transcriptional and synaptic functions, and at non-coding regions with regulatory or structural roles.

272

273 Long neuronal genes undergo cocaine-induced melting and condensing events

274 Long genes are more highly expressed in terminally differentiated cells, 275 including neurons, where their melting state reflects their expression levels in specific 276 neuronal cell-types^{10,42–44}. To quantify the effects of cocaine exposure on the folding of long genes, here longer than 280 kb, we applied MELTRON¹⁰ and found that 277 278 approximately half undergo melting or condensing events at 1 day post-cocaine 279 exposure (140 out of 291 genes; Fig. 3a, Supplementary Table 5). Amongst these 280 genes, 73 retain their melted/condensed state at 14 days, while an additional 46 genes 281 melt or condense de novo (19 and 27 genes, respectively). Of interest, many of the 282 genes that undergo cocaine-induced melting in DNs were previously found melted in pyramidal glutamatergic neurons (PGNs; e.g. *Rbfox1*)¹⁰, suggesting that cocaine alters 283 284 the cell-type specificity of chromatin condensation.

Long genes that are melted 1-day post-cocaine exposure tend to be more highly transcribed in saline-treated cells compared to genes that condensed or are unchanged, suggesting that higher transcription rates sensitize genes to larger scale melting events (**Fig. 3b**). By 14 days post exposure, the melting status is much less related with gene expression in saline treated cells (**Extended Data Fig. 6a**) and is possibly a bystander consequence of the initial direct effects of cocaine-induced transcriptional activation on chromatin topology.

292

293 The *Rbfox1* gene melts extensively 14 days after cocaine exposure

294	To explore further the long-term effects of cocaine exposure on chromatin
295	folding, we focused on <i>Rbfox1</i> , a cocaine addiction gene which regulates alternative
296	splicing following multiple cocaine treatments in the NAc ⁴⁵ , and is the most melted
297	gene at 14 days post cocaine exposure. In saline-treated DNs, Rbfox1 is contained
298	within two large chromatin domains with many inter-TAD interactions (Fig. 3c,
299	Extended Data Fig. 6b for a comparison of the two 14-day replicates). At 1 day after
300	cocaine exposure, $Rbfox1$ is extensively decondensed (melting score = 43), especially
301	in its 3' end. By 14 days, its melting score increases further (to 125), especially at an
302	intronic region containing a putative cocaine-associated SNP (rs12932935). The SNP
303	coincides with putative transcription factor (TF) binding sites for IEGs, including Jun
304	and Stat1, as well as the circadian factor Nr1d2 (Extended Data Fig. 6c), suggesting
305	that LTP-induced TF activity may be targeted at, or involved in, the long-term
306	structural reorganization of chromatin after a single cocaine exposure.

307

- 309 Figure 3. *Rbfox1* melting is more pronounced 14 days after cocaine exposure.
- **a**, Melting scores from long (> 280kb) expressed genes, 1 or 14 days following cocaine.

311 **b**, Melting at 1 day of cocaine is associated with higher baseline transcription (two-sided 312 Wilcoxon signed-rank test, *P = 0.02). Expression is shown for the matching samples 313 collected 1-day after injection with saline. c, Example region showing melting of *Rbfox1*, 1 314 and 14 days after cocaine (chr16: 4.8 - 9.8 Mb). Arrowhead indicates a putative cocaine SNP. 315 d, Polymer models of the *Rbfox1* region show looping near the transcription end site (TES) at 1 day, and full gene decondensation by 14 days. Colour bars, gene region, up- and downstream 316 317 flanking regions. Coloured spheres and arrowheads, positions of promoters and SNP. Cocaine-318 induced increased 3D spatial separation of promoters and SNP e, especially between the SNP 319 and downstream exon after normalization of linear genomic distances f. 320

321	To further understand the cocaine-induced structural changes in the <i>Rbfox1</i>
322	locus, we generated ensembles of 3D models (1100 models per condition), using a
323	polymer-physics based approach ^{10,46} which were validated by reconstructing <i>in-silico</i>
324	GAM matrices (Extended Data Fig. 6d). Inspection of single models shows that
325	different sections of the <i>Rbfox1</i> gene are more tightly compacted in saline, with
326	proximal positioning of several <i>Rbfox1</i> promoters and its TES (Fig. 3d; see more
327	examples in Extended Data Fig. 6e, Supplementary Videos 1-6). At 1-day post-
328	exposure, the genomic region between the promoter 4 and TES of <i>Rbfox1</i> loops out
329	from the rest of the polymer (Supplementary Videos 3 and 4). By 14 days, the entire
330	Rbfox1 gene becomes highly extended, with a larger separation between all its
331	promoters, the cocaine SNP, and the TES. The cocaine-induced increased separation
332	between promoters and SNP, especially at 14 days, are confirmed across the ensemble
333	of polymers (Fig. 3e, Extended Data Fig. 6f, g). Variance analyses showed that these
334	internal distances are most highly variable across polymers after 14 days (Extended
335	Data Fig. 6g), indicating that the single exposure to cocaine results in loss of structural
336	coherence in the 3D organization of <i>Rbfox1</i> . After normalizing for linear distances, we
337	found that the most pronounced increases in physical distance upon cocaine exposure
338	are between the SNP, its closest exon, the upstream internal promoter P2 and to a
339	smaller extent P3 (Fig. 3f). This suggests that the post-cocaine structure of <i>Rbfox1</i> may
340	sensitize it to future activation, in particular at some of its internal promoters, and

341 highlights a potential role of genetic variation in the SNP neighbourhood in the

342 magnitude of topological changes occurring with a single cocaine exposure.

343

344 We were surprised by the similarity of structural properties of the *Rbfox1* locus 345 found at 14 days post-cocaine exposure with that in hippocampal pyramidal neurons 346 (Extended Data Fig. 6h), a cell type with much higher baseline expression of *Rbfox1* than DNs¹⁰. When modeled in the pyramidal neurons, *Rbfox1* polymers have distance 347 348 and variation similar to the cocaine-treated DNs at 14 days (Extended Data Fig. 6h, 349 i), suggesting that *Rbfox1* was either previously activated in DNs by the cocaine 350 exposure and/or may become sensitized to future activations. Together, these data 351 suggest that, by 14 days, the 3D genome structures of specific loci are not trivially 352 recovering their pre-drug state following cocaine exposure, but can additionally 353 undergo further structural rewiring, including loss of structural coherence, consistent 354 with a progressive cascade of disruption.

355

356 Compartment A/B transitions affect one third of the genome and include CAGs

357 To understand whether melting dynamics relate to broader scales of 3D 358 genome organization, we calculated compartment A/B classifications, reflecting open 359 and closed chromatin, respectively^{10,41}. Compartment changes occurred in 29% of the 360 genome and also highlighted long-term effects of a single cocaine exposure (Extended 361 Data Fig. 7a, b). For example, compartment transitions from A-B-A (saline to 1 day 362 to 14 days) are enriched for signaling genes (e.g. Snca, Sst), A-A-B transitions for 363 genes with roles in cell adhesion and response to external stimulus (e.g. *Clock*, *Tyr*), 364 and A-B-B transitions for synaptic transmission genes (e.g. Oprm1, Gabra2), many of 365 which are CAGs (Extended Data Fig. 7c). As shown previously¹⁰, compartment A/B 366 changes are mostly independent of melting and condensing events (Extended Data

Fig. 7d). These results show that compartment transitions are found at relevant regions
for the cocaine response, though they occur less frequently than TAD reorganization
and are independent of (de)condensation events.

370

371 Strong cocaine-specific contact regions involve cocaine-response genes and IEGs

372 Finally, we also explored more complex structural changes across genomic 373 regions spanning several megabases, such as those seen at the clustered proto-cadherin 374 locus encoding cell adhesion genes $(Pcdh \alpha, \beta, and \gamma)^{47}$, which show increased 375 contacts 1 day post-exposure with gene-dense regions up- and downstream that include 376 CAGs (Fig. 4a). To unbiasedly discover other 'hotspot' genomic windows 377 characterized by an excess of differential contact loops, we calculated differential 378 matrices between cocaine and saline treatments and determined the number of 379 differential loops that each genomic region establishes within 2.5 Mb distance, using a previously reported approach 10,29 (Supplementary Table 6). The whole *Pcdh* cluster 380 381 is detected as a hotspot of differential contacts 1-day post exposure, especially the β 382 cluster which also remains a hotspot of cocaine-specific contacts at 14 days post-383 exposure (Fig. 4b).

384

385 When extended genome-wide, the contact hotspot analysis shows that the 386 genomic regions most affected by cocaine treatment are often clustered along the 387 linear genome (Fig. 4c, Extended Data Fig. 8a). Chromosome 18, for example, has 388 long contiguous stretches of hotspot windows within a given treatment (Extended 389 Data Fig. 8b). The average genomic length of contiguous hotspots of differential 390 contacts ranges from 1.9 - 2.6 Mb (\pm 0.1 - 0.2 mean standard error) and increase in 391 length after 14 days (Extended Data Fig. 8c), suggesting the local propagation of 392 chromatin structure disruption between 1- and 14-days post exposure. Many cocaine-

- 393 specific hotspots are maintained between 1 and 14 days (n=862/3254) and are enriched
- 394 for genes related to membrane depolarization and cell adhesion, including the clustered
- 395 *Pcdh* genes (Fig. 4d). Interestingly, cocaine-associated hotspots both at both 1 and 14
- 396 days also include genes involved in mRNA transport, splicing and processing,
- 397 consistent with widespread alternative splicing of pre-mRNAs described in VTA and
- 398 NAc following chronic self-administration of $cocaine^{48}$.
- 399
- 400

401 402

403 Fig. 4. Hotspots of strong structural changes occur at the *Pcdh* cluster, mRNA processing 404 genes and *Arc*.

405 **a**, Strong cocaine-specific contacts are formed in windows containing the clustered 406 protocadherin genes (α , β , and γ clusters; chr18: 34 - 40 Mb). **b**, Hotspot regions, top 5% of

- 407 summed genomic windows containing differential contacts (dashed lines below matrix). c,
- 408 Genome wide hotspots. d, Hotspot dynamics following cocaine exposure, and related GO
- 409 enrichments. e, Example hotspot at Arc 1 day following cocaine (chr15: 72 77 Mb). Arc-
- 410 anchored, treatment-specific, contacts are shown with orange (1 day cocaine), purple (14 day
- 411 cocaine) and green (saline) lines below the hotspot track.

412

413	Cocaine-associated hotspots also include several IEGs, such as the memory-
414	and stress-associated genes Arc, Hspa4, Ppp1r15a, and Zfp36 (Extended Data Fig.
415	8d) ^{49–52} . The 1-day cocaine-specific hotspot at <i>Arc</i> is of particular interest, as <i>Arc</i> is
416	directly linked to the reinforcing properties of cocaine exposure and has been referred
417	to as the 'master organizer of long-term synaptic plasticity ⁵³ . We observed that Arc
418	gains contacts with upstream active genes specifically at 1-day post cocaine exposure,
419	including the addiction-associated gene Ago2 ⁵⁴ , 1.5-Mb away, and the zinc-finger
420	transcription factor Zfp623, 1.3-Mb away, which contains a putative alcohol-
421	dependence SNP ⁵⁵ (Fig. 4e). Though after 14 days, Arc is no longer within a hotspot
422	region, it maintains its strong contacts with Zfp623. These results suggest that IEGs, a
423	group of genes that remained down-regulated 14 days after a single cocaine exposure
424	(Fig. 1g), are present at genomic regions that acquire extensive cocaine-specific
425	contacts, including specific long-lasting contacts with critical cocaine- and addiction-
426	associated risk genes.
427 428	A DN sub-cluster defined by IEGs and genes with chromatin contact changes
429	localizes to the medial VTA
430	Having found extensive 3D genome structural changes at IEGs, CAGs and
431	many other genes upon cocaine exposure, we explored whether these genes were
432	expressed in specific DN subtypes, especially because previous work has shown that
433	DNs in different VTA subregions respond to different extents to a single
434	administration of cocaine <i>in vivo</i> ⁵⁶ , and project to secondary addiction regions ^{57–59} . We
435	started by asking whether IEG expression, and their downregulation by 14 days after
436	cocaine exposure, was common across the population of DNs, or specific to a DN
437	subtype, by plotting their expression on the DN UMAPs. We found that some IEGs,

- 438 such as Arc, Egr1, Fos, and Homer1, are specifically and/or more highly expressed
- 439 within a small DN sub-type in saline conditions (212/5537 DNs; Fig. 5a). This DN
- 440 sub-population shows a high combined expression of IEGs, and when compared with
- 441 all other DN subtypes, it is largely responsible for the observed down-regulation of
- 442 IEGs after cocaine exposure (Fig. 5b; see full DN UMAP in Extended Data Fig. 9a).

443

Figure 5. A DN sub-cluster localizes to the medial VTA, expresses genes with chromatin contact changes, and displays long-term IEG downregulation.

446 a, UMAPs of example IEG expression in DNs. Dashed line indicates a DN sub-cluster with 447 higher expression of indicated genes. b, IEGs are highly expressed in the DN sub-cluster, but 448 downregulated after cocaine (Permutation test, $P = 1.3 \times 10^{-9}$ and 1.2×10^{-19} for 1d and 14d, 449 respectively). Density plots show IEG expression in the 'IEG cluster' compared to all other 450 DNs. c, Volcano plot of differentially expressed genes in the IEG cluster. Red dots indicate 451 marker genes with higher expression in the cluster (Wilcoxon test, P < 0.05, fold-change > 1). 452 UMAPs of \mathbf{d} , individual examples or \mathbf{e} , groups of genes with cocaine-induced chromatin structural changes that have high expression in the IEG cluster. f, Integration of sn-RNA-seq 453 with single-cell MERFISH (scMERFISH)²⁷ and identification of the IEG cluster in 454 455 scMERFISH by correlating top IEG cluster marker genes to scMERFISH cluster annotations. 456 g, IEG cluster DNs (pink dots) localize to the medial VTA. The medial VTA projects to the

nucleus accumbens (NAc) and prefrontal cortex (mPFC)^{60,61}. h, UMAP of *Drd2* expression
showing low expression in the IEG cluster and high expression in the *Vip* cluster (dashed lines
correspond to cluster annotations on the left). Low *Drd2* expression in midline VTA DNs is
associated with increased LTP sensitivity after cocaine exposure^{56,61}. i, Summary of long-term
3D genome structural changes after a single cocaine exposure.

- 463 To characterize the 'IEG-expressing' cluster of DNs, we inspected their marker 464 genes and found many associated with addiction, such as Chrm2, Dsc2, Hpgd, Htr4, 465 and Nt5e (Fig. 5c, Extended Data Fig. 9b; see cluster 13 in Supplementary Table 2)^{57–59,62,63}. Importantly, the IEG cluster of DNs also shows high expression of many 466 467 addiction-associated genes which we found to undergo cocaine-induced chromatin 468 rewiring. Some examples include *Rbfox1*, with its extensive melting 14 days after 469 cocaine; Grid2, with very strong hotspots of differential contacts in saline which are 470 lost at both 1 and 14 days; and Ptprt, which condenses at 1 and 14 days (Fig. 5d, 471 Extended Data Fig. 9c-e). Other groups of genes with chromatin structural changes 472 also showed higher expression in the IEG cluster, including genes with the strongest 473 melting scores 1 day after cocaine, cell adhesion genes found within 1- and 14-day 474 cocaine hotspots, and synapse organization and postsynaptic genes found at new 475 cocaine TAD borders (Fig. 5e, see Extended Data Fig. 9f for other example groups). 476 477 The IEG-expressing DNs locate to the medial VTA and have features of highly 478 cocaine-sensitive cells 479 To investigate the VTA localization of the IEG-expressing DNs which more 480 highly express genes that undergo chromatin structural changes after cocaine exposure,
- 481 we took advantage of a recent MERFISH single-cell spatial transcriptomic atlas in the
- 482 mouse brain, based on the expression of 500 genes²⁷. We identified the brain slices
- 483 containing the VTA based on MERFISH annotations, and then correlated the
- 484 expression of DN marker genes defined in the present study with the VTA MERFISH

485	clusters (Fig. 5f, Extended Data Fig. 10a). The IEG-expressing DNs could be
486	robustly matched to a specific MERFISH cluster corresponding to 2% of all VTA DNs
487	(96/4115 DNs; Fig. 5f). Remarkably, we found that the IEG-expressing cluster of DNs
488	specifically localize along the entire VTA midline (Fig. 5g, Supplementary Video 7).
489	Previous work showed that DNs located in the ventral and dorsal midline of the VTA
490	project to the NAc and medial prefrontal cortex, respectively 60,61,64, which are two
491	regions associated with cocaine craving and relapse ^{65,66} . As a control, we confirmed
492	that the cluster of Vip-expressing DNs could also be correctly assigned to the dorsal
493	midline, as expected ⁶⁷ (Extended Data Fig. 10b-d, Supplementary Video 8).
494	Midline DNs which have the strongest cocaine response, characterized by high
495	postsynaptic LTP sensitivity, are known to project to the medial shell of the NAc and
496	are characterized by low expression of the dopamine auto-receptor Drd2. We found
497	that Drd2 is lowly expressed in the IEG cluster of DNs compared with all other VTA
498	DNs, and more highly expressed in the Vip cluster (Fig. 5c, h), suggesting that the
499	small IEG-expressing cluster of DNs may be the most sensitive population of VTA
500	DNs to a single cocaine exposure.
-04	

501

502 **Discussion**

503 Upon a first drug exposure, neurons undergo a strong, though transient, 504 transcriptional and physiological response; however, where the cellular memory of that 505 exposure is stored is unknown. In this study, we discovered that a single dose of 506 cocaine is sufficient to induce large-scale reorganization of chromatin structure that 507 lasts far past the initial physiological response. We showed that genome rewiring 508 occurs across a broad spectrum of genomic distances and regions, with extensive 509 chromatin structural changes that affect numerous genes, including many associated 510 with cocaine, addiction, or synaptic plasticity (Fig. 5i). Chromatin reorganization seen

511 after 1 day of cocaine exposure often persists or can appear *de novo*, 2 weeks later,

512 well past reported transcriptional changes^{4–7} and LTP effects⁹, highlighting an

513 unexpected long-lasting storage of the effects from a first exposure to highly addictive

514 drugs in chromatin structures.

515

516 Our findings support the involvement of gross changes in 3D genome structure 517 and the hypothesis of long-term 'chromatin memory' storage in the inception of drug 518 addiction. In vitro studies have shown that chromatin sites can remain locally open 519 either by TF retention or new TF binding following synchronous neuronal activation, though gene expression returns to its pre-activated state by 24 hours^{13,68}. Expanding 520 521 from the long-lasting TF-related chromatin regulation, we find extensive 522 reorganization of the 3D structure of genomic regions containing genes that encode for 523 neuronal activation TFs at 14 days post cocaine exposure, such as Stat genes in 524 melting regions. We also find traces of long-lasting changes related with IEG activity, 525 for example the presence of putative Jun binding sites at Rbfox1 internal promoters 526 and intronic SNP, which are extensively decondensed 14 days post single exposure. 527 The widespread chromatin reorganization, across genomic scales, induced by cocaine 528 exposure suggests a larger contribution of chromosome structure to the cellular 529 memory of drug exposure than previously expected. Other cell-extrinsic mechanisms 530 are also likely to contribute to the cellular memory and long-term chromatin topology 531 changes, including nuclear involutions so far reported following in-vitro cocaine exposure⁶⁹, homeostatic-related nuclear volume changes seen in epidermal self-532 renewal⁷⁰, or changes to the physical state of chromatin due to altered nuclear ion 533 concentrations^{71,72}. Future work will be critical to tease apart both the cell-intrinsic and 534 535 cell-extrinsic mechanisms which lead to long-term chromatin changes induced by a

536 single exposure to cocaine, as well as efforts to explore potential recovery mechanisms537 to pre-exposure states.

538

539 Midbrain DNs are a highly diverse cell type, which connect to different parts of 540 the brain with major roles in chronic addiction, such as the NAc and medial prefrontal cortex^{60,61,64}. Each DN subtype has low abundance, for example, 96 IEG-expressing 541 542 DNs were reported in the MERFISH database, out of 4115 VTA DNs, which pose 543 further challenges in future research to understand their role in the inception of drug 544 addiction. The knowledge of the genes that are more extensively structurally 545 remodelled, obtained through GAM analyses, provides new insights into the long-term 546 effects of a single exposure to cocaine, for example by enabling the identification a 547 specific sub-type of DNs that more highly express these genes, as well as IEGs, and 548 the discovery that IEGs are downregulated at both 1 and 14 days after cocaine 549 exposure, especially in the same group of DNs. Given the widespread cocaine-induced 550 chromatin changes observed in GAM data collected from the full population of VTA 551 DNs, it is unlikely that chromatin reorganization is restricted to the IEG sub-cluster. 552 However, the genome structural changes within the IEG-expressing DNs may make 553 them more sensitive to further cocaine-induced topological alterations upon repeated 554 usage, especially in genome regions containing genes with important addiction-related 555 roles, such as in the postsynaptic LTP response, which are at baseline more expressed 556 in the IEG cluster than in other DNs. The IEG-expressing DNs weakly express the 557 dopamine auto-receptor, a feature of DNs with a highly sensitized cocaine response, 558 and localize to midline VTA areas, which are known to project to secondary addiction 559 brain regions^{56,61}. Further developments and targeted experimental designs will be 560 required to specifically study the very small populations of IEG-expressing DNs 561 towards understanding whether they undergo more severe cocaine-induced chromatin

changes compared with DNs that have different cocaine responses (i.e. inhibition
following reward learning)⁷³, and to further explore how cocaine-induced changes in
3D genome structure may specifically sensitize DNs that are highly activated by
cocaine.

566

567 There are some important limitations to the present study. The analysis of two 568 different genotypes in saline and cocaine, 1-day post-exposure, had value to show that 569 cocaine-induced disruption of chromatin structure occurs in both genotypes, which 570 also revealed locus-specific effects. Further work is needed to more broadly explore 571 the effects of genotype, individual variation, age and sex, as well as the cascade of 572 changes in 3D genome structure occurring before 1 day, until 14 days, and beyond. We 573 profiled ~5,500 DN transcriptomes from 20 animals, but their unexpected and 574 extensive subtype variability inevitably results in low cell representation in each 575 subcluster which limits the discovery of subcluster-specific changes in gene expression 576 upon cocaine. Our study supports the need for future large-scale projects to dissect the 577 effects and mechanisms of cocaine exposure on DN subtypes and other VTA cell 578 types, as well as other brain regions containing DNs.

579

580 Our work opens many new questions, including: Can chromatin structure 581 eventually recover to the pre-cocaine state, and is there a 'critical wait period' that 582 might avoid cumulative effects of subsequent exposures? Importantly, can the wait 583 period be shortened by external interventions? How does long-term chromatin 584 remodelling after a single cocaine exposure contribute to drug seeking or susceptibility 585 to addiction? Does the genetic and 3D genome make-up of individuals impact their 586 likelihood for a stronger disruption of chromatin structure and of developing 587 addiction? More broadly, our work also suggests the need to study the effects of other

588	addictive drugs on 3D chromatin structure, including drugs which target the reward-
589	learning (e.g. nicotine, amphetamine, alcohol) or other (e.g. heroin or fentanyl)
590	pathways.
591	
592	Our work identifies unexpected long-term effects of drug usage on 3D
593	chromatin structure across the genome, including at drug-response genes, which may
594	be crucial in the homeostatic responses of specific DNs. It highlights the plasticity of
595	3D genome structure in the context of addiction, as chromosomes are large physical

596 objects with specific structure which, when disturbed, may require long periods of time

597 to re-establish their healthy conformations, especially in non-dividing terminally

598 differentiated cells such as neurons. By mapping 3D genome structure, we open new

599 avenues to identify critical pathways and targets for intervention in the progression

600 towards addiction.

601 Acknowledgments

602	The authors thank Sheila Q. Xie and Azhaar Ashraf for help processing
603	midbrain samples; members of the Pombo laboratory for helpful discussions and
604	manuscript feedback; Thomas Conrad and Cornelius Fischer of the MDC/BIH
605	Genomics Platform for sequencing, as well as scientific and technical support, and
606	Anja Schütz and her team of the Protein Production and Characterization Platform,
607	both at the Max Delbrück Center for Molecular Medicine in the Helmholtz
608	Association, Berlin; Francesco Musella for guidance in using the in-silico GAM
609	algorithm; Irina Korshunova of the BRIC single cell genomics core facility for
610	assistance and support in the single-nucleus RNA-sequencing; Ben Blencowe for his
611	careful feedback and editing of the manuscript; and Gonçalo Castelo-Branco for
612	helpful discussions and advice.
613	
614	Funding
615	A.P. acknowledges support from the Helmholtz Association, the NIH Common
616	Fund 4D Nucleome Program grant 5 1UM1HG011585-03, the Deutsche
617	Forschungsgemeinschaft (DFG; German Research Foundation) under Germany's
618	Excellence Strategy [EXC-2049-390688087], and DFG [International Research
619	Training Group IRTG2403 to A.P. and L.Z.R.]. M.A.U. acknowledges support from
620	the U.K. MRC grant MC-A654-5QB70. E.J.P. acknowledges support from the
621	European Research Council (ERC- 2017-AdG 787355) and the U.K. Medical Research
622	Council (MRC) grant (MC-A654-5QB70). I.IA. was supported by a Long-Term
623	Fellowship from the Federation of European Biochemical Societies (FEBS). M.N.
624	acknowledges support from the NIH Common Fund 4D Nucleome Program grant 5
625	1UM1HG011585-03, NextGenerationEU CUP E63C22000940007, CUP
626	E53D2300181 0006, CUP E53D23018360001 and computer resources from INFN,

<u>.</u>,

|--|

- 628 acknowledges supported by the Novo Nordisk Foundation, Hallas-Møller Investigator
- 629 grant (NNF16OC0019920) and Lundbeck Foundation Ascending Investigator grant
- 630 (2020-1025).
- 631

632 Author contributions

- 633 Conceptualization: A.P., M.A.U., W.W.-N.; Data Curation: D.S., W.W.-N.,
- 634 V.F., S.B., M.Y.B., A.K., S.D.; Formal Analysis: D.S., W.W.-N., V.F., S.B., M.Y.B,
- 635 A.K., I.I-A., A.M.C, J.P.L.-A.; Funding Acquisition: A.P., M.A.U., A.A., K.K., M.N.;
- 636 Investigation: W.W.N., M.Y.B., E.J.P, U.P., A.P.; Methodology: W.W.-N., D.S., V.F.,
- 637 A.P., S.B., A.A., K.K., M.N., U.P.; Project Administration: W.W.-N., A.P., D.S.;
- 638 Resources: A.P., A.A., K.K., M.N., M.A.U.; Software: D.S., V.F., W.W.N, S.B., A.K.,
- 639 I.I-A, A.M.C., M.Y.B, S.D.; Supervision: A.P., W.W.-N, A.A., M.A.U, K.K., M.N.;
- 640 Validation: V.F., D.S., W.W.-N., A.P., L.Z.-R., S.B., M.Y.B., E.J.P, A.K., I.I-A,
- 641 A.M.C, S.D., K.K., M.A.U.; Visualization: W.W.-N., D.S., A.P., V.F., S.B., M.Y.B.,
- 642 A.K.; Writing original draft: W.W.-N., D.S., A.P.; Writing review & editing: A.P.,
- 643 W.W.-N., D.S., V.F., M.A.U., E.J.P., L.Z.-R., M.Y.B, S.B., A.K., J.P.L-A.
- 644

645 Competing interests

- 646 A.P., and M.N. hold a patent on 'Genome Architecture Mapping': Pombo, A.,
- 647 Edwards, P. A. W., Nicodemi, M., Scialdone, A., Beagrie, R. A. Patent
- 648 PCT/EP2015/079413 (2015). All other authors have no competing interests.
- 649

650 Materials & Correspondence

- 651 Correspondence and requests for materials should be addressed to
- 652 <u>ana.pombo@mdc-berlin.de</u> or <u>warren.winickng@utoronto.ca</u>.

653 Methods

654

655 Animal maintenance

656 GAM and snRNA-seq data was collected using C57Bl/6NCrl (RRID: IMSR CR:027; WT, Charles River), and TH-GFP (B6.Cg-Tg(TH-GFP)21-31/C57B6) 657 male mice as previously described¹⁰. All procedures were approved by the Imperial 658 659 College London's Animal Welfare and Ethical Review Body, and were conducted in 660 accordance with the Animals (Scientific Procedures) Act of 1986 (UK). All mice had 661 access to food and water ad libitum and were kept on a 12 h:12 h day/night cycle in 662 social groups of 3-4, with appropriate environmental enrichment. C57Bl/6NCrl and 663 TH-GFP mice received an intraperitoneal (IP) injection of either saline or cocaine 664 (15mg/kg body weight) 1 or 14 days or prior to the tissue collection. Cocaine-treated 665 and saline-treated mice were housed in separate groups. Mice used for GAM and 666 RNA-seq experiments were littermates. All mice were the same age at the time of 667 collection (8 weeks old) and sacrificed in parallel.

668

669 Tissue fixation and preparation for GAM

Tissue was prepared for GAM as previously described¹⁰. Briefly, mice were 670 anesthetized with isoflurane (4 %), given a lethal IP injection of pentobarbital (0.08 µl; 671 672 100 mg/ml; Euthatal), and perfused with ice-cold phosphate buffered saline (PBS) 673 followed by approximately 100 ml of 4% depolymerised paraformaldehyde (PFA; 674 Electron microscopy grade, methanol free) in 250 mM HEPES-NaOH (pH 7.4-7.6; 675 PFA-HEPES). Following perfusion, brains were removed and the VTA was isolated 676 before quickly transferring to 4% PFA-HEPES for 1 h at 4°C, followed by 2-3 h in 8% 677 PFA-HEPES. Tissue was placed in 1% PFA-HEPES at 4°C until prepared for 678 cryopreservation.

679

680 Cryoblock preparation and cryosectioning

VTA tissue samples were further dissected to produce $\sim 3x3$ mm tissue blocks 681 suitable for Tokuyasu cryosectioning¹⁰. Tissue blocks were post-fixed for 1 h at 4°C in 682 683 4% PFA-HEPES, before being transferred to 2.1 M sucrose in PBS for 16-24 h at 4°C. Sucrose-embedded blocks were mounted on copper stub holders before being flash 684 685 frozen in liquid nitrogen. Tissue blocks were cryosectioned, as previously described¹⁰, 686 with an Ultracryomicrotome (Leica Biosystems, EM UC7) at a thickness of 220-687 230nm and transferred onto a 4.0 µm polyethylene naphthalate (PEN; Leica 688 Microsystems, 11600289) membrane for laser microdissection.

689

690 Immunofluorescence detection for laser microdissection

691 Cryosections on PEN membranes were washed 3x in PBS, quenched with 692 20mM glycine in PBS for 20 min, then permeabilized with 0.1% Triton X-100 in PBS. 693 After blocking for 1 h at room temperature in blocking solution (1% BSA (w/v), 0.2% 694 fish-skin gelatin (w/v), 0.05% casein (w/v) and 0.05% Tween-20 (v/v) in PBS), 695 cryosections were incubated in primary antibody overnight at 4°C with sheep anti-TH 696 (1:50; Pel Freez Arkansas, P60101-0), followed by 3-5 washes for 1h in blocking 697 solution at room temperature. Cryosections were incubated for 1h in secondary 698 antibody (1:1000 donkey anti-sheep conjugated with AlexaFluor-488; ThermoFisher Scientific (Invitrogen)), followed by 2 washes in 0.5% Tween-20 in PBS and 1 wash 699 in water. After drying, cryosections were visualized as previously described¹⁰, using a 700 701 Leica laser microdissection microscope (Leica Microsystems, LMD7000) with a 63x 702 dry objective. TH-positive nuclei from cellular sections (nuclear profiles; NPs) were 703 laser microdissected, and collected into PCR adhesive caps (AdhesiveStrip 8C opaque;

Carl Zeiss Microscopy #415190-9161-000). Three NPs were collected into each cap,
with control lids not containing NPs (water controls) included for each dataset. In one
experiment (1 day cocaine exposure in the TH-GFP mouse), 34 single NPs were
collected into separate caps and later combined *in-silico* into 3 NPs (see *GAM data window calling* below; Supplementary Table 7).

709

721

710 Whole genome amplification of nuclear profiles

Whole genome amplification (WGA) was performed as previously described¹⁰. 711 712 Briefly, NPs were lysed for 4 or 24 h at 60°C in lysis buffer (final concentration: 30 713 mM Tris-HCl pH 8.0, 2 mM EDTA pH 8.0, 800 mM Guanidinium-HCl, 5 % (v/v) 714 Tween 20, 0.5 % (v/v) Triton X-100) and 2.116 units/ml OIAGEN protease (Oiagen, 715 19155), before a 30 min protease inactivation at 75°C. Pre-amplification was done 716 using a 2x DeepVent mix (2x Thermo polymerase buffer (10x), 400 µM dNTPs, 4 mM 717 MgSO₄ in ultrapure water), 0.5 µM GAT-7N random hexamer primers with an adapter 718 sequence and 2 units/µl DeepVent[®] (exo-) DNA polymerase (New England Biolabs, 719 M0259L). DNA was further amplified as in the pre-amplification step above, except 720 with 100 µM GAT-COM primers.

722 GAM library preparation and high-throughput sequencing

The amplified samples were purified using SPRI beads (0.725 or 1.7 ratio of 723 beads per sample volume), and prepared for sequencing as previously described using 724 725 the Illumina Nextera XT library preparation kit (Illumina #FC-131-1096) or an inhouse library preparation protocol¹⁰. Following library preparation, the DNA was 726 purified using SPRI beads (1.7 ratio of beads per sample volume) and an equal amount 727 728 of DNA from each sample was pooled together (up to 196 samples). The final pool 729 was additionally purified three times and analyzed using DNA High Sensitivity on-730 chip electrophoresis (Agilent 2100 Bioanalyzer). Sequencing was completed using an 731 Illumina NextSeq 500 machine, according to manufacturer's instructions, using single-732 end 75 bp reads. The number of sequenced reads for each sample can be found in 733 Supplementary Table 7.

734

735 Publicly available GAM datasets

GAM data produced from VTA DNs of animals treated with saline was 736 737 previously published¹⁰ and is publicly available in the GEO portal (accession GSE148792) and the 4D Nucleome data portal (https://data.4dnucleome.org)⁷⁴. GAM 738 739 data produced from pyramidal glutamate neurons (PGNs) from the CA1 region of the 740 hippocampus (HC) and GAM data produced from embryonic stem cells (ESC) was previously published^{10,41} and is publicly available in the GEO portal (accessions 741 GSE64881 and GSE148792) and the 4D Nucleome data portal. Publicly available 742 743 GAM datasets were downloaded from the 4D Nucleome portal and processed as 744 described below. Sample specifications are listed in the table below.

Cell-type	Genotype	Treat-	Data	Number of	4D Nucleome portal	Publication
		ment	type	samples	accession	
VTA DN	C57Bl/6NCrl	Saline	GAM	1755	4DNES2FWQBJW	Winick-
	wild-type					<u>Ng et al.,</u>
						<u>2021</u>
VTA DN	B6.Cg-	Saline	GAM	873	4DNESZ3RVI2B	Winick-
	Tg(TH_GFP)					<u>Ng et al.,</u>
	21-31/C57B6					2021

HC CA1 PGN	C57Bl/6NCrl Satb2 ^{flox/flox}	-	GAM	627	4DNES43FS97D	<u>Winick-</u> <u>Ng et al.,</u> <u>2021</u>
ESC	46C – Sox1- GFP	-	GAM	747	4DNESALAVZ67	Beagrie et al., 2017

751 752

753 754

755

GAM data sequence alignment

Sequence read alignment was performed as previously described^{10,29}. In brief, sequence reads from each GAM library were mapped to the mouse genome assembly GRCm38 (Dec. 2011, mm10) using Bowtie2 with default parameters⁷⁵, and removing reads with mapping quality <20, PCR duplicates and non-uniquely mapped reads.

GAM data window calling and sample quality control

756 Positive genomic windows present in each GAM library were identified as previously describe^{10,76}. Briefly, the number of nucleotides was calculated for equal-757 sized genomic windows (250 kb or 40 kb) in each GAM sample. Next, the percentage 758 759 of orphan windows (i.e. positive windows flanked by both adjacent negative windows) 760 was calculated for every percentile of the nucleotide coverage distribution to identify 761 the percentile with the lowest percent of orphan windows for each GAM sample, and 762 used as the optimal coverage threshold for positive window identification in that 763 sample.

Quality control metrics including the percentage of orphan windows in each 764 765 sample, number of uniquely mapped reads to the mouse genome, and correlations from 766 cross-well contamination for every sample can be found in Supplementary Table 7. 767 Each sample was considered to be of good quality if they had < 70% orphan windows, 768 > 50,000 uniquely mapped reads, and a cross-well contamination score (Jaccard index) 769 of < 0.4. For each treatment and mouse replicate, individual experimental batches were 770 also checked for the same quality control metrics to ensure minimal batch-to-batch 771 variability. In the 1-day cocaine TH-GFP mouse dataset, 34 single NPs were collected, 772 of which 32 passed quality controls. To create *in-silico* 3 NP samples, sequenced reads 773 identified for the 30 single NPs with highest quality scores were combined in random 774 sets of 3 single NPs to create 10 in-silico 3NP samples. The 2 remaining NPs were 775 excluded from the final dataset. The number of samples in each treatment passing 776 quality control is summarized in Extended Data Fig. 1c.

777

778 Generation of pairwise chromatin contact matrices for visualization

Pairwise contact matrices were generated as previously described¹⁰, by
calculating pointwise mutual information (PMI) for all pairs of windows in the
genome, followed by bounding between -1 and 1 to produce a normalized PMI
(NPMI) value. For visualization, the genomic regions displayed in each figure are
scaled between a range of 0 and the 99th percentile of NPMI values in each treatment.

784

785 Insulation score and topological domain boundary calling

TAD calling was performed by calculating insulation scores in NPMI
normalized pairwise GAM contact matrices at 40-kb resolution, as previously
described^{10,21}. In brief, the average interaction strength of all chromatin contacts within
a sliding square of varying size (ranging from 240 - 1040 kb in increments of 80 kb)
was calculated for each treatment and replicate, then log normalized relative to all

calculated scores of a given square size across each chromosome. Insulation score
 values of all samples are archived in Supplementary Table 11 in a permanent data
 repository⁷⁷.

TAD boundaries were identified using the 400kb-insulation square size.
Boundaries overlapping by at least 1 genomic bin (40 kb) were merged, then refined to
consider the minimum insulation score within the boundary and one window on each
side. 120-kb boundaries separated by at least 1 genomic bin were considered different
between datasets (chromosome Y was excluded from this analysis). For comparison of
Cocaine 14d-specific boundaries, the union of both replicates were used. TAD border
coordinates can be found in Supplementary Table 4.

801

802 MELTRONIC analysis

803 Contact density values were calculated from NPMI normalized pairwise GAM 804 contact matrices at 40-kb resolution with 10 equidistant square sizes between 240 -805 1040 kb (in 80 kb increments). Our previously published statistical framework MELTRON¹⁰ was extended to include the measurement of chromatin condensation, by 806 807 performance of an additional one-sided Kolmogorov-Smirnov test and the option to 808 perform genome-wide analyses (https://github.com/pombo-lab/MELTRONIC). 809 MELTRONIC compares cumulative probability distributions of contact density values 810 calculated for each input sample and genomic interval and computes the maximum distance between the distributions by applying a Kolmogorov-Smirnov test. Obtained 811 812 p values were corrected for multiple testing using the Bonferroni method, and -log10 813 transformed to obtain a melting score.

814 Melting scores were calculated with MELTRONIC in 120 kb sliding windows 815 across the entire genome by comparing GAM samples of DNs from cocaine treated animals to the saline treated reference data. Genomic regions in which more than 50% 816 817 of NPMI values were missing within the insulation square, were excluded from the 818 analysis. Melting scores were assigned to the central 40 kb bin and mean smoothed 819 across three genomic bins. Genomic bins with a melting score above 5 or below -5 were identified as 'melting' or 'condensing', respectively, which identify the 33% of 820 821 the genome with the most extensive (de)condensation changes, in comparison with 822 45% when comparing two cell types (Extended Data Fig. 5c, d). For genome-wide 823 analysis, regions with reproducible melting states in both cocaine 14d replicates were 824 considered. A list of genome-wide MELTRONIC scores of all comparisons is reported 825 in Supplementary Table 5.

826

827 Identification of compartments A and B

828 Compartments were determined using 250 kb resolution co-segregation matrices, as previously described¹⁰. Briefly, each chromosome was expressed as a 829 matrix of observed interactions O(i, j) between locus i and locus j, and a matrix of 830 expected interactions, E(i, j), where each genomic window pair represented the 831 832 average number of contacts with the same distance between i and j. The observed over 833 expected O/E(i, j) matrix was determined by dividing O by E. A correlation matrix, 834 C(i, j), was then generated between column i and column j of the O/E matrix before 835 applying PCA for the first three primary components of matrix C. The component 836 displaying the highest correlation with GC content was extracted, and loci with PCA 837 eigenvector values with the same sign and the strongest correlation with GC content 838 were designated as A compartments, while those with the opposite sign were identified 839 as B compartments. For chromosomes 5, 12 and 14, PC1 was selected based on 840 highest correlation with transcriptional activity, as the PC that correlated most with GC 841 content did not display a typical AB compartmentalization pattern⁷⁸.

842 Eigenvector values within compartment A on the same chromosome were
843 normalized within the range of 0 to 1, whereas values within compartment B on the
844 same chromosome were normalized within the range of -1 to 0. A full list of
845 eigenvector values and assigned compartment associations can be found in
846 Supplementary Table 8.

847

848 MELTRON analysis of long genes

For calculation of melting scores of long genes, MELTRON was applied on protein coding genes > 280 kb in length (n = 574), with the contact density of cocaine samples compared to the saline treated reference. Genes with a melting score above 10 or below -10 in were identified as 'melting' or 'condensing', respectively. Genes with reproducible melting states in both 14-day cocaine replicates were visualized in **Fig. 3a** and their transcription states analyzed further. A full list of all melting scores can be found in **Supplementary Table 5**.

856

Transcription factor binding site motif analysis at Rbfox1 promoters and a putative cocaine addiction SNP

859 Transcription factor binding site enrichment (TFBS) analyses were computed 860 for *Rbfox1* promoters and putative SNP +/- 500 bp. Enrichment analyses were performed using two independent methods from the MEME suite programs, 'Analysis 861 of Motif Enrichment' (AME)⁷⁹ and 'Simple Enrichment Analysis' (SEA)⁸⁰ with 862 863 default parameters and shuffled input sequences as the control sequences. In both 864 analyses, sequence enrichment was determined using the HOCOMOCO mouse (V11, FULL) database. Sequence coordinates analyzed and a list of enriched transcription 865 866 factor binding site motifs in both analyses can be found in Supplementary Table 9.

867

868 Polymer modeling of the Rbfox1 locus

To investigate the 3D structure of the Rbfox1 locus, we employed the Strings 869 and Binders Switch (SBS) polymer model^{81,82}. In the SBS model, a chromatin region is 870 871 represented as a string of beads incorporating binding sites of different types which 872 can interact with cognate diffusing binding molecules. To infer the SBS polymers for 873 the *Rbfox1* locus in saline- and cocaine- (1 and 14 days) treated VTA DNs, and in untreated pyramidal glutamatergic neurons (PGNs) from the hippocampus¹⁰, we 874 employed PRISMR, a machine-learning-based method that takes pairwise contact data 875 as input, such as Hi-C⁴⁶ or GAM⁸³, and returns the optimal arrangement of binding 876 877 sites along the polymer to fit the input. Here, we used as input GAM experimental data 878 with NPMI normalization on a 5 Mb region around the *Rbfox1* gene (chr16: 4,800,000 879 - 9,810,000) at 30-kb resolution in saline and cocaine (1 and 14 days) treated VTA 880 DNs, and in untreated PGNs. As output, PRISMR returned SBS polymers made of 881 1,670 beads, including 7 different types of binding sites, in all cases.

882 Next, to generate ensembles of 3D conformations representing the locus 883 folding, we performed standard Molecular Dynamics (MD) simulations of the SBS 884 model for each of the considered cases. In these simulations, the system of beads and 885 binders evolves according to the Langevin equation with classical interaction potentials⁸⁴, with parameters employed in previous studies^{10,85}. Specifically, the hard-886 core repulsion between all beads and binders is modeled with a truncated, shifted 887 888 Lennard-Jones (LJ) potential. The interactions between beads and cognate binders are 889 modeled by an attractive, short-ranged LJ potential, with an affinity taken in the range 890 from 3.0 to 8.0 K_BT (where K_BT is the Boltzmann constant and T the system 891 temperature) and equal for all binding site types for the sake of simplicity. An 892 additional non-specific interaction with lower affinity (from 0 K_BT to 2.7 K_BT) is set

893 among the polymer and the binders. Polymers are initially set in self-avoiding 894 conformations and the binders are randomly placed in the simulation box. For the sake 895 of simplicity, beads and binders have the same diameter s = 1 and mass m = 1, 896 expressed in dimensionless units. The total binder concentration is taken above the transition threshold to ensure the polymers fold in their equilibrium globular phase⁸¹. 897 898 For each of the considered cases, we obtained ensembles of up to 1100 distinct 899 conformations at equilibrium. The MD simulations were performed using the freely 900 available LAMMPS software (v.5june2019)⁸⁶.

901 To obtain in-silico GAM NPMI matrices from the ensembles of 3D 902 conformations, we applied the *in-silico* GAM algorithm⁸³. Specifically, we simulated 903 the GAM protocol with 3 NPs per sample by aggregating the content of three *in-silico* slices into one in silico tube¹⁰, by using 586 tubes for saline, 335 tubes for cocaine 1 904 905 day, and 404 tubes for cocaine 14 day treatments, as well as 209 tubes for untreated 906 PGNs, as in the corresponding GAM experiments. Finally, we applied the NPMI 907 normalization. To compare in-silico against experimental NPMI GAM matrices, we 908 computed Pearson's correlation coefficients.

909 To quantify the changes in 3D chromatin organization in the different 910 considered cases, we measured spatial distances between different locations of interest 911 within the *Rbfox1* gene in the model 3D structures. To convert distances from 912 dimensionless units σ to physical units (nm), we estimated the physical diameter of the bead σ by optimizing the similarity between the *in-silico*⁸³ and experimental NPMI 913 914 GAM matrices in the different cases. We obtained values for σ of 43 nm in saline, 49 915 nm in cocaine 1 day, 56 nm in cocaine 14 days and in untreated PGNs, that corresponds to a chromatin compaction factor comprised between 54 bp/nm and 70 916 bp/nm, consistent with values found in literature $^{87-89}$ and used in previous polymer 917 modeling studies^{43,46,83}. To visualize chromatin organization in the different cases, we 918 919 also rendered example 3D structures from the derived ensembles by performing a 920 third-order spline of the polymer bead positions. We highlighted the *Rbfox1* gene 921 region in blue color, its left/right flanking regions in dark/light gray respectively and 922 represented different locations within the gene with colored spheres. Analyses and plots were produced with the Anaconda package v.22.9.0 and the rendering of 3D 923 924 structures was produced using POV Ray, v.3.7 (http://www.povray.org/). All polymer 925 model 3D structures and pairwise distances produced for the analyses of this work are 926 archived in Supplementary Tables 12-16 in a permanent data repository⁷⁷.

927

928

3 Determining differential contacts and hotspots between GAM datasets

929 Significant differences in pairwise contacts between two GAM datasets was determined as previously described¹⁰. Briefly, genomic windows with low detection (< 930 931 2% of the distribution of all detected windows in each chromosome) were removed 932 from both datasets, and NPMI contact frequencies were normalized by computing the 933 Z-score transformation. A differential matrix D was computed by subtracting the two 934 normalized matrices and a 5-Mb distance threshold was applied. The top 5% significant differential contacts were obtained by fitting a normal distribution curve for 935 936 each chromosome and determining the upper and lower 5% from the curve.

937 Next, preferred (hotspot) contact regions for each compared dataset were
938 determined, as previously described²⁹, by first quantifying the number of top 5%
939 significant contacts in each genomic window for each dataset. A 'hotspot score' was
940 determined by computing the difference between the number of significant contacts in
941 each genomic window for each dataset. Significant hotspot scores were obtained by
942 fitting a normal distribution curve for each chromosome and determining the upper and

943 lower 5% from the fitted curve. A full list of genome-wide hotspot scores can be found944 in Supplementary Table 6.

945

946 Gene ontology and synaptic gene ontology enrichment analysis

947 Gene ontology (GO) term enrichment analysis was performed using 948 WebGestalt over-representation analysis (ORA)⁹⁰ using the 'Geneontology' functional 949 database category and 'Biological Process' as function database name. Overlap of 950 expressed genes with 3D genome features (TAD boundaries, melting/condensing regions, compartments, hotspots) were determined with the valr R package v.0.6.8⁹¹, 951 bedtools v2.30.0⁷⁶ or pybedtools⁹². All DN expressed genes were used as the 952 background dataset. Default parameters were used to determine enrichments and the 953 954 top 20 terms were reported. For Fig. 2b and Extended Data Fig. 4a, example GO 955 terms with non-redundant gene identifiers and a significant enrichment (p-adj < 0.05) 956 were selected. A full list of unfiltered GO term enrichment results can be found in 957 Supplementary Table 10.

For synaptic gene ontology (SynGO) analysis³³, mouse gene ids were converted to human gene homologs with the biomaRt R package v.2.55.2⁹³. DN expressed genes were used as the background dataset and enrichments computed with the default parameters of the SynGO release 1.1 (20210225 release). Biological process terms that were significantly enriched (p-adj < 0.05) in at least one set were visualized in **Fig. 2c**, **Extended Data Fig. 4b** and **Extended Data Fig. 5f**. A full list of unfiltered SynGO term enrichment results can be found in **Supplementary Table 10**.

966 Collection of single nucleotide variants underlying substance addiction

967 Single nucleotide polymorphisms (SNPs) associated with cocaine dependence and comorbid addictions to alcohol, nicotine and opioids were collected from publicly 968 available resources^{19,24,94}. In case of positional overlap, SNP with lowest p-value was 969 970 used before conversion of genome coordinates of noncoding SNPs from human to 971 mouse coordinates with the liftOver R package v.1.22.0. Conservation in the genomic neighborhood of the SNPs was assessed with CNEr v.1.34.095. SNPs found in genomic 972 973 regions in which at least 5 out of 7 bps are conserved were considered for downstream 974 analyses. A full list of addiction SNPs can be found in **Supplementary Table 1**.

975

976 Collection of immediate early genes and genes associated with cocaine addiction

977 The gene set for immediate-early gene (IEG) induction in rodent brain was obtained by intersecting datasets of previously identified neural gene expression 978 979 signatures in response to acute cocaine^{96,97} or kainic acid⁹⁸. The cutoff for 980 differentially expressed genes was adjusted for each dataset. In bulk tissue RNA-seq of 981 rat brain, genes with adjusted P value < 0.05 in the comparison between "Cocaine" 982 Challenge" (SC) (10 mg/kg i.p; 1h after cocaine) and "No Challenge" (S24) were considered as differentially expressed⁹⁶. To identify the transcriptional response in the 983 984 mouse nucleus accumbens to acute cocaine (20 mg/kg i.p; 1h after cocaine) in single 985 nucleus RNA-seq data, a combined cutoff for significance (p-value attached < 0.05) and log2 fold change (log2 fold change > 0.5) was used 97 . In RNA-seq data of mouse 986 hippocampal neuronal nuclei (nuRNA-seq), genes with adjusted p value less than 0.05 987 988 and log2 fold-change of at least 1 were considered as differentially expressed after 989 systemic administration of kainic acid (25 mg/kg i.p; 1h after kainic acid)⁹⁸. Genes that 990 were significantly upregulated in at least two datasets comprised the final IEGs gene 991 set (141 genes). The genomic coordinates of immediate early genes are provided in 992 **Supplementary Table 1.** Expression levels of immediate early genes and fold changes 993 after cocaine exposure can be found in Supplementary Table 3.

Genes associated with cocaine addiction were collected from publicly available
 resources^{19,20,57,58,62,99,100}. The genomic coordinates of cocaine addiction associated
 genes and are provided in Supplementary Table 1. Expression levels of cocaine
 addiction associated genes in dopaminergic neurons and fold changes after cocaine
 exposure can be found in Supplementary Table 3.

999

1000 Isolation of the VTA for single-nucleus RNA-sequencing

1001 Mice were anaesthetised with 4% isoflurane and swiftly decapitated. Brains 1002 were removed and briefly washed in ice-cold sterile PBS, they were placed on fresh 1003 filter paper and a block of tissue containing the VTA was dissected using a sterile 1004 razor blade. The tissue was then snap-frozen in isopentane (2-Methylbutane; Sigma-1005 Aldrich) at -55°C.

1006 1007

Isolation of nuclei for single-nucleus RNA-sequencing

VTA nuclei were isolated and prepared for single-nucleus RNA-sequencing as 1008 previously described¹⁷. VTA tissue was removed from the -80 °C and transferred into 1009 a 1 ml Dounce homogenizer containing 1 ml of pre-chilled homogenization buffer 1010 (250 mM sucrose, 25 mM KCl, 5 mM MgCl₂, 10 mM Tris pH 8.0, 1 mM DTT, 1x 1011 1012 protease inhibitor (Roche, 11873580001), 0.4 U/ul RNAse inhibitor (Takara, 2313B), 1013 0.2 U/µl SUPERase•In (Invitrogen, AM2696), 0.1% Triton X-100). Tissue was treated 1014 with 5 strokes of the loose pestle, followed by 15 strokes of the tight pestle and then 1015 filtered through a 40 µm cell strainer. Nuclei were spun down at 1000 x g for 8 min at 1016 4 °C. The pellet was then resuspended in a homogenization buffer with the final 1017 volume of 250 μ l on ice. The suspension was mixed with 250 μ l of 50% iodixanol 1018 solution (25 mM KCl, 5 mM MgCl₂, 10 mM Tris (pH 8.0), 50% iodixanol (60% stock 1019 from STEMCELL Technologies, 7820), 1× protease inhibitor (Roche, 11873580001), 1020 RNase inhibitor (0.4 U/µl; Takara, 2313B), SUPERase In (0.2 U/µl; Invitrogen, 1021 AM2696), and 1 mM DTT) and overlaid on top of 29% iodixanol solution (25 mM 1022 KCl, 5 mM MgCl₂, 10 mM Tris (pH 8.0), 29% iodixanol, 1× protease inhibitor (Roche, 11873580001), RNase inhibitor (0.4 U/µl; Takara, 2313B), SUPERase In (0.2 1023 1024 U/µl; Invitrogen, AM2696), and 1 mM DTT) in an ultracentrifuge tube (Beckman 1025 Coulter, 343778) on ice. Gradients were spun down in the ultracentrifuge (Beckman 1026 Coulter, MAX-XP) using a swing bucket rotor (Beckman Coulter, TLS 55) at 14,000 g_{max} (~10900 g_{average}) for 22 min at 4°C with slow acceleration and deceleration. 1027 Supernatant was carefully removed, and pellets were resuspended in ice-cold bovine 1028 serum albumin (BSA) blocking solution (1× phosphate-buffered saline (PBS) 1029 (AM9625, Ambion), 0.5% BSA (VWR, 0332-25G), 1 mM DTT, 2.4 mM MgCl₂, and 1030 RNase inhibitor (0.2 U/ul; Takara, 2313B)) and incubated on ice for 15 min. Before 1031 1032 staining, splits were taken for the controls (isotype control, negative control, 7AAD 1033 only control, NeuN only control). The neuronal marker NeuN antibody (1 μ g/ μ l, 1034 1:5670, Millipore, MAB3777X) was added to the sample and NeuN-only control. The 1035 control antibody (0.2 µg/µl, 1:1134, STEMCELL Technologies, 60070AD) was added 1036 to the isotype control. Antibodies were incubated for 10 min at 4 °C in the dark. After 1037 incubation, 1 ml of BSA blocking buffer was added and centrifuged at 1000 x g for 10 min at 4 °C in a swing bucket. Pellets were resuspended in 200 µl BSA blocking 1038 1039 buffer and filtered through a 35 µm strainer. Samples were then filled with BSA 1040 blocking buffer to a total volume of 500 µl and 0.75 µl of 7AAD (1 mg/ml, Sigma) 1041 was added.

FACS was performed using BD FACSAria III sorter using a 75 μm nozzle and
 controlled by BD FACSDiva 8.0.1 software. Single color controls were used for
 compensation. Gates were set based on the FACS controls. Nuclei were selected using

1045 a FSC-A/SSC-A gate, doublets were removed using FSC-W/FSC-H and SSC-W/SSC-1046 H gates, nuclei were then further selected on the basis of 7AAD staining, and neuronal 1047 nuclei were sorted on the basis of NeuN staining (**Extended Data Fig. 1e**). Nuclei 1048 were collected into 5 μ l of BSA blocking buffer at 4 °C and directly processed for 10x 1049 Genomics library preparation.

1050

1051 Single-nucleus mRNA library preparation

The chromium Single Cell 3' Reagent kit v3 (10x Genomics, 1000075) was 1052 utilized for most library preparations, with the standard protocol applied. For the 1053 1054 library preparation of four biological replicates, the chromium Single Cell 3' Reagent 1055 kit v2 (10x Genomics, 1000009) was used (see Extended Data Fig. 1f). In brief, nuclei were counted under a brightfield microscope and mixed with the reverse 1056 1057 transcription mix. Gel Beads were added and the mix was partitioned on Chips B (10x Genomics, 1000073) into GEMs using the Chromium Controller (10x Genomics, PN-1058 120223) for reverse transcription. After reverse transcription, samples were frozen at -1059 1060 20 °C until further processing. Next, cDNA was cleaned, pre-amplified (12 PCR 1061 cycles), cleaned with SPRIselect beads and quantified before being frozen again at -20 °C. The same quantity of cDNA was used during fragmentation, end-repair, and A-1062 1063 tailing for most samples. Fragments were then cleaned up using SPRIselect reagent 1064 and processed through the steps of adapter ligation, SPRIselect cleanup, and sample index PCR (using Chromium i7 Sample Indices (10x Genomics, PN-120262) for 11 1065 1066 PCR cycles). Libraries were cleaned up with SPRIselect reagent and quantified using 1067 the Oubit HS dsDNA Assay Kit (Thermo Fisher Scientific, O32854) with a Oubit 1068 Fluorometer, and also using the High Sensitivity DNA Kit (Agilent, 5067-4626) with 1069 an Agilent 2100 Bioanalyzer. Libraries were pooled according to the expected amount of nuclei per sample and sequenced using an Illumina HiSeq 2000 machine according 1070 1071 to manufacturer's instructions.

- 1072
- 1073

Single-nucleus RNA-seq data processing: mapping, expression, and QC

1074 Raw RNA sequencing data was processed using the pigx-scrnaseq pipeline, 1075 version 1.1.7¹⁰¹. In short, the sequencing reads were mapped using STAR¹⁰² on the mm10 version of the mouse genome. The digital expression matrix was constructed 1076 using the mm10 mouse gene annotation GRCm38.82, downloaded from the 1077 ENSEMBL database¹⁰³. Gene expression was quantified by counting the reads 1078 overlapping complete gene models (both exons and introns) and normalized using the 1079 Seurat pipeline with default parameters. Ambient RNA was removed from the digital 1080 1081 expression matrix using CellBender¹⁸ with the default parameters.

1082 1083

Single-nucleus RNA-seq quality control

Putative droplet doublets were detected using scDblFinder¹⁰⁴ and only singlet 1084 cells were kept for further analysis. To ensure high cell quality, cells with fewer than 1085 1086 2000 detected features were removed from the analysis. In addition, cells with a ratio 1087 of exonic to intronic reads lower than the 5% percentile or greater than the 95% 1088 percentile (calculated on a per sample basis) were also removed from further analysis. Because the previous stringent quality control filters removed the majority of cells 1089 1090 sequenced using 10x v2 chemistry (saline, and cocaine day 1 replicates 1 and 2), the 1091 v2 chemistry samples were removed from any further analysis.

1092 The resulting filtered data was integrated using Conos¹⁰⁵. Integrated data 1093 processed using Seurat¹⁰⁶ - data was normalized, scaled, transformed using principal 1094 component analysis. Data was embedded in a low dimensional state using the UMAP 1095 algorithm¹⁰⁷. 1096 Clustering was completed using the FindClusters method from the Seurat 1097 package using the Conos derived cell distance graph. The clustering was obtained 1098 using the Louvain algorithm with resolution parameter set to 0.1.

1099

1100 Single nucleus RNA-seq dopaminergic cell identification

Cells were scored with a set of well-known dopaminergic marker genes Th, 1101 Slc6a3, Nr4a2, Slc18a2, Snca, Foxa2, Lmx1b, Kcnj6²⁶, using the Seurat function 1102 AddModuleScore. Cells belonging to the cluster with the highest median dopaminergic 1103 1104 score were regarded as putative dopaminergic neurons. To remove nuclei which may 1105 have come from the substantia nigra (SN), the DN-containing region neighbouring the 1106 VTA, a set of known SN markers Sox6, Aldh1a7, Ndnf, Serpine2, Rbp4, Fgf20 were used as an input to the AddModuleScore function, and all cells with a score greater 1107 1108 than 0.65 were removed from the analysis. The resulting DNs were processed using the default Seurat pipeline, including read count normalization, scaling, and PCA 1109 calculation. The data was then embedded in 2D space using the UMAP algorithm. 1110 1111 Cluster specific markers were determined using the FindAllMarkers function from the 1112 Seurat package.

1113 To obtain a robust set of markers specific for the "IEG" cluster (**Fig. 5c**), 1114 differential genes were iteratively defined by comparing the IEG cluster with all other 1115 clusters, and taking genes which were significantly enriched in the IEG cluster in all 1116 comparisons.

1117 Gene set scores for melting genes, hotspot genes and TAD boundary genes 1118 were obtained using the AUCell function from the AUCell bioconductor package¹⁰⁸.

1119 1120

Single-nucleus RNA-seq differential expression analysis

Differential expression analysis was calculated for the complete datasets of 1121 1122 dopaminergic cells, and separately for the IEG subcluster. The per cell count data was 1123 summarized as pseudo-bulk values using the muscat package¹⁰⁹. Differential 1124 expression analysis was then completed using all three of the available methods 1125 implemented in the muscat package: edgeR, DESeq2 and limma. None of the methods 1126 were sensitive enough to detect individual differentially expressed genes with an FDR-1127 adjusted P value lower than 0.05. A full list of expression values and differential 1128 expression analysis results can be found in Supplementary Table 3.

1129 Gene set differential expression was performed by first computing the mean 1130 and median fold change of IEGs or addiction genes in both the complete DN dataset 1131 and the IEG cluster. To determine the significance of the mean (and median) fold 1132 change, the mean (median) fold change was calculated for 1000 random subsets of 1133 genes of the same size as the corresponding gene sets (**Extended Data Fig. 7g**). The 1134 Z-score and *P* value was calculated by comparing the measured fold change of the true 1135 corresponding gene set with the distribution of the random permutations.

1136

1137 Integration of spatial transcriptomics MERFISH data

1138The single-cell MERFISH (scMERFISH) spatial transcriptomics dataset was1139downloaded from the Allen brain atlas server27, along with the corresponding cell and1140cluster annotations specified below.

Genotype	Data type	Number of cells	Sample identifier	Expression matrix link	Metadata link	Publication
----------	-----------	--------------------	----------------------	---------------------------	------------------	-------------

C57Bl/6J	MERFISH	4.3M	MERFISH-	C57BL6J-	cell metadata.csv	Yao et al.,
		cells of	C57BL6J-	<u>638850-</u>		<u>2024</u>
		59 full	638850	<u>log2.h5ad</u>		
		coronal				
		sections				

1141 Cells belonging to the VTA were selected from the dataset by taking a subset 1142 of cells with the "MB Dopa" class annotation. Cells belonging to the substantia nigra part of the midbrain were filtered based on the high expression of the following 1143 1144 markers: Ndnf, Tlll1, Epha4, Rgs8. To compare the scMERFISH and snRNA-seq data, 1145 both datasets were summarized to the cluster level by taking the average expression of all genes in all corresponding clusters. Next, genes which had linear covariation in 1146 1147 both datasets were selected by calculating the variance separately for the scMERFISH 1148 and snRNA-seq data and choosing genes with a log2 ratio of (snRNA-seq variance) / 1149 (scMERFISH variance) between -0.25 and 0.25 for further analysis. Pearson 1150 correlation coefficients were calculated between each snRNA-seq and scMERFISH cluster, and the resulting matrix was visualized using the ComplexHeatmap¹¹⁰ 1151 package. The correspondence between snRNAseq and scMERFISH clusters was 1152 1153 determined by selecting the pair of clusters with the largest calculated correlation 1154 coefficient.

1155

1156 Data availability

Raw fastq sequencing files for GAM datasets generated for this manuscript, 1157 1158 together with non-normalized co-segregation matrices, normalized pair-wised chromatin contacts maps and raw GAM segregation tables are available from the GEO 1159 repository under accession number GSE254508 and from the 4DN data portal 1160 (https://data.4dnucleome.org/) under accession identifiers 4DNESYLI75YL (1 day 1161 cocaine, wild-type), 4DNESMAQEPWU (1 day cocaine, TH-GFP), and 1162 1163 4DNESVF6WL86 (14 days cocaine, wild-type). Raw fastq sequencing files for GAM 1164 datasets of VTA DNs from animals treated with saline are available from the 4DN data portal under accession identifiers 4DNES2FWQBJW (wild-type) and 1165 4DNESZ3RVI2B (TH-GFP). Insulation score values of all samples are archived in 1166 table S11 in a permanent data repository⁷⁷. All polymer model 3D structures and 1167 pairwise distances produced for the analyses of this work are archived in table S12-16 1168 in a permanent data repository⁷⁷. 1169

Raw fastq single nucleus RNA sequencing files, bigwig tracks of DNs and 1170 count matrices are available from the GEO repository under accession number 1171 1172 GSE254509. Seurat objects of all sequenced neurons (NeuN⁺) and all profiled dopaminergic neurons are archived in a permanent data repository⁷⁷. An interactive 1173 application for exploration of snRNA-seq data of dopaminergic neurons is available 1174 1175 under the following link: https://shiny.mdc-berlin.de/APombo VTA. scMERFISH 1176 spatial transcriptomics data of dopaminergic neurons of the ventral tegmental area are archived in table S17 in a permanent data repository⁷⁷. Interactive 3D plots indicating 1177 locations of IEG expressing DNs and Vip⁺ DNs in the VTA are archived in interactive 1178 plot S1-S2 in a permanent data repository77. A public UCSC genome browser session 1179 with all data produced is accessible under the following link: http://genome-1180 euro.ucsc.edu/s/Kjmorris/GAMcocaine 2024 publicSession. 1181

1182

1183 Code availability

1184 Processing, analysis and plotting scripts for insulation score calculation and 1185 MELTRONIC analyses are available at: <u>https://github.com/pombo-lab/MELTRONIC/</u>.

References

1187		
1188	1.	Ungless, M. A., Whistler, J. L., Malenka, R. C. & Bonci, A. Single cocaine
1189		exposure in vivo induces long-term potentiation in dopamine neurons. <i>Nature</i>
1190		411 , 583–587 (2001).
1191	2.	Ungless, M. A., Argilli, E. & Bonci, A. Effects of stress and aversion on
1192		dopamine neurons: Implications for addiction. <i>Neuroscience & Biobehavioral</i>
1193		<i>Reviews</i> 35 , 151–156 (2010).
1194	3.	Wise, R. A. & Robble, M. A. Dopamine and Addiction. <i>Annu. Rev. Psychol.</i> 71,
1195		79–106 (2020).
1196	4.	Jaeger, B. N. <i>et al</i> . A novel environment-evoked transcriptional signature predicts
1197		reactivity in single dentate granule neurons. <i>Nat Commun</i> 9 , 3084 (2018).
1198	5.	Ryan, M. M. et al. Temporal Profiling of Gene Networks Associated with the
1199		Late Phase of Long-Term Potentiation In Vivo. <i>PLOS ONE</i> 7, e40538 (2012).
1200	6.	Ibarra, I. L. <i>et al</i> . Comparative chromatin accessibility upon BDNF stimulation
1201		delineates neuronal regulatory elements. <i>Molecular Systems Biology</i> 18 , e10473
1202		(2022).
1203	7.	Kim, TK. et al. Widespread transcription at neuronal activity-regulated
1204		enhancers. <i>Nature</i> 465 , 182–187 (2010).
1205	8.	Suto, N., Tanabe, L. M., Austin, J. D., Creekmore, E. & Vezina, P. Previous
1206		Exposure to VTA Amphetamine Enhances Cocaine Self-Administration under a
1207		Progressive Ratio Schedule in an NMDA, AMPA/Kainate, and Metabotropic
1208		Glutamate Receptor-Dependent Manner. <i>Neuropsychopharmacol</i> 28, 629–639
1209		(2003).
1210	9.	Campbell, R. R. <i>et al</i> . Cocaine induces paradigm-specific changes to the
1211		transcriptome within the ventral tegmental area. <i>Neuropsychopharmacol.</i> 46 ,
1212		1768–1779 (2021).
1213	10.	Winick-Ng, W. et al. Cell-type specialization is encoded by specific chromatin
1214		topologies. <i>Nature</i> 599 , 684–691 (2021).
1215	11.	Engmann, O. <i>et al</i> . Cocaine-Induced Chromatin Modifications Associate With
1216		Increased Expression and Three-Dimensional Looping of Auts2. <i>Biological</i>
1217		<i>Psychiatry</i> 82 , 794–805 (2017).
1218	12.	Carpenter, M. D. <i>et al</i> . Nr4a1 suppresses cocaine-induced behavior via epigenetic
1219		regulation of homeostatic target genes. <i>Nat Commun</i> 11 , 504 (2020).
1220	13.	Beagan, J. A. <i>et al</i> . Three-dimensional genome restructuring across timescales of
1221		activity-induced neuronal gene expression. <i>Nat Neurosci</i> 23 , 707–717 (2020).
1222	14.	Stewart, A. F., Fulton, S. L. & Maze, I. Epigenetics of Drug Addiction. <i>Cold</i>
1223		Spring Harb Perspect Med 11, a040253 (2021).
1224	15.	Saal, D., Dong, Y., Bonci, A. & Malenka, R. C. Drugs of Abuse and Stress
1225		Trigger a Common Synaptic Adaptation in Dopamine Neurons. <i>Neuron</i> 37 , 577–
1226		582 (2003).
1227	16.	Borgland, S. L., Malenka, R. C. & Bonci, A. Acute and Chronic Cocaine-Induced
1228		Potentiation of Synaptic Strength in the Ventral Tegmental Area:
1229		Electrophysiological and Behavioral Correlates in Individual Rats. J. Neurosci.
1230		24 , 7482–7490 (2004).
1231	17.	Batiuk, M. Y. <i>et al</i> . Upper cortical layer–driven network impairment in
1232		schizophrenia. <i>Science Advances</i> 8 , eabn8367 (2022).
1233	18.	Fleming, S. J. <i>et al</i> . Unsupervised removal of systematic background noise from
1234		droplet-based single-cell experiments using CellBender. <i>Nat Methods</i> 20 , 1323–
1235		1335 (2023).

1236 1237	19.	Hu, R., Dai, Y., Jia, P. & Zhao, Z. ANCO-GeneDB: annotations and comprehensive analysis of candidate genes for alcohol, nicotine, cocaine and
1238		opioid dependence. <i>Database</i> 2018 , bay121 (2018).
1239	20.	Piñero, J. <i>et al</i> . The DisGeNET knowledge platform for disease genomics: 2019
1240		update. Nucleic Acids Research 48, D845–D855 (2020).
1241	21.	Crane, E. <i>et al</i> . Condensin-driven remodelling of X chromosome topology during
1242		dosage compensation. <i>Nature</i> 523 , 240–244 (2015).
1243	22.	Winick-Ng, W., Leri, F. & Kalisch, B. E. Nitric oxide and histone deacetylases
1244		modulate cocaine-induced mu-opioid receptor levels in PC12 cells. <i>BMC</i>
1245		Pharmacoloav and Toxicoloav 13. 11 (2012).
1246	23.	Madeira, M. D. <i>et al.</i> Chronic Alcohol Consumption and Withdrawal Do Not
1247	_0,	Induce Cell Death in the Suprachiasmatic Nucleus, But Lead to Irreversible
1748		Depression of Pentide Immunoreactivity and mRNA Levels I Neurosci 17
1749		1302–1319 (1997)
1245	74	Corard T at al. The European Variation Archive: a EAIR resource of genomic
1250	24.	variation for all species. Nucleic Acids Pescarch 50 D1216 D1220 (2022)
1251	25	Variation for an species. Nucleic Actus Research 50, D1210–D1220 (2022).
1252	25.	Nullil, C., Mdo, H., Clilulde, P. & Albert, P. R. RG51//RG522 and the RZ/A
1253		ramily of regulators of G-protein signaling. Seminars in Cell & Developmental
1254	D (Biology 17, 390–399 (2006).
1255	26.	La Manno, G. <i>et al.</i> Molecular Diversity of Midbrain Development in Mouse,
1256		Human, and Stem Cells. <i>Cell</i> 167 , 566-580.e19 (2016).
1257	27.	Yao, Z. <i>et al</i> . A high-resolution transcriptomic and spatial atlas of cell types in
1258		the whole mouse brain. <i>Nature</i> 624 , 317–332 (2023).
1259	28.	Aitken, S. <i>et al</i> . Transcriptional Dynamics Reveal Critical Roles for Non-coding
1260		RNAs in the Immediate-Early Response. <i>PLOS Computational Biology</i> 11 ,
1261		e1004217 (2015).
1262	29.	Beagrie, R. A. <i>et al</i> . Multiplex-GAM: genome-wide identification of chromatin
1263		contacts yields insights overlooked by Hi-C. <i>Nat Methods</i> 20 , 1037–1047 (2023).
1264	30.	Toda, S., Shen, HW., Peters, J., Cagle, S. & Kalivas, P. W. Cocaine Increases
1265		Actin Cycling: Effects in the Reinstatement Model of Drug Seeking. J. Neurosci.
1266		26 , 1579–1587 (2006).
1267	31.	deBacker, J. et al. GluN2B-Containing NMDA Receptors Blockade Rescues
1268		Bidirectional Synaptic Plasticity in the Bed Nucleus of the Stria Terminalis of
1269		Cocaine Self-Administering Rats, <i>Neuropsychopharmacol</i> 40 , 394–405 (2015).
1270	32.	Ghasemzadeh, M. B., Windham, L. K., Lake, R. W., Acker, C. J. & Kaliyas, P.
1271	02.	W Cocaine activates Homer1 immediate early gene transcription in the
1271		mesocorticolimbic circuit: Differential regulation by donamine and glutamate
1272		signaling Synansa 63 42 53 (2000)
1273	22	Koopmans, E at al SynCO: An Evidence Pased Export Curated Knowledge
1274	55.	Page for the Sympose Neuron 102 , 217, 224 e4 (2010)
1275	74	Argilli E. Cikley D. D. Melenke, D. C. England D. M. & Dongi A.
12/0	34.	Argini, E., Sibley, D. R., Malenka, R. C., England, P. M. & Bonci, A.
12//		Mechanism and Time Course of Cocaine-Induced Long-Term Potentiation in the
1278	o -	Ventral Tegmental Area. J. Neurosci. 28, 9092–9100 (2008).
1279	35.	Tan, H. L., Chiu, SL., Zhu, Q. & Huganir, R. L. GRIP1 regulates synaptic
1280		plasticity and learning and memory. <i>Proceedings of the National Academy of</i>
1281		<i>Sciences</i> 117 , 25085–25091 (2020).
1282	36.	Cazorla, M., Shegda, M., Ramesh, B., Harrison, N. L. & Kellendonk, C. Striatal
1283		D2 Receptors Regulate Dendritic Morphology of Medium Spiny Neurons via
1284		Kir2 Channels. J. Neurosci. 32 , 2398–2409 (2012).
1285	37.	Franke, M. <i>et al</i> . Formation of new chromatin domains determines pathogenicity
1286		of genomic duplications. <i>Nature</i> 538 , 265–269 (2016).

1287 1288	38.	Despang, A. <i>et al</i> . Functional dissection of the Sox9–Kcnj2 locus identifies nonessential and instructive roles of TAD architecture. <i>Nat Genet</i> 51 , 1263–1271
1289		(2019).
1290	39.	Scobie, K. N. <i>et al</i> . Essential role of poly(ADP-ribosyl)ation in cocaine action.
1291		Proceedings of the National Academy of Sciences 111, 2005–2010 (2014).
1292	40.	Dutton III, J. W., Chen, H., You, C., Brodie, M. S. & Lasek, A. W. Anaplastic
1293		lymphoma kinase regulates binge-like drinking and dopamine receptor sensitivity
1294		in the ventral tegmental area. Addiction Biology 22, 665–678 (2017).
1295	41.	Beagrie, R. A. <i>et al.</i> Complex multi-enhancer contacts captured by genome
1296		architecture mapping. <i>Nature</i> 543 , 519–524 (2017).
1297	42.	Liu, S. <i>et al.</i> Cell-type-specific 3D-genome organization and transcription
1298		regulation in the brain. 2023.12.04.570024 Preprint at
1299		https://doi.org/10.1101/2023.12.04.570024 (2023).
1300	43.	Leidescher, S. <i>et al.</i> Spatial organization of transcribed eukaryotic genes. <i>Nat Cell</i>
1301		Biol 24, 327–339 (2022).
1302	44.	Liu, Z. <i>et al.</i> Linking genome structures to functions by simultaneous single-cell
1303		Hi-C and RNA-seq. <i>Science</i> 380 , 1070–1076 (2023).
1304	45.	Feng, J. <i>et al</i> . Chronic cocaine-regulated epigenomic changes in mouse nucleus
1305		accumbens. <i>Genome Biology</i> 15 . R65 (2014).
1306	46.	Bianco, S. <i>et al.</i> Polymer physics predicts the effects of structural variants on
1307		chromatin architecture. <i>Nat Genet</i> 50 , 662–667 (2018).
1308	47.	Monahan, K. <i>et al</i> . Role of CCCTC binding factor (CTCF) and cohesin in the
1309		generation of single-cell diversity of Protocadherin- α gene expression.
1310		Proceedinas of the National Academy of Sciences 109 , 9125–9130 (2012).
1311	48.	Xu, SJ. <i>et al.</i> Chromatin-mediated alternative splicing regulates cocaine-reward
1312		behavior. <i>Neuron</i> 109 , 2943-2966.e8 (2021).
1313	49.	Korb, E. & Finkbeiner, S. Arc in synaptic plasticity: from gene to behavior.
1314		Trends in Neurosciences 34 . 591–598 (2011).
1315	50.	Zuo, D., Subjeck, J. & Wang, XY. Unfolding the Role of Large Heat Shock
1316		Proteins: New Insights and Therapeutic Implications. <i>Frontiers in Immunology</i> 7 ,
1317		(2016).
1318	51.	Gambardella, G. <i>et al</i> . GADD34 is a modulator of autophagy during starvation.
1319		<i>Science Advances</i> 6 , eabb0205 (2020).
1320	52.	Sun, X. <i>et al.</i> Tristetraprolin destabilizes NOX2 mRNA and protects
1321		dopaminergic neurons from oxidative damage in Parkinson's disease. <i>The FASEB</i>
1322		Journal 34 , 15047–15061 (2020).
1323	53.	Shepherd, J. D. & Bear, M. F. New views of Arc, a master regulator of synaptic
1324		plasticity. Nat Neurosci 14, 279–284 (2011).
1325	54.	Schaefer, A. <i>et al</i> . Argonaute 2 in dopamine 2 receptor–expressing neurons
1326		regulates cocaine addiction. <i>Journal of Experimental Medicine</i> 207 , 1843–1851
1327		(2010).
1328	55.	Kapoor, M. <i>et al</i> . A meta-analysis of two genome-wide association studies to
1329		identify novel loci for maximum number of alcoholic drinks. <i>Hum Genet</i> 132 ,
1330		1141–1151 (2013).
1331	56.	Lammel, S. <i>et al</i> . Unique Properties of Mesoprefrontal Neurons within a Dual
1332		Mesocorticolimbic Dopamine System. <i>Neuron</i> 57 , 760–773 (2008).
1333	57.	Luo, X. <i>et al</i> . CHRM2 gene predisposes to alcohol dependence, drug dependence
1334		and affective disorders: results from an extended case–control structured
1335		association study. Human Molecular Genetics 14, 2421–2434 (2005).

1336 1337 1338	58.	Oliver, R. J. <i>et al.</i> Neuronal RNA-binding protein HuD regulates addiction- related gene expression and behavior. <i>Genes, Brain and Behavior</i> 17 , e12454 (2018).
1339 1340	59.	Yang, M. H. <i>et al</i> . Gene Expression Profiling of the Rewarding Effect Caused by Methamphetamine in the Mesolimbic Dopamine System. <i>Molecules and Cells</i> 26 ,
1341		121–130 (2008).
1342 1343	60.	Beier, K. T. <i>et al.</i> Circuit Architecture of VTA Dopamine Neurons Revealed by Systematic Input-Output Mapping. <i>Cell</i> 162 , 622–634 (2015).
1344	61.	Lammel, S., Ion, D. L. Roeper, J. & Malenka, R. C. Projection-Specific
1345	011	Modulation of Dopamine Neuron Synapses by Aversive and Rewarding Stimuli.
1346		Neuron 70 , 855–862 (2011).
1347	62.	Eipper-Mains, J. E. <i>et al.</i> Effects of cocaine and withdrawal on the mouse nucleus
1348	•=•	accumbens transcriptome. <i>Genes. Brain and Behavior</i> 12 , 21–33 (2013).
1349	63.	Bell, R. L. <i>et al.</i> Gene expression changes in the nucleus accumbens of alcohol-
1350		preferring rats following chronic ethanol consumption. <i>Pharmacoloay</i>
1351		Biochemistry and Behavior 94 , 131–147 (2009).
1352	64.	Chaudhury, D. <i>et al.</i> Rapid regulation of depression-related behaviours by control
1353		of midbrain dopamine neurons. <i>Nature</i> 493 , 532–536 (2013).
1354	65.	Cornish, J. L. & Kaliyas, P. W. Glutamate Transmission in the Nucleus
1355		Accumbens Mediates Relapse in Cocaine Addiction. J. Neurosci. 20 . RC89–
1356		RC89 (2000).
1357	66.	Simmler, L. D. <i>et al.</i> Blockade of the 5-HT transporter contributes to the
1358		behavioural, neuronal and molecular effects of cocaine. <i>British Journal of</i>
1359		Pharmacoloav 174 , 2716–2738 (2017).
1360	67.	Poulin, JF., Gaertner, Z., Moreno-Ramos, O. A. & Awatramani, R.
1361		Classification of Midbrain Dopamine Neurons Using Single-Cell Gene
1362		Expression Profiling Approaches. <i>Trends in Neurosciences</i> 43 , 155–169 (2020).
1363	68.	Su, Y. <i>et al.</i> Neuronal activity modifies the chromatin accessibility landscape in
1364		the adult brain. <i>Nat Neurosci</i> 20 , 476–483 (2017).
1365	69.	Tsai, SY. A. <i>et al</i> . Sigma-1 receptor mediates cocaine-induced transcriptional
1366		regulation by recruiting chromatin-remodeling factors at the nuclear envelope.
1367		Proceedings of the National Academy of Sciences 112 , E6562–E6570 (2015).
1368	70.	Mesa, K. R. <i>et al</i> . Homeostatic Epidermal Stem Cell Self-Renewal Is Driven by
1369		Local Differentiation. Cell Stem Cell 23, 677-686.e4 (2018).
1370	71.	Chen, Q. et al. Chromatin Liquid–Liquid Phase Separation (LLPS) Is Regulated
1371		by Ionic Conditions and Fiber Length. <i>Cells</i> 11 , 3145 (2022).
1372	72.	Eder, A. & Bading, H. Calcium signals can freely cross the nuclear envelope in
1373		hippocampal neurons: somatic calcium increases generate nuclear calcium
1374		transients. BMC Neuroscience 8, 57 (2007).
1375	73.	Lüscher, C. & Janak, P. H. Consolidating the Circuit Model for Addiction. Annu.
1376		Rev. Neurosci. 44, 173–195 (2021).
1377	74.	Reiff, S. B. <i>et al</i> . The 4D Nucleome Data Portal as a resource for searching and
1378		visualizing curated nucleomics data. <i>Nat Commun</i> 13 , 2365 (2022).
1379	75.	Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. <i>Nat</i>
1380		Methods 9 , 357–359 (2012).
1381	76.	Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing
1382		genomic features. <i>Bioinformatics</i> 26, 841–842 (2010).
1383	77.	Szabó, D., Franke, V., Winick-Ng, W. & Pombo, A. Extended supplementary
1384		data for manuscript: A single dose of cocaine rewires the 3D genome structure of
1385		midbrain dopamine neurons. https://doi.org/10.5281/zenodo.10528545.

1386	78.	Lieberman-Aiden, E. <i>et al</i> . Comprehensive Mapping of Long-Range Interactions
1387		Reveals Folding Principles of the Human Genome. <i>Science</i> 326 , 289–293 (2009).
1388	79.	Buske, F. A., Bodén, M., Bauer, D. C. & Bailey, T. L. Assigning roles to DNA
1389		regulatory motifs using comparative genomics. <i>Bioinformatics</i> 26 , 860–866
1390		(2010).
1391	80.	Bailey, T. L. & Grant, C. E. SEA: Simple Enrichment Analysis of Motifs.
1392		http://biorxiv.org/lookup/doi/10.1101/2021.08.23.457422 (2021)
1393		doi:10.1101/2021.08.23.457422.
1394	81.	Barbieri, M. <i>et al</i> . Complexity of chromatin folding is captured by the strings and
1395		binders switch model. <i>Proceedings of the National Academy of Sciences</i> 109 ,
1396		16173–16178 (2012).
1397	82.	Chiariello, A. M., Annunziatella, C., Bianco, S., Esposito, A. & Nicodemi, M.
1398		Polymer physics of chromosome large-scale 3D organisation. <i>Sci Rep</i> 6 , 29775
1399		(2016).
1400	83.	Fiorillo, L. <i>et al</i> . Comparison of the Hi-C, GAM and SPRITE methods using
1401		polymer models of chromatin. <i>Nat Methods</i> 18 , 482–490 (2021).
1402	84.	Kremer, K. & Grest, G. S. Dynamics of entangled linear polymer melts: A
1403		molecular-dynamics simulation. <i>The Journal of Chemical Physics</i> 92 , 5057–5086
1404		(1990).
1405	85.	Conte, M. <i>et al</i> . Polymer physics indicates chromatin folding variability across
1406		single-cells results from state degeneracy in phase separation. <i>Nat Commun</i> 11 ,
1407		3289 (2020).
1408	86.	Plimpton, S. Fast Parallel Algorithms for Short-Range Molecular Dynamics.
1409		Journal of Computational Physics 117, 1–19 (1995).
1410	87.	Rippe, K. Making contacts on a nucleic acid polymer. <i>Trends in Biochemical</i>
1411		Sciences 26, 733–740 (2001).
1412	88.	Dekker, J., Rippe, K., Dekker, M. & Kleckner, N. Capturing Chromosome
1413		Conformation. <i>Science</i> 295 , 1306–1311 (2002).
1414	89.	Bystricky, K., Heun, P., Gehlen, L., Langowski, J. & Gasser, S. M. Long-range
1415		compaction and flexibility of interphase chromatin in budding yeast analyzed by
1416		high-resolution imaging techniques. Proceedings of the National Academy of
1417		Sciences 101, 16495–16500 (2004).
1418	90.	Liao, Y., Wang, J., Jaehnig, E. J., Shi, Z. & Zhang, B. WebGestalt 2019: gene set
1419		analysis toolkit with revamped UIs and APIs. <i>Nucleic Acids Research</i> 47, W199–
1420		W205 (2019).
1421	91.	Riemondy, K. A. <i>et al.</i> valr: Reproducible genome interval analysis in R. Preprint
1422		at https://doi.org/10.12688/f1000research.11997.1 (2017).
1423	92.	Dale, R. K., Pedersen, B. S. & Quinlan, A. R. Pybedtools: a flexible Python
1424		library for manipulating genomic datasets and annotations. <i>Bioinformatics</i> 27,
1425		3423–3424 (2011).
1426	93.	Durinck, S., Spellman, P. T., Birney, E. & Huber, W. Mapping identifiers for the
1427		integration of genomic datasets with the R/Bioconductor package biomaRt. <i>Nat</i>
1428		<i>Protoc</i> 4 , 1184–1191 (2009).
1429	94.	Zhang, H., Wang, F., Kranzler, H. R., Anton, R. F. & Gelernter, J. Variation in
1430		regulator of G-protein signaling 17 gene (RGS17) is associated with multiple
1431		substance dependence diagnoses. <i>Behavioral and Brain Functions</i> 8 , 23 (2012).
1432	95.	Tan, G., Polychronopoulos, D. & Lenhard, B. CNEr: A toolkit for exploring
1433		extreme noncoding conservation. PLOS Computational Biology 15, e1006940
1434		(2019).

1435	96.	Walker, D. M. <i>et al</i> . Cocaine Self-administration Alters Transcriptome-wide
1436		Responses in the Brain's Reward Circuitry. <i>Biological Psychiatry</i> 84, 867–880
1437		(2018).
1438	97.	Savell, K. E. <i>et al</i> . A dopamine-induced gene expression signature regulates
1439		neuronal function and cocaine response. <i>Science Advances</i> 6 , eaba4221 (2020).
1440	98.	Fernandez-Albert, J. <i>et al.</i> Immediate and deferred epigenomic signatures of in
1441		vivo neuronal activation in mouse hippocampus. <i>Nat Neurosci</i> 22 , 1718–1730
1442		(2019).
1443	99.	Gao, P., Limpens, J. H. W., Spijker, S., Vanderschuren, L. J. M. J. & Voorn, P.
1444	551	Stable immediate early gene expression patterns in medial prefrontal cortex and
1445		striatum after long-term cocaine self-administration Addiction Biology 22 354–
1446		368 (2017)
1447	100	Libl G R <i>et al</i> Cocaine reward is reduced by decreased expression of recentor-
1448	100.	type protein typosine phosphatase D (PTPRD) and by a novel PTPRD antagonist
1440 1 <i>11</i> 49		Proceedings of the National Academy of Sciences 115 11597–11602 (2018)
14450	101	Wurmus P <i>at al</i> PiCy: reproducible genomics analysis pipelines with CNU
1450	101.	Cuix CiagScience 7 giv123 (2018)
1452	102	Dobin A at al STAP: ultrafast universal PNA seg aligner Bioinformatics 20
1452	102.	15 21 (2012)
1455	103	JJ-21 (2013). Zorbino D. P. at al. Encombl 2018 Nucleic Acids Pescarch 16 D754 D761
1455	105.	(2019)
1455	104	(2010). Cormain D. L. Lun A. Maivida C. C. Macnair, W. & Pohinson M. D.
1450	104.	Doublet identification in single cell coguencing data using scDblEinder Droprint
1457		at https://doi.org/10.12609/f1000rosoarch 72600.2 (2022)
1450	105	at https://doi.org/10.12000/11000/esedicii./5000.2 (2022).
1455	105.	collections Nat Methods 16 605 609 (2010)
1400	106	Collections. Nut Methods 10, 055–050 (2015). Butler A Hoffman D Smibert D Danalovi E & Satija D Integrating single
1401	100.	coll transcriptomic data across different conditions, technologies, and species. <i>Nat</i>
1402		Piotochnol 26 411 420 (2019)
1405	107	McInnes I Healy I & Melville I LIMAD: Uniform Manifold Approximation
1404	107.	and Drejection for Dimension Deduction. Dreprint at
1405		https://doi.org/10.49550/arViv.1902.02426 (2020)
1400	100	Aibar S at al SCENIC: single cell regulatory petwork inference and elustering
1407	100.	Nat Methoda 14, 1002, 1006 (2017)
1400	100	Nul Mellious 14, 1005–1000 (2017).
1409	109.	Cu. 7. File D. & Schlesner M. Complex heatmans reveal patterns and
14/0	110.	Gu, Z., Elis, R. & Schleshel, M. Complex heatingps level patients and
14/1		(2016)
14/2	111	(2010). Alves des Santes M.T. & Smidt M.D. En1 and What signaling in midhrain
14/3	111.	Aives dos Sainos, M. I. & Sinnut, M. P. Eni and Will Signating in Induitani denominargia neuropal development. Neural Development 6, 22 (2011)
14/4 1475	117	Colter D. Duerenerich S. Corrige A. Armet M. & Olser L. Al DI1 mDNA:
14/5	112.	Galler, D., Buervenicii, S., Carinine, A., Alivrei, M. & Olsoli, L. ALDHI IIRNA:
14/0		presence in numan dopamine neurons and decreases in substantia nigra in
14//		Parkinson's disease and in the ventral tegmental area in schizophrenia.
14/ð	117	Intervalue of Disease 14, $b3/-b4/(2003)$.
14/9	113.	Margons, E. B., Coker, A. K., Driscon, J. K., Lemaitre, AI. & Fields, H. L.
1480		Remaining in the identification of Milddrain Dopamine Neurons. PLOS ONE 5,
1481		e15222 (2010).
1482		

Extended Data Figure 1. Quality control of immunoGAM and single-nucleus
RNA-seq data.

a, Quality control (QC) measurements (uniquely mapped reads, genome coverage, 1488 1489 percentage of orphan windows) for all combined GAM samples collected from ventral tegmental area (VTA) dopamine neurons (DNs). Each data point represents a GAM 1490 sample: Green, sample passed QC; Red, sample did not pass QC; Black, water control. 1491 1492 **b**, Similar to **a** but shown separately for each dataset produced in this study (number of uniquely mapped reads and percentage of orphan windows). c, Summary of GAM data 1493 used in this study. All data was collected from 8-week-old mice, 1 or 14 days 1494 1495 following an intraperitoneal injection of cocaine (15 mg/kg). GAM data from salinetreated animals were littermates with cocaine-treated animals and was previously 1496 published¹⁰. **d**, Percentage of loci-pairs detected at least once, as well as Kendall's τ 1497 1498 (Tau) coefficients for different GAM resolutions (range 30 - 250 kb) and a range of 1499 distance cutoffs (2 Mb - chromosome-wide). We considered a Tau value > 0.95 as an appropriate resolution for a given genomic distance. e, Flow cytometry data of a 1500 representative sample showing selection criteria for gating of neuronal cells using 1501 1502 NeuN (RBFOX-3) as a pan-neuronal marker. f, Total number of sequenced nuclei per library. g, Distribution of number of detected features (genes) per library. h. Number 1503 1504 of nuclei classified as singlet / doublet / undefined by the scDblFinder¹⁰⁴ doublet detection algorithm. i, Distribution of the log 2 ratio of exonic to intronic reads for 1505

- 1506 each detected feature in each sample. In panels **f i** cDNA libraries from biological
- 1507 replicates 1 and 2 from 1 day saline and cocaine treatments were prepared using the
- 1508 10x chromium single cell V2 chemistry, while all other samples were prepared with
- 1509 V3 chemistry (V3 samples are shown inside the black-bounded box). Our conclusion
- 1510 was that the replicates produced with V2 chemistry were of lower quality, and
- 1511 therefore removed from downstream analyses.

1513

Extended Data Figure 2. Cocaine induced large-scale disruption of 3D genome 1514 1515 structure in GAM replicates.

a, Similar to Fig. 1c but with both cocaine 14 day GAM replicates shown side-by-side. 1516 1517 Example of long-term cocaine-induced 3D genome reorganization (chr10: 4.4 - 24 Mb; 1518 40 kb windows). NPMI, normalized pointwise mutual information. Contact density heatmaps show insulation scores ranging from 240-1040 kb. b, GAM matrices 1519 produced from VTA DNs in TH-GFP animals display similar condensation and 1520 decondensation of the highlighted loci 1d after cocaine exposure, though broad contact 1521 1522 loss is not as pronounced as in wild-type animals. c, Similar to Fig. 1d but with both cocaine 14d replicates shown side-by-side. Example of cocaine-induced disruption and 1523 rewiring of local contacts seen in both 14-day replicates (chr10: 5.2 - 4.4 Mb; 40 kb 1524 1525 resolution). d, Similar interaction patterns and rewiring of chromatin contacts after 1526 cocaine exposure are observed in GAM data produced from VTA DNs of TH-GFP 1527 animals.

1528

1529 Extended Data Figure 3. Identification and characterization of VTA dopamine1530 neurons.

1531 a, UMAP representation of the complete dataset integrated using the Conos algorithm¹⁰⁵. Sample libraries prepared with 10x chromium single cell V2 chemistry 1532 (see Extended Data Fig. 1f-i) were excluded from the integration and downstream 1533 analyses. **b**, Expression of brain cell type marker genes in the integrated clusters. c, 1534 1535 Relative abundance of cell-types captured in each library. d, Distribution of the DN gene set score, in each cluster, of a set of known dopaminergic specific genes obtained 1536 1537 using the AddModuleScore function from the Seurat package. Nuclei belonging to 1538 cluster 4 were classified as putative dopaminergic nuclei (grey box). e, Dopaminergic gene set score overlaid on top of the UMAP representation. f, Distribution of gene set 1539 1540 score of known substantia nigra (SN) markers in the putative dopaminergic nuclei in 1541 each sample. Cells with a SN score greater than 0.65 were classified as putative SN 1542 cells and removed from further analyses. g, Number of dopaminergic nuclei per 1543 sample. h, MA plot showing the average expression and log2 fold change of VTA DNs versus non-DN cells. Top genes differentially upregulated in dopaminergic cells are well known DN markers *Th*, *Aldh1a1*, and *En1*^{111–113}. **i**, Normalized gene expression of 1544 1545

known dopaminergic marker genes overlaid on the UMAP representation. j, 1546 1547 Normalized expression of cocaine response gene *Cartpt*. **k**, Heatmap showing the 1548 scaled average gene expression of the top three marker genes in each of the VTA 1549 dopaminergic clusters. I, Example expression of a selection of IEGs (Fos, Nr4a1, 1550 Homer1), related to Fig. 1g. Each point shows the average log2 DN pseudobulk 1551 transcription of the gene in one replicate of the corresponding condition. The related integrated DN UMAPs represent the expression of the IEG genes in the saline and 1552 cocaine conditions for each gene. m, Results of the gene set permutation analysis. The 1553 1554 density plot shows the distribution of the median fold changes of equal sized 1555 randomized gene sets. The dotted vertical line shows the median fold change of the 1556 IEG gene set (n = 139). **n and o**, MA plots showing the log2 fold change ratio of 1557 cocaine and saline pseudo-bulk RNAseq samples versus the average expression of 1558 each gene. Colored dots indicate the average transcription level and the fold change of NMDA receptors in **n** and AMPA receptors in **0**. For **f** and **l**, boxplot whisker length 1559 represents 1.5 times the interquartile range. 1560

1561 Chriti: 118.20 - 121.68 Mb
 1562 Extended Data Figure 4. Cocaine-induced TAD boundaries are enriched for
 1563 synapse related genes.

a, Similar to Fig. 2b but for all groups found in Fig. 2a. A complete list of gene 1564 ontology (GO) terms can be found in Supplementary Table 10. b, Similar to Fig. 2c 1565 but for all groups found in Fig. 2a. Synaptic gene ontology (SynGO) enrichments were 1566 only found for boundaries specific to 1 or 14 days after cocaine. A complete list of 1567 synGO terms can be found in Supplementary Table 10. c, Similar to Fig. 2d but with 1568 both cocaine 14d GAM replicates shown side-by-side. Grip1 overlaps a 14-day 1569 specific boundary in both biological replicates (coloured boxes below contact density 1570 1571 heatmap; chr10: 118 – 122 Mb). d, Grip1 locus in GAM data produced from VTA 1572 DNs in TH-GFP animals. The saline-treated mouse with TH-GFP background is similar to wild-type. However, contact reorganization 1 day after cocaine result in a 1573 new TAD boundary at the Grip1 locus in the TH-GFP animal, not seen in the wildtype 1574 1575 mouse.

1576

1577 Extended Data Figure 5. MELTRONIC discovers extensive chromatin melting
 1578 and condensing after a single cocaine exposure genome-wide.

1579 a, The MELTRONIC pipeline was applied genome-wide between cocaine- and salinetreated DNs. Contact density value distributions (ranging 240 - 1040 kb) of cocaine-1580 treated DNs were compared to saline-treated DNs in 120 kb sliding windows with a 1581 1582 one-sided Kolmogorov-Smirnov test, and visualized as a cumulative probability distribution function. 40 kb genomic bins with a melting score > 5 or < -5 were 1583 identified as melting or condensing, respectively (corresponding to a multiple testing 1584 corrected $P < 1 \times 10^{-5}$). **b**, Linear version of Fig. 2e of representative example 1585 chromosomes. Condensing (pink, melting score < -5), melting (blue, melting score >1586 5) and non-changing (white) regions in cocaine 1 day vs. Saline (top row), cocaine 14 1587 1588 days R1 vs. saline (2nd row), and cocaine 14 days R2 vs. Saline (3rd row) 1589 comparisons. The positions of cocaine addiction genes (CAGs) and immediate early 1590 genes (IEGs) are shown below. c, Two-dimensional representation of melting score 1591 densities in replicate-reproducible bins from the cocaine 14 day R1 vs. saline 1592 comparison (y-axis) and cocaine 1 day vs. saline comparison (x-axis). Melting/condensing thresholds (5 and -5, respectively) are indicated as solid black 1593 lines. For visualization purposes, bins with melting scores > -1 and <1 in both 1594 1595 comparisons were removed. **d**, Assessment of melting score thresholds in the cocaine 1 day vs. saline comparison (left), cocaine 14 day vs. saline (middle; for bins where 1596

melting or condensing was reproducible in both replicates), and saline-treated DNs vs. 1597 1598 ESCs. The percentage of the genome identified as melting or condensing decreases 1599 near linearly with the threshold. The percentage of melting/condensing regions identified by a given threshold is higher between cell types than between treatments. 1600 1601 e, Histogram (left) showing the percentage of genomic regions found with the same 1602 melting state in the cocaine replicates. Venn plots (right) show the replicate overlap for 1603 non-melting, melting, and condensing regions. f, Similar to Fig. 2f but with both 1604 cocaine 14-day GAM replicates shown side-by-side, showing melting of Kcnj16 and 1605 Kcnj2, and condensing downstream of Sox9, in both 14 day replicates (chr11: 110 -115 Mb). g, The Kcnj16/Kcnj16 locus is similar in a saline-treated mouse with TH-1606 1607 GFP background. In contrast with the wildtype mouse, melting of the Kcnj2/Kcnj16 genes is not detected in the TH-GFP background mice, while the region downstream of 1608 1609 Sox9 has both melting and condensing regions. **h**, SynGO enrichments (p-adj < 0.05) of biological processes were identified for genes encoded in short-term melting and 1610 long-term condensing regions. A complete list of synGO terms can be found in 1611 1612 Supplementary Table 10. i, Long-term condensation of the Alk gene both 1 and 14 1613 days after a single cocaine exposure (chr17:69.28-73.00 Mb). Alk condenses in both 14 day replicates, though more distinctly in R1. The upstream region, containing a 1614 1615 putative cocaine addiction SNP (rs61751192) and the *Dlgap1* gene, melts 1 day after 1616 exposure, then returns to its pre-melted state in cocaine 14-day R1, but not R2. 1617 **j**, Similar to wildtype, the *Alk* region condenses, while the cocaine addiction SNP and 1618 the *Dlgap1* region melts, 1 day following cocaine in the TH-GFP mouse.

1619

1620 Extended Data Figure 6. Melting of the *Rbfox1* gene becomes progressively 1621 stronger after cocaine exposure.

a, Similar to Fig. 3B, but for melting scores 14 days after cocaine exposure. 1622 Condensing is associated with higher baseline (saline) transcription (one-sided 1623 Wilcoxon signed rank test, *P = 0.05). **b**, Log2 fold change (log2FC) distributions of 1624 melting, condensing and non-changing genes 1d after cocaine exposure. c, Log2FC 1625 distributions of melting, condensing and non-changing genes 14 days after cocaine 1626 exposure. n.s., not significant. For **b** and **c**, boxplot whisker length represents 1.5 times 1627 the interquartile range. d, Similar to Fig. 3c but also includes the second 14-day 1628 1629 cocaine replicate. Melting can be seen across the gene in both GAM replicates, with 1630 the strongest melting at a putative cocaine SNP (arrowhead). e, Enrichment of 1631 immediate early gene and circadian TFBS motifs for the *Rbfox1* putative SNP and nearby promoters (P2, P3 and P4; enrichment +/- 500kb around the feature) using 1632 1633 Simple Enrichment Analysis (SEA) or Analysis of Motif Enrichment (AME). Full 1634 result table can be found in Supplementary Table 9. f, Similar to Fig. 3d but for an additional example polymer, showing looping out of the TES and full gene 1635 1636 decondensation 1 and 14 days after cocaine, respectively. g, GAM matrices from the 1637 Rbfox1 region (chr16: 4.80 - 9.81 Mb, 30 kb resolution) compared to in-silico GAM 1638 reconstructed matrices from the ensemble of polymers (n=1100 for each condition) 1639 after modeling (Pearson r = 0.65, 0.56 and 0.64 for saline, cocaine 1 day and cocaine 14 days, respectively). **h**, Density estimates of pairwise distances at the *Rbfox1* gene 1640

- across 1100 polymer models in saline, cocaine 1- and 14-day conditions. Multiple
- 1642 pairwise distances show increased contacts after cocaine exposure, most pronounced
- 1643 by 14 days. **i**, The variability of measured distances between the *Rbfox1* gene features
- are increased after cocaine exposure with highest values measured after 14 days. j,
- 1645 Similar to Extended Data Fig. 6f, g, but modeling from PGNs (n=1100, Pearson
- 1646 r=0.65, GAM data from¹⁰). k, Similar to Fig. 3e, f and Extended Data Fig. 6j
- showing the average distance, normalized linear distance, and distance variation
- 1648 between *Rbfox1* promoters, the putative SNP, SNP-proximal exon and TES for PGNs.
- 1649 The models, distances and variability were most similar to DNs 14 days following
- 1650 cocaine treatment.

5 10 45 Percentage • • 0 1600 Extended Data Figure 7. Compartment dynamics after a single cocaine exposure. 1652 1653 a, Linear representation of scaled eigenvector values and compartment associations of 1654 representative chromosomes at 250 kb resolution. The full list of eigenvector values and compartment associations can be found in Supplementary Table 8. b, 67% of all 1655 genomic bins assigned to the A compartment after saline treatment contain at least one 1656 1657 highly expressed gene, while B compartments most frequently contain non-expressed 1658 genes (42%). c, Frequency of compartment switches between saline, cocaine 1 and 14 day wild-type samples. Compartment regions that change following cocaine exposure 1659 1660 (4.1 - 5.5% of bins) contain genes with functions in synaptic signalling. A complete 1661 list of gene ontology (GO) terms can be found in Supplementary Table 10. d, Most

1662 melting or condensing regions do not change compartment classification following 1 1663 or 14 days of cocaine exposure.

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.10.593308; this version posted May 12, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

1664

1665 Extended Data Figure 8. Hotspots of differential contacts are clustered in the1666 genome and propagate during the cocaine response.

a, Linear version of Fig. 4c showing cocaine (pink) and saline (green) hotspots across
all chromosomes. b, Differential contact count per genomic window, hotspot
thresholds (indicated with the dashed line), and preferred contact regions (hotspots) for
chromosome 18. c, Genomic lengths of contiguous hotspots, calculated as the number

1671 of genomic windows containing a hotspot from a given treatment before encountering

- 1672 a hotspot from the other treatment. Saline hotspots were longer than 1 day cocaine 1673 hotspots (two-sided Mann Whitney U-test, P = 0.02), with no difference between
- hotspots (two-sided Mann Whitney U-test, P = 0.02), with no difference between saline and 14-day cocaine hotspots. **d**, Heatmap of hotspot scores for cocaine 1 or 14
- 1674 same and 14-day cocame notspots. **u**, reatinap of notspot scores for cocame 1 of 14 1675 days, compared to saline. Clustering of IEGs by hotspot score shows a group of IEGs
- 1676 with high hotspot scores both 1 and 14 days after cocaine. Example genes are labelled
- 1677 pink.

1678

1679 Extended Data Figure 9. Immediate early genes and cocaine addiction associated
 1680 genes are preferentially expressed in a specific DN subcluster.

a, Similar to Fig. 5b, except showing the entire DN UMAP. The IEG group had the 1681 highest expression in the identified cluster (dashed lines) in saline treatment, which 1682 1683 was lower after cocaine exposure. b, Related to Fig. 5c, example UMAPs of IEG 1684 cluster marker genes. All genes were highly expressed in the IEG cluster (dashed lines), with some marker genes expressed in other clusters. c, Related to Fig. 5d, 1685 example region containing the Grid2 gene (chr6: 60.76 – 66.92 Mb), showing strong 1686 saline-specific contacts (differential matrix) and hotspots (tracks below matrix) 1687 1688 compared to both 1 and 14 days after cocaine. d, Example region containing the *Ptprt* gene (chr2: 158.32 - 163.08 Mb), showing melting at the gene TSS, and condensing at 1689 1690 the gene TES, both 1 and 14 days after cocaine exposure. e, UMAP of Ptprt expression 1691 shows high expression in the IEG cluster. f, Similar to Fig. 5e, except showing 1692 additional synGO gene ontology groups of genes found in cocaine-specific TAD

1693 boundaries with high expression in the IEG cluster.

1694
 • Vip cluster (C4881)
 • Vip cluster (C4879)
 • Vip cluster (C4893)
 • Other VTA DNs
 Extended Data Figure 10. Vip expressing DNs are located to the VTA midline and
 show high dopamine auto-receptor expression.

1697 a, Related to Fig. 5f, all mouse brain slices from single-cell MERFISH (scMERFISH)

1698 spatial transcriptomic data identified to contain DNs using cell-type specific markers

1699 (*Th* expression shown). Slices are named based on their scMERFISH annotation, and 1700

range from slice 24 - 36. Note, slice 34 is not shown as none of the cells were
identified as VTA DNs in the scMERFISH annotation. b, UMAP of *Vip* expression

1701 Identified as VIA DNs in the schierFISH annotation. **b**, UMAP of *Vip* expression 1702 (top) and *Vip* cluster annotation (bottom). **c**, The scMERFISH clusters with highest

1702 (top) and *vip* cluster aniotation (bottom). c, The setwick 1811 clusters with highest 1703 correlation to the snRNA-seq *Vip* expressing cluster are C4881, C4879 and C4893.

1704 **d**, Vip^+ DNs (colored dots) mainly localize to the dorsal-medial VTA.

1705	Captions for Supplementary Videos 1 to 8
1706	
1707	Supplementary Video 1. <i>Rbfox1</i> example polymer 1 in saline conditions. Rotating
1708	3D-image of the example polymer shown in Fig. 3d.
1709	
1710	Supplementary Video 2. <i>Rbfox1</i> example polymer 2 in saline conditions. Rotating
1711	3D-image of the example polymer shown in Extended Data Fig. 6f.
1712	
1713	Supplementary Video 3. <i>Rbfox1</i> example polymer 1, 1 day after cocaine exposure.
1714	Rotating 3D-image of the example polymer shown in Fig. 3d.
1715	
1716	Supplementary Video 4. <i>Rbfox1</i> example polymer 2, 1 day after cocaine exposure.
1717	Rotating 3D-image of the example polymer shown in Extended Data Fig. 6f.
1718	
1719	Supplementary Video 5. <i>Rbfox1</i> example polymer 1, 14 days after cocaine
1720	exposure Rotating 3D-image of the example polymer shown in Fig. 3d.
1721	
1722	Supplementary Video 6. <i>Rbfox1</i> example polymer 2, 14 days after cocaine
1723	exposure. Rotating 3D-image of the example polymer shown in Extended Data Fig.
1724	6f.
1725	
1726	Supplementary Video 7. IEG expressing dopamine neurons localize along the
1727	entire midline of the VTA. Rotating 3D-image of the IEG DN cluster mapped to
1728	single-cell MERFISH data shown in Fig. 5g.
1729	
1730	Supplementary Video 8. Vip expressing dopamine neurons localize along the
1731	dorsal midline of the VTA. Rotating 3D-image of the Vip DN cluster mapped to
1777	single call MEDEISU data shown in Extended Data Fig. 10d

1732 single-cell MERFISH data shown in **Extended Data Fig. 10d**.

1733	Tables
1734	
1735	Supplementary Table 1. Genomic coordinates of immediate early genes (IEGs) and
1736	cocaine addiction genes (CAGs).
1737	
1738	Supplementary Table 2. Marker genes of dopamine neuron subpopulations in the
1739	ventral tegmental area (VTA)
1740	
1741	Supplementary Table 3. Differential gene expression table of ventral tegmental area
1742	dopamine neurons from mice treated with cocaine vs. saline treated controls.
1743	
1744	Supplementary Table 4. Position of topologically associating domain (TAD)
1745	boundaries in individual samples and sample comparisons.
1746	
1747	Supplementary Table 5. MELTRONIC scores and MELTRON scores of long genes.
1748	
1749	Supplementary Table 6. Differential contact count and hotspot locations.
1750	
1751	Supplementary Table 7. Experimental, sequencing and QC metrics for GAM
1752	samples.
1753	
1754	Supplementary Table 8. Compartment eigenvector (EV) values and A/B
1755	classification for GAM datasets.
1756	
1757	Supplementary Table 9. Transcription factor binding motif enrichment results at the
1758	Rbfox1 locus.
1759	
1760	Supplementary Table 10. Full list of enriched gene ontology (GO) terms and
1761	associated genes.