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Summary

The rising prevalence of liver diseases related to obesity and excessive use of alcohol is fuelling an increasing demand for ac-
curate biomarkers aimed at community screening, diagnosis of steatohepatitis and significant fibrosis, monitoring, prognosti-
cation and prediction of treatment efficacy. Breakthroughs in omics methodologies and the power of bioinformatics have created
an excellent opportunity to apply technological advances to clinical needs, for instance in the development of precision bio-
markers for personalised medicine. Via omics technologies, biological processes from the genes to circulating protein, as well as
the microbiome – including bacteria, viruses and fungi, can be investigated on an axis. However, there are important barriers to
omics-based biomarker discovery and validation, including the use of semi-quantitative measurements from untargeted plat-
forms, which may exhibit high analytical, inter- and intra-individual variance. Standardising methods and the need to validate them
across diverse populations presents a challenge, partly due to disease complexity and the dynamic nature of biomarker
expression at different disease stages. Lack of validity causes lost opportunities when studies fail to provide the knowledge
needed for regulatory approvals, all of which contributes to a delayed translation of these discoveries into clinical practice. While
no omics-based biomarkers have matured to clinical implementation, the extent of data generated has enabled the hypothesis-
free discovery of a plethora of candidate biomarkers that warrant further validation. To explore the many opportunities of omics
technologies, hepatologists need detailed knowledge of commonalities and differences between the various omics layers, and
both the barriers to and advantages of these approaches.

© 2024 The Author(s). Published by Elsevier B.V. on behalf of European Association for the Study of the Liver. This is an open access article under
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Introduction
More than one-third of the adult population have steatotic liver
disease either metabolic dysfunction-associated steatotic liver
disease (MASLD), alcohol-related liver disease (ALD) or a
combination thereof (MetALD).1–3 Patients with progressive
disease experience high liver-related morbidity, extrahepatic
complications and premature all-cause mortality.4,5 There is
consequently an urgent need for accurate risk stratification and
effective treatments that modify the natural course of dis-
ease.6,7 Progression of steatotic liver disease follows a profi-
brotic path, resulting in pivotal liver-related events that critically
affect prognosis. It is consequently important to explore
biomarkers that predict precursors of cirrhosis and portal hy-
pertension in the form of significant and advanced fibrosis, as
these disease stages predict later liver-related events, including
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decompensation, acute-on-chronic liver failure, hepatocellular
carcinoma, and death.8–10

The performance of existing and future biomarkers depends
on their intended context of use and validation (Fig. 1,
Table 1).11 General practitioners and hepatologists managing
ALD, MetALD and MASLD lack tests for the accurate diagnosis
of significant fibrosis (>−F2) and steatohepatitis, for prognosis,
monitoring and prediction, and for evaluating the efficacy of
interventions.8,12 Traditionally, the diagnostic accuracy of a
biomarker is evaluated by the area under the receiver-operating
characteristic curve, sensitivity, specificity and predictive
values. However, these performance characteristics depend on
disease prevalence in the studied population.13 Consequently,
future biomarkers need to be tailored to the intended popula-
tion and tested in cohorts which reflect the appropriate
disease prevalence.
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Key points

� There is an urgent need for accurate biomarkers in patients with steatotic liver disease, to stage and grade fibrosis and inflammation,
for monitoring disease progression and for improving drug development and approval pipelines.

� The rapid development and decreased costs of high-throughput omics technologies in combination with excellent computational power
has created a golden opportunity for new types of biomarkers which reflect biological disease processes and can be combined in
multiplex systems. Multi-omics may thereby facilitate an era of accurate, personalised diagnostics.

� Heterogeneity in the development and progression of steatotic liver disease may be disentangled by studying the interplay between
host genetics, transcriptomics, proteomics, metabolomics and lipidomics on the one hand, and gut microbial, viral and fungal
metagenomics and meta-transcriptomics on the other hand.

� Hypothesis-free approaches have revealed the potential of omics technologies for the discovery of liver disease biomarkers and have
proposed many more candidate biomarkers than the traditional hypothesis-driven studies. However, few of these omics-based
biomarker candidates have been rigorously tested in independent cohorts, and none have been implemented in clinical practice.
This review will explore the advantages and limitations of
omics technologies for biomarker discovery across the spec-
trum of steatotic liver disease. We highlight the state of the art
of individual omics technologies: genetics, transcriptomics,
proteomics, lipidomics, metabolomics, metagenomics, meta-
transcriptomics, viromics and mycobiomics. These technolo-
gies have been selected from a wider list of currently available
omics technologies as they are the most common and repre-
sent the promises and obstacles of omics-based biomarkers
for clinical hepatology.

Opportunities for omics technologies
Recent years have witnessed the beginning of a new era in
biomarker development, thanks to high-throughput omics
technologies combined with increasing computational power
and the ability to apply artificial intelligence and machine
learning methods with routine hardware and software. This
major advance allows for hypothesis-free testing of thou-
sands or even millions of analytes.14,15 Multi-omics is thereby
able to disentangle the complex molecular interplay between
host genes, gene transcription, proteins, metabolites and
lipids, in addition to interactions between the host and
microbiome (consisting of bacteria, viruses and fungi) (Fig. 2),
resulting in a multitude of candidate biomarkers.16–19 In
addition, to enable the accurate separation of patients with
progressive liver disease from those with non-progressive
disease, researchers have looked to understand disease
heterogeneity and pathophysiology through the lens of host-
gut-environment interactions.20 Recent developments and
promising biomarker targets from omics technology are
highlighted in Table 2.

In the struggle to identify effective anti-fibrotic interventions
for MASLD and ALD, omics-based biomarkers that reflect
biological fibrotic processes may be used to identify future drug
targets, thereby abating the frequent failures of phase III clinical
trials.21 There is a similar search for accurate biomarkers to
reduce clinical trial screening failures.17 Finally, non-invasive
biomarkers to replace liver biopsy as the surrogate endpoint
would effectively allow for shorter, less costly trials and
reduced patient discomfort.22

The analysis costs of genetics, transcriptomics, proteomics,
lipidomics, metabolomics, metagenomics and metatran-
scriptomics are decreasing thanks to technological develop-
ment and an increase in the capacity of high-throughput omics
platforms.23,24 We therefore expect multi-omics approaches to
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become increasingly accessible for the clinical management of
patients with liver disease over the next decade.

Barriers to omics technologies
Omics-based biomarkers offer more opportunities for discov-
ery than traditional biomarkers, which quantify a low number of
analytes, often only one. However, no omics-based biomarker
has penetrated from development to implementation. This
shortcoming can be attributed to several barriers across
different omics technologies, including 1) technological matu-
rity, 2) cost, 3) analytical validity, 4) untargeted coverage and 5)
semi-quantitative measurements, which are usually laboratory
or instrument specific.

Except for genetics, omics technologies are in their infancy
(Fig. 3). This immaturity results in several obvious limitations,
most notably that the evidence base remains incomplete.

Technological development is moving rapidly from high cost
and low throughput to low cost and high throughput.15,25

However, finite budgets remain a challenge for the maturation
of omics-biomarkers. Current cost pressures create a trade-off
between analyte depth and abundance vs. sample throughput
and sample size.18 The limited ability to robustly detect low-
abundance analytes generates ‘technological bias’.26 Omics
studies typically aim for great depth to discover low-abundance
biomarkers, but this means that investigators cannot afford as
many samples, thus risking spurious findings. The high-
dimensional nature of omics data also requires extensive
computational protocols and processing power, further
increasing time usage and costs.27 However, increasingly
higher demands for omics technologies within the healthcare
system will lead to the development of routine protocols and
market competition, driving costs downward.

Omics measurements can be divided into two analytical
methods: non-targeted and targeted. Non-targeted omics
takes a hypothesis-free approach to the semi-quantitative
analysis of a very large number of molecules, often aided by
machine learning and other advanced bioinformatics. Non-
targeted omics is consequently highly suited for discovery of
new biomarkers. However, this approach faces three major
challenges: 1) semi-quantitative measurements are relative
and, as such, study specific. Findings are therefore difficult to
replicate in external validation. Candidate biomarkers detected
by untargeted approaches must therefore be validated using a
targeted platform, such as ELISA, for absolute concentra-
tions.28 2) Non-targeted measurements are more prone to
st 2024. vol. 81 j 345–359
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Fig. 1. Intended use of biomarkers and the spectrum bias. Due to the spectrum effect, diagnostic accuracy for the same biomarker will change when tested in
populations with different prevalence of disease. Discrete types of omics allow biomarkers to be tailored to the different contexts of use and different disease
spectrums. Plots illustrate variability in sensitivity and specificity, as well as PPV and NPV, with disease prevalence in the studied cohort, derived from Usher-Smith
et al.13 cACLD, compensated advanced chronic liver disease; DC, decompensated cirrhosis; F0 – F2, denotes liver fibrosis stage; NPV, negative predictive value; PPV,
positive predictive value.

Review
analytical biases such as batch effect and variations related to
sample handling and processing.29 3) Non-targeted ap-
proaches usually require more complex and therefore less
standardised bio-informatics pipelines.

The targeted approach uses quantitative assays to measure
concentrations of predefined panels of up to a few hundred
molecules.30,31 Targeted omics can be done, for example, by
using calibration curves and spike-in of internal standards to
allow for absolute quantification and is well suited to either
searching for high-abundance biomarkers or for hypothesis-
driven biomarker evaluation. Discovery of novel targets and
pathways is especially useful for drug discovery and in-
vestigations of disease aetiology; however, its application in
routine analysis in the clinic is still being evaluated.

Different omics technologies each have their own set of
specific advantages which hold great potential for personalised
and precision medicine (Fig. 4; Table 2). Nevertheless, in order
to bring omics-based biomarkers into the clinic, the current
process involves transforming them into analytically repro-
ducible assays that can be validated across laboratories and
cohorts while also meeting regulatory requirements.32,33 These
requirements can be insurance against hurried, spurious
Journal of Hepatology, Augu
findings but can also limit the speed of discovery and devel-
opment to validation.

The subsequent sections delineate the technical complex-
ities and biomarker prospects across diverse omics disciplines.

Genetics
Genetics is the most widely investigated omics technology,
linking single nucleotide polymorphisms (SNPs) to cirrhosis,
hepatocellular carcinoma and steatosis, particularly for
MASLD and ALD.24,34,35 From family and population-based
studies, the heritability of MASLD ranges from 20–70%
depending on ethnicity and how MASLD is diagnosed.36 For
the heritability of ALD, studies suggest alcohol use disorder
heritability ranges from 30–50% and ALD-related cirrhosis
ranges from 21–67%.37 However, disagreement within the
field exists on the proportion of the genetic variance for ALD
that is independent of the genetic predisposition to
alcohol dependence.37,38

Genotyping of individuals for genome-wide association
studies (GWAS) is typically performed using microarrays
to measure common variants, due to the higher cost of
st 2024. vol. 81 j 345–359 347



Table 1. Biomarker indications and clinical use.

Diagnostic Prognostic* Monitoring Prediction* Surrogate
endpoint

Outcome of interest Disease present or
not; disease
staging

Development of clinical
events, mortality

Change in disease
severity

Effect of treatment Substitute for one
or more clinical
outcomes

Subclasses of biomarkers Screening Susceptibility/risk
stratification

Efficacy of interven-
tion; pharmacody-
namic response

Safety (adverse
events)

Reasonably likely
surrogate endpoint

Measurement timing Baseline Baseline Longitudinal Baseline, before
intervention

Start and end of
intervention study

Clinical characteristic Reflects true dis-
ease state

Reflects patient or dis-
ease characteristics

Biomarker changes
correlate with changes
in extent or status of
disease

Reflects patient or
disease
characteristics

Effect on the sur-
rogate endpoint
predicts a clinical
benefit

Statistics used Discriminative ac-
curacy, sensitivity,
specificity, NPV,
PPV, calibration
curves, goodness
of fit, information
criterium, odds
ratio

C-statistics, hazard ra-
tio, time-dependent
receiver operating
characteristics curve,
Aalen-Johansen or
Kaplan-Meier
estimator

Correlation co-
efficients: diagnostic
and prognostic accu-
racy of D biomarker**

Treatment effect in
biomarker positive
vs. biomarker
negative patients if
patient groups
have the same
prognosis

Correlation co-
efficients: diag-
nostic accuracy of
D biomarker to
detect change;
prognostic accu-
racy of D
biomarker

Examples of omics-based
biomarkers

Proteomics for
diagnosis of ALD
fibrosis, inflamma-
tion and
steatosis15

Genetic risk poly-
morphisms for devel-
opment of
hepatocellular carci-
noma in the
population47

Changes in lyso-
phosphocholines by
lipidomics in MASLD
during dietary
intervention137

A polygenic score
to predict weight
loss in response to
physical activity138

No omics markers
approved as surro-
gate endpoints, but
single molecules
may arise from
omics discovery

ALD, alcohol-related liver disease; MASLD, metabolic dysfunction-associated steatotic liver disease; NPV, negative predictive value; PPV, positive predictive value; ROC, receiver-
operating characteristic curve.
*A prognostic biomarker is used to identify the likelihood of a clinical event in a patient, while predictive biomarkers identify patients who are more likely to experience beneficial or
adverse effects of an intervention.
**D means change from baseline.
next-generation sequencing (NGS). NGS methods encom-
pass: 1) whole-exome sequencing, which targets coding re-
gions with functional significance and 2) whole-genome
sequencing, which captures nearly every genotype across the
genome, both coding and non-coding, including rare variants.
Whole-genome sequencing is expected to become the
method of choice in the future for untargeted discovery as
costs continue to decrease.39 NGS methods can be effective
tools for precision diagnostics in rare monogenic forms of
liver disease. Patients who remain undiagnosed despite
comprehensive clinical workups may benefit from genomic
analysis to improve disease prognostication. Examples
include ABCB4, ABCB11 and ATP8B1 to distinguish idio-
pathic cholestasis.40

Large-scale GWAS and meta-analyses have elucidated the
genetic architecture of steatosis, steatohepatitis, and fibrosis
from ALD and MASLD, using liver biopsies, imaging, elastog-
raphy, liver enzymes and electronic health records. These ef-
forts have identified risk loci common to ALD and MASLD,
including PNPLA3, TM6SF2, GCKR, SERPINA1 and
MBOAT7.41–45 Novel protective loci include HSD13B17,
MTARC1, GPAM and PSD3.35,45,46

Genetic risk scores (GRS) combining multiple SNPs with
genome-wide significance (p <5×10−8) can be used for risk
prediction and stratification. A higher GRS, including PNPLA3,
TM6SF2 and HSD17B13, was shown to confer a 12-fold
increased risk of cirrhosis and a 29-fold increased risk of
hepatocellular carcinoma in the European population.47 Like-
wise, a higher GRS derived from PNPLA3, TM6SF2, MBOAT7,
GCKR and HSD13B17 was shown to amplify the effect of liver
348 Journal of Hepatology, Augu
steatosis on the risk of subsequent hepatic events.48 Despite
considerable interest, the predictive value of a given GRS over
simple biochemical biomarkers has been marginal. Combining
PNPLA3, TM6SF2, HSD17B13 and MBOAT7 with metabolic
traits slightly increases the area under the curve for diag-
nosing advanced liver fibrosis, from 0.75 to 0.80 in patients
with ALD.49 Regarding the prediction of 10-year cirrhosis
risk, the addition of a GRS to the APRI score (aspartate
aminotransferase-to-platelet ratio index) provided little addi-
tional prognostic information and only marginally improved
the C-index from 0.804 to 0.809 in the UK Biobank.50 This
limited impact is likely due to the fact that clinical features
from 5 to 10 years before disease onset explain more variance
than the few SNPs with small effect sizes identified so far.51

Yet there is promise: a study based on UK Biobank data
demonstrated that a GRS improves risk stratification and
diagnostic accuracy, particularly in subgroups of individuals
with diabetes, obesity or a fatty liver index above 60. This
suggests that integrating a GRS with non-invasive clinical
markers holds the potential to refine individual risk prediction
for severe liver disease, especially in individuals at risk
for MASLD.52

Polygenic scores have achieved greater predictive power
than GRS for complex diseases by including hundreds to
thousands of SNPs, rather than being restricted to only those
that reach genome-wide significance (p <5x10-8).53 Polygenic
scores developed for liver diseases are still under development
and require well-powered GWAS studies, validated in inde-
pendent study populations of varying ancestries to
ensure generalisability.
st 2024. vol. 81 j 345–359
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Review
Transcriptomics
The transcriptome is the sum of all RNA transcripts of a tissue
or blood sample, commonly used to examine gene expression.
Circulating RNA species include several classes of shorter
RNAs, with microRNAs (miRNA) being by far the most studied.
miRNAs can be quantified by sequencing or reverse-
transcription quantitative PCR (qPCR), using targeted or mul-
tiplexed panels. These methods are sensitive, often quantita-
tive, and relatively low in cost. In contrast, sequencing all small
RNAs is considerably more expensive but allows for mea-
surement of other RNA types, such as PIWI-interacting RNAs,
transfer-RNA fragments, ribosomal and nucleolar RNAs, each
of which contains tens to thousands of different species.54,55

Small RNAs in circulation constitute a novel source of
MASLD-related biomarker candidates, e.g. miR-122, miR-34a,
and miR-193a.56–58 Once a promising RNA biomarker has been
identified, the RNA can be detected with high sensitivity and
accuracy based on targeted reverse-transcription qPCR or
microfluidics-based nano-sensors.

The extracellular RNAs are an especially interesting sub-
type of circulating miRNAs.59 They are enclosed in vesicles or
are protein bound, which protects them from degradation and
facilitates their transport, in turn allowing for cell-to-cell
paracrine communication or long-distance signalling.60

Liver-derived miRNAs, as extracellular RNA, appear to be
important regulators of metabolic disease, particularly
MASLD and steatohepatitis.56 Recent studies show that
levels of liver-derived miRNAs are modified by weight-loss or
insulin-sensitising treatments.61,62

MiRNAs also show promise as biomarkers for ALD, MASLD
and steatohepatitis, with miR-34a, which is part of the NIS2+
score, being a notable example.63,64 In addition, both miR-193
and miR-122 plasma levels have been shown to be increased in
patients with MASLD who have steatohepatitis and advanced
Journal of Hepatology, Augu
fibrosis.65,66 Liver-specific miR-122 also predicts type 2 dia-
betes and decreases following weight loss.61,62 Yet, low miR-
122 is a marker of poor prognosis in patients with cirrhosis.67

Therefore, it appears that the increase in hepatic miR-122
expression is temporary, from upregulation as steatohepatitis
progresses, to a decline in patients with cirrhosis – a similar
non-linear pattern is seen for changing body weight. While this
naturally limits the potential use of miR-122 as a diagnostic
biomarker, it points toward a possible role in causal pathways.
It also illustrates the importance of consecutive recruitment and
inclusion across the disease spectrum in biomarker research.

Microbiome
The human body is home to a large number of microbes, on all
skin and mucous surfaces.68 The vast majority reside in the gut,
which is home to ten trillion bacteria.69 The gut microbiota
exerts important effects on host physiology by producing
diverse metabolites, modulating the immune system and pre-
venting infection by pathogens.70 The gut microbiota can
profoundly affect the liver, as microbial products can enter the
blood circulation and thereby encounter the liver as the very
first organ.23,71,72

Shotgun metagenomic sequencing evaluates both the
species-level taxonomic profile and the functional profile of the
microbiome but requires resource-heavy sequencing equip-
ment and advanced bioinformatics. The cheaper amplicon
sequencing of the bacterial 16 S ribosomal RNA genes enables
determination of a taxonomic profile without large computa-
tional resources, but with lower resolution, at the genus or
family level. Metatranscriptomics quantifies microbial RNA to
describe how gene transcriptional activity across bacterial
species can change according to health or disease.73

Several studies have shown alterations in the gut micro-
biome of patients with cirrhosis or steatohepatitis related to
st 2024. vol. 81 j 345–359 349



Table 2. Omics-based biomarkers in hepatology.

Specimen Outcomes of interest Technology (untargeted) Technology (targeted) Number of analytes (tar-
geted tech.)

Examples of biomarker
candidates

Genetics Whole blood, buffy coat SNPs, candidate genes,
GRS, polygenic scores

Whole genome sequencing Microarray-based geno-
typing or whole exome
sequencing

>6*106 common SNPs
(MAF >0.01)

PNPLA3, TM6SF2, GCKR,
MBOAT7, HSD17B13,
SERPINA114,41,45,139

Transcriptomics All tissue types, plasma,
serum, whole blood

RNA sequences: non-
coding RNA (miRNA, long
noncoding RNA), coding
mRNA, steady state RNA
levels

Reverse transcription-
quantitative PCR or small
RNA-sequencing

Reverse transcription-
quantitative PCR
Targeted sequencing
panels

105 miR-34a,140 miR-122, miR-21

Proteomics All tissue types and body
fluids

Protein abundance Mass spectrometry, Prox-
imity Extension Assay
(commercialized by Olink
Explore) and SomaScan
Assay (commercialized by
SomaLogic)

Mass spectrometry (paral-
lel or multiple reaction
monitoring). Proximity
Extension Assay (used by
Olink Target), ELISA

1 -104 TREM-2 was discovered by
single-cell sequencing, subse-
quently developed into an
ELISA assay.141–143 Compli-
ment component C7 identified
as a fibrosis marker in two in-
dependent biomarker
studies.15,113

Metabolomics
and lipidomics

Plasma, urine, stool, liver,
adipose tissue

Metabolite abundance.
Lipid abundance w.r.t. lipid
class, lipid saturation/
unsaturation, lipid size

Gas or liquid chromatog-
raphy coupled to mass-
spectrometry

Triple-quadrupole mass-
spectrometry,
NMR spectroscopy

102 -103 Glutamate and glutamine144

Triglycerides, such as
TG(48:0)145 and TG(50:2);117

Phosphatidylcholines, such as
PC(36:4);146 Sphingomyelins,
such as SM(41:1)117,118

The Metabolomics-Advanced
steatohepatitis fibrosis score
developed to detect at-risk
MASH

Viromics Stool, saliva, plasma, skin Viral genomes (DNA or
RNA) and their encoded
genes

Shotgun metagenomic
sequencing

Quantitative PCR Variable (depending on
sequencing depth and
sample diversity) with
limited overlap between
samples

None, but bacteriophages
which target cytolytic Entero-
coccus faecalis could poten-
tially be markers of resistance
against alcohol-induced liver
injury.139

Microbiomics Stool, saliva, skin, mucosa Bacteriomics Shotgun metagenomics or
amplicon sequencing

Quantitative PCR or anti-
body test

100-1,000 species per
sample, with 105 -106

genes

Cytolytic Enterococcus
faecalis139

GRS, genetic risk scores; MAF, minor allele frequency; MASH, metabolic dysfunction-associated steatohepatitis; SNP, single nucleotide polymorphisms; miRNA, microRNA; NMR, nuclear magnetic resonance.
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ALD or MASLD, compared to healthy individuals.74–77 The
more severe stages of liver disease are associated with dys-
biosis, decreased abundance of potentially beneficial families
such as Ruminococcaceae and Lachnospiraceae, and an in-
crease in potentially pathogenic families such as Enterobac-
teriaceae and Bacteroidaceae.23,78 One metagenomic study in
patients with decompensated cirrhosis found elevated levels of
Veillonella and Streptococcus species, but reduced levels of
butyrate-producing commensal bacteria, including Faecali-
bacterium prausnitzii and Coprococcus comes.77 Other studies
have demonstrated increased epithelial permeability in patients
with liver disease, which would allow for translocation of bac-
terial components and metabolites, such as lipopolysaccha-
rides, secondary bile acids and pathogen-associated molecular
patterns, fuelling liver inflammation and fibrosis.79–82 Conse-
quently, microbial products can be important biomarkers of
treatment effects, as in the RIFSYS trial, where circulating
levels of the microbiome-generated metabolite trimethylamine-
N-oxide remained stable in patients with cirrhosis treated with
rifaximin-a but increased in placebo-treated patients.83

While accumulating evidence indicates that microbial dis-
turbances play a role in the development and progression of
liver diseases, the study of gut microbiota and their potential as
biomarkers remains in its infancy.84,85
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Viromics and mycobiomics
The virome and mycobiome, though considered premature
omics fields, exhibit promise in light of advancing technologies,
making them interesting for future exploration.

The gut virome mainly consists of bacteriophages (viruses
infecting bacteria) and viruses infecting eukaryotic cells. Vi-
ruses are the most diverse genetic elements on earth, which
poses several technical challenges for virome research.86

Due to the small genome size of viruses compared to pro-
karyotes and eukaryotes, the enrichment of faecal samples for
viruses before DNA and RNA extraction is recommended. A
reverse transcription step is also necessary to capture RNA
viruses. As bacteriophages are highly diverse and highly indi-
vidual specific, they are not sufficiently represented in data-
bases. Hence, a de novo genome assembly approach and a
viral identification method that is, at least partially, independent
of databases is crucial to identify novel viruses from
sequencing data.87

Recent developments in bioinformatics tools have allowed
for improved identification (geNomad), taxonomic classification
(vConTACT2), host prediction (iPHoP) and functional annota-
tion (Cenote-Taker2) of viral sequences, advancing the field to
help identify associations between the virome and human
st 2024. vol. 81 j 345–359 351
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Fig. 4. Population-based vs. personalised omics biomarkers: Promises and challenges. miR, microRNA. Examples are based on references.64,117,147–150
health and disease.88–92 Viruses can directly affect the human
host by killing target cells such as hepatocytes or by modu-
lating the immune system. The human host can also be indi-
rectly affected by the gut virome through the effect of gut
phages on the composition and function of the gut bacte-
rial community.93

Changes in the gut virome have been linked to the pres-
ence and severity of liver diseases, such as MASLD, ALD,
alcohol-related hepatitis and cirrhosis.94–97 However, the high
inter-individual variability of the human gut virome limits the
identification of robust viral biomarkers.98 Overall, viral di-
versity might be a better biomarker than a set of individual
viruses, but viral diversity lacks disease specificity, as seen
with dysbiosis.94,96 Other approaches which overcome the
low prevalence of individual viral genomes are to look for
352 Journal of Hepatology, Augu
virome biomarkers of higher taxonomical orders (e.g. families)
or to group bacteriophages by their bacterial host, but these
more diverse groups of viruses will be more difficult to detect
using qPCR tests.99 Finally, virally encoded genes might be
less individual specific, for example, toxins or auxiliary
metabolic genes, and hence better suited as biomarkers.
These genes could be horizontally transferred to their
bacterial hosts, thus altering the functional capacities of
the targeted bacteria and thereby indirectly affecting the
human host.

The fungal fraction of the microbiome, the mycobiome, is
important in maintaining intestinal homeostasis and immunity.
But although the field of mycobiome research has advanced,
this omics technology is still in its infancy. Early studies have
shown that Candida overgrowth can be linked to ALD and
st 2024. vol. 81 j 345–359
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cirrhosis, and that elevated levels of anti-S. cerevisiae anti-
bodies, which cross-react with Candida albicans, are asso-
ciated with increased mortality in ALD.100–102

Proteomics
Proteins are the most prominent source of biomarkers and drug
targets in human diseases. Routine laboratory testing is
dominated by proteins (42% of all analytes) and, as of 2017,
75% of drugs approved by the US FDA target human pro-
teins.28 Aminotransferases, albumin, bilirubin and coagulation
factors are examples of proteins that are routinely measured to
assess liver function.

Proteomics seeks to map all proteins in a biological
sample, with existing platforms quantifying hundreds to tens
of thousands of proteins, depending on the sample type.
Several cell type-resolved human liver proteome maps have
been published, establishing a robust reference for the
abundance of over ten thousand proteins in human liver
cells.103 Mass spectrometry (MS)-based proteomics and
affinity-based proteomics are commonly used technologies
for the large-scale study of proteins. MS-based proteomics is
the most comprehensive approach and the gold standard for
the quantitative profiling of proteins, post-translational mod-
ifications and protein-protein interactions.104 MS-based pro-
teomics is an ideal approach for unbiased protein profiling
across all organisms and sample types (Table 2). The untar-
geted approach, also known as discovery proteomics, offers
a global view of the proteome and is often used to uncover
novel biomarkers. However, the lack of standardisation as
well as its semi-quantitative nature is a significant hurdle for
discovery proteomics – values obtained in a specific study
can typically only be compared horizontally to other samples
acquired within the same study. In contrast, targeted
MS-based proteomics focuses on specific proteins of
interest, providing precise quantification, validation and clin-
ical applications.

Recent technological advances in MS-based proteomics,
including the automation of sample preparation, improvements
in liquid chromatography, as well as the development of novel
MS acquisition methods and sophisticated informatics solu-
tions, have made it feasible to generate thousands of proteome
profiles in a single clinical study.105 This further translates into
reproducible and robust results. At the same time, researchers
have started to apply machine learning-based classification
algorithms to demonstrate the predictive or discriminative po-
wer of proposed biomarkers in liver disease.

Affinity-based proteomics platforms, such as Olink and
SomaScan, have been widely applied in human plasma and
serum studies.45,106,107 These platforms offer measurements
for dozens and up to thousands of proteins, with standardised
workflows allowing for value comparison across studies.
However, studies comparing the two platforms have high-
lighted inconsistencies in quantification for a significant number
of proteins.108 Consequently, findings from these platforms
often require validation by an orthogonal method, ideally mass
spectrometry, which excels in its specificity of identification
and quantification.109 Other methods include ELISA and similar
techniques, which measure the concentration of a single pro-
tein, making them better suited for biomarker validation
and implementation.
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The FDA-approved OVA1 test for ovarian cancer serves as
an example of a biomarker identified by MS-based proteomics
but which was ultimately developed using immunoassays. The
test consists of a panel of five proteins, four of which were first
published in 2004. Five years later the test received
FDA clearance.110

More than 200 candidate protein biomarkers have been
reported for MASLD and 22 for ALD, although none have
matured into clinical practice.15,111–113 The two most recent
proteomics biomarker studies were selected from 2,201
candidate proteins for MASLD fibrosis and 1,235 candidates
for ALD fibrosis, resulting in eight- and nine-protein biomarker
panels.15,113 Complement component C7 was part of both
panels, while the other proteins differed. Consequently, much
work remains to be done in terms of evaluation of disease
specificity and external validation of these signatures.

Metabolomics and lipidomics
The metabolome comprises all small molecules in the human
body, originating from both endogenous and environmental
sources, and encompasses a biochemically diverse array of
metabolites such as sugars, lipids, amino acids, fatty acids,
alkaloids, and polyphenols.114 One example of a lipid metab-
olite biomarker is phosphatidylethanol, used to detect alcohol
consumption, derived from the trans-phosphatidylation of
phosphatidylcholine in the presence of ethanol.115

Humans are thought to contain around 3,000 endogenous
or common metabolites while the plant kingdom harbours
around 200,000 metabolites, of which 90% are still unquanti-
fied or unidentified.114 Metabolomics platforms are usually a
combination of different chemical analyses using mass spec-
trometry. The platforms detect anything between 100 and
1,000 metabolites, and their quality is based on prior work
identifying the metabolites with pure standards in in-house
identification libraries. Public libraries are available to charac-
terise molecular features but they only provide putative iden-
tifications as the certainty is insufficient to derive meaningful
conclusions. In addition, machine learning approaches are
used to identify the large number of new metabolites.116 MS-
and affinity-based metabolomics can detect several thousand
human metabolites, although, as mentioned, the diverse nature
of the metabolome necessitates the use of multiple analytical
chemistry techniques (Table 2).114

Lipidomics is an especially promising metabolomics tech-
nique for biomarker discovery in steatotic liver disease. In a
study of early ALD, the lipidomic signature of patients with ALD
began to differ from matched healthy controls at the stage of
minimal fibrosis.117 The bioactive lipid classes sphingomyelins
and phosphocholines were downregulated in both liver tissue
and plasma with increasing fibrosis stages and were both
diagnostic of significant fibrosis and predictive of liver-related
outcomes. This finding was validated in an independent
cohort of patients with advanced ALD cirrhosis.118 Other
studies suggest that lipid panels can predict advanced forms of
MASLD: molecular lipids in blood have shown good diagnostic
performance for MASLD and MASH (metabolic dysfunction-
associated steatohepatitis) in well-powered studies, with
elevated triglycerides and reduced lysophosphatidylcholines
and phospholipids.119,120 Interestingly, unsaturated tri-
glycerides are increased with the presence of the PNPLA3 risk
st 2024. vol. 81 j 345–359 353
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variant.121 A 10-metabolite panel including eight eicosanoid
molecules predicted advanced fibrosis with an area under the
receiver-operating characteristic curve of 0.94.122 Finally,
recent data suggest that the liver lipidome of patients with ALD
responds differently to acute alcohol intoxication than that of
patients with MASLD.123 This finding indicates that there are
likely distinct molecular differences between the two diseases,
which may explain the marked difference in disease progres-
sion and risk of liver-related complications.

The use of metabolomics and lipidomics in hepatology is
challenged by specificity, as most known metabolites have
common disease pathways.124 Furthermore, while some me-
tabolites are found to be stable, others, such as glucose and
cholesterol, have been shown to exhibit a daily flux or be
affected by diet.125 Hence, the establishment of a baseline
level is important, especially when measured longitudinally
throughout liver disease progression or regression.
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Multi-omics
Clinical studies are increasingly generating multiple omics
layers, allowing for integrated multi-omics investigations of liver
disease.126,127 Machine learning-based feature selection from
several omics layers can help determine the diagnostic and
prognostic weight of each omics layer, but more importantly,
multi-omics integration can capture disease complexity by
addressing biologically relevant interactions between genes,
their expression and their products. Unfortunately, integrating
multiple types of omics remains a computational barrier.
Consequently, current multi-omics studies rarely integrate
more than two omics layers, and often instead interpret the
outputs in parallel.73,128

One study of multi-omics integration performed GWAS in
9,491 patients with MASLD and detected 20 gene variants
predictive of steatosis and/or cirrhosis.45 From this, the
st 2024. vol. 81 j 345–359
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researchers combined GWAS with transcriptomics and prote-
omics to derive expression quantitative trait loci and protein
quantitative trait loci in the European population. This multi-
omics integration resulted in 16 putative genes associated
with 273 circulating proteins, enriched in order to enable
multiple metabolic and catabolic processes, including the
metabolism of hormones, lipids, alcohol, vitamins, steroids and
monocarboxylic acid. This represents an integrative step for-
ward in understanding disease mechanisms.

The regulatory landscape from an
omics perspective
The regulatory qualification of a biomarker requires thorough
planning and patience.11 For example, the Enhanced Liver
Fibrosis test (Siemens Healthcare) obtained FDA approval in
2021, with the first core clinical study published in 2004
(Fig. 5).129,130 For the nordicPRO-C3TM biomarker (pro-peptide
of type III collagen, Nordic Bioscience and Roche Diagnostics),
it took 5 years to complete assay development, minimising pre-
analytical measurement uncertainty, followed by 6 years to
create clinical evidence before having a Letter of Intent
accepted by the FDA (Fig. 5).

Every year, thousands of papers on biomarkers are pub-
lished, yet very few enter clinical practice.131 This so-called
valley of death is the consequence of the failed transition from
academic studies to implementation and commercialisation.

There are many reasons for the transition to fail. First, un-
derstanding the biological, pre-analytical and analytical factors
that contribute to measurement uncertainty is important.132

Second, when validating a biomarker, the FDA mandates the
establishment of a predefined hypothesis and statistical anal-
ysis plan. Hence, the distribution of the cohort needs to allow
for sufficient statistical power to address the potential context
of use, whether it is diagnostic, prognostic or predictive. The
2016 BEST (Biomarkers, EndpointS and other Tools) resource
from the FDA and National Institutes of Health Biomarker Work
Group provides a notable glossary of biomarker definitions.133

These considerations are important in moving from discovery
to the internal and external validation of a biomarker. Third, for
a study to adhere to Good Clinical Practice, regulatory
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standards, protocols and documents need to be in place,
describing procedures for sample collection and handling,
measurement techniques and quality assurance systems.
Fourth, biomarker measurements need to be conducted within
certified laboratories and the informed consent process should
encompass the explicit acceptance of sample utilisation for
research, as well as for registration and commercialisation. To
make a real difference, a biomarker needs to be implemented
on a worldwide platform, and while many biomarkers may be
interesting in a research setting, very few qualify according to
the Clinical and Standards Institute guidelines.

The current failure of omics to transition from academic
research to implementation and commercialisation may be
partly due to the untargeted nature of most omics analyses,
rendering them best suited for discovery. But the field also
remains hampered by study designs dominated by retrospec-
tive studies that do not adhere to regulatory requirements.134

However, the burden is not only on biomarker research and
development units, but also on regulatory agencies such as the
FDA and the EMA, which have been slow to adapt their
approval procedures to the large data generated by omics on
novel measurement platforms, using advanced biostatistical
methods. The Head of Medicines Agencies report on Big Data
was only issued in 2019, along with a subgroup report on
Bioanalytical Omics.135,136

Conclusion
Omics technologies offer several advantages. They can identify
associations between biomolecules and diseases, uncover
underlying mechanisms and identify new biomarkers with
untargeted hypothesis-free or targeted hypothesis-driven ap-
proaches. Despite the growing enthusiasm, we currently
find ourselves in an exploratory phase where there is a lack
of sufficient high-quality studies to provide the conclusive
evidence of analytical validity, discovery, development and
validation that would meet the requirements of regulatory
authorities. The next 5 to 10 years should see crucial im-
provements in the evidence base and maturity of multi-omics,
allowing for the first omics-based biomarkers to enter clinical
practice as precision tools for personalised medicine.
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