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Abstract   26 
The adult human central nervous system (CNS) is remarkably complex, with neural cells 27 
displaying extensive transcriptional heterogeneity. However, how different layers of 28 
epigenetic regulation underpin this heterogeneity is poorly understood. Here, we profile the 29 
adult human CNS from distinct regions, for chromatin accessibility at the single-nuclei level. 30 
In addition, we simultaneously co-profiled the histone modifications H3K27me3 and 31 
H3K27ac at the single nuclei-level, providing their first map in all major human CNS cell 32 
types. We unveil primed chromatin signatures at HOX loci in spinal cord-derived human 33 
oligodendroglia (OLG) but not microglia. These signatures were reminiscent of 34 
developmental OLG but were decoupled from robust gene expression. Moreover, using 35 
high-resolution Micro-C, we show that induced pluripotent stem cell (iPS) derived human 36 
OLGs exhibit a HOX chromatin architecture compatible with the primed chromatin in adult 37 
OLGs, and bears a strong resemblance not only to OLG developmental architecture, but also 38 
high-grade pontine gliomas. Thus, adult OLG retain epigenetic memory from developmental 39 
states, which might enable them to promptly transcribe Hox genes, in contexts of 40 
regeneration, but also make them susceptible to gliomagenesis. 41 
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Introduction  43 
  44 
The human central nervous system (CNS) is a complex tissue encompassing the brain and 45 
spinal cord. It contains billions of diverse cells acting in concert to carry out executive 46 
functions including relay of sensory and motor input as well as integration, assimilation, and 47 
storage of information.  The CNS arises from a uniform neural tube early during human 48 
development, which then undergoes waves of proliferation and transcription factor 49 
mediated patterning that ultimately leads to regionalization at the posterior-anterior and 50 
ventral-dorsal axis. This general patterning information is essential to determine the identity 51 
of the different areas in early stages in development, leading subsequently to the 52 
specification of unique neural types in the different regions, which themselves have distinct 53 
gene regulatory programmes in place.   54 
  55 
Mature oligodendrocytes (MOLs) wrap neuronal axons with lipid-rich myelin, enabling 56 
rapid saltatory conduction of the action potential, consequently allowing precise 57 
coordination between different areas of the CNS1–3. MOLs are primarily found within the 58 
white matter (WM) areas of the CNS, whereas their progenitor population – oligodendrocyte 59 
precursor cells (OPCs) – are uniformly distributed throughout the CNS. In the mouse CNS, 60 
OPCs arise in distinct developmental waves, but transcriptionally converge after birth before 61 
differentiating to transcriptionally divergent MOLs in the adult mouse CNS.3–5,6 Previous 62 
studies investigating the oligodendroglial (OLG) lineage have identified region-specific 63 
transcriptomic differences in the human CNS 7,8.   64 
 65 
While the transcriptome of neural cells in the human adult CNS has been well-characterized, 66 
the underlying regulatory chromatin landscape remains largely obscure. As the central 67 
repository of genetic information, chromatin is packaged inside the nucleus in a 68 
predominantly inaccessible state. Different regions of the genome are made accessible to 69 
allow for transcription and regulation of gene expression. Therefore, studying the accessible 70 
chromatin landscape provides a snapshot of the underlying regulatory blueprint defining a 71 
cell state9–14. Previous single-cell studies have leveraged this to identify human organ-specific 72 
regulatory elements at an organism level15,16, to profile the regulatory circuits underlying cell 73 
specification and differentiation during development16,17 and to understand how single-74 
nucleotide variants disrupt regulatory element function in neurodegenerative diseases and 75 
cancers18–23. However, chromatin accessibility covers only an outer layer of epigenetic 76 
regulation. Post-translational modifications (PTM) at histones in nucleosomes and at the 77 
DNA have been shown to play essential roles in the regulation of transcription24.  Delving a 78 
step further to capture nucleosomal information at the histone level has the potential to 79 
enhance the resolution by functionally annotating specific regions of the genome. The rise of 80 
powerful single-cell epigenomic technologies has now made this level of profiling attainable. 81 
Single-cell studies covering DNA methylation25 and individual histone modifications26–36 82 
have started elucidating these epigenetic landscapes in the mouse adult CNS; however the 83 
exploration of the adult human CNS remains limited and currently only DNA methylation 84 
and chromatin architecture have been analysed at the single cell level37. Regarding histone 85 
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modifications, current datasets are restricted to single cell analysis of H3K27me3 of a 86 
glioblastoma tumour from one patient30 and bulk characterization of glioblastoma tumours18, 87 
or specific fluorescent-activated nuclei sorted subpopulations in the human cortex38, while 88 
multi-modal single-cell profiling of the different cell states in the adult human CNS is still 89 
lacking. 90 
  91 
Here, we provide a single-cell chromatin accessibility dataset of the adult human CNS across 92 
three regions spanning the anteriorposterior axis of the human CNS in different adult ages 93 
and sex, together with the first joint multi-modal single-cell histone PTM dataset in the adult 94 
human CNS. These resources, available at the UCSC Cell and Genome Browsers (https://cns-95 
nanocuttag-atac.cells.ucsc.edu), allow us to define for the first time H3K27me3 and H3K27ac 96 
landscapes in the major CNS cell populations across regions, leading for instance to the 97 
identification of a novel enhancer for the human SOX10 gene, which encodes a transcription 98 
factor essential for oligodendrogenesis. We also define neural cell-specific regulatory 99 
networks, identifying transcription factors that had not previously been associated with 100 
specific neural cell states.  Importantly, we determine that the chromatin state of adult OLGs 101 
is reminiscent of their developmental counterparts, at the chromatin accessibility, histone 102 
PTM and chromatin architecture levels. Our analysis indicates that epigenetic memory of key 103 
developmental genes is in place in adult OLGs, which might prime these cells to rapidly 104 
activate transcription of Hox loci, and thus participate in regenerative processes, while 105 
making them susceptible to being hijacked in tumour transformation, such as gliomagenesis. 106 
 107 

Results 108 
 109 
Single-nucleus ATAC-seq of the adult human CNS reveals differential chromatin and TF 110 
motif accessibility in different CNS cell types 111 
We collected a cohort of 60 tissue samples from 20 post-mortem donors ranging in age from 112 
34 to 74 years old and with equal representation of both sexes. From each donor, we had 113 
frozen tissue samples from three distinct regions of the CNS: primary motor cortex (BA4), 114 
cerebellum (CB) and cervical spinal cord (CSC) (Supplementary Table 1). Based on tissue 115 
quality metrics39 (see Methods), we isolated WM-dominant areas from the tissue, dissociated 116 
them into single-nuclei suspensions and performed single nucleus ATAC-seq (snATAC-seq) 117 
using the 10x Genomics Chromium platform (Fig. 1a). After sequencing and stringent quality 118 
control based on the number of unique reads and per-cell TSS enrichment score (Extended 119 
Data Fig. 1), we retained 108,626 nuclei representing all three regions (Motor Cortex: 55037 120 
cells, Cerebellum: 34819 cells, Cervical Spinal Cord: 18770 cells), with a median of 8154 121 
fragments per cell, and a median TSS enrichment score of 10.7 (Extended Data Fig. 1a-b). We 122 
built a count matrix using a 2kb binned genome as the features and retained the top 100,000 123 
most accessible bins40,41. After Term Frequency-Inverse Document Frequency (TF-IDF) 124 
normalization, dimensionality reduction and clustering on the nearest neighbour graph, we 125 
obtained 16 distinct clusters across the three regions (Fig. 1b,d). Since gene expression is 126 
correlated to promoter and TSS activity, we built a gene activity matrix using the aggregate 127 
signal spanning gene promoters and used the signal as a proxy for gene expression. To 128 
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annotate the cell types, we assigned a metagene score for the broad cell types found in the 129 
CNS29 (see Methods). Using metagene scores, we identified all major cell types including 130 
cerebellar excitatory neurons (CBEX: 21801 cells), cerebellar inhibitory neurons (CBINH: 131 
1301 cells), cortical excitatory neurons (CXEX: 9671 cells), cortical inhibitory neurons 132 
(CXINH: 4353 cells). Conversely, the glial cell populations were relatively homogeneous, and 133 
we identified mature oligodendrocytes (MOL: 45325 cells), OPCs (OPC: 5130 cells), microglia 134 
(MIGL: 9528 cells), astrocytes (AST: 10098 cells) and pericytes/endothelial cells (ENDO: 1419 135 
cells) (Extended Data Fig. 2b-c). We identified several marker genes for the different 136 
populations including SOX10 for the OLG lineage, PDGFRA for OPCs, PLP1 for MOLs, 137 
AQP4 for AST, AIF1 for MIGL, RBFOX3 for excitatory neurons and GAD1 for inhibitory 138 
neurons (Fig. 1d-e; Extended Data Fig. 2c). We confirmed the validity of our metagene-139 
derived annotations by integrating the gene activity object with a paired single-nuclei 140 
transcriptomic dataset of the same cohort39 and a previously published dataset42 (Extended 141 
Data Fig. 2a).  142 
 143 
We then investigated transcription factor (TF) motif accessibility differences in the different 144 
cell types in our dataset, using chromVar13. Clustering on the motif deviations identified 145 
marker TFs for the different populations, for instance SOX transcription factors for 146 
oligodendroglia, or a specific RORA enrichment in the cerebellar neurons, which is required 147 
for cerebellar Purkinje cell maturation43 (Extended Data Fig. 2d-e). Interestingly, while the 148 
neurons clustered distinctly according to region and broad electrophysiological profiles, we 149 
did not observe the same distinctions within the glial populations (Extended Data Fig. 2f), 150 
suggesting the chromatin states for glial cells may be more region-agnostic and present 151 
plasticity, to account for their varied functions.  152 
 153 
Single nucleus nanoCUT&Tag H3K27ac and H3K27me3 profiling of major cell 154 
populations in the adult human CNS 155 
Specific histone PTMs are associated with active and repressed transcriptional states24,44–46. 156 
Histone PTMs serve as signalling beacons on the chromatin and can inform about the 157 
functional state of local chromatin, providing a more granular resolution than accessibility 158 
alone. We have recently developed nanoCUT&Tag, which allows targeting of two histone 159 
PTMs simultaneously in the same cell using uniquely barcoded nanobody-Tn5 (nanoTn5) 160 
fusion proteins31. While nanoCUT&Tag has been applied at a single cell level to the mouse 161 
brain31, it has not been applied to the human CNS. For this purpose, we adapted the protocol 162 
of nuclear extraction performed for the archival tissue in snATAC-seq for nanoCUT&Tag 163 
(see Methods). We were able to successfully profile H3K27ac (active mark) and H3K27me3 164 
(repressive mark) simultaneously, in three cervical spinal cord and three cortical frozen 165 
archival tissue samples from a total of four donors (Fig. 1a, c). The custom Tn5 barcodes 166 
allows us to de-multiplex the data into the respective modalities and proceed with individual 167 
processing, while the shared 10x barcode incorporated in the GEMs links the cells from each 168 
modality together. After using our custom demultiplexing and cell-calling pipeline31 169 
(Extended Data Fig. 3a-c; see Methods), we identified 66,113 and 66,727 barcodes in the 170 
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H3K27ac and H3K27me3 datasets respectively, with an 88% barcode overlap, leading to 171 
58,696 shared cells. We captured a median of 2099 and 1268 unique fragments for H3K27ac 172 
and H3K27me3 respectively, lower but still comparable to metrics in our published mouse 173 
datasets31 (Fig. 1f). After calling peaks, the fraction of reads in peaks (FRiP) was 0.29 and 0.17 174 
for H3K27ac and H3K27me3, respectively (Fig. 1f). The low FRiP values are expected since 175 
our method relies on two-step tagmentation leading to variable fragment length (see 176 
Methods). Nonetheless, we have shown previously that lower FRiP does not negatively 177 
impact clustering and cell type identification31.  178 
 179 
H3K27ac is an active mark and canonically marks active enhancers and promoters44. As such, 180 
the signal has strong correlation with chromatin accessibility. Hence, we integrated the 181 
H3K27ac dataset with our snATAC-seq dataset (Extended Data Fig. 3d; see Methods).  After 182 
integration and label transfer, we identified the MOL (40268 cells), CXEX (8821 cells), MIGL 183 
(4297 cells), AST (2169 cells), CXINH (1774 cells), OPC (820 cells) and ENDO (547 cells) 184 
populations (Extended Data Fig. 3d-e). Genome browser tracks showed the expected 185 
enrichment of the respective signal for each of the identified cell types (Extended Data Fig. 186 
3f). To ascertain the quality of cell-type specific histone PTM landscapes, we then clustered 187 
all genes based on the joint H3K27ac and H3K27me3 profile in each cell type. This allowed 188 
the identification of distinct clusters of genes, with increased active or repressive mark. We 189 
then performed a cell-type enrichment analysis using the genes in the active-mark dominated 190 
clusters and confirmed that the same cell types that were queried were enriched in the 191 
respective populations (Extended Data Fig. 4).  192 
 193 
To check the specificity of the antibody signal, we generated meta-signal plots for both 194 
modalities looking at H3K27ac and H3K27me3 peaks in MOLs. We observed a strong 195 
enrichment of each mark’s signal in the respective peak set with minimal cross-mapping, 196 
confirming the specificity of the H3K27me3 and H3K27ac signal. The small cohort of genes 197 
showing overlap in H3K27ac and H3K27me3 signal might correspond to poised genes47. We 198 
also confirmed the enrichment of H3K27ac signal and absence of H3K27me3 at peaks called 199 
in the ATAC data, and in a published bulk H3K27ac dataset38 (Fig. 1i). We were unable to 200 
find a representative H3K27me3 dataset in the human brain to benchmark against, 201 
highlighting this as a unique dataset providing both H3K27ac and H3K27me3 at single-cell 202 
resolution in the brain and spinal cord. 203 
 204 
We then used the ATAC, H3K27ac and H3K27me3 human CNS single-nuclei datasets to 205 
perform trimodal clustering of the entire genome and identify patterns and correlations 206 
between the three modalities in neural cell types (Fig. 1g; see Methods). Although we 207 
identified expected patterns of the three signals across the genome, the overall matrix looked 208 
scattered, highlighting the complexity of the regulatory genome, but also the sparsity of the 209 
datasets. We identified different regions of the genome that were 1) accessible in all cell types, 210 
likely corresponding to housekeeping genes; 2) specifically accessible in each cell type with 211 
corresponding H3K27ac signal; 3) presented shared H3K27me3 in all cell types (Fig. 1g). We 212 
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then used the signal in all genomic bins to look at correlations between the different cell 213 
types, and observed, as expected strong anti-correlation between the active ATAC and 214 
H3K27ac marks with the inactive H3K27me3 mark (Fig. 1h). Interestingly, chromatin 215 
accessibility exhibited a higher correlation across the different cell types overall, unlike 216 
H3K27ac, which presented higher correlation between glial populations or between neuronal 217 
populations (Fig. 1h). These findings suggest that H3K27ac may be a better discriminant of 218 
cell type-specific regulatory activity compared to chromatin accessibility. 219 
 220 
Identification of a novel enhancer for the SOX10 gene in human OLGs 221 
Promoters and enhancers are characterized by open chromatin and H3K27ac deposition, 222 
which makes our single-nuclei ATAC and nanoCUT&Tag datasets well suited to identify 223 
known but also novel candidate cis-regulatory elements (cCREs) (Extended Data Fig. 5a; 224 
Supplementary Table 2; see Methods). To determine if we indeed could identify known 225 
CREs, we focused on the SOX10 gene, which has several well characterized enhancers, some 226 
of which are operational in the OLG lineage48. Indeed, we found that the SOX10 promoter 227 
was co-accessible with several peaks corresponding to the enhancers in OLG, but not in other 228 
lineages49 (Extended Data Fig. 5b,d). Importantly, we found that the promoter was also co-229 
accessible with two distal upstream peaks, previously not associated with SOX10 (Extended 230 
Data Fig. 5b). One peak corresponded to the promoter of the ANKRD54 gene, which we 231 
found to be accessible in all cell types. However, the second peak, situated 91kb upstream of 232 
SOX10 was intergenic, and accessible only within the OLG lineage, suggesting it may be an 233 
uncharacterized cell-type specific enhancer for this lineage.   234 
 235 
Interestingly, we also found that this SOX10 distal enhancer was co-accessible with the 236 
CDC42EP1 promoter, located 300kb away (Extended Data Fig. 5b). CDC42EP1 encodes the 237 
effector protein of CDC42, which is associated with myelin sheath compaction in MOLs50. 238 
Interestingly, we observed increased accessibility of the CDC42EP1 promoter specifically 239 
within MOLs, but not OPCs. We checked the co-accessibility links within the OPCs and 240 
MOLs separately, and found SOX10 interactions with the canonical enhancers, and the new 241 
enhancers in both populations, but the CDC42EP1-enhancer connection only in MOLs 242 
(Extended Data Fig. 5e), suggesting that the chromatin looping concerning this enhancer is 243 
altered upon OLG lineage progression. We also queried this locus in our nanoCUT&Tag 244 
dataset and observed an increase in the H3K27ac signal at the identified enhancer in MOLs 245 
and OPCs, with an increase in H3K27ac at the CDC42EP1 promoter in MOLs specifically 246 
(Fig. 1l).  247 
 248 
This enhancer has high conservation with four other species including the phylogenetically 249 
close species rhesus monkey and mouse (Extended Data Figure 5c). The PhyloP score for the 250 
bases in this locus, which measures evolutionary conservation51, was also positive and higher 251 
than the negatively scored flanking bases. This indicates slower mutation rates, and therefore 252 
higher likelihood of conservation, which is characteristic of enhancer evolution52. We used V 253 
plots53,54 to visualize the density and pattern of tagmentation events in a 3.5 kb locus spanning 254 
the enhancer. The plot revealed a strong density of fragments corresponding to the sub and 255 
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mono-nucleosomal bands, but also intermediate-length fragments, indicative of dynamic TF-256 
bound open chromatin (Fig. 1j). Zooming in further into a 300bp window revealed a clear TF 257 
footprint in the tagmentation density, corroborated by the expected fragment distribution in 258 
the V plot (Fig. 1k). A motif analysis of the core footprint identified a TFAP2A motif 259 
coinciding well with the expected binding site from the V plot. The AP2-alpha TF has been 260 
shown to regulate SOX10 expression but specifically via the U3 enhancer48, which is distinct 261 
from this distal enhancer. This suggests that a new distal enhancer may be regulating SOX10 262 
expression in the OLG lineage.  263 
 264 
Collectively, these findings propose a new enhancer that regulates SOX10 in both MOLs and 265 
OPCs, and selectively regulates CDC42EP1 in MOLs and highlight the potential of the ATAC 266 
and nanoCUT&Tag datasets in identifying and functionally annotating putative regulatory 267 
elements.  268 
 269 
Novel core regulatory TF networks in adult human neural cell types 270 
Using our H3K27ac and ATAC datasets, we constructed a core TF regulatory network for 271 
each identified cell type, by looking at enhancer and TF motif accessibility. In the constructed 272 
TF networks, we looked at nodes with more outgoing connections than incoming 273 
connections, indicating these were strong regulators in the TF network (Fig. 2a). Along with 274 
the expected TFs such as OLIG2 in MOLs and OPCs, IRF2 in MIGL, CUX2 and SATB1 in 275 
cortical neurons (CXEX and CXINH), we also identified new regulators, such as OLIG3 in 276 
MIGL and ZBTB38 and HMX1 in AST (Fig. 2b; Supplementary Table 3), highlighting the 277 
utility of this dataset in identifying novel TF networks in neural cell types. PAX3 was 278 
identified in OPCs, which could reflect a dorsal origin of a subset of OPCs18.  We also 279 
identified within the OPC population, but not in MOLs, PRRX1, a TF shown to regulate OPC 280 
quiescence55. Interestingly, when we looked at expression levels of the core TFs, we found 281 
that the highest expressed TF in the network was not the strongest TF, except for CAMTA1 282 
in CXINH neurons. Indeed, ZBTB20 which is upregulated after cerebral ischemia in neural 283 
progenitor cells56, was the highest expressed TF in the AST, MOL and OPC populations but 284 
was only the 9th, 20th and 29th strongest TF in the respective networks (Fig. 2c-d). 285 
 286 
We also investigated whether TF networks change upon cell type differentiation using OLG 287 
as a paradigm, and specifically the OPC and MOL populations. Overall, we found over 90% 288 
overlap in the TFs in each population’s core network, suggesting high TF coherence 289 
throughout the lineage (Fig. 2e). Nevertheless, we found several non-overlapping TFs with 290 
high regulatory strength and expression that might regulate the transition from OPCs to 291 
terminally differentiated MOLs, such as – ARX, MYC, SIX1 and FOXF2 in OPCs, and NFAT5, 292 
ARNT, ZNF566 and ZNF333 in MOLs (Supplementary Table 3). 293 
 294 
We then looked at TFs that switched status from being a strong regulator in the progenitor 295 
state to a weaker regulator in the differentiated state (positive score in OPCs and negative in 296 
MOLs), or vice-versa, and found among others, BHLHE22 as a strong TF in the MOLs (Fig. 297 
2f). BHLHE22 expression has been shown to increase in OPCs upon T3 stimulation and plays 298 
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a role in differentiation and myelination57, in line with our finding that BHLHE22 increases 299 
in strength in MOLs. In OPCs, we found ONECUT1, which regulates NKX6-2 expression, a 300 
key TF in OPCs. Interestingly, we also found several TFs in the HOX family of proteins, as 301 
strong regulators in OPCs, with weaker strength in MOLs (Fig. 2f; Extended Data Fig. 6a). 302 
Though the regulator strength was higher in OPCs, they were also present in the MOL core 303 
network, suggesting they may have higher potential in the OPC stage, which then goes down 304 
upon differentiation (Fig. 2g-h). While the activity reflects the presence of spinal cord OPCs, 305 
these HOX TFs were not identified in the core network for any of the other cell types, 306 
suggesting this may be specific to the adult OLG lineage (Supplementary Table 3). 307 
 308 
 309 
Spinal cord adult OLGs exhibit increased accessibility at HOX genes, decoupled from 310 
gene expression 311 
The HOX family of proteins are evolutionarily conserved transcription factors expressed in 312 
embryonic development for patterning58. Since they are expressed within the developing 313 
spinal cord59, and we observed potential regulatory activity in human adult OLG, we 314 
investigated if there was regional specificity to these TFs, by looking at differential chromatin 315 
accessibility (DA) between the motor cortex (BA4) and cervical spinal cord (CSC)-derived 316 
OLGs. We found differential accessibility in MOLs and OPCs at the promoter/gene body of 317 
genes that were previously observed to be differentially expressed in these regions, such as 318 
PAX3, SKAP2, SPARC, HCN2 in CSC-OLGs and FOXG1, NELL1 in BA4-OLGs39 (Fig. 3a). 319 
Moreover, we also observed several HOX cluster genes presenting differential chromatin 320 
accessibility in the cervical spinal cord-OLGs when compared to cortical OLGs (Fig. 3a-b, 321 
Extended Data Fig. 6b). Genome browser tracks further revealed that both the OLG lineage 322 
and AST, but not MIGL presented increased accessibility at the HOX genes in spinal cord 323 
(Fig. 3c). The pattern of HOX gene accessibility that we observed was in line with the genes 324 
that would be expressed during development in the cervical area of the spinal cord60.As 325 
promoter activity can serve as a proxy for transcriptional activity, we reasoned that the 326 
promoter chromatin accessibility signal may correspond to these genes being expressed. We 327 
thus co-profiled both chromatin accessibility and gene expression in the same cell using the 328 
10x Genomics Chromium multiOme platform on samples from the motor cortex and the 329 
cervical spinal cord (Extended Data Fig. 6c). We integrated the multiOme-ATAC with our 330 
snATAC-seq dataset and annotated the cells using a k-nearest neighbours (kNN) classifier 331 
(see Methods). The co-profiled dataset revealed that chromatin accessibility and expression 332 
of genes associated with OLG identity, such as PTPRZ1 (OPCs), PLP1 (MOLs) and the TF-333 
encoding SOX10, OLIG1, OLIG2 genes were highly correlated (Fig. 3d). In contrast, we 334 
observed increased accessibility of several HOX genes in the cervical spinal cord-OLGs, 335 
while RNA expression was residual (Fig. 3d). To ascertain if the weaker RNA signal detected 336 
was a limitation of sequencing depth, we examined the expression of HOX genes in a high-337 
depth single-cell transcriptomic atlas61 of the adult human brain. We observed similar 338 
residual levels of HOX gene expression (Extended Data Fig. 6d), suggesting a transcriptional 339 
and epigenomic decoupling at HOX loci in adult OLGs, unlike during development.  340 
 341 
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HOXA/D genes are primed for expression in subsets of spinal cord-derived adult human 342 
oligodendroglia 343 
Since HOX genes present open chromatin in adult human OLGs, while their expression is 344 
attenuated, mechanisms other than chromatin accessibility may control HOX gene 345 
transcription. We therefore checked for deposition of H3K27ac and H3K27me3 between 346 
spinal cord-OLGs and cortical-OLGs at these loci. Pseudo-bulk genome browser tracks 347 
showed that cortical cells displayed a pan cluster deposition of H3K27me3 reflecting the 348 
canonical pattern of Polycomb Repressive Complex 2 (PRC2) mediated HOX gene 349 
repression62 (Fig. 4a-b; Extended Data Fig. 7a-b).  In contrast, our data indicated anti-350 
correlated gradients of H3K27me3 and H3K27ac across the HOXA and HOXD clusters in 351 
spinal cord-OLGs (Fig. 4a-b). Moreover, we observed differential deposition of these marks 352 
along HOX genes, reminiscent of the concept of HOX gene collinearity during 353 
development60,62,63. The 3’ end of the clusters (for example, HOXA1 to HOXA7) showed 354 
elevated active marks (ATAC, H3K27ac) and a reduction of H3K27me3, while the 5’ end of 355 
the clusters (for example, HOXA10 to HOXA13) showed the opposite with an almost sharp 356 
inversion in the middle of the cluster. Thus, the pattern observed in the human adult spinal 357 
cord-OLGs reflects a pattern that would be seen during embryonic development in the 358 
cervical regions of the spinal cord, when these HOX genes are actively transcribed, 359 
suggesting epigenetic memory of the developmental chromatin state in these adult OLGs.  360 
  361 
To identify domains with significantly differential signal, we looked at the signal from all 362 
three modalities, in a genomic window covering the HOX clusters and spanning 50kb 363 
upstream and downstream of each cluster. We binned the region into discrete windows and 364 
identified borders between adjacent windows with significant changes in signal (see 365 
Methods). By overlapping the borders detected in each modality, we identified distinct 366 
domains across which there were changes in the levels of all three modalities. Within the 367 
HOXA cluster we identified three strong, one moderate border and one weak border (Fig. 368 
4c-d). Two of the strong borders were situated near the 3’ end of the cluster, flanking HOXA1 369 
to HOXA4, and were present in all modalities (Fig. 4d-e). A weak border around HOXA7 370 
demarcated increased levels of H3K27me3 with increased chromatin accessibility, while a 371 
strong border at HOXA10 coincided with the point at which we saw the signal switch from 372 
predominantly accessible to predominantly repressed via H3K27me3. A moderate border 373 
marked the decrease of the heavily inactive signature at the 5’ end of the cluster (after 374 
HOXA13). The strong border identified at the 3’ end of the cluster suggested further nuance. 375 
Although the levels of H3K27me3 at the 3’ end (HOXA1 to HOXA7) were far lower than the 376 
5’ end, it was distinctly greater than the flanking chromatin immediately upstream of the 377 
cluster and to the left of the identified border. Thus, we could demarcate three regulatory 378 
domains around the HOXA cluster – 1) inactive chromatin upstream of the cluster; 2) primed 379 
chromatin at the 3’ end and 3) silenced chromatin at the 5’ end (Fig. 4e). While the HOXB 380 
and HOXC clusters displayed moderate borders at the 3’ end of the respective clusters, the 381 
HOXD cluster displayed strong borders at the 3’ end and in the middle of the cluster, as in 382 
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the HOXA cluster (Extended Data Fig. 7c). Thus, this indicates three distinct levels of the 383 
H3K27me3 repressive mark at HOX loci in adult OLGs, suggesting that this increased level 384 
of H3K727me3 at the 3’ end might be sufficient to prevent gene expression and maintain the 385 
genes in a primed state.  386 
 387 
The multimodal nature of the nanoCUT&Tag data allows to look at the deposition pattern of 388 
H3K27ac and H3K27me3 within the same cell. We looked at the HOXD cluster and ranked 389 
the cells in decreasing order of H3K27me3 signal. At the 5’ end of the HOXD cluster (HOXD8 390 
to HOXD13), we saw a clear pattern of high H3K27me3 signal in all cells. However, at the 3’ 391 
end we identified 2 sub-groups, displaying either a medium (Group1) or low (Group2) level 392 
of H3K27me3. Interestingly, when looking at the corresponding H3K27ac signal in the same 393 
cells, we did not see this bimodal distribution of H3K27ac at the 3’ end. Instead, all cells 394 
uniformly displayed the same level of the active mark at the 3’ end of the cluster (Fig. 4f). 395 
This suggested that while a large proportion of adult OLGs present a primed repressive state 396 
at the HOX loci, a sub-set of OLGs with no H3K27me3 deposition at the 3’ end but high 397 
H3K27ac, may be capable of expressing these genes and could explain the low leaky RNA 398 
expression that was observed in single cell transcriptomic studies.   399 
 400 
 401 
Developmental architecture of HOX genes in iPS-derived human OLGs  402 
HOX gene transcription has been shown to be regulated by the local chromatin architecture 403 
during early human development62,63. Given that we observed epigenetic memory of the 404 
developmental state of the chromatin at the HOX genes in adult OLGs, we questioned 405 
whether the 3D chromatin conformation plays a role in the epigenetic state of HOX genes in 406 
OLGs. The activation of the HOX genes in development is associated with the dissolution of 407 
a topologically associated domain (TAD) containing the HOX genes and the formation of 408 
two distinct centromeric and telomeric TADs (c-Dom, t-Dom) connecting the HOX genes 409 
with enhancers in the flanking regions60,63. To check the TAD structure in OLGs, we 410 
performed high depth Micro-C, a high-resolution proximity ligation-based assay for 411 
capturing genome-wide chromatin contacts64, in iPS-derived human OPCs65,66, capturing 412 
approximately 4 billion paired-end reads (Extended Data Fig. 8a-b). We also performed 413 
Micro-C in human primary memory B-cells, to compare with a terminally specified cell from 414 
another developmental lineage. We were able to capture broad compartment-level 415 
information67 as well as TAD structures68 at a resolution of 5kb, which corresponded with the 416 
well characterized SOX9-KCNJ2 locus (Extended Data Fig. 8a-e). The active A 417 
compartments67 identified in the OPCs also corresponded to regions of high accessibility in 418 
OPCs, further strengthening the validity of the data (Extended Data Fig. 8f). Finally, we 419 
could also identify cell type-specific loops and interactions in both B-cells and the human 420 
OPCs (Extended Data Fig. 8g).  421 
   422 
We checked the chromatin architecture around the HOXA and HOXD clusters and found 423 
distinct differences between hOPCs and B-cells. While in B-cells, these HOX clusters were 424 
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tightly interacting within a TAD, in OPCs they displayed a more open architecture, and 425 
instead were interacting broadly with regions upstream and downstream of the clusters in 426 
two large TADs, reminiscent of the developmental c-Dom and t-Dom in development63 (Fig. 427 
5a). A boundary analysis revealed a strong border within both clusters (Fig. 5b). We then 428 
overlaid the 3D architecture data with the accessibility and histone PTM data from the 429 
human adult spinal cord-derived OLGs and observed the TAD boundary between the c-Dom 430 
and t-Dom coinciding with the strong border identified earlier separating the primed from 431 
the silenced chromatin (Fig. 5c; Extended Data Fig. 9a). This suggested that the 3’ genes and 432 
5’ genes of each cluster might be associated with an active and silent TAD respectively. 433 
Within the TADs, we also observed sub-contacts between regions outside the cluster. 434 
Interestingly, within the HOXA active TAD, we observed a contact with a region in the 435 
SKAP2 locus, which contains a well-known enhancer regulating the expression of 3’ HOXA 436 
genes in development69 (Fig. 5c).  437 
 438 
HOX genes with primed chromatin in spinal cord OLG are activated in high-grade 439 
gliomas  440 
Ectopic activation of HOX genes is a feature of several cancers60,70. Within the CNS, midline 441 
high-grade gliomas (HGG) bearing the H3K27M mutation have been shown to have OPC 442 
origins18,71. These gliomas that affect children and young adults exhibit strong spatiotemporal 443 
specificity, arising from more posterior regions in the CNS, such as the thalamus, brain stem, 444 
cerebellum, and spinal cord71,72 (Extended Data Fig. 9b). They also present PRC2 function 445 
disruptions, affecting the global distribution of mono, di and tri methylation of the H3K27 446 
residue18. The molecular architecture around the HOX genes in pontine and thalamic 447 
H3K27M HGGs faithfully recapitulates the locus of origin, providing a spatiotemporal 448 
address for the cell of origin18. Our observation of primed accessibility, histone PTM 449 
deposition and 3D chromatin architecture around several HOX genes in cervical spinal cord 450 
prompted us to ask whether the H3K27M-driven PRC2 disruption and specific HOX gene 451 
activation in midline/pons gliomas might be associated with the observed HOX priming in 452 
adult OLGs. Indeed, of the HOX genes that have been reported to be activated in pontine 453 
HGGs18, we found several promoters displaying the primed signature in spinal cord (SC) 454 
OLGs, but not in cortex OLG, where they display a repressed H3K27me3 associated state 455 
(Fig. 5d). HOXA1, HOXA3 and HOXA5, HOXB4, and HOXD8 were all primed in SC OLG 456 
and expressed in posterior fossa group A ependymomas (PFA-EP) tumours and 457 
H3.1/H3.3K27M pontine HGG, but not more anterior H3.3K27M thalamic HGGs (Fig. 5d; 458 
Extended Data Fig. 9c-f).  459 
 460 
We also overlaid the chromatin architecture and ChIP-seq data of H3.3K27M thalamus (more 461 
anterior) and pontine (more posterior, closer to the cervical spinal cord) HGG from a 462 
published dataset18. Strikingly, in pontine HGG we found a similar H3K27ac and H3K27me3 463 
distribution pattern as well as the sub-TAD structures linking distinct HOX sub-clusters to 464 
remote enhancers, which were also primed with activation marks in human SC OLG (Fig.5e-465 
f). In contrast, we did not observe overlap with thalamic gliomas, possibly due to the more 466 
rostral location of these tumours. Collectively, these findings suggest that the primed state 467 
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of these genes in the non-diseased context in OLG in the posterior CNS may drive their 468 
expression upon PRC2 disruption in distinct brain tumours, being in line with the regional 469 
identity of the cell of origin in HGGs being a key determinant in their arisal18.  470 
 471 

Discussion 472 
 473 
In this study, we profiled the single-cell chromatin landscape in adult human CNS from the 474 
primary motor cortex, cerebellum, and cervical spinal cord. We provide comprehensive 475 
datasets capturing the different cell types in the CNS at the level of chromatin accessibility 476 
(snATAC-seq) and histone-tail post-translational modifications (nanoCUT&Tag) in 108,626 477 
and 58,696 cells, respectively. Our nanoCUT&Tag dataset in particular serves as a first-of-its-478 
kind resource simultaneously capturing the H3K27ac and H3K27me3 landscape in single 479 
cells in different region of the adult human CNS. These unique trimodal epigenomic 480 
resources allowed us to identify and characterize a new candidate SOX10 enhancer 481 
specifically active in the OLG lineage. In addition, we provide a deeply sequenced chromatin 482 
architecture dataset in iPS-derived oligodendrocyte progenitor cells.     483 
 484 
We identified significantly elevated chromatin accessibility in adult spinal cord, but not 485 
cortex, OLGs at the HOX cluster of genes (primarily in the HOXA and HOXD clusters), which 486 
was not correlated with robust gene expression. Profiling the histone landscape in these cells 487 
revealed a strong concordance between the ATAC and H3K27ac signal, and a negative 488 
correlation with H3K27me3. Nevertheless, while most of the active signal was located at the 489 
3’ end of the clusters, there was a sharp inflection to a more repressed state on the 5’ end of 490 
the cluster. The elevated levels of H3K27me3 at the 3’ end relative to the regions immediately 491 
outside the cluster suggested that these genes may be kept in a primed state, as an epigenetic 492 
memory of developmental states.  This memory was observed in the OLG lineage and 493 
astrocytes but not in microglia, possibly reflecting their distinct developmental origins. OLGs 494 
and astrocytes originate from the neuroectoderm, which undergoes the anterior-posterior 495 
patterning program involving HOX genes during development. In contrast, microglia derive 496 
from the yolk sac and migrate into the central nervous system after CNS patterning is 497 
complete, potentially explaining the absence of a similar pattern in microglia.    498 
 499 
Epigenetic priming is commonly seen in pluripotent stem cells, where multiple fates are 500 
possible73. Genes associated with each lineage are kept both active and repressed 501 
simultaneously, to allow for rapid commitment and activation of a lineage and a quick 502 
repression of alternate lineages. Moreover, we have recently also shown that mouse OPCs 503 
can activate immune genes in the presence of an inflammatory insult and that these immune 504 
genes are also maintained in a primed state74,75. One reason for this might be to allow for 505 
rapid activation of immune genes to enable a quick response in an inflammatory context.   506 
   507 

The role of HOX genes in development is well characterized and their expression in adult 508 
tissues occurs across several lineages76,77. However, the patterning identity of mouse 509 
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oligodendrocyte lineage cells is strongly attenuated at postnatal stages, with Hox gene 510 
expression being actively downregulated4. Moreover, Hox gene expression in 511 
oligodendrocyte lineage cells in the juvenile mice is lower than in neurons78, suggesting 512 
different mechanisms of regulation of Hox genes in different neural lineages. In contrast, Hox 513 
genes activation is strongly correlated with various cancers60. Here, we show the preservation 514 
of chromatin architecture fidelity between our healthy spinal cord derived OLGs and 515 
H3.3K27M pontine paediatric high-grade glioma (HGG) tumour cells originating from OPCs. 516 
The priming of gene promoters, particularly those activated in pons HGG, coupled with the 517 
connections to distant enhancers, suggests that these genes are poised for activation in OLG 518 
from posterior regions of the adult CNS, but not in anterior regions as the cortex. The re-519 
expression of these genes in homeostatic OLG is likely hindered by the deposition of 520 
H3K27me3. In turn thalamus HGG might require epigenetic memory at genes expressed 521 
developmentally at the anterior CNS, such as OTX1, ZIC1, ZIC418. 522 

Although this could explain a mechanism for HOX gene activation in pathological states, it 523 
does not reveal why epigenetic memory and priming is maintained to begin with. However, 524 
the HOX genes are also re-expressed in regenerative niches, and studies of limb injury have 525 
observed massive upregulation of HOX genes in regenerative stem cells79. A key feature of 526 
regenerative niches is the increased proliferation. OPCs are progenitor cells and more stem-527 
cell like, and are also highly proliferative, especially in response to demyelinating injury80. 528 
Therefore, it may be possible that the HOX gene epigenetic priming may be associated with 529 
this proliferative potential. Indeed, spinal cord OPCs have also been shown to be more 530 
proliferative than those in the brain81, explaining why we find this signature more 531 
prominently in the spinal cord tissue. In addition, our network analysis shows the predicted 532 
HOX TF activity is higher in OPCs than in MOLs, further suggesting this regenerative 533 
potential may decrease upon differentiation.  Thus, it is possible that one of the functions of 534 
the priming of these genes may be to allow for rapid gene activation in specific cellular 535 
contexts and in the context of remyelination and regeneration.  536 
 537 
HOX epigenetic priming might also be deleterious, given the role of abnormal HOX 538 
expression in tumorigenesis. Within the active TAD of the HOXD cluster, we also observed 539 
a contact between HOXD3 and LINC01116, which also contains an enhancer, which when 540 
activated induces hyper-proliferation of astrocytes in culture82 (Extended Figure 9e,f), a 541 
glioma-like phenotype82. Along with the 3D contact seen in the cultured OPCs, the spinal 542 
cord OLGs also displayed increased ATAC and H3K27ac signal at the LINC01116 locus. 543 
Interestingly, this increase in active signal is also seen in the cortical OLGs, although with 544 
heavier H3K27me3-mediated repression, suggesting that there may be specific contexts 545 
under which this pathway gets activated even in the brain.   In the repressive TAD, we also 546 
observed long distance interactions with a distant element, which presented elevated levels 547 
of H3K27me3 deposition and lower levels of H3K27ac. Thus, our data suggests that 3D 548 
architecture at the HOX loci might regulate their transcriptional state in OLGs.    549 
 550 
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In conclusion, this comprehensive characterization of the epigenetic landscape of human 551 
adult neural cells, sheds light on how developmental epigenetic states might remain latent 552 
in adult cells, which could allow them to initiate regeneration processes, but also might prime 553 
them to unwanted transitions to tumour states.    554 
   555 
Limitations of the study   556 
 557 
Our multiOme data gives the first insights into the single cell histone PTM landscapes of 558 
human neural cells in the adult CNS, in particular in the motor cortex and cervical spinal 559 
cord, revealing region-specific regulation of developmental genes. Our findings highlight 560 
that mapping of histone PTMs in different regions is relevant, and it would be of interest to 561 
investigate differences between further posterior CNS regions, such as thoracic and lumbar 562 
SC, and other anterior brain regions, such as the thalamus, hippocampus, among others. As 563 
our findings reveal developmental epigenetic memory relevant for high-grade glioma, 564 
probing other CNS regions might reveal additional disease susceptibilities. Our 565 
nanoCUT&Tag dataset exhibits increased sparsity compared to our previously published 566 
mouse dataset, though we attribute this disparity to the inherent challenges of working with 567 
frozen archival tissue, as opposed to fresh mouse tissue.  568 
Our chromatin architecture data suggests that the HOXA and HOXD clusters may also be 569 
divided into two separate domains, which are reflective of the active chromatin architecture 570 
seen in development when these genes are being expressed. Interestingly, the strong 571 
recapitulation of the spatiotemporal context of HOX gene expression in our chromatin data 572 
suggests there might be a role for epigenetic memory, wherein the cells retain some memory 573 
of where they came from. Our Micro-C data has high resolution but is still acquired at the 574 
bulk level. Moreover, the human iPS-derived human OPCs are patterned for forebrain 575 
identity. Inducing a more posterior identity to iPS derived human OPCs or probing the 576 
chromatin architecture of human OLGs in different regions of the adult CNS could further 577 
elucidate how broad the mechanisms here described would be.  578 
 579 
 580 

Methods 581 
 582 
Human tissue collection and processing strategy 583 
Adult post-mortem fresh-frozen tissue were obtained from the MRC Sudden Death Brain 584 
Bank in Edinburgh with full ethical approval (16/ES/0084). Work in Sweden was performed 585 
under the ethical permit 2016/589-31, with amendment 2019-01503, granted by the Swedish 586 
Ethical Review Authority (EPN).  Tissue was collected from 20 different donors (10 male, 10 587 
female) within the ages of 34 to 74 years old (Supplementary Table 1). Each donor donated 588 
fresh frozen white matter from the following three tissue regions: primary motor cortex 589 
(Brodmann area 4, BA4), arbor vitae cerebelli (CB) and fasciculi cuneatus and gracilis from 590 
and cervical spinal cord (CSC).  Tissue was processed semi-randomly, ensuring that each 591 
batch of experiments had a representation of both sexes and all three tissue regions. 592 
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Completed libraries were again randomly multiplexed during sequencing to minimize batch 593 
effects. 594 
 595 
Tissue dissociation and nuclei isolation 596 
50-100mg of frozen tissue was placed in a 1.5mL tube and chilled in a mortar using liquid 597 
nitrogen. A chilled pestle was used to crush the tissue, followed by resuspension in 500uL 598 
nuclei permeabilization buffer (NPB; 5% BSA, 0.2% IGEPAL, 1mM DTT, 1x EDTA-free 599 
Protease inhibitor in PBS). Resuspended tissue was kept on ice for 15 minutes, with gentle 600 
pipetting every 5 minutes. The homogenized suspension was filtered through a 30um filter 601 
followed by a 10um filter. Equal volume of 50% Iodixanol solution was added and mixed 602 
thoroughly. 500uL 29% Iodixanol was gently underlaid using a syringe and needle, forming 603 
two phases. Samples were centrifuged at 4°C, 13,500xg, 20 minutes. Supernatant was 604 
removed and the nuclear pellet was resuspended in wash buffer (2% BSA in PBS). Samples 605 
were spun at 4°C, 1,000xg, 5 minutes. Supernatant was discarded and the pellet was 606 
resuspended in 30uL 1x diluted nuclei buffer (snATAC-seq; 10x Genomics) or 30uL 1x 607 
Antibody buffer (nanoCUT&Tag; recipe shown in corresponding section) or 30uL 1x diluted 608 
nuclei buffer with 1U/uL RNase inhibitor (multiOme; 10x Genomics) 609 
 610 
nanoTn5 purification and loading 611 
Nanobody-Tn5 fusion proteins were purified as described earlier83. Purified enzyme was 612 
loaded using barcoded oligonucleotides. First, an equimolar mixture of 100uM 613 
Tn5_P5_MeA_BcdX_0N, Tn5_P5_MeA_BcdX_1N, Tn5_P5_MeA_BcdX_2N, and 614 
Tn5_P5_MeA_BcdX_3N were mixed with an equimolar amount of 100uM Tn5_Rev 615 
oligonucleotide. The oligonucleotide mixture was denatured by incubating at 95°C for 5 616 
minutes in a thermocycler and allowed to anneal slowly by ramping down the temperature 617 
by 0.1°C/s. 8uL annealed oligonucleotide, 42uL glycerol, 44.1uL 2x dialysis buffer ( 100 mM 618 
HEPES-KOH pH 7.2, 200 mM NaCl, 0.2 mM EDTA, 2 mM DTT (freshly added), 0.2% Triton-619 
X, 20% glycerol), 5.9uL anti-mouse nano-Tn5 (5 mg/mL, 67.7uM) or 8 µl annealed 620 
oligonucleotides, 42 µl glycerol, 45.7 µl 2× dialysis buffer, 4.3 uL anti-rabbit nano-Tn5 (6.8 621 
mg/ml, 93 uM) to get a final 2uM of loaded nanoTn5 dimer. 622 
 623 
snATAC-seq library preparation and sequencing  624 
Dissociated nuclei were counted and incubated at 37°C for 60 minutes in tagmentation mix. 625 
Tagmented nuclei were loaded onto the Chromium chip H (10x Genomics) according to 626 
manufacturer’s instructions. The Chromium Single Cell ATAC Library and Gel Bead Kit v1.1 627 
(10x Genomics) was used to generate single-nuclei libraries. All libraries were sequenced on 628 
the Illumina NovaSeq 6000 with either the S Prime, S1, or S2 flow cell and a 50-8-16-49 read 629 
setup. 630 
 631 
nanoCUT&Tag 632 
Multi-nano CUT&Tag libraries were prepared as described earlier. Briefly, dissociated nuclei 633 
in antibody buffer (20mM HEPES (pH7.5), 150mM NaCl, 0.05mM Spermidine, 1x Protease 634 
Inhibitor, 0.05% Digitonin, 0.01% IGEPAL, 2% BSA, 2mM EDTA in dH2O) were counted and 635 
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80,000-120,000 nuclei transferred to 0.5mL microfuge Eppendorf tubes. Nuclei were topped 636 
up to 96uL with antibody buffer. Mouse H3K27me3 antibody (1:100, Abcam #ab6002), rabbit 637 
H3K27ac antibody (1:100, Abcam #ab177178), barcoded anti-rabbit nano-Tn5 (1:100) and 638 
barcoded anti-mouse nano-Tn5 (1:100) were added to the nuclear suspension (final volume 639 
100uL). Samples were then incubated overnight at 4°C on a rotator. After overnight 640 
incubation, cells were centrifuged at 600xg, 3 mins and washed twice with Dig-300 buffer 641 
(20mM HEPES (pH7.5), 300mM NaCl, 0.5mM Spermidine, 1x Protease Inhibitor, 0.05% 642 
Digitonin, 0.01% IGEPAL, 2% BSA in dH20). After the second wash, nuclei were resuspended 643 
in 100uL tagmentation buffer (20mM HEPES (pH7.5), 300mM NaCl, 0.5mM Spermidine, 1x 644 
Protease Inhibitor, 10mM MgCl2, 0.05% Digitonin, 0.01% IGEPAL, 2% BSA in dH20) and 645 
incubated at 37°C for 60 minutes. Tagmentation was stopped by adding 100uL STOP buffer 646 
(12.5mM EDTA in 1x diluted nuclei buffer (DNB, 10x Genomics) supplemented with 2% 647 
BSA). Nuclei were centrifuged at 600xg for 3 minutes and washed twice with 1x DNB/BSA 648 
to remove traces of EDTA. After the second wash, 185uL of supernatant was removed and 649 
nuclei were re-suspended in the remaining 15uL. 2uL was used for counting (1:5 diluted in 650 
Trypan Blue). 651 
 652 
nanoCUT&Tag library preparation and sequencing 653 
Single-cell indexing was performed according to Chromium Next GEM Single Cell ATAC 654 
Library & Gel Bead Kit v1.1 (10x Genomics) instructions. 8uL nuclei was added to 7uL ATAC 655 
Buffer B (10x Genomics) and loaded onto the Chromium Chip H. GEM incubation and post-656 
GEM incubation clean-up was performed according to Chromium Next GEM Single Cell 657 
ATAC Reagent Kits v1.1 instructions (Step 2.0 – Step 3.2). Of the 40uL of eluted sample, 2uL 658 
was used to measure the concentration using the Qubit dsDNA HS Assay kit. The remaining 659 
sample was used for P7 tagmentation by mixing with tagmentation mix: 2xTD buffer (20mM 660 
Tris (pH 7.5), 20% dimethylformamide, 10mM MgCl2), 1uL/10ng-template MeB-loaded 661 
standard Tn5, and dH2O up to a final volume of 100uL and incubating at 37°C for 30 minutes 662 
in a thermocycler. After tagmentation, samples were purified using DNA Clean and 663 
Concentrator-5 (Zymo) according to manufacturer’s instructions and eluted in 40uL Zymo 664 
elution buffer. Purified DNA was used as input for the Sample Index PCR in the Chromium 665 
Next GEM Single Cell ATAC Reagent Kits v1.1 (Step 4.1) and samples were amplified for 11-666 
15 cycles. Post Sample Index Double-Sided Size Selection was performed according to 667 
manufacturer’s instructions. Library quality was checked on the Agilent bioanalyzer and 668 
sequenced on the Illumina NovaSeq 6000 S Prime flow cell (100c kit) with a custom read1 669 
(R1_seq:  5’-GCGATCGAGGACGGCAGATGTGTATAAGAGACAG-3’) primer, custom 670 
index2 (I2_seq: 5’-CTGTCTCTTATACACATCTGCCGTCCTCGATCGC-3’) primer and a 36-671 
8-48-36 read setup. 672 
 673 
multiOme library prep 674 
Tissue dissociation and nuclei extraction was performed as described above. 10,000 nuclei 675 
were counted and used for bulk tagmentation followed by loading on the Chromium Next 676 
GEM Single Cell Chip J.  Single-cell indexing and library preparation was performed using 677 
the Chromium Next GEM Single Cell MultiOme ATAC + Gene Expression kit, according to 678 
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the manufacturer’s instructions. Libraries were sequenced on the Illumina NovaSeq 6000 S 679 
Prime flow cell (100c kit), with a 50-8-24-49 read setup.  680 
 681 
iPS-derived hOPC cell cultures 682 
iPS-derived hOPC were derived in Steve Goldman’s lab, with the protocol described in 683 
Wang. et.al. (2013)65. Work in Sweden was performed under the ethical permit 2020-00398, 684 
with amendment 2023-04598-02, granted by the Swedish Ethical Review Authority (EPN).  685 
Corning 6-well cell culture plates were pre-coated with Poly-L-Ornithine (PLO, Sigma 686 
#P4957-50ML) and incubated for 1h at 37°C. PLO was removed and wells were rinsed three 687 
times using sterile 1x DPBS -/- (Thermo Fisher, #14190144) followed by overnight incubation 688 
with 5ug/mL Laminin (Corning, #354232) in HBSS +/+ (Thermo Fisher, #24020117). After 689 
removing the Laminin, 1 million iPS-derived hOPC cells (C27 line) were directly seeded into 690 
the plate and expanded for 3 weeks prior to splitting. Cells were cultured in proliferation 691 
media (DMEM/F12 (Invitrogen #11330-057) containing 1x B27 (Invitrogen #12587-010), 1x N1 692 
(Sigma, #N6530), 1x NEAA (Invitrogen #11140-050), 60ng/mL T3 (Sigma, #T5516-1MG), 1uM 693 
dcAMP (Sigma, #D0260), 100ng/mL Biotin (Sigma, #B4639), 10ng/mL PDGF-AA (R&D #221-694 
AA-50), 10ng/mL IGF-1 (R&D #291-G1-050), 10ng/mL NT3 (R&D #267-N3-025)), which was 695 
refreshed every 2 days.  696 
 697 
ATAC-seq in hOPCs 698 
ATAC-seq was performed as described previously, with minor adaptations. 60,000 cultured 699 
hOPCs were collected, washed with 1x PBS, and incubated in lysis buffer (0.1% IGEPAL, 700 
10mM Tris-HCl pH7.4, 10mM NaCl, 3mM MgCl2) on ice for 5 minutes. Lysed cells were 701 
centrifuged for 500xg at 4°C for 20 minutes. The nuclei pellet was resuspended in 702 
tagmentation mix (2xTD buffer, Tn5 enzyme, in dH2O) and incubated at 37°C for 30 minutes. 703 
Tagmented DNA was purified using the Qiagen minElute Purification kit and PAGE purified 704 
to remove adapter dimers. Libraries were sequenced on an Illumina NovaSeq 6000 with a 50-705 
8-8-50 read setup. 706 
 707 
B-cell collection 708 
Peripheral mononuclear cells (PBMCs) were freshly isolated by Ficoll (17-1440-03, GE 709 
healthcare) gradient centrifugation from buffy coats obtained through Karolinska University 710 
Hospital of 3 healthy donors female (aged 28, 29 and 39 years old). Study procedures were 711 
conducted under ethical permit 2009/2107-31-2 approved by the Swedish ethical review 712 
authority. B cells were then enriched by negative selection using EasySep™ Human B Cell 713 
Enrichment Kit II Without CD43 Depletion (17963, Stemcell Technologies) according to 714 
manufacturer’s instructions. B cells were then stained for 30min on ice with anti-CD3 (Clone 715 
SK7, 560176), -CD14 (Clone MφP9, 560180) and -CD16 APC-Cy7 (Clone 3G8, 560195), anti-716 
CD19 APC (Clone HIB19, 561742), anti-IgG BV510 (Clone G18-145, 563247, BD Bioscience), 717 
anti-CD27 PE-Cy5.5 (Clone 0323, NBP1-43426, Novus Biologicals) or BV711 (Clone O323, 718 
302833), anti-IgD Pacific Blue (Clone IA6-2, 348224), anti-IgM BV570 (Clone MMH-88, 719 
314517) and Zombie NIR fixable viability dye (423106, Biolegend). Cells were then washed 720 
in PBS (D8537, Sigma-Aldrich) and filtered. Between 106 and 2x106 CD27+CD19+ Live B cells 721 
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were sorted using a SH800 Cell Sorter (Sony) into a RPMI medium (R8758) with 10% heat-722 
inactivated fetal bovine serum (F7524), 100 U/ml penicillin, and 100 µg/ml streptomycin 723 
(P4458, Sigma-Aldrich). Cells were washed in PBS, centrifuged, and stored at -80°C as dry 724 
pellet before proceeding with Micro-C. 725 
 726 
Micro-C  727 
Micro-C was performed by the National Genomics Infrastructure, using the commercially 728 
available Micro-C kit (Dovetail Genomics, #21006). With 100,000-200,000 iPS-derived hOPCs 729 
as input. Briefly, cells were crosslinked and enzymatically digested using MNase to allow for 730 
nucleosome-resolution fragmentation. Free ends were ligated with biotin-containing 731 
adapters. Ligated fragments were reverse-crosslinked and amplified to introduce sequencing 732 
handles. Libraries were generated in three separate biological replicates and were sequenced 733 
as a pilot on the Illumina NovaSeq6000 S Prime flow cell with a 2x150bp (300c) kit with a 734 
151-19-10-151 read setup. After quality control of the pilot and checking for library 735 
complexity (with the preseq tool), two of three hOPC replicates and all three B cell replicates 736 
were re-sequenced on a large S4 flow cell to a depth of 6 billion reads. 737 
 738 
snATAC-seq data pre-processing and QC 739 
Fastq files generated from sequencing were processed on using “cellranger-atac count” with 740 
the default parameters. Samples were aggregated using the “cellranger-atac aggr” with 741 
default parameters, but with the normalization omitted using the flag “—normalize=none”.  742 
2-kb count matrices were built using a custom script “build_large_mtx.py“which is a 743 
modified version of episcanpy’s84,85 build_atac_mtx.py script and allows for reading in files 744 
in batches. TSS enrichment scores were generated using the ArchR86 package and only cells 745 
with TSSe > 7 and number of unique fragments > 3000 were retained.  746 
 747 
snATAC-seq peak calling 748 
The Fragments file (fragments.tsv.gz) was split according to celltype annotation and peaks 749 
were called using the callpeak function from MACS287 with the following parameters: ‘-f BED 750 
-g hs -q 0.05 –shift -100 –extsize 200 –nomodel –call-summits –keep-dup=1’. Peak annotation was 751 
performed using the HOMER88 annotatePeaks.pl function and a custom GTF file with 752 
miRNA and snoRNA removed.  753 
 754 
snATAC-seq Downstream analysis 755 
After cell filtering, the top 100,000 features were retained and normalization was performed 756 
using term frequency-inverse document frequency (TF-IDF), followed by singular vector 757 
decomposition (SVD). A nearest-neighbour graph was built in the lower dimensional space 758 
followed by leiden clustering. The highly variable features from each cluster were retained 759 
and used to repeat the TF-IDF, SVD, graph building and clustering for a total of 3 iterations. 760 
Batch correction was performed using Harmony89. Differentially accessible regions were 761 
identified using both the “rank_features” function in episcanpy v0.3.2 with Benjamini-762 
Hochberg correction for multiple testing as well as the diffxpy 763 
(https://github.com/theislab/diffxpy/) package with Sex, Age and Tissue added as covariates.  764 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 16, 2024. ; https://doi.org/10.1101/2024.04.15.589512doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.15.589512
http://creativecommons.org/licenses/by-nc-nd/4.0/


 19 

 765 
Gene activity matrix and cell type annotation 766 
A gene activity matrix was built using a 5kb promoter region flanking the transcription start 767 
site of genes. The count matrix was smoothened using MAGIC90 with default parameters to 768 
improve the signal. The top 50 distinct differentially accessible genes for all cell types found 769 
in our published snRNA-seq dataset were used as cell-type metagenes and aggregate gene 770 
activity was calculated for all genes within each cell-type metagene, generating a metagene 771 
score for each cell. The metagene scores for the different cell types as well as individual 772 
marker genes were used to assign the clusters to the broad cell types. We could not identify 773 
spinal cord-derived neurons, though it is known these neurons are particularly sensitive and 774 
susceptible to hypoxia, possibly leading to difficulty in isolating them. An overwhelming 775 
proportion of all cerebellar cells in the dataset were composed of the CBEX cells (also known 776 
as cerebellar granular cells) These cells are tiny and densely packed within the granular layer 777 
of the cerebellum, close to the GM-WM border. We suspect the skewed distribution may 778 
have arisen from imprecise dissection when collecting the WM from the tissue. 779 
 780 
Integration with snRNA-seq data 781 
The annotation of the cell types based on transcriptome data from external datasets was 782 
performed using two different references Jäkel & Agirre at al. 2019 and Seeker et al. 2023. 783 
Jäkel & Agirre et al. 2019 expression matrix was downloaded from Gene Expression Omnibus 784 
(GEO) repository with the accession number GSE118257, and then converted to Seurat91 785 
v.4.3.0.1 object. Seeker et al. 2023 dataset was downloaded from 786 
https://cellxgene.cziscience.com/collections/9d63fcf1-5ca0-4006-8d8f-872f3327dbe9 as a 787 
Seurat object including all the cell types. scATAC h5ad file was converted to Seurat using 788 
SeuratDisk R library with Convert function with assay=”peaks” to h5Seurat format. Gene 789 
activities were calculated based on the chromatin accessibility signal using ENSEMBL genes 790 
annotations (EnsDb.Hsapiens.v86). For each annotated gene, the region of the promoter 791 
(500bp upstream the annotated transcription start site) and the gene body were considered 792 
(promoter+genebody). Gene activities were calculated using FeatureMatrix function from 793 
Signac92 v.1.10.0 with the promoter + genebody in GRanges format, from GenomicRanges93  794 
library, and the cellranger-atac 2.0  fragments.tsv for all the samples. Then, they were added 795 
to the Seurat/Signac object as a new assay. Label transfer was performed using Seurat. The 796 
FindIntegrationAnchors function was applied to find anchors between scRNA reference 797 
dataset and the query scATAC gene activities. The FindTransferAnchors function was used 798 
to find transfer anchors from each of the references to the query, and then used to perform 799 
the label transfer with the TransferData function using canonical correlation analysis (CCA) 800 
with 20 dimensions.  801 
 802 
Motif analysis 803 
For identifying TF motif differences, we used ChromVar, which incorporates per-cell 804 
normalization to correct for transposase bias and depth bias, to output a deviation score for 805 
each TF motif. Here, we used the version of ChromVar adapted in ArchR allowing scalability 806 
to large datasets. We applied the standard ArchR pipeline and calculated the deviation scores 807 
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using the CIS-BP database as TF binding reference and then exported the motif deviation 808 
matrix to CSV format. 809 
 810 
Trimodal genomic clustering 811 
10kb genomic bins spanning the hg38 genome were used as input peaks to the deeptools94 812 
compute-matrix function. ATAC, H3K27ac and H3K27me3 bigwig files from each 813 
population were used to generate a matrix of normalized signal in each genomic bin. The 814 
mean signal across each bin across each modality and each cell type was used to 815 
hierarchically cluster the bins (rows) and celltype+modality (columns). Pearson correlation 816 
was used to identify the correlation between each column (identifying similar and dissimilar 817 
celltype+modalities based on whole genome patterns).  818 
 819 
Co-Accessibility analysis 820 
Co-accessible regions were identified using Cicero95. Cell type specific pseudo-bulk bam files 821 
as well as single-cell count matrices were provided as input to identify pairs of genomic bins 822 
with increased co-accessibility across different cells of a population. Co-accessibility score 823 
cutoffs of 0.25 and 0.5 were used to identify significant interactions and high confidence 824 
interactions respectively.  825 
 826 
TF Regulatory network 827 
The Core Regulatory Circuit (crc) package96 was used to identify the core TF network. Briefly, 828 
H3K27ac bam and bigwig files and Super Enhancers (via ROSE algorithm) for each cell 829 
population were used to scan for TF motifs within Super Enhancer regions using FIMO97. A 830 
network was built by inferring the number of interacting TF motifs in the proximal super 831 
enhancer of a TF. The TF strength was assigned based on the difference between the number 832 
of outbound edges (Regulated TFs) and inbound edges (Targeting TFs). A higher score 833 
suggests a TF has a stronger regulatory influence over other TFs.  834 
 835 
TF Footprinting analysis 836 
Footprinting analysis was performed using the Regulatory Genomics Toolbox (RGT)98. 837 
Briefly, peaks were called for the different cell-types and the HMM-based Identification 838 
of Transcription factor footprints (HINT) framework was applied to identify active TF 839 
binding-sites using default parameters.  840 
 841 
Integration of multiOme-ATAC with snATAC-seq data 842 
The ATAC object was subsetted to contain only the same donors in which the multiOme was 843 
performed. The ATAC and multiOme-ATAC 2kb objects were concatenated and normalized 844 
using TF-IDF, followed by SVD dimensionality reduction. A kNN classifier was used to 845 
annotate the cells derived from the multiOme-ATAC according to the closest neighbours 846 
found in the annotated ATAC object. Transferred annotations in the multiOme-ATAC object 847 
were checked using the RNA expression of marker genes in the multiOme-RNA object. 848 
 849 
nanoCUT&Tag data pre-processing and cell calling 850 
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Fastq files were split into antibody-specific fastq files using a custom debarcoding.py script. 851 
Once split, each antibody’s fastq file were used as input into 10x Genomics cellranger-atac 852 
v2.0 pipeline with the following parameters ‘count –id=$(sample) –sample=$(sample) –853 
fastqs=$(sample_fastqs) –reference=cellranger-atac/refdata-cellranger-atac-GRCh38-2020-A-2.0.0.’ 854 
The output pseudobulk alignment file from cellranger was used to call peaks with MACS2 855 
algorithm with the following parameters ‘callpeaks -g hs –keep-dup=1 –llocal 100000 –min-length 856 
1000 –max-gap 1000’. We then plotted the fraction of reads in peaks versus the total number 857 
of unique reads to custom select barcodes that we consider cells. The ‘is_cell_barcode’ bit in 858 
the singlecell.csv file from cellranger was reset or flipped to represent the called cells. 859 
 860 
nanoCUT&Tag peak calling and bigwig track generation 861 
Peaks were called using the MACS2 callpeak function with the same parameters described 862 
above. 863 
Fragments were split by cell type and used to generate a bam file with the bedtools bedtobam 864 
function. Cell type-specific bam files were sorted and indexed prior to bigwig generation. 865 
Bigwig files were generated using the following command – “bamCoverage --normalizeUsing 866 
RPKM --binSize 50 --centerReads --smoothLength 250”.  867 
 868 
Integration of H3K27ac nanoCUT&Tag with snATAC-seq data 869 
The H3K27ac dataset was first subsetted to include only the cell barcodes shared with the 870 
H3K27me3 dataset. A new 2kb-count matrix was constructed for the H3K27ac dataset 871 
(query), and only features shared in the filtered ATAC dataset (reference) were retained. 872 
Cerebellar cells of the ATAC dataset were removed and the query dataset was integrated to 873 
the reference using the Scanpy ingest tool which is based on asymmetric mapping of the 874 
query data onto the reference’s nearest neighbour graph.  875 
 876 
nanoCUT&Tag signal enrichment 877 
The k-means algorithm (k=10) implemented in deepTools v.3.5.1 was used to cluster all genes 878 
(1kb-padded TSS) based on the H3K27ac and H3K27me3 signal for each cell type. We then 879 
queried the genes identified in the clusters that displayed high H3K27ac and low H3K27me3 880 
and using gget enrichr99, predicted the enriched celltype based on the genes 881 
(database=”celltypes”).  882 
 883 
Regulatory domain border identification 884 
Normalized ATAC, H3K27ac and H3K27me3 signal distribution in genomic windows 885 
spanning 50kb upstream to 50kb downstream of each HOX cluster was calculated using 886 
deeptools compute-matrix. Each window was binned into 10kb bins, and the Kolmogorov-887 
Smirnov test was used to identify pairs of adjacent bins with significantly different signal 888 
distribution for each modality separately. The shared border between the identified adjacent 889 
bins was considered as a “signal border”. Identified signal borders were annotated as weak, 890 
intermediate, or strong depending on if it was identified in only 1, 2 or all 3 modalities. 891 
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Gaussian smoothening was applied to the signal for visualization in the plots, however all 892 
calculations were performed on the raw signal in each window. 893 
 894 
Micro-C data pre-processing 895 
Micro-C data was analysed using the Dovetail Genomics analysis pipeline 896 
(github.com/dovetail-genomics/Micro-C/tree/main). The fastq files from the pilot and deep 897 
sequencing batch were merged and were aligned to the human genome (GRCh38) using bwa 898 
mem with the flags “-5SP -T0 -t24”. Pairtools was used to parse the aligned reads with the 899 
following command “pairtools parse –min-mapq 40 –walks-policy 5unique –max-inter-align-gap 900 
30 –nproc-in 16 –nproc-out 16”. The count matrix in the .hic format was generated using the 901 
juicer package: “java -Xmx32g -Djava.awt.headless=true -jar juicertools.jar pre –threads 16”. 902 
Quality check of reads was performed using the get_qc.py script in the dovetail pipeline. 903 
 904 
HiC to Cool matrix conversion 905 
.hic files are multi-resolution files and can be converted using hic2cool to generate multi-906 
resolution .mcool files. However, due to the lack of updates in the hic2cool package, a 907 
workaround script “convertHic2Cool.py” was used which is an adaptation of the code 908 
sourced from (github.com/deeptools/HiCExplorer/issues/821#issuecomment-1316842070) and 909 
allows for generation of single resolution .cool files. Due to the space inefficiencies of storing 910 
multiple .cool files at all resolutions, individual cool files were generated from the parent .hic 911 
file for different analyses.  912 
 913 
Micro-C balancing and transformation 914 
Raw contact matrices were normalized and balanced using iterative correction and eigen-915 
decomposition (ICE) as implemented in the cooler100 package. The hicTransform package was 916 
used to generate O/E counts with the “–method obs_exp” flag.  917 
 918 
Insulation and boundary strength analysis 919 
The cooltools101 python API was used to process the contact matrices and identify the 920 
insulation scores within the normalized contact frequency data. Briefly, a diamond-shaped 921 
window is used to slide along the genome, with one of the corners on the main diagonal of 922 
the contact matrix, and contacts within the window at each position are summed up. 923 
Windows with low sums are marked as putative boundaries and as insulating regions 924 
immediately upstream and downstream. Boundaries were identified in the 10-kb contact 925 
matrix with a sliding window size of 100kb. 926 
 927 
Loop calling and Virtual 4C analysis 928 
Virtual-4C identifies loci that exhibit increased contact frequency with a reference locus of 929 
interest (viewpoint analysis) and was performed using the hicPlotViewpoint function in the 930 
HiCExplorer102 package. Loops were called on the 5kb contact matrix using the mustache103 931 
package and looking within a maximum distance of 100Mb.  932 
 933 
 934 
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All code is available at https://github.com/mkabbe/snATACnanoCT_AdultHumanCNS. 978 
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Main Figures 
 
Fig. 1  

a. Schematic for snATAC-seq and nanoCUT&Tag experiments in adult human tissue. 
b. 2D Uniform manifold approximation and projection (UMAP) of the ATAC dataset coloured by clusters 

and labelled by cell type. 
c. 2D Uniform manifold approximation and projection (UMAP) of the nanoCUT&Tag dataset from both 

modifications. Coloured lines connect the same cells in both modalities. 
d. Heatmap showing differentially accessible peaks across different clusters and cell types. 
e. Gene activity scores for different genes in the identified cell types. 
f. Quality metric violin plots showing the number of unique features (left) and fraction of reads in peaks 

(FRiP) for H3K27ac (green) and H3K27me3 (red) in this dataset compared to those in a previously 
published dataset in mouse (Bartosovic et.al. 2022). 

g. Trimodal clustering of the genome highlights patterns of signal distribution across all cell types. 
h. Correlation matrix of ATAC, H3K27ac and H3K27me3 signal in each cell type shows strong correlation 

between active marks for individual cell types, and anti-correlation with the repressive H3K27me3. 
i. Meta-signal enrichment plots for H3K27ac (green) and H3K27me3 (red) in the MOL population. Top 

row: Line plots showing signal enrichment for the two modalities at different peak sets. Middle and 
bottom row: Heatmap showing H3K27ac (middle) and H3K27me3 (bottom) signal enrichment across 
different peak sets. Peak sets (left to right): H3K27me3 peaks, H3K27ac peaks, ATAC peaks, ATAC 
peaks from a previously published dataset (Nott et.al. 2019). 

j. V plot showing tagmentation pattern and density in a 3.5kb locus around the SOX10-distal enhancer. 
Top: Density plot showing density of the Tn5 insertion events, seen enriched at the site of the enhancer. 
Bottom right: Fragment size distribution, with sub-nucleosomal and mono-nucleosomal bands visible. 
Bottom left: Scatter plot of fragments. Dots represent mid-points of fragments in the OLG lineage and 
coloured by density of fragments. 

k. 330bp locus zoom in at the enhancer site. TF footprint is seen as dip in the Tn5 insertion frequency (top) 
and is marked by a red dotted line. V plot shows density of fragments at the centre of the footprint. A 
TFAP2A motif was found in the centre of the footprint. 

l. Genome browser tracks the CDC42EP1-Enhancer-SOX10 locus showing ATAC, H3K27ac and 
H3K27me3 signal in MOLs and OPCs and cicero links. 

 
Fig.2  

a. Schematic for constructing the regulatory TF circuit and assigning a regulatory strength based on the 
difference in the incoming and outgoing connections for each TF node in the network. 

b. Ranked scatter plot showing the strength of core transcription factors (TF) identified within the 
regulatory network for different cell types. Strength is measured by the difference in number of 
outgoing connections (out degree) and incoming connections (in degree). Top TFs are marked for each 
population. 

c. Same plot as in a) but size and colour intensity of each dot represents the average (log normalized) 
expression of that TF in the population. The TF with the highest expression in each network is shown 
in red.  

d. Network of the top 15 TFs (by expression) in each cell type. Density of edges in the network reflect the 
correlation between the TF strength and the expression of the TF. 

e. Scatterplot showing the strength of the shared TFs in the OPC and MOL core networks. Regression line 
is shown with a 95% CI. 

f. Same as in d) but size of the dots represents the difference in the strength of the TF in the OPC and 
MOL populations. TFs stronger in OPC and MOL are shown in purple and orange respectively. A 
subset of the HOX TFs is marked in red.  
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g. Ranked scatterplot highlighting the position of the HOX TFs in the OPC population. 
h. Same as f) but in MOL population. 

 
 
Fig.3  

a. Volcano plot showing differentially accessible peaks in Spinal cord OLGs and cortical OLGs. Previously 
characterized marker genes are shown in red and labelled. HOX cluster-associated peaks shown in 
blue. Thresholds: adjusted P-value: 0.001, logFC = 1.5. 

b. Same as in a) but highlighting the specific HOX clusters identified as being differentially accessible.  
c. Genome browser snapshot showing the chromatin accessibility signal in AST, MIGL, MOL and OPC 

populations from the cervical spinal cord and motor cortex at the HOXA locus. MIGL signal is depleted 
in both regions, whereas AST, OPC and MOL exhibit accessibility in spinal cord. 

d. Stacked violin plots showing the expression (upper panel) and promoter accessibility (lower panel) in 
cortex and spinal cord derived MOLs and OPCs from a multiOme experiment. Most differentially 
accessible HOX genes and OLG marker genes are shown. 

 
Fig.4 

a. Genome browser tracks showing H3K27ac, H3K27me3 and ATAC signal in OLGs at the HOX-A in 
cervical spinal cord (upright track, darker shade) and motor cortex (inverted track, lighter shade). 

b. Same as in a) but for the HOX-D locus. 
c. Gaussian smoothed normalized signal from ATAC (blue), H3K27ac (green) and H3K27me3 (red) across 

the HOXA cluster with a 50kb flanking region upstream and downstream. Gray bars show the locations 
of the cumulative “signal boundaries” identified in each modality. Colour intensity reflects the 
cumulative signal boundary strength. 

d. Same as in panel c) but with each modality separated out. HOXA directionality is shown at the top, 
and arrows beneath show the medium (2 modalities) and strong (3 modalities) signal boundaries. 

e. Genome browser track of the HOXA cluster showing the location of the strong signal boundaries and 
the corresponding inactive, primed and silenced chromatin domains. 

f. Genome browser track around the HOXD locus (marked with dotted lines) with H3K27me3 (red) and 
H3K27ac (green) pseudobulk signal in spinal cord OLGs. Single cell tracks are shown below and sorted 
in order of decreasing H3K27me3 signal. Group 1 cells exhibit moderate H3K27me3 at the 3’ end while 
Group 2 cells show a depletion of the H3K27me3, while the amount of H3K27ac remains the same in 
both groups, suggesting Group2 cells may be expressing low levels of HOX genes.  

 
Fig.5 

a. Normalized Micro-C contact matrix at 5kb resolution in iPS-derived hOPCs (upwards) and B-cells 
(inverted) at the HOXA (upper panel) and HOXD (lower) clusters showing the difference in HOX 
chromatin architecture in the two cell populations. 

b. Boundary analysis at HOXA (upper) and HOXD (lower) showing contact frequencies and the 
insulation scores under the matrix. Strong boundaries are marked in red. Location of HOXA and HOXD 
clusters are shown in grey. 

c. Normalized Micro-C contact matrix at 5kb resolution at HOXA (left) and HOXD (right) locus and 
corresponding ATAC, H3K27ac and H3K27me3 tracks in human adult spinal cord OLGs showing the 
c-Dom and t-Dom TAD structures including the sub-TAD contacts. Contacts with distal enhancers is 
shown by the grey bars. 

d. Normalized promoter accessibility (ATAC), H3K27ac and H3K27me3 signal in Spinal cord OLGs (top) 
and cortical OLGs (bottom) at all HOX genes. Asterisk marks the genes previously identified to be 
expressed in pontine high-grade gliomas (HGG). 

e. Normalized Hi-C contact matrix in H3.3K27M pontine HGG [REF] at the HOXA locus (marked by 
dotted lines) and corresponding ATAC, H3K27ac and H3K27me3 signal in spinal cord OLGs and 
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H3K27ac and H3K27me3 in H3.3K27M pontine HGG, showing similarity in mark distribution in non-
diseased conditions and gliomas. 

f. Same as in e) but at the HOXD locus. 
 
 

Extended Data Figures  
 
Ext.Dat.Fig.1 

a. Schematic showing downstream data analysis workflow 
b. Density scatter QC plots for all 48 samples in the snATAC-seq dataset. Number of unique fragments 

(log scale) on x axis and TSS enrichment score on y axis. 
c. Violin plots showing number of unique fragments (log) from each donor. 
d. Same as c) but for each individual samples 

 
Ext.Dat.Fig.2 

a. Correlation plot showing quality of celltype annotations using the metagene scores (y axis) and 
annotations from integration with previously published datasets (Jäkel, Agirre et.al 2019 – left, Seeker 
et.al. 2023 -right). 

b. Bar chart and violin plots showing cell numbers and feature counts (log scale) for each cell type (left) 
and contribution of each Sex to the metrics (right). 

c. Genome coverage tracks for different marker genes in each identified cell type. All columns are group 
normalized (range is shown in the first panel for each column). Gene location and TSS orientation is 
shown below.  

d. TF motif enrichment matrix showing the top 4 TF motifs identified as being differentially accessible in 
each cell type. 

e. 2D UMAP showing cell clustering based on the chromVar calculated TF motif deviations. Marker TF 
enrichment for each cell type is shown on the right. 

f. 2D UMAP (left) and bar chart (right) showing tissue composition of cell types in the snATAC-seq 
dataset. 

 
Ext.Dat.Fig.3 

a. Workflow for demultiplexing and custom cell-calling for each nanoCUT&Tag antibody (H3K27ac, 
H3K27me3). 

b. Scatter plots used for custom cell calling in the H3K27ac modality. Number of unique fragments (log 
scale) shown on x axis and the fraction of reads in peaks (FRiP) shown on y axis. Selected cells shown 
in blue. 

c. Same as an b) but for H3K27me3 modality.  
d. 2D UMAP co-embedding of the ATAC and H3K27ac datasets, coloured by dataset (left) and cell 

population (right) 
e. Bar chart and violin plot showing the cell number in each population (left) and distribution of feature 

counts (log scale) for each modality (middle, right) 
f. Genome browser snapshot showing H3K27ac (top) and H3K27me3 (bottom) signal distribution across 

different loci for each cell type. Population specific signal in H3K27ac and pan coverage of HOX-C 
cluster with H3K27me3 can be seen. 

 
Ext.Dat.Fig.4 

a. k-means clustering of H3K27me3 and H3K27ac signal distribution at the TSS of all genes for each cell 
type. Genes in the clusters showing strong H3K27ac and weak H3K27me3 were used as input for gget 
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enrichr analysis to identify enriched cell types. Top identified cell type is the cell type itself highlighting 
the strong cell type specific signal captured in our nanoCUT&Tag dataset. 

 
Ext.Dat.Fig.5 

a. Cumulative distribution of the co-accessibility Score for all loops identified by cicero. Red line shows 
the score cut-off (0.5) used for assessing high quality interactions and captures the top 5% of all loops. 

b. Genome browser snapshot showing chromatin accessibility signal in all cell types at CDC42EP1 locus 
(left), identified SOX10-distal enhancer (middle) and SOX10 locus (right) and the corresponding loops 
identified using cicero. Red columns highlight the CDC42EP1 and SOX10 genes, grey column 
highlights the novel enhancer. 

c. UCSC Genome Browser snapshot showing the identified enhancer locus (light blue column) as well as 
overlap with previously identified ENCODE cCREs, PhyloP base conservation score and evolutionary 
conservation with different species.  

d. Genome browser track showing chromatin accessibility in OPCs and MOLs at the newly identified 
enhancer, SOX10 locus, and previously characterized U1-U5,D6 and D7 enhancers (purple) and overlap 
with thyroid hormone receptor motifs (T3R, green) and TFAP2A motifs (orange) 

e. Cicero loop comparison between MOLs (black) and OPCs (blue) showing shared loops with canonical 
enhancers (orange bars) and the newly identified enhancer (grey bar) and the MOL specific connection 
with CDC42EP1 (red bar) 

 
Ext.Dat.Fig.6 

a. Scatter plot showing TF strength of shared core TFs in MOLs (x axis) and OPCs (y axis) and highlighting 
the identified HOX genes.  

b. List of identified HOX genes being differentially accessible in spinal cord OPCs and MOLs. 
c. Schematic showing workflow for the multiOme experiments, and cell type annotation using co-

embedding followed by kNN clustering. 
d. Stacked violin plot showing gene expression levels of all HOX genes in OPCs in all regions from an 

adult human brain transcriptomic atlas (Siletti et.al 2023). 
 
Ext.Dat.Fig.7 

a. Genome browser tracks showing H3K27ac, H3K27me3 and ATAC signal in OLGs at the HOX-A, HOX-
B, HOX-C and HOX-D clusters in cervical spinal cord (upright track, darker shade) and motor cortex 
(inverted track, lighter shade). Directionality of the clusters is shown by the arrow.  

b. Gaussian smoothed normalized signal from ATAC (blue), H3K27ac (green) and H3K27me3 (red) in 
Spinal cord OLGs (solid line) and cortical OLGs (dotted line) across each HOX cluster with a 50kb 
flanking region upstream and downstream.  

c. Gaussian smoothed normalized signal from ATAC (blue), H3K27ac (green) and H3K27me3 (red) across 
the HOXB, HOXC and HOXD clusters with a 50kb flanking region upstream and downstream, 
separated by each modality. Gray bars show the location of “signal boundaries” identified in each 
modality. Dotted lines mark the boundaries of each HOX cluster. Arrows underneath the plots mark 
intermediate and strong signal boundaries. HOX cluster directionality shown by arrow on top.  

 
Ext.Dat.Fig.8 

a. Experimental schematic showing collection of iPS-derived hOPCs and patient-derived B cells for 
Micro-C. Schematic of chromatin looping to bring enhancer and promoter in contact for transcription 
is shown below. 

b. Micro-C contact matrix in hOPCs at 5kb resolution showing the TAD formed at the SOX9-KCNJ2 locus. 
c. Bar chart showing the sequencing reads (in millions) obtained for each replicate in the B cells and 

hOPCs. Libraries were first shallow sequenced to assess library quality (light gray bars) followed by 
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deep sequencing (dark grey). B cell replicates correspond to 3 separate patients. hOPC replicates 
correspond to separate biological replicates.  

d. Cumulative distribution of compartment size identified in the hOPC and B-cell Micro-C data. Asterisk 
marks 1.5Mb size as the upper size limit for 95% of all compartments.  

e. Contact matrix showing the normalized observed counts (lower triangle) and normalized obs/exp 
counts (upper triangle) at chromosome 7 in hOPCs. A and B compartments are shown along the sides 
of the matrix and exhibit strong corelation with “pockets” of increased contact frequency. 

f. A/B compartments in hOPCs on chromosome 15 overlaid on chromatin accessibility data from hOPCs 
(unpublished), showing corelation between active A compartments and increased accessibility.  

g. Pileup analysis of differentially accessible loops in B cells and hOPCs showing cell type specificity of 
identified loops.  

 
Ext.Dat.Fig.9 

a. 5kb Contact matrix at HOXA (top) and HOXD (bottom) loci showing distinct TAD structures in hOPCs 
(left) and B cells (right). White arrows mark the increased contacts with distal enhancers in hOPCs. 
Location of HOXA and HOXD clusters shown by blue rectangle.  

b. Schematic of the adult human brain showing the location of pontine and thalamic gliomas along the A-
P axis (created with BioRender.com). 

c. Correlation matrix of ATAC, H3K27ac and H3K27me3 signal across all 39 HOX promoters in Cortical 
(left) and Spinal Cord-derived OLGs (right), showing a stronger correlation between ATAC and 
H3K27ac in the spinal cord across all clusters.  

d. Normalized promoter accessibility (ATAC), H3K27ac and H3K27me3 signal in Spinal cord OLGs (top) 
and cortical OLGs (bottom) at the OTX1, ZIC1, and ZIC4 genes which are relevant in formation of 
thalamic gliomas. 

e. Genome browser tracks showing H3K27ac and H3K27me3 signal coverage at the HOXA cluster in 
spinal cord (SC) derived adult human OLG (hOLG) and PFA-EP tumours, H3.3K27M pontine tumours, 
and H3.3K27M thalamic tumours. 

f. Same as c) but at the HOXD locus. 
g. Contact matrix showing long range interaction between MIR10-B and LINC01116, virtual 4c (anchored 

on LINC01116) H3K27me3, H3K27ac, ATAC and inferred loops are shown. 
h. Single cell ATAC, H3K27ac and H3K27me3 tracks showing signal distribution at HOXD and distal 

LINC01116 in spinal cord OLGs and cortex OLGs. 
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