User Manual

Version 1.0 12/02/2024



User Manual

Authors:

Darian Viezzer'?3’

Thomas Hadler'23

Jan Groschel'23

Clemens Ammann'23

Edyta Blaszczyk'?

Christoph Kolbitsch*
Simone Hufnagel*

Riccardo Kranzusch-Grof3®
Steffen Lange®

Jeanette Schulz-Menger'237

' Charité — Universitatsmedizin Berlin, corporate member of Freie Universitat Berlin and Humboldt-Universitat
zu Berlin, ECRC Experimental and Clinical Research Center, Lindenberger Weg 80, 13125 Berlin, Germany

2 Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint
cooperation between the Charité — Universitatsmedizin Berlin and the Max-Delbriick-Center for Molecular
Medicine, Berlin, Germany

3 DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany

4 Physikalisch-Technische Bundesanstalt Braunschweig and Berlin, Germany

5 Universitatsklinikum Schleswig-Holstein, Klinik fiir Radiologie und Nuklearmedizin, Liibeck, Germany

8 Hochschule Darmstadt (University of Applied Sciences), Faculty for Computer Sciences, Darmstadt, Germany
" Helios Hospital Berlin-Buch, Department of Cardiology and Nephrology, Berlin, Germany

* Corresponding author, E-Mail: darian-steven.viezzer@charite.de

Version 1.0 1 0f 35 12/02/2024



User Manual

Table of Contents

1 L1 o Te [UTe3 1T ] o OSSP P PR 3
A N (o= o TSSO 3
B T [ 1S3 7= 11 - 11 o] IS OSSOSO 4
N (U | o SO SO 6
LI Lo 4 [ OSSOSO 6
5.1 (=1 LI o] o] =T OSSOSO 6
5.2  Setting up a standardization PIPElINE........ccoe et 6
LR T [ 4T 0T o e =1 - S 7
5.4  Standardization pipeling traiNiNg ........cccceeeriirerrierere e se e e se e e e enees 7
5.5  Standardization pipeline appliCation ........ccoo it 7

6 GraphiCal USEr INTEITACE .......ociiee ettt e ettt a e e e 7
G20 T | - o OSSO 8
G302 1 10) 1 - 1 ([ o TSSOSO 9
LG T o ][ o OSSOSO 10
T & ][ o o (o0 1= OSSO 11
T T (U o SO SRTT 12
6.5.1 Parameters ... ..o e e e e et e e 12
6.5.2 1= (0] o1 OSSOSO 14

LG I T - OSSR 16
6.6.1 DICOM DATA . .ttt et st a e e e e e R b e e et e e ae e b e b et bt nbeais 16

LG TZA S T=Yo [ 41T o1 = 1 o] o TSRS 16

ST N /|5 20
LS I I = {011 o OSSOSO 21
6.8.1 1= (U] o J TSSO 21
LR T T | - OSSOSO 22
6.8.3 1= [ g 1=T a1 = o] o FOU OSSOSO 23
6.8.4 I = 11 OSSOSO 24

L2 T I = [ T [ S SO S PR 25
6.10 STANAANTIZE ...t bbb e E et e bt e et e 26
6.10.1 =T T L D - SO 27
6.10.2 101 0=Tg g T 1 - L = TSSOSO 28

R oo | =1 021 011V PSSR 29
% TR oo 4T To [T =Yoo VA (Y=Y g RS S 29
711 =T o] oo F= L= T (I CA Y=Y B s I TSSOSO 29
7.1.2 MAFISSA (LEVEI 1.2) ...ttt et st e et ae s e e e 30

Version 1.0 20f 35 12/02/2024



User Manual

1 Introduction

The Magnetic Resonance Imaging Software for Standardization (MARISSA) is an open-
source software tool for the training, evaluation and application of post-hoc standardization
pipelines on quantitative measurements in magnetic resonance imaging. A first proof-of-
concept was performed on mid-ventricular native parametric T1 maps in cardiovascular
magnetic resonance imaging, but it is intended to be applicable on other tissues and/or
quantitative measurements.

While quantitative measurements are impacted by confounding parameters, MARISSA
intends to transform those measurements into values of a reference confounding parameter
environment. Therefore, the bias between the apparent measurement and the target
transformation value is evaluated on a healthy volunteer population for different confounding
parameters. This error is then subtractable, such that the quantitative values become
comparable. However, the evaluation of the bias may be performed with different strategies.
Therefore, MARISSA is a tool to run and evaluate those different standardization pipelines.
Detailed information on the proof-of-concept is provided in the related publication by Viezzer
et al.

The software tool was implemented in Python and can be installed on any common operating
system (see section 3) while a graphical user interface (GUI) enables easy usability (see
section 6).

2 License

MIT License
Copyright (c) 2023 Darian Steven Viezzer, Charité Universitatsmedizin Berlin

Permission is hereby granted, free of charge, to any person obtaining a copy of this software
and associated documentation files (the "Software"), to deal in the Software without
restriction, including without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS 1S", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT
OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR
THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Version 1.0 30f35 12/02/2024



User Manual

3 Installation

MARISSA was implemented with Python 3.8, hence we recommend to install the exact
version number. If different, please ensure to have version 3.8 or higher. Python is available
directly from the website of the Python Foundation:

https://www.python.org/downloads/

Besides python, necessary site-packages must be installed additionally. The package rasterio
must be installed on Windows manually, Ubuntu and macOS user can skip this part. In
Windows rasterio is installed as followed:

The rasterio installation is adapted from the instructions at
https://sandbox.idre.ucla.edu/sandbox/tutorials/installing-gdal-for-windows:

¢ |Install Visual Studio from https://visualstudio.microsoft.com/de/

e |Install Visual Studio Build Tools 2019 and check during installation the workload C++
BuildTools by running in the command prompt:
winget install --id=Microsoft. VisualStudio.2019.BuildTools -e

¢ |Install VC-Redist from https://learn.microsoft.com/en-US/cpp/windows/latest-supported-vc-
redist?view=msvc-170

¢ Install GDAL for windows from https://www.gisinternals.com/release.php

o Choose the MSVC 2019 Compiler > x64 for 64bit Systems > release-1928-x64-gdal-
3-5-3-mapserver-8-0-0 (could be different in future, just check that the year is
according to the Visual Studio year and the number 1928 is equal or bigger than the
MSVC version of your python)

o Download and install the core msi: gdal-305-1928-x64-core.msi (could be different in
the future)

o Download and install the python libraries (be aware of your version, in this its 3.8):
GDAL-3.5.3.win-amd64-py3.8.msi

e Add GDAL to system environment variables

o Go to Start > search for variables - click on the variables button - go in the lower

box (system variables)

Search for the Path entry - double click > Add new

Enter the Location of GDAL, i.e.: C:\Program Files\GDAL

Click ok

Under system variables click add new and insert the following two
= Name: GDAL_DATA / Value: C:\Program Files\GDAL\gdal-data
» Name: GDAL_DRIVER_PATH / Value: C:\Program Files\GDAL\gdalplugins
= Ok andleave

e Overwrite Python GDAL with other version from https://www.Ifd.uci.edu/~gohlke/pythonlibs/

o Search for GDAL

o Download the suitable GDAL wheel for your Python application, i.e.
GDAL-3.4.3-cp38-cp38-win_amd64.whl

o Install with command prompt:

= pip install <path to wheel>
¢ |Install Rasterio from https://www.Ifd.uci.edu/~gohlke/pythonlibs/

O O O O

Version 1.0 4 of 35 12/02/2024



User Manual

Search for Rasterio
Download the suitable Rasterio wheel for your Python application, i.e. rasterio 1.2.10
cp38 cp38 win_amd64.whl
o Install with command prompt:
= pip install <path to wheel>
e Restart PC

For the usage of rasterio in python on Windows, even for other projects, please ensure to
import gdal first, as for example:

from osgeo import gdal

import rasterio.features

The warnings saying “ERROR 1: Can’t load requested DLL” can be ignored.
After downloading the MARISSA source code from
https://github.com/DSV-CUB/marissa

run the install.bat (for Windows only). Alternatively start a command prompt, switch to the
directory of the MARISSA software and run the command

pip install -r requirements.txt

This command will install all the necessary site packages:

abs|-py==0.10.0 graphviz==0.18.2 prince==0.7.1 rpy2==3.5.4
affine==2.3.0 greenlet==1.1.3. post0 protobuf==3.13.0 rsa==4. 6
astunparse==1.6.3 grpcio==1.32.0 py==1.11.0 scikit—fuzzy==0.4.2
atomicwrites==1.4.0 h5py==2.10.0 py2opt==1.3.6 scikit-image==0.18. 1
attrs==21.4.0 idna==2. 10 pyasn1==0.4.8 scikit-learn==0.23. 2
backports. zoneinfo==0. 2. 1 imageio==2.9.0 pyasnl-modules==0. 2. 8 scipy==1.10.1
branca==0. 4.2 iniconfig==1.1.1 pyclustering==0.10.1.2 seaborn==0.12. 2
cachetools==4.1.1 Jinja2==3.0.3 pycparser==2. 21 shapely==2.0.0
certifi==2020.6. 20 joblib==0.17.0 pydicom==2.2.2 shiboken6==6.2.3
cffi==1.15.1 kiwisolver=1.2.0 pydot==1.4.2 six==1.15.0
chardet==3.0.4 libclang==12.0.0 pydotplus==2.0.2 snuggs==1.4.7
charset-normalizer==2.1.1 | ight-famd==0. 0. 3 pygraphviz==1.10 SQLAIchemy==1. 4. 41
click==8.0.3 Markdown==3. 2. 2 pyparsing==3.0.9 sqlalchemy-schemadisplay==1.3
click-plugins==1.1.1 MarkupSafe==2.1. 1 PyPDF4==1.27.0 statsmodels==0.13.0
cligj==0.7.2 matplotlib==3.5.2 pyproj==3.3.0 tensorflow==2.7.0
colorama==0.4.6 mock==4. 0. 2 PyQt5==5.15.4 termcolor==1.1.0
cycler==0.10.0 munch==2.5.0 PyQt5-Qt5==5.15.2 threadpoolct|==2.1.0
decorator==4.4.2 munkres==1.1.4 PyQt5-sip==12.9.0 tifffile==2021.2.1
docopt==0. 6. 2 networkx==2.5 PyQt5-stubs==5.15.2.0 tomli==2.0.1
ERAlchemy==1.2.10 numpy==1.23.5 PyQtbDesigner==5.14. 1 typing==3.5.2.2
et-xmlfile==1.1.0 oauthlib==3.1.0 pyatgraph==0.12. 3 typing-extensions==4.0. 1
exceptiongroup==1.0.4 opencv-contr ib-python==4. 6. 0. 66 PySide6==6.2.3 tzdata==2022. 2
flatbuffers==2.0 opencv-contr ib-python- pytest==7.0.1 tzlocal==4.2
fnv==0.2.0 headless==4.6.0. 66 python-dateutil==2.8.1 urllib3==1.25.10
folium==0.12.1. post1 opencv—python==4.6. 0. 66 python-magic-bin==0. 4. 14 Werkzeug==1.0.1
fonttools==4.33.3 openpyx|==3.0.9 pytz==2021.3 wrapt==1.12.1
gast==0.3.3 opt-einsum==3.3.0 pytz-deprecation- XlsxWriter==3.0.1
geographiclib==1.52 packaging==21.3 shim==0. 1. 0. post0 xlwings==0.25.0
geopy==2.2.0 pandas==1.5. 2 PyWavelets==1.1.1 xmltodict==0.13.0
google—auth==1.21. 1 patsy==0.5. 2 pywin32==302 yarg==0.1.9
google—auth—oauthlib==0.4. 1 Pillow==7.2.0 gimage2ndarray==1.8.3 yel lowbrick==1.2.1
google-pasta==0.2.0 pipreqs==0.4.11 random2==1.0. 1
googlemaps==4.6.0 pluggy==1.0.0 requests==2.24.0

polyline==1.4.0 requests—oauthlib==1.3.0

Version 1.0 50f35 12/02/2024



User Manual

An optional site-package is pygraphviz to plot the database structure (see section 6.4), but it
is not necessary for the overall functionality. If you want to use it, please install pygraphviz
according to their homepage:

https://pygraphviz.github.io/documentation/stable/install.html

Additionally, MARISSA offers a factor analysis of mixed data (FAMD) via R (see section 6.7).
This is an optional functionality and requires besides the rpy2 package the installation of R
from

https://cran.r-project.org

and its packages NbClust, FactoMineR and factoextra. Information about installing packages
in R are given on the R website.

4 Run

In Windows MARISSA can be started with the provided MARISSA.bat. Alternatively, start a
command prompt, switch to the MARISSA folder and run the command:

python -m marissa.__init__

Both will start the GUI of MARISSA (see section 6). For batch processing, user with
experience in Python programming can also run scripts. The scripts used in the proof-of-
concept publication of this work are accessible in marissa\scripts. Further details on the
implementation are given in the section 7.

5 Workflow

The workflow describes the typical order of using MARISSA to train a standardization pipeline
and to apply this onto other data. Further information on the usage is given in the Graphical
User Interface section (see section 6).

5.1 Create a project

The first step is to create a project. The user has to click on new in the start GUI (see section
6.1) and fill in the form to create a new project (see section 6.3). The project home is
automatically started after creation (see section 6.4).

5.2 Setting up a standardization pipeline

From the project home a click on setup enables the definition of parameters that are
accounted for standardization (see section 6.5.1) and setting up the pipeline settings (see
section 6.5.2). While standard DICOM tags are already available, custom parameters based
on DICOM tags are definable (see section 6.5.1.1). After definition of all considerable
parameters, the standardization pipeline is set up (see section 6.5.2.1) by including additional
information about regression model type, potential clustering strategy and the regression
mode.

Version 1.0 6 of 35 12/02/2024



User Manual

5.3 Import data

After definition of a standardization pipeline (see section 5.2), the data that is used for training
of the standardization pipeline must be loaded into MARISSA via the data button in project
home (see section 6.4). Additionally, test data is also already loadable. Beside the DICOM
data, segmentation information must be included (see section 6.6). A meaningful description
of the data is recommended in order to select the training data easily in the upcoming training
step (see section 5.4). The same applies to the creator information for the segmentation data
if more than one segmentation is loaded for a case.

5.4 Standardization pipeline training

After setting up the standardization pipeline (see section 5.2) and loading all necessary data
into MARISSA (see section 5.3), the training button in project home (6.4) guides through the
standardization pipeline training (see section 6.8). After selecting the standardization pipeline,
the training data including the appropriate segmentations are chosen and finally the reference
setup for each parameter is defined (see section 6.8). The training may take some time. The
GUI is not usable during that and freezes. A notification will inform about the successful
training of the standardization pipeline.

5.5 Standardization pipeline application

After training the standardization pipeline (see section 5.4), the standardization pipeline is
applicable on new data. This new data can be either loaded into MARISSA (see section 5.3)
or directly applied. Both is started from the standardize button in the project home (6.4).

6 Graphical User Interface

The GUI enables an easy interaction with the software. The following section shows the main
GUI windows, its controls and describes how to use the software. In order to orientate with
the programming section (see section 7) the individual GUIs are named in accordance with
their respective ui and py filenames.

Version 1.0 7 of 35 12/02/2024



User Manual

6.1 Start

After starting the software, the gui_start will show up as shown in Figure 1.

Choose your project
[1] —> TEST ~| Start <+«— [5]
JE new Xdelete i/_v“s:::ﬁ
[2] —f A

[3] [7]
[4]

[8] T

Figure 1: gui_start - [1] select project, [2] add new project, [3] edit project, [4] delete proect, [5] start project, [6] export project,
[7] import roject and [8] information

Basically, MARISSA works in projects, such that different tissues, modalities, versions and so
on can be separated. The field in [1] shows all existing projects. If none is given or a further
should be started, then [2] adds a new one (see section 6.3). Editing a project via [3] will opens
the same window. The deletion of a project via [4] is irreversible. To work on a project, the
user need to chose one at [1] and click on start [5]. To share the project with others, [6]
enables the export with or without data while [7] enables the import of a project. The exported
file has the extension marissadb but represents a sqlite database and can be therefore
accessed via any sqlite exploring tool. If an import project has the same name as an existing
one, the existing one needs to be renamed via the edit function [2] otherwise the import fails.
The information [8] shows the current information of MARISSA (see section 6.2)

Version 1.0 8 of 35 12/02/2024



User Manual

6.2 Information

The dialog_info shows the information of the current MARISSA software as shown in Figure
2.

1] —>

Version: 10 A
Date: 27.09.2023
Author: Darian Steven Viezzer
Contact: Working group for cardiovascular MRI
Experimental and Clinical Research Center
ECRC - a joint institution of the Charité and MDC
Charité Campus Buch —
Lindenberger Weg 80
13125 Berlin
Germany (Europe)
Earth, Solar System, Milky Way
darian-steven.viezzer@charite.de
https://cmr-berlin.org
License: MIT License

2] —

Copyright (c) 2023 Darian Steven Viezzer, Charité Universitatsmedizin Berlin j

A

Figure 2: dialog_info — [1] MARISSA logo with link to the project homepage and [2] MARISSA information including the
license with link to the working group website

A click on the logo [1] will open a browser to the project homepage
https://github.com/DSV-CUB/marissa

while a click in the information section [2] will open the webpage of the working group

https://cmr-berlin.org/en/en-home/

Version 1.0 90of 35 12/02/2024



User Manual

6.3 Project

Adding or editing a project will open the dialog_add_edit_project as shown in Figure 3.

project name R []_]

subject Human Te— [2]
YK new Xdelete

organ Heart ~le— [3]
JE new Xdelete

quantitative T1 Map v|e—— [4]
YK new Xdelete

K add <«— [5]

Figure 3: dialog_add_edit_project — [1] project name, [2] examination subject, [3] examination organ, [4] ecamination
quantitative and [5] add espectively edit he project

When adding or editing a project (see section 6.1), a project name must be defined [1]. Every
project must contain an information about the examined subject [2], organ [3] and quantitative
[4]. Existing descriptions for these three fields can be added or deleted with the respective
pushbuttons below. Although necessary, this information is not further used or of importance
in the current version. The adding or editing [5] will open the project home (see section 6.4)

Version 1.0 10 of 35 12/02/2024



User Manual

6.4 Project Home

The gui_project is the project home screen and appears whenever an existing project is
started (see section 6.1), edited or a new one is created (see section 6.3). The following Figure
4 shows the appearing GUI window.

2]
!

[3] — Setup «— [1]

A

4] —

[5]

[6] — Train Ifi Standardize -« [8]

T [7]

v

9]

Figure 4: gui_project — [1] go to the start GUI, [2] print project database structure, [3] setup, [4] data, [5] factor analysis of
mixed data, [6] train, [7] plot standardization training, [8] standardize and [9] information

To switch to another project the start window can be accessed via [1] (see section 6.1). Each
project is a SQLite database in the background, the button [2] plots and saves the database
structure. However, this requires pygraphviz to work (see section 3) and is only necessary if
used for complex queries directly in the project database. However, the plot is limited such
that it does not represent the full database structure. Consequently, this is still under
construction.

The setup of the confounding parameters and the standardization pipeline is done via [3] (see
section 6.5) while the DICOM data and corresponding segmentations can be loaded via [4]
(see section 6.6). Existing segmented data can be analyzed via FAMD [5] (see 6.7) if the
corresponding R package is installed (see section 3).

Version 1.0 11 of 35 12/02/2024



User Manual

A standardization pipeline needs to be trained [6] (see section 6.8) while the regression plots
can be accessed and exported [7] (see section 6.9). Application of the standardization
procedure on internal or external data is possible [8] (see section 6.10). The information of
MARISSA is also accessible from the gui_project [9] (see section 6.2).

6.5 Setup

In the gui_project_setup the confounding parameters as well as the setups of the
standardization pipelines including the considered confounding parameters become defined.

6.5.1 Parameters

The primary view of the gui_project_setup is the parameters view as shown in Figure 5.

description WR ™ i| S «— [2]
1 2DDegreeofFreedomAxis FD 3 dcm([0x006864f0).value
2 2DDegreeofFreedomSequence sQ 1 dcm[0x00686470].value T [3]
3 2DImplantTempl FD 4 dcm[0x007800a0] value X delete «— [4]
4 2DImplantTempl AatchingPoint FD 2 dem[0x00780090] value
5 2DLineCoordinates FD 4 dcm[0x006865b0).value
6 2DLineCoordinatesSequence sQ 1 dcm[0x006865a0).value
7 2DMatingAxes FD 4 dcm([0x00686460].value
8 2DM F d q SQ y | dcm[0x00686430].value
9 2DMatingPoint FD 2 dcm[0x00686450].value < [1]
10 2DPlaneCoordinatesSequence sQ 1 dcm[0x006865e0].value
11 2DPlanelntersection FD 4 dcm([0x006865f0).value
12 2DPointCoordinates FD 74 dcm{0x00656560].vaiue
13 2DPointCoordinatesSequence sQ 1 dcm[0x00686550].value
14 3DDegreeofFreedomAxis FD 3 dcm[0x00686490].value
15 3DImplantTempl. M Match FD 9 dcm([0x00780060].value
16 3DImplantTempl M M. Point FD 3 dcm[0x00780050].value
17 3DLineCoordinates FD 6 dcm[0x006865d0].value
18 3DMatingAxes FD 9 dcm[0x006864d0].value ~| =l [5]
« | «~— [6]

Figure 5: gui_project_setup - Parameters view — [1] parameters overview, [2] add parameter, [3] edit parameter, [4] delete
parameter, [5] import parameters from another project and [6] import parameters from an external project

The overview of parameters [1] shows all parameters. A parameter must be extractable from
a DICOM tag. MARISSA contains as a default all standard DICOM tags. A new parameter can
be defined [2] or an existing can be edited (see section 6.5.1.1). Parameters can also be
deleted [4]. Editing and deleting of parameters have no impact on already trained
standardization pipelines as during training the information is copied separately. The import
of parameters from other [5] or external [6] projects will import all not yet existing parameters.

6.5.1.1 Parameters Add/Edit

To add or edit a parameter a GUI window dialog_add_edit_parameter as in Figure 6 appears.

Version 1.0 12 of 35 12/02/2024



User Manual

description — [1]
value representation AE X [2]
value multiplicity 1 . | [3]
formula

+«— [4]

formula as python code, to access DICOM tag use dcm[tagaddress].value and cast
with float(), str(), o.e.

JE new +— [5]

Figure 6: dialog_add_edit_parameter - [1] parameter description, [2] value representation according to the DICOM standard,
[3] value multiplicity, [4] formula and [5] add or edit button

All fields are mandatory, the description [1] must be case-insensitive unique, all special
characters are ignored. The value representation [3] defines whether the parameter is of
categorical or numerical nature and how to read the DICOM tag data according to the DICOM
standard. For more information please refer to

https://www.dicomstandard.org/current

The value multiplicity is necessary, if the DICOM tag contain multiple dimensions, as for
example in the Pixel Spacing. MARISSA only works for fixed value multiplicities. When
defining own parameters, the value multiplicity is usually one.

The formula [4] defines how to read the parameter. The most basic formular is to read directly
a DICOM tag, i.e. to read the patient age attribute (it has the tag number 0x00101010) it can
be accessed via:

dcm[0x00101010].value

Version 1.0 13 of 35 12/02/2024



User Manual

The dcm is a placeholder for the DICOM file that was read with pydicom and the .value means
that the value of this tag is needed otherwise the whole tag including value representation,
etc. is contained. Self-defined parameters from one or multiple DICOM tags is possible but
requires python programming skills, i.e. to access the first number in the patient age as an
integer value, the formula would be:

int(str(dcm[0x00101010].value)[0])

There is currently no formula check, so a mistake in the formula definition is only visible during
training. Finally, the parameter can be added or edited via [5]. The dialog window will close
and the gui_project_setup will return in the parameters view.

6.5.2 Setups

After the definition of parameters (see section 6.5.1) the standardization pipeline setup must
be defined. The Figure 7 shows the gui_project_setup in the Setups view that can be
accessed via the blue tabs on the top.

description  bins clustertype regressiontype  ytype mode parameters a ¥ new «— [2]
1 S1T00 1 kmeans extratrees relative individual PatientsAge, P: System, T1Seq;
«— [3]
2 S1701 1 kmeans extratrees relative ded PatientsAge, P: System, T1Seq;
3 S1T02 1 kmeans extratrees relative ensemble PatientsAge, P: System, T1Seq; xdeme «— [4]
4 S1T03 1 kmeans extratrees absolute individual PatientsAge, P: System, T1Seq
5 S1T04 1 kmeans extratrees absolute ded P tsAge, P: System, T1Seq
6 S1T05 1 kmeans extratrees absolute ensemble PatientsAge, P: System, T1Seq
7 S1T06 1 kmeans linear relative individual PatientsAge, PatientsSex, System, T1Sequence
8 S1T07 1 kmeans linear relative cascaded PatientsAge, PatientsSex, System, T1Sequence
9 S1T08 1 kmeans linear relative ensemble PatientsAge, PatientsSex, System, T1Sequence < [1]
10 S1T09 1 kmeans linear absolute individual PatientsAge, PatientsSex, System, T1Sequence
1 S1T10 1 kmeans linear absolute cascaded PatientsAge, PatientsSex, System, T1Sequence
12 ST 1 kmeans linear absolute ensemble PatientsAge, PatientsSex, System, T1Sequence
13 S1T12 1 kmeans randomforest relative individual PatientsAge, PatientsSex, System, T1Sequence
14 S1T13 1 kmeans randomforest relative cascaded PatientsAge, PatientsSex, System, T1Sequence
15 S1T14 1 kmeans randomforest relative ensemble PatientsAge, PatientsSex, System, T1Sequence
16 S1T15 1 kmeans randomforest absolute individual PatientsAge, P System, T1
17 S1T16 1 kmeans randomforest absolute cascaded PatientsAge, PatientsSex, System, T1Sequence
+«— [5]
18 S1T17 1 kmeans randomforest  absolute ble P tsAge, P: System, T1Seq;
i N «— [6]
o Q4T1R 1 kmaane linaareur ralativa p. =) Sustam T4

Figure 7: gui_project_setup - Setups view - [1] setups overview, [2] add setup, [3] edit setup, [4] delete setup, [5] import
setup from another project and [6] import setup from an external project

The overview of setups [1] shows all parameters. A new setup can be defined [2] or an existing
can be edited (see section6.5.2.1). Setups can also be deleted [4]. Editing and deleting of
setups have no impact on already trained standardization pipelines as during training the
information is copied separately. The import of setups from other [5] or external [6] projects
will import all not yet existing setups.

Version 1.0 14 of 35 12/02/2024



User Manual

6.5.2.1 Setups Add/Edit
To add or edit a parameter a GUI window dialog_add_edit_setup as in Figure 8 appears.

2DDegreeofFreedomAxis ii
2DDegreeofFreedomSequence

2DImplant M
2DImplantTempl: M Point

2DLineCoordinates bins 1 s [2]
2DLineCoordinatesSequence
2DMatingAxes
2DMatingFeatureCoordinatesSequence
2DMatingPoint
2DPlaneCoordinatesSequence
2DPlanelntersection
2DPointCoordinates
2DPointCoordinatesSequence ytype relative — [5]
3DDegreeofFreedomAxis
3OimplantTemplateGrouphiem
3DImplantTemplateGroupMemberMatchingPoint mode cascaded e [6]
3DLineCoordinates

3DMatingAxes 3
3DMatingPoint P
3DPlaneNormal
3DPlaneOrigin
3DPointCoordinates —
AbortFlag

AbsoluteChannelDisplayScale
AbsoluteDosimetricObjectiveFlag
AbstractPriorCodeSequence

AbstractPriorValue

Acceleration

AccessionNumber

AccessoryCode

AcquiredimageAreaDoseProduct
AcquiredSoundpathLength

AcquisitionComments

AcquisitionCompressionType
AcquisitionContextDescription ~|
«

2 ¥ nev

| |

(71 [9)[10] [11){12] (8] (13] (14]

description - [1]

clustertype aglomerative average A [3]

regressiontype extratrees . [4]

Figure 8: dialog_add_edit_setup - [1] setup description, [2] number of bins, [3] clustertype, [4] regressiontype, [5] ytype, [6]
mode, [7] list of not considered parameters, [8] list of considered parameters, [9] add selected parameter to considered, [10]
remove parameter from considered, [11] increase considered parameter position, [12] decrease considered parameter
position, [13] copy setup settings from another setup and [14] add or edit the setup

All fields are mandatory, the description [1] must be case-insensitive unique, all special
characters are ignored. The setup defines the strategy of the post-hoc standardization
pipeline and is crucial for the performance. The setting of bins [2] larger than one requires
the choice of the clustertype [3] as clustering method. This assures for different models for
lower and larger values. The regressiontype [4] defines the regression model type that is used
while the ytype [5] defines the model on either absolute or relative values. The mode [6] is
used to work on either individual, cascaded or ensemble strategy. From the list of parameters
[7] the confounding parameters [8] can be selected via [9] or vice versa via [10]. For the
cascaded mode, the order of the confounding parameters is important, such that this can be
set with [11] and [12]. The copy [13] function allows to adopt the settings of another existing
pipeline. Finally, the setup can be added or edited via [14].

Version 1.0 15 of 35 12/02/2024



6.6 Data

User Manual

In the gui_project_data the DICOM data as well as the segmentation become imported into

MARISSA.

6.6.1 DICOM DATA

The primary view of the gui_project_data is the parameters view as shown in Figure 9.

[1]
l SELECT
SOPinstanceUID StudyinstanceUID seriesnumber  instancenumber SOPinstanceUID N

1 13.12.2.107.5.2.43.167071.2020090210580966652648102  1.3.12.2.1107.5.2.43.167071.30000020090206013678900000009 39 1 TiMap_yvor | | StudyinstanceUID
2 13.12.2.1107.5.2.43.167071.2020090210590572214048176  1.3.12.2.1107.5.2.43.167071.30000020090206013678900000009 42 1 T1Map_vor ;Zﬂiﬁﬁinmu”i;e,
3 1.3.122.1107.5.2.43.167072.20200903105806954582855  1.3.12.2.1107.5.2.43.167072.30000020090307025253500000004 40 1 T1Map_vor ;Z':f(;‘:sc"“i"" 2]
4 13122.1107.5.2.43 167072.2020090310583493901982927  1.3.12.2.1107.5.2.43.167072 3070252535 43 1 TiMapvor | |age
5 13.122.1107.5.2.41.69541.2020090412004291609339074  1.3.12.2.1107.5.2.41.69541.300000: 51 1 pre_MOLL 2?,1“’
6 1.3.12.2.1107.5.2.41.69541.2020090412011058172639202  1.3.12.2.1107.5.2.41.69541.300000 57 1 pre_MOLL ;’:g:‘ i
7 1.3.122.1107.5.2.43.167071.2020111710453790288138965  1.3.12.2.1107.5.2.43.167071.30000020111706443927 100000017 47 2 Tiiap_for | |acquisiiondatetime .|
8 1.3.12.2.1107.5.2.43.167071.2020111710455340255739050  1.3.12.2.1107.5.2.43.167071.30000020111706443927100000017 50 1 TiMap_jor | WHERE )
9 1.3.12.2.1107.5.2.43.167072.2020101309031694161405115  1.3.12.2.1107.5.2.43.167072.30000020101306442559600000001 38 1 TiMap | |MT 00 — 3]
10 13.12.2.1107.5.2.43.167072.2020101309034653405505187  1.3.12.2.1107.5.2.43.167072.30000020101306442559600000001 41 1 T1Map_vor
1 13.122.1107.5.2.41.69541.2020101410275738421886334  1.3.12.2.1107.5.2.41.69541.30000020101405254826000000006 51 1 pre_MOLL T « 4]
12 1.3.12.2.1107.5.2.41.69541.2020101410291599657587067  1.3.12.2.1107.5.2.41.69541.30000020101405254526000000008 57 i pre_iOLL
13 13.122.1107.5.2.41.69541.2020101410321751033387548  1.3.12.2.1107.5.2.41.69541.30000020101405254826000000006 75 1 pre_SASH
14 13.12.2.1107.5.2.43.167071.2020111712222026186528866  1.3.12.2.1107.5.2.43.167071.30000020111706443927100000023 45 2 T1Map_lor « 5]
15 1.3.12.2.107.5.2.43167071.202011171222362925428950  1.3.12.2.1107.5.2.43.167071.30000020111706443927100000023 48 1 T1Map_lor
16 1.3.12.2.1107.5.2.43.167072.2020101310030598640179485  1.3.12.2.1107.5.2.43 167072 1013064425 36 1 T1Map_vor «— [6]
17 13.12.2.1107.5.2.43.167072.2020101310033191722779568  1.3.12.2.1107.5.2.43.167072.30000020101306442559600000004 39 1 T1Map_vor «— [7]
18 1.3.12.2.107.5.2.41.69541 2020101409242350552323005  1.3.12.2.1107.5.2.41.69541.30000020101405254826000000003 46 1 pre_MOLL . | «— [8]
<l | LI xdelete - [9]

Figure 9: gui_project_data — DICOM data view - [1] DICOM overview, [2] list columns selection, [3] filter data, [4] update the
overview according to the filter, [5] export data, [6] import data from a directory, [7] import data from another project, [8]
import data from an external project and [9] delete data that is shown in the overview

The overview of data [1] shows all selected data. By default it shows the first 100 data in the
database. The column selection [2] enables to select the columns of interest for displaying. A
filtering via an SQL WHERE clause [3] will be applied with the click on the update button [4].
A double click on a dataset in the overview [1] opens a plot of the data. The data shown in the
overview [1] can be exported as DICOM files [5]. An import is either done from directory [6],
another project [7] or an external project [8]. The deletion [9] is irreversible and applies on all
data in the overview [1]. To delete single dataset, the usage of filtering [3] is necessary.

6.6.2 Segmentation

After the import of data (see section 6.6.1) the corresponding segmentation must be defined.
The shows the gui_project_data in the Segmentation view that can be accessed via the
orange tabs on the top.

Version 1.0 16 of 35 12/02/2024



User Manual

[1]
SELECT
segmentation|D SOPinstanceUID description creatol dimension timestamp 21 10 segmentationlD
1 241634094516881  1.3.12.2.1107.5.2.36.40390.2013120209143588257703551  myocardium CASEGXNICKxJGXEB 2 2023-08-15 20:07:36 jopi{'S'_anceU'D
lescription
2 7568974575296790  1.3.12.2.1107.5.2.41.69541.2021120612284846126039103  myocardium CASEGXNICKXJGXEB 2 2023-08-15 19:57:59 creator
points
3 9339724738610777  1.3.12.2.1107.5.2.41.69541.2021080412004235821023522  myocardium CASEGXNICKxJGXEB 2 2023-08-15 19:57:59 J rSstien 2]
4 17310679986749604 1.3.12.2.1107.5.2.42.170062.2022020310030126733288483  myocardium CASEGXNICKxJGXEB 2 2023-08-15 19:57:59 dimension
timestamp
5 18897672395208716 1.3.6.1.4.1.19291.2.1.3.116154221873422496333428399036  myocardium CASEGXNICKxJGXEB 2 2023-08-15 19:57:59
6 29440326718517449 1.3.6.1.4.1.19291.2.1.3.11615422187342 11802490 dium CASEGXNICKxJGXEB 2 2023-08-15 19:57:59
7 53843807094836298 1.3.6.1.4.1.19291.2.1.3.116154221873422496333204205986  myocardium CASEGXNICKXJGXEB 2 2023-08-15 19:57:59
8 60713455742286999 1.3.12.2.1107.5.2.42.170062.2021041208432534192406464  myocardium CASEGXNICKxJGXEB 2 2023-08-15 19:57:59 WHERE
LIMIT 100
9 70536730133204351 1.3.6.1.4.1.53684.1.1.4.0.1237.1662725205.712731 myocardium CASEGXNICKxJGXEB 2 2023-08-15 19:57:59 3]
10 97690233454857973 1.3.6.1.4.1.19291.2.1.3. 1161542218734 36251803 my CASEGXNICKXJGXEB 2 2023-08-15 19:57:59
11 98613279326514081 1.3.12.2.1107.5.2.36.40390.2016060814114844708503355  myocardium CASEGXNICKxJGXEB 2 2023-08-15 20:07:36 TR [4]
12 105472407353221342 1.3.12.2.1107.5.2.36.40390.2011061509211846761603227  myocardium CASEGXNICKXIGXEB 2 2023-08-15 19:57:59
YK new segmentation ~ €—— [5]
13 126246431292595785 1.3.6.1.4.1.19291.2.1.3.11615422187342 136841108 dium CASEGXNICKxJGXEB 2 2023-08-15 19:57:59
—
14 139533660768107761 1.3.12.2.1107.5.2.41.69541.2020090412011058172639202  myocardium CASEGXNICKxJGXEB 2 2023-08-15 19:57:59 (6]
15 146598869527409663 1.3.12.2.1107.5.2.41.69541.2016112 497211829 CASEGXNICKxXJGXEB 2 2023-08-15 20:07:36
16 150602960743565872 1.3.6.1.4.1.19291.2.1.3.116154221873422496332990512560  myocardium CASEGXNICKxJGXEB 2 2023-08-15 19:57:59 «— [7]
17 155168703399627578 1.3.12.2.1107.5.2.36.40390.2018042712490956047221320  myocardium CASEGXNICKxJGXEB 2 2023-08-15 19:57:59 «— [8]
18 166567886249298929 1.3.6.1.4.1.19291.2.1.3.1161542218734224963340939312386  myocardium CASEGXNICKXJGXEB 2 2023-08-15 19:57:59 «— [9]
10 17834A66N12007093N0 13 A 1.4 1 10201 2 1 3 11R1642218734224063336322410301___muncardium CASEGYNICK v IGYER 2 2023.08.16 19:A7:-AQ LI
Xdelele <+ [10]

Figure 10: gui_project_data — Segmentation view - [1] segmentation data overview, [2] list columns selection, [3] filter data,
[4] update the overview according to the filter, [5] create new segmentation rule, [6] export segmentation, [7] import
segmentations from a directory, [8] import segmentations from another project, [9] import segmentations from an external
project and [10] delete segmentations that is shown in the overview

The overview of segmentations [1] shows all selected segmentations. By default it shows the
first 100 segmentations in the database. The column selection [2] enables to select the
columns of interest for displaying. A filtering via an SQL WHERE clause [3] will be applied with
the click on the update button [4]. A double click on a segmentation in the overview [1] opens
a plot of the corresponding data and the contour. Multiple segmentations can be combined
with the new segmentation button [5] that opens the segmentation rule (see section 6.6.2.2).
The segmentation shown in the overview [1] can be exported as numpy or pickle files [6]. An
import is either done from directory [7] (see section 6.6.2.1), another project [8] or an external
project [9]. The deletion [10] is irreversible and applies on all segmentations in the overview
[1]. To delete single segmentations, the usage of filtering [3] is necessary.

Version 1.0 17 of 35 12/02/2024



User Manual

6.6.2.1 Segmentation Import

The import of segmentations require either numpy or pickle file formats. Figure 11 shows the
import window.

description

<« [1]
creator

<« [2]
O numpy file (.npy) P
O pickle file (.pickle) [3]

Figure 11: dialog_add_edit_segmentation — Import view: [1] description, [2] creator of the segmentation, [3] file format and
[4] import segmentation

The import of segmentations requires a description [1] and information about the creator [2].
The choice can be arbitrary although special characters are deleted. The file type [3] defines
the way to import segmentations. Numpy files are pickled binary numpy arrays of the same
size as the corresponding DICOM images. On the contrary pickle files are dictionaries with a
Iv_myo dict attribute that contains the cont and imageSize attributes. The cont represents
shapely polygons of the segmentation and imageSize the size of the corresponding DICOM
data. Although historically available, we recommend to use the numpy file import. In any way,

Version 1.0 18 of 35 12/02/2024



User Manual

the filename must represent the SOPinstanceUID of the DICOM data that belongs to the
segmentation as otherwise the match cannot be made. A click on import [4] asks the user for
the directory in which the segmentations are. Please note, that the algorithm runs also through
all sub-directories.

6.6.2.2 Segmentation Rule

As multiple segmentation methods may exist for the same dataset, MARISSA enables the
setup of rules to create novel segmentations.

Segmentations Metric »
myocardium | CASEGxNICKxJGXEB DSC -
Iou (4]
HD
ASD |
M1 o > [5]
() = 000 +—— [6]
¥ add rule ST [7]
Rules
«— [8]
[2] ——AwD =l _ |
| myocardium | CASEGxXNICKxJGXEB Xdelete rule < — [9]
description
+«—[10]
creator

*nex, +— [12]

Figure 12: dialog_add_edit_segmentation — Rule view: [1] segmentation 1, [2] logical connector, [3] segmentation 2, [4] rule
metric, [5] rule metric operator, [6] rule metric threshold, [7] adding the rule metric, [8] list of rules, [9] deleting rule metric,
[10] description, [11] creator and [12] save button

Two segmentations, denoted by [1] and [2], can be logically connected [3] to a new
segmentation. The setting of a rule applies to only a part of the data that fulfill the metric rules.
The metric [4] is selectable with an operator [5] and a threshold [6] by adding as a rule. Please
note that the metrics have different units. Only if the two segmentations are valid for all rules

Version 1.0 19 of 35 12/02/2024



User Manual

[8], then the connected segmentation is saved. A rule can be deleted [9]. The new
segmentation requires a description [10] while the creator is pre-defined. A click on the new

button [12] will evaluate all new segmentations.

6.7 FAMD

If R and the corresponding packages (see section 3) is installed, then a Factor Analysis on
Mixed Data (FAMD) can be performed. The FAMD GUI is shown in

Select the data to include either manually or via SQL

SOPInstanceUID StudyinstanceUID seriesnumber  instancenumber seriesdescripnorj
1 1.3.12.2.1107.5.99.2.2766.30000016042815312750000007873  1.3.12.2.1107.5.99.2.2766.30000016042815312750000009082 29 1 pre_MOLLI_5(3)3_256 (wie alte MOLLI)_|
2 1.2.276.0.7230010.3.1.4.3212447940.1880.1430909046.1684  1.2.276.0.7230010.3.1.2.3212447940.1880.1430909039.769 34 1 pre_MOLLI_5(3)3_256 (wie alte MOLLI)_|
3 1.3.12.2.1107.5.2.41.69541.2015060507214550036005253 1.3.12.2.1107.5.2.41.69541.30000015060506010924500000004 27 1 pre_MOLLI_5(3)3_256 (wie alte MOLLI)_|
4 1.3.12.2.1107.5.2.41.69541.2015060112390948914640794 1.3.12.2.1107.5.2.41.69541.30000015060106160031500000006 30 1 pre_MOLLI_5(3)3_256 (wie alte MOLLI)_|
5 1.3.12.2.1107.5.2.41.69541.20150605083347229626 14394 1.3.12.2.1107.5.2.41.69541.30000015060506010924500000007 28 i pre_MOLLI_5(3)3_256 (wie alte MOLLI)_|

6 1.3.12.2.1107.5.2.36.40390.2016102610534548466075895 1.3.12.2.1107.5.2.36.40390.30000016102506470103100000010 24 1 MOLLI_ 1xsax_MOCO_T1
7 1.3.12.2.1107.5.99.2.2766.30000015062417505945300001728  1.3.12.2.1107.5.99.2.2766.30000015062417505945300002794 83 1 pre_MOLLI_5(3)3_256 (wie alte MOLLI)_|
8 1.3.12.2.1107.5.2.41.69541.20150709094507 10926219948 1.3.12.2.1107.5.2.41.69541.30000015070906214236300000003 35 1 pre_MOLLI_5(3)3_256 mittl_MOCO_T1
9 1.3.12.2.1107.5.2.41.69541.2015101209451674065017201 1.3.12.2.1107.5.2.41.69541.30000015101206083087800000003 30 1 pre_MOLLI_5(3)3_256 (wie alte MOLLI)_|
10 1.3.12.2.1107.5.2.41.69541.2015071708384410198511099 1.3.12.2.1107.5.2.41.69541.30000015071706290514000000002 34 1 pre_MOLLI_5(3)3_256 mittl_MOCO_T1

11 1.3.12.2.1107.5.99.2.2766.30000015080512155190600000670  1.3.12.2.1107.5.99.2.2766.30000015080512155190600002174 28 1 pre_MOLLI_5(3)3_256 (wie alte MOLLI)_|
12 1.3.12.2.1107.5.2.41.69541.2015111010415816908822900 1.3.12.2.1107.5.2.41.69541.30000015111007182788000000003 30 1 pre_MOLLI_5(3)3_256 (wie alte MOLLI)_|
13 1.3.12.2.1107.5.2.41.69541.2015120313541457606648674 1.3.12.2.1107.5.2.41.69541.3000001512030707456 1400000009 28 1 pre_MOLLI_5(3)3_256 (wie alte MOLLI)_|

| A [ L‘L‘

SELECT SOPInstanceUID FROM tbl_data WHERE
sel4ct SQL A select all
1 deseject SQLA Aeselect all
S|iT00 ~|
FAMD Analysis
(11 (2] Bl 4] (51 [6] [71 [8]

Figure 13: gui-project_famd: [1] list of data, [2] filter field, [3] select all data according to the filter, [4] deselect data according
to the filter, [5] select all data, [6] deselect all data, [7] standardization pipeline and [8] run the FAMD analysis

The FAMD analysis the potential impact weight of confounding parameters. The analysis is
applied on the selected data in the overview [1]. Selection can be either done manually by
clicking or via the SQL filtering [2] and the select [3] or deselect [4] buttons. All data at once
are directly selectable [5] or de-selectable [6]. The choice of the standardization pipeline [7]
is necessary to select the confounding parameters. The run [8] of the FAMD analysis exports
the resulting plots of representation of Individuals, Relationship Square, Correlation Circle
and Representation of categories.

Version 1.0 20 of 35 12/02/2024



User Manual

6.8 Training

In the gui_project_training the training of the standardization pipelines is organized and
performed. During training, the software currently freezes and cannot be used for that
moment.

6.8.1 Setup

MARISSA guides through the necessary steps for the training of a standardization pipeline
starting with the setup choice as shown in Figure 14.

Welcome to MARISSA

Here you can run the training for your setups. Please specify below the setup you want to train. With the [next] button you can go to the next step. If you want
to do any changes, click on [previous]. Please note, that clicking on either button saves the changes made. In order cancel changes, just close this window.
The following steps need to be made:

1. Choose setup
2. Add data for the training

3. Choose segmentation(s) to consider setup S1T00 ~je— [1]
4. Run the training

Please note that the training might take some time. Closing the window during trainig will delete training done so far. In case of re-training, the previous training YK save as previous «— [2]
is deleted, when the [run training] is clicked. You can save the previous training with selecting the setup below and [save as previous]

«— [3]

«— [4]
K delete «— [5]

nexi

(6]

Figure 14: gui_project_training — setup view: [1] standardization pipeline setup, [2] save a copy, [3] import standardization
pipeline from another project, [5] import standardization pipeline from an external project, [5] delete trained standardization
pipeline and [6] go to the next step

The choice of the standardization pipeline [1] is the beginning. If it was already trained and
should be backed up, then the save as a previous [2] will do that. Standardization pipelines
can also be imported from another project [3] or an external project [4]. The deletion of a
trained standardization pipeline is also available [5]. Clicking on the next [6] button will go to
the standardization pipeline training data match (see section 6.8.2).

Version 1.0 21 of 35 12/02/2024



6.8.2 Data

After choice of the standardization pipeline, the training data can be selected as shown in
Figure 15.

setup

Select the data to include either manually or via SQL

segmentation train

User Manual

SOPInstanceUID StudyinstanceUID seriesnumber instancenumber seriesdescriptionﬂ
1103 1.3.6.1.4.1.19291.2.1.3.116154221873422496761333324186 1.3.6.1.4.1.19291.2.1.1.11615422187342249676 1325634096 1401 10 WIP MOLLI 4(1)3(1)2 s home SENSE
1104 1.3.6.1.4.1.19291.2.1.3.1161542218734224966006387410911  1.3.6.1.4.1.19291.2.1.1.1161542218734224966006358910843 1601 1 SASHA
1105 1.3.6.1.4.1.19291.2.1.3.116154221873422496761351824551 1.3.6.1.4.1.19291.2.1.1.116154221873422496761325634096 1701 1" WIP SASHA SENSE
1106 1.3.6.1.4.1.19291.2.1.3.1161542218734224963341922913379  1.3.6.1.4.1.19291.2.1.1.1161542218734224963341921413377 14 1 MOLLI 5(3)3 b Home_MOCO_T1
1107 1.3.6.1.4.1.19291.2.1.3.116154221873422496331984531499 1.3.6.1.4.1.19291.2.1.1.116154221873422496331958651026 15 1 MOLLI_3(3)3(3)5 sax mid beats_MOCO_
1108 1.3.6.1.4.1.19291.2.1.3.1161542218734224963342057213541  1.3.6.1.4.1.19291.2.1.1.1161542218734224963341921413377 17 1 MOLLI 5(3)3 b FA20_MOCO_T1
1109 1.3.6.1.4.1.19291.2.1.3.1161542218734224963342220313693  1.3.6.1.4.1.19291.2.1.1.1161542218734224963341921413377 20 1 MOLLI 3-3-5 b_MOCO_T1
1110 1.3.6.1.4.1.19291.2.1.3.116154221873422496332019361937 1.3.6.1.4.1.19291.2.1.1.116154221873422496331958651026 23 1 MOLLI_5(3)3 sax mid beats home_MOC(
1111 1.3.6.1.4.1.19291.2.1.3.1161542218734224963342034013511  1.3.6.1.4.1.19291.2.1.1.1161542218734224963341921413377 23 1 MOLLI 4(1)3(1)2 b Home_MOCO_T1
1112 1.3.6.1.4.1.19291.2.1.3.116154221873422496331971951228 1.3.6.1.4.1.19291.2.1.1.116154221873422496331958651026 31 1 MOLLI_5(3)3 sax mid sec_MOCO_T1
1113 1.3.6.1.4.1.19291.2.1.3.116154221873422496332018771935 1.3.6.1.4.1.19291.2.1.1.116154221873422496331958651026 39 1 MOLLI_4(1)3(1)2 sax mid beats_MOCO_
1114 1.3.6.1.4.1.19291.2.1.3.116154221873422496331971371226 1.3.6.1.4.1.19291.2.1.1.116154221873422496331958651026 47 1 MOLLI_4(1)3(1)2 sax mid sec_MOCO_T*
1115 1.3.6.1.4.1.19291.2.1.3.116154221873422496331989731530 1.3.6.1.4.1.19291.2.1.1.116154221873422496331958651026 53 1 SASHA_sax mid home_T1 -
o 4 | o
SELECT SOPInstanceUID FROM tbl_data WHERE
selegt SQL A select all
4 deseldct SQL A dgselect all
previous next
(8] (11 [2] (31 [4] (51 [6] [7]

Figure 15: gui_project_training — data view: [1] DICOM data overview, [2] SQL filter, [3] select filtered data, [4] deselect
filtered data, [5] select all data, [6] deselect all data, [7] go to the next step and [8] go to the previous step

The training data for the standardization pipeline can be selected manually from the overview
[1] or by applying a SQL filter [2] to select [3] or deselect [4] the queried data. Selecting all [5]
and deselecting all [6] is also possible. Clicking on the next [7] button will go to the
standardization pipeline training data segmentation match (see section 6.8.3), while clicking
on previous will return to the setup view (6.8.1).

Version 1.0 22 of 35 12/02/2024



User Manual

6.8.3 Segmentation

After choice of the standardization pipeline training data, the corresponding segmentations
are chosen as shown in Figure 16.

Select the segmentations to include. If multiples are selected and a case has multiple segmentations, all will be included

segmentation
1 myocardium | CASEGxNICKxJGXEB

previous next

(3] (1] (2]

Figure 16: gui_project_training — segmentation view: [1] segmentation overview, [2] go to the next step and [3] go to the
previous step

Choosing the segmentation is based on the combination of description and creator (see
section 6.6.2). If multiple segmentations are chosen and a dataset has multiple
segmentations, then all of them are used, so the dataset is multiple times in the training used
with different segmentations. If, on the contrary, a chosen dataset (see section 6.8.2) has no
segmentation, then the dataset is omitted. Clicking on the next [2] button will go to the
standardization pipeline training overview (see section 6.8.4), while the next button [3] goes
back to the training data selection (see section 6.8.2).

Version 1.0 23 of 35 12/02/2024



User Manual

6.8.4 Train

After initializing the standardization pipeline training with the training data and segmentations,
an overview is shown as in

O] setup [1]
© Manual ref setup [2]

parameter reference value

1 PatientsAge [18 0

2 PatientsSex [M

3]

3 System [3 0T SIEMENS Verio [syngo MR B17]

For the training of the setup S1T00 with
bins: 1

clustertype: kmeans

regressiontype: extratrees

ytype: relative

mode: individual

Ledledl el
3

4 TiSequence  |MOLLI5(3)3 b

814 individual DICOM data and 1 different segmentations were chosen. In total 814 segmented
DICOM data could be identified for training

If you are sure, you can start the training with [run training]. Please keep in mind, that previous
stored segmentations get overwritten. This may take some time, please leave the GUI open until
the training is finished otherwise all performed training gets lost

default reference ¥ rungtrain

previous

| | |
(6] [4] (5]

Figure 17: gui_project_training — train view: [1] automatical reference setup, [2] manual reference setup, [3] manual
reference setup list, [4] default reference setup, [5] start training and [6] go to the previous step

On the left-hand site all information about the standardization pipeline including the number
of considered training data is listed. Regarding the reference confounding parameter
environment, either an automatic [1] or a manual [2] mode is possible. The automatic mode
just takes the setup that is most occurring across the training dataset. In the manual, each
confounding parameter can be adjusted [3]. However, the combination must be a valid
combination that exists across the training data. Consequently, the assortment for the second
parameter depends on the value of the first, the third parameter on the first and second and
so on. A click on default reference [4] will fill in the manual mode [3] the default values /
automatic reference setup. A click on train [5] starts the training. During that time, MARISSA
GUI freezes and is not usable. The user gets informed, when the training was performed and
the GUI switches automatically back to the setup view (see section 6.8.1). A click on previous
[6] goes back to the training data segmentation selection (see section 6.8.3).

Version 1.0 24 of 35 12/02/2024



User Manual

6.9 Train Plot

The individual regression models can be plotted for trained standardization pipelines as
shown in

AE>I Q=X B

PatientsAge for VMindex 1 on 61 datasets with 17767 datapoints
extratrees regression on relative error in individual mode

—— regression
x reference

relative error

20 30 40 50 60 70
PatientsAge
<< < 10f20 > >>

Select a trained standardization pipeline and export the training plots (only possible if training data is
available). S1T00 ~| xport Plots

3] [1] [4] [5] (2] (6] [71 (8]

Figure 18: gui_project_plot: [1] standardization pipeline selection, [2] current index of plot with respect to the total number
of plots, [3] plot area, [4] go to first, [5] go to previous, [6] go to next, [7] go to last and [8] export plots

The chosen standardization pipeline [1] is used to plot all models [2] in the plot area [3]
individually. With the buttons [4] to [7] the user can browse through the plots. Each
confounding parameter, each bin and each categorical value has an own plot, therefore the
number of plots may exceed the number of confounding parameters. All plots of the selected
standardization pipeline [1] are exportable as jpeg files [8].

Version 1.0 25 of 35 12/02/2024



User Manual

6.10 Standardize

Trained standardization pipelines are applicable onto external (see section 6.10.1) and
internal (6.10.2) data. In any case, the standardization is exported. The export consists for
each dataset the original DICOM image, an Excel table and a marissadata file. The Excel file
and the marissadata file share basically the same information including the confounding
parameter values of the dataset and the segmented T1 values from before until after
standardization. The marissadata file is a pickled dictionary, that can be further post-
processed in other python tools. Additionally, a progression plot is exported for the mean
quantitative value as exemplary shown for three T1 mapping cases in Figure 19.

Data Standardization of T1 Map in a Heart
with the S1T19 setup having 1 bins

1600 | VAN

1500 A i A

1400 - 3 .

mean value

1300 1 “ 7

1200 1 7

1100 A

e o @@ @o& &/&b
¥ N <

standardization progression

Figure 19: Standardization export: progression plot example

Version 1.0 26 of 35 12/02/2024



User Manual

6.10.1 External Data
Figure 20 shows the GUI window to apply standardization on external data.

© external data Dicom — [1]

© numpy (.npy)

Segmentation
O pickle

«— [2]

(3]

O database data

S1T00 ~e— [4]

skip unknown parameter q——— [5]

YK standardize D [6]

Figure 20: gui_project_standardize — external data: [1] path to DICOM data, [2] path to segmentation data, [3] segmentation
data option, [4] standardization pipeline, [5] skipping unknown confounding parameter values (applies to cascaded and
individual mode only) and [6] run standardization

The path to external DICOMs must be provided [1]. All files in that directory and subdirectories
are checked for being a DICOM file. Furthermore, a path to the segmentation [2] must be
provided of either numpy or pickle files [3]. For further information, please refer to section
6.6.2. The filenames of the segmentation must match the SOPinstanceUID of the
corresponding DICOM data. Then, the standardization pipeline [4] is chosen and in individual
and cascaded mode unknown confounding parameter values can be skipped [5]. This is
useful, if for example the specific scanning sequence was not part of the training, but a
standardization with respect to the other confounding parameters should be performed. If this
box is not checked, then the case is skipped and no standardization is applied. Please note,
that only data with matching segmentations are standardized, all others are omitted. The
standardization button [6] runs the standardization process and exports the results.

Version 1.0 27 of 35 12/02/2024



User Manual

6.10.2 Internal Data
Figure 21 shows the GUI window to apply standardization on internal data.

O external data

I (3]
& database data SELECT SCOrinstanceUiD FROM tbi_data VWHERE seieci SQL myocardium | CASEGXN{CKM‘iF— {4]
LIMIT 100
«— [2]
SOPInstanceUID StudyinstanceUID seriesnumber  instancenumber ﬂ
1 1.3.12.2.1107.5.2.43.167071.2020090210580966652648102  1.3.12.2.1107.5.2.43.167071.300000: 1367 39 1 T1Map_vor
2 1.3.12.2.1107.5.2.43.167071.2020090210590572214048176  1.3.12.2.1107.5.2.43.167071.30000020090206013678900000009 42 | T1Map_vor |
3 1.3.12.2.1107.5.2.43.167072.20200903105806954582855 1.3.12.2.1107.5.2.43.167072.30000020090307025253500000004 40 1 T1Map_vor |
4 1.3.12.2.1107.5.2.43.167072.2020090310583493901982927  1.3.12.2.1107.5.2.43.167072.30000020090307025253500000004 43 1 T1Map_vor |
5 1.3.12.2.1107.5.2.41.69541.2020090412004291609339074 1.3.12.2.1107.5.2.41.69541.3000002( 51 1 pre_MOLLI_ N [1]
6 1.3.12.2.1107.5.2.41.69541.2020090412011058172639202 1.3.12.2.1107.5.2.41.69541.3000002( 57 1 pre_MOLLI_
7 1.3.12.2.1107.5.2.43.167071.2020111710453790288138965  1.3.12.2.1107.5.2.43.167071.30000020111706443927100000017 47 2 T1Map_long
8 1.3.12.2.1107.5.2.43.167071.2020111710455340255739050  1.3.12.2.1107.5.2.43.167071.30000020111706443927100000017 50 1 T1Map_long
3 [ 13122 1107 4 2 43 167072 2020101309031694161405115 1 3 12 2 1107 A 2 43 167072 mnnnn?n1n1]10m4945qannonono1 38 1 T1Man anrtL‘
S$1T00 ~e— [5]

skip unknown parameter ¢———— [6]

K standardize «— [7]

Figure 21: gui_project_standardize — internal data: [1] DICOM data overview, [2] SQL filter, [3] filter button, [4] segmentation
selection, [5] standardization pipeline, [6] skipping unknown confounding parameter values (applies to cascaded and
individual mode only) and [7] run standardization

The list of all data in the MARISSA project [1] is by default limited to the first 100 occurring
cases by the SQL filter [2]. The filter can be adapted and applied by [3]. All data in the list [1]
will be used for standardization. The corresponding segmentation needs to be selected [4].
Then, the standardization pipeline [5] is chosen and in individual and cascaded mode
unknown confounding parameter values can be skipped [6]. This is useful, if for example the
specific scanning sequence was not part of the training, but a standardization with respect to
the other confounding parameters should be performed. If this box is not checked, then the
case is skipped and no standardization is applied. Please note, that only data with matching
segmentations are standardized, all others are omitted. The standardization button [7] runs
the standardization process and exports the results.

Version 1.0 28 of 35 12/02/2024



User Manual

7 Programming

As MARISSA is a software tool including a GUI, the whole project is structured into
subdirectories. Figure 22 shows the directory structure of MARISSA that will be explained in
the following in regard of included files and relevant information

Structure Level
homedirectory 1
appdata 1.1
| \ projects 1.1.1
marissa 1.2
gui 1.2.1
designs 1.2.1.1
images 1.2.1.2
modules 1.2.2
clustering 1.2.2.1
database 1.2.2.2
regression 1.2.2.3
toolbox 1.2.3
creators 1.2.3.1
tools 1.2.3.2

Figure 22: MARISSA directory structure

7.1 homedirectory (Level 1)

In the homedirectory all relevant data and information of MARISSA is stored. It contains the
appdata (see section 7.1.1) and marissa (see section 7.1.2) subdirectories as well as the
install.bat, license.lic, MARISSA.bat, README.md and requirements.txt.

7.1.1 appdata (Level 1.1)

The homedirectory\appdata directory contains the MARISSA.sqlite database as well as the
projects (see section 7.1.1.1) directory. The MARISSA.sqglite gives information about the
current version, contact information and so on. If this file is missing, it will be auto-generated
on the next start of the MARISSA software. In order to change the information in the
MARISSA.sqlite, the configuration.py (see section 7.1.2.1) must be adapted for the _ConfigDB
class.

7.1.1.1 projects (Level 1.1.1)

The homedirectory\appdata\projects is a container directory to store all projects (marissadb
files). This directory is read when using MARISSA to list all projects. A deletion of this directory
will delete all projects. The import of projects (see section 6.1) will copy them into this
directory and vice versa.

Version 1.0 29 of 35 12/02/2024



User Manual

7.1.2 marissa (Level 1.2)

The homedirectory\marissa contains all Python files that is necessary to run MARISSA.
Running the __init_ .py file will start the MARISSA GUI. The files are sorted into the
subdirectories: gui (see section 7.1.2.1) for all GUI relevant files, modules (see section 7.1.2.2)
for the core implementations of MARISSA and toolbox (see section 7.1.2.3) for all generic
functions. Additionally, the scripts subdirectory contains the scripts that were used for the
publication of post-hoc standardization of parametric T1 mapping. As this is not necessary
for MARISSA, it is not part of this User Manual.

7.1.2.1 gui (Level 1.2.1)

The homedirectory\marissa\gui directory contains all python files of the GUI including the
interactions. The respective GUI python files load the GUI design from the designs
subdirectory (see section 7.1.2.1.1) with the same filename but the .ui instead of .py extension.
The basic.py is a non-used file and represents just the basic Python file structure for the GUIs.
This can be used when adding new GUIs. The configuration.py file is important as it contains
the runtime information of MARISSA when switching between the GUIs by handing over the
configuration Setup object. Additionally the _ConfigDB class is the connection to the
MARISSA.sqlite (see section 7.1.1)

7.1.2.1.1 designs (Level 1.2.1.1)

The homedirectory\marissa\gui\designs contains all .ui files representing the GUI windows
that were created with the PyQt5 Designer. In order to add or edit GUIs, the PyQt5 Designer
is necessary to open these files. All GUI Python files load their respective .ui files. Therefore,
the name of controls must match the name of these controls in the .ui file.

7.1.2.1.2 images (Level 1.2.1.2)

The homedirectory\marissa\guilimages is a directory that contains images and logos that are
used for the controls buttons and labels. If a control starts with btn_icon_ (for buttons) or
Ibl_icon_ (for labels), then it adds the image to the control if existing. For example
btn_icon_new_dark will add the homedirectory\marissa\gui\images\new_dark.png to the
control. This connection is done in the creator_gui.py (see section 7.1.2.3.1)

7.1.2.2 modules (Level 1.2.2)

The homedirectory\marissa\modules has the three subdirectories clustering (see section
7.1.2.2.1), database (see section 7.1.2.2.2) and regression (see section 7.1.2.2.3), which
contains the main implementation of MARISSA

7.1.2.2.1 clustering (Level 1.2.2.1)

In the homedirectory\marissa\modules\clustering all available clustering algorithms are
implemented. The __init__.py file contains the basic class and functions that are necessary to
add a clustering to MARISSA. As the GUI currently do not offer any hyperparameter adaptions
of the clustering algorithm apart from the number of clusters, every hyperparameter setting
must be implemented as an own file with an own name. Please notice, that the training of a

Version 1.0 30 of 35 12/02/2024



User Manual

standardization pipeline copies all necessary information to re-run the training, however,
changing the clustering algorithm source code will affect already trained standardization
pipelines, so changes should be done with caution.

7.1.2.2.2 database (Level 1.2.2.2)

The homedirectory\marissa\modules\database contains the marissadb.py file, which is the
core of the MARISSA. The Module class creates the marissadb file (see section 7.1.1.1) if not
existing otherwise it is the connection to it. Figure 23 shows the database structer of the
marissadb file.

Version 1.0 31 of 35 12/02/2024



tbl_data

— + *SOPinstanceUID : text

+ StudyinstanceUID : text
+ seriesnumber : integer
+instancenumber : integer
+ seriesdescription : text

+ identifier : text

+ age : text

— + *setuplID : integer

+ description : text

+ bins : integer

+ clustertype : text

+ regressiontype : text
+ ytype : text

+ mode : text

tbl_match_setup_parameter

+ *setuplID : integer
— + *parameterID : integer
+ ordering : integer

User Manual

+ gender : text

+size :real

+ weight : real

+ description : text

+ acquisitiondatetime : datetime
+data : list

+ timestamp : datetime

tbl_match_setup_data_segmen
tation

— + *setuplD : integer
+ *SOPinstanceUID : text
r- + *segmentationID : integer

tbl_parameter

'— + *parameterID : integer
+ description : text
+ VR : text
+ VM :integer

+formula : text

tbl_segmentation

+ *segmentationID : integer
+ SOPinstanceUID : text

+ description : text

+ creator : text

+ points : array

+ mask : array

+ dimension : integer

+ timestamp : datetime

+ 1D : text
+ parameter : text

Standardization
Pipeline
Training

tbl_standardization_parameter tbl_standardization_setup tbl_standardization_data

+ *setuplD : integer —
+ *SOPinstanceUID : text —
+ *segmentationID : integer —
+ segmentedvalues : array
+ parameters : list

+ *setuplD : integer

+ description : text

+ bins : integer

+ clustertype : text

+ regressiontype : text
+ ytype : text

+ mode : text

— + *setuplID : integer
—— + *parameterlD : integer —
+ ordering : integer

+ description : text

+ VR : text

+ VM :integer

+formula : text

tbl_standardization_match_dat
a_setup_parameter
+ *setuplD : integer
—— + *parameter|D : integer
+ *SOPinstanceUID : text
+ *segmentationlID : integer
+ *VMindex : integer

tbl_standardization

— + *setuplID : integer

+ *parameterlID : integer
+ *bin : integer

+ *VMindex : integer
+*x: list

+ reference : blob

+ regressor : blob
+rmse : real

+p:real

+rsquared : real

+ timestamp : datetime

Figure 23: MARISSA database structure: blue denotes the active part, which is filled and edited by the user, green denotes
the trained standardization pipeline. These are filled automatically during training of the standardization pipeline and are
separated for consistency. The tbl_info is an overhead information table with no relevance to the functionality itself. The *
denotes the primary key fields

The tables in MARISSA are relational connected, but has two separated parts. The tbl_data,
tbl_segmentation, tbl_setup, tbl_parameter, tbl_match_setup_parameter and
tbl_match_setup_data_segmentation are filled and edited by user interations through the GUI
(see section 5.3). The  tbl_standardization_setup, tbl_standardization_data,
tbl_standardization_parameter,  tbl_standardization_match_data_setup_parameter = and
tbl_standardization are automatically filled, when the user starts the training of a segmentation

Version 1.0 32 of 35 12/02/2024



User Manual

pipeline. All functions, except of simple SQL queries, are implemented in this marissadb.py
file.

All tables consist of one or multiple primary key entries. The SOPinstanceUID is read from
the DICOM data and represents by definition a unique identifier of the data. The setupiD,
segmentationID and parameter|D are calculated by creating a hash value. The setuplD and
parameterID has the description only ase base for the hash calculation, while the
segmentationID is the hashed value of description, creator and SOPinstanceUID. In any case
the upper case of the hash base is used. Consequently, ExampleDeScription and
EXAMPLEDESCRIPTION would result in the same hash value. As those are primary keys and
therefore unique identifiers, each setup, parameter and segmentation must be unique.

The main functionalities to interact with the tabled of the database are implemented in the
marissadb.py as shown in
Table 1: Overview functions to interact with the tables in the SQLite database of a MARISSA project. The x denotes the

functions that are implemented in the marissadb.py while (x) shows those that are imported via the import function of
tbl_standardization.

table | function | import | insert | update | delete get
tbl_data X X X X X
tbl_segmentation X X X X
tbl_parameter X X X

tbl_setup X X X
tbl_standardization X X X
tbl_standardization_setup (x) X
tbl_standardization_parameter (x) X

tbl_standardization_data (x) X
tbl_standardization_match_data_setup_parameter (x) X

Among additional functions that are implemented in marissadb.py, the following are of
interest:

The get_data_parameters returns the parameter values for a given dataset that is referred by
the SOPinstanceUID.

The get_data_segmentation returns the segmented values for a given SOPinstanceUl and
segmentationlD.

The get_standardization calls the get_standardized_values and applies the standardization on
a given dataset.

7.1.2.2.3 regression (Level 1.2.2.3)

In the homedirectory\marissa\modules\regression all available regression models are
implemented. The __init__.py file contains the basic class and functions that are necessary to
add a regression to MARISSA. As the GUI currently do not offer any hyperparameter
adaptions of the regression model, every hyperparameter setting must be implemented as an
own file with an own name. Please notice, that the training of a standardization pipeline copies
all necessary information to re-run the training, however, changing the regression model

Version 1.0 33 of 35 12/02/2024



User Manual

algorithm source code will affect already trained standardization pipelines, so changes should
be done with caution.

7.1.2.3 toolbox (Level 1.2.3)

The homedirectory\marissa\toolbox includes all generic functions. These are separated in
creators (see section 7.1.2.3.1) and tools (see section 7.1.2.3.2). The creators are basic
classes from which specific objects inherit while the tools contain single functions.

7.1.2.3.1 creators (Level 1.2.3.1)

The homedirectory\marissa\toolbox\creators contains the basic classes from which the
specific objects inherits. Therefore, the class name is always Inheritance.

The creator_configuration.py is the configuration class base (see section 7.1.2.1) and
contains the basic functions for save, load, set and reset. The save and load functionality were
used in a pre-version but is not necessary anymore as the configuration is newly created on
each starting up of MARISSA.

The creator_dialog.py and creator_gui.py are the basic classes for the GUI objects (see
section 7.1.2.1). These contain the functions to select a file or directory ss well as show a
dialog to the user. Furthermore, window settings are performed, i.e. all text are set to Arial
with 10pt. size, as otherwise the font will be too small on UHD displays. Additionally, the icons
in the labels and buttons are set (see section 7.1.2.1.2) and widgets starting with mpl_ in the
name become replaced by a matplotlib widget as this type of widget is not available in the
PyQt5 Designer and needs therefore some self-implementation.

The creator_marissadata.py is the dummy object of the standardization output. The save
function will create a pickled dict object file containing all information, such that is directly
usable for further processing in other Python tools. Although a load function is implemented,
it is currently not used in MARISSA.

The creator_sqlitedb.py is the object connection between MARISSA and the actual sqlite file
and contains the necessary functions of connect and disconnect as well as the select and
execute functions to run SQL commands. Furthermore, it contains the conversion to
compressed byte streams of lists and arrays in order to extend the datatypes in sqlite.
7.1.2.3.2 tools (Level 1.2.3.2)

The homedirectory\marissa\toolbox\tools contains the Python files with general functions.

The tool_excel.py has a Setup and a Reader class to write and read Excel files respectively.
A row variable acts as a pointer for the current row, such that writing a new line will write not
overwrite prior written lines.

The tool_general.py is a mixed conglomeration of functions that were used in MARISSA but
also other independent projects.

The tool_hadler.py are provided functionalities of the Co-Author Thomas Hadler that were
necessary, especially to convert between shapely polygons, mask and contours.

The tool_plot.py contains different functions to plot segmentations onto images in matplotlib.

Version 1.0 34 of 35 12/02/2024



User Manual

The tool_pydicom.py has some function extensions to work with DICOM data. Some functions
are depreciated and not used anymore.

The tool_R.py is the connection between Python and R to either use the NbClust package for
optimal cluster size estimation or the FAMD analysis to estimate the impact of individual
parameters on a measurement.

The tool_statistics.py provides the calculation of the confusion matrix, the ROC curve analysis
and confidence intervals.

Version 1.0 35 of 35 12/02/2024



