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C A N C E R

Clonal dominance defines metastatic dissemination in 
pancreatic cancer
I-Lin Ho1,2†*, Chieh-Yuan Li1,2†‡*, Fuchenchu Wang3†, Li Zhao2, Jingjing Liu2, Er-Yen Yen1,2,
Charles A. Dyke2, Rutvi Shah1,2, Zhaoliang Liu2, Ali Osman Çetin4, Yanshuo Chu2,
Francesca Citron2, Sergio Attanasio2, Denise Corti2, Faezeh Darbaniyan3, Edoardo Del Poggetto2, 
Sara Loponte2, Jintan Liu1,2, Melinda Soeung1,2, Ziheng Chen2, Shan Jiang5, Hong Jiang2,  
Akira Inoue2, Sisi Gao2,5, Angela Deem2, Ningping Feng5, Haoqiang Ying6, Michael Kim7,  
Virginia  Giuliani4, Giannicola Genovese8, Jianhua Zhang2, Andrew Futreal2, Anirban Maitra9, 
Timothy Heffernan5, Linghua Wang2, Kim-Anh Do3, Gaetano Gargiulo4, Giulio Draetta2, 
Alessandro Carugo5§, Ruitao Lin3, Andrea Viale2*

Tumors represent ecosystems where subclones compete during tumor growth. While extensively investigated, a 
comprehensive picture of the interplay of clonal lineages during dissemination is still lacking. Using patient-
derived pancreatic cancer cells, we created orthotopically implanted clonal replica tumors to trace clonal dynam-
ics of unperturbed tumor expansion and dissemination. This model revealed the multifaceted nature of tumor 
growth, with rapid changes in clonal fitness leading to continuous reshuffling of tumor architecture and alternat-
ing clonal dominance as a distinct feature of cancer growth. Regarding dissemination, a large fraction of tumor 
lineages could be found at secondary sites each having distinctive organ growth patterns as well as numerous 
undescribed behaviors such as abortive colonization. Paired analysis of primary and secondary sites revealed fit-
ness as major contributor to dissemination. From the analysis of pro- and nonmetastatic isogenic subclones, we 
identified a transcriptomic signature able to identify metastatic cells in human tumors and predict patients’ sur-
vival.

INTRODUCTION
Cancer is not a static disease. It is more appropriately considered as 
a complex ecosystem wherein diverse clonal lineages (also called 
“subclones”) and their environment continually coadapt and co-
evolve (1, 2). The shifting over time of the subclonal landscape is 
termed “clonal evolution,” and it is one of the fundamental mecha-
nisms that drive tumor progression and heterogeneity (3, 4). Clonal 
evolution occurs during all stages of cancer development, from early 
lesions to end-stage metastatic disease, and it underlies the tumor 
response to intrinsic or extrinsic perturbations, where tumors adapt 
to the new environment by selecting for subclones with a survival 
advantage (3, 4).

Metastasis is a leading cause of cancer death (5). The metastatic cas-
cade model of tumor dissemination describes a stepwise progression 
of tumors culminating in metastatic disease, and this model has 

become universally accepted (6–8). According to the model, metasta-
ses are the end point of a linear evolution wherein tumor cells progres-
sively acquire genomic or epigenetic alterations that sustain tumor cell 
dissemination and survival in distant microenvironments (7). This 
model is corroborated by genomic studies documenting higher muta-
tional load in secondary lesions compared with primary tumors, al-
though no specific recurrent genes driving the metastatic process have 
been confirmed (9–12), apart from KRAS and MYC amplifications in 
some cases (13–16). The metastatic cascade model delineates probable 
mechanisms that endow tumor cells with the required features to suc-
cessfully disperse and manifest a secondary lesion. However, the mod-
el fails to account for emerging paradigms in tumor evolution (3, 17) 
and only few studies account for tumor heterogeneity (18, 19). It also 
cannot explain evidence of dissemination from early tumor lesions 
(20–22), which suggests that metastatic potential is established early 
during tumor progression and that metastases are probably driven by 
the same genetic alterations that drive tumorigenesis (23).

Analysis of longitudinal patient liquid or tissue biopsy from clini-
cal studies is uncovering characteristic shifts in tumor clonality over 
time (24–28). However, these data are necessarily limited in the num-
ber of samples per patient as well as confounded by intra- and inter-
patient variability as well as tumor stage and genetics. In addition, in 
the clinical setting, longitudinal sampling is nearly universally ob-
tained in a pretreatment/posttreatment setting and does not support 
investigation of unperturbed tumor evolution. For tumor types that 
are typically diagnosed at the stage of advanced disease, there are lim-
ited clinical data available to study clonal change representation that 
might have prognostic significance. One such tumor is pancreatic 
ductal adenocarcinoma (PDAC), which is frequently diagnosed after 
the invasion of nearby and distant organs has occurred, and fewer 
than 10% of patients will survive 5 years after diagnosis (29).

1The University of Texas MD Anderson Cancer Center UTHealth Graduate School of 
Biomedical Sciences, Houston, TX, USA. 2Department of Genomic Medicine, The 
University of Texas MD Anderson Cancer Center, Houston, TX, USA. 3Department of 
Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, 
USA. 4Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association 
(MDC), Robert-Rössle-Str. 10, 13125 Berlin, Germany. 5TRACTION platform, The Uni-
versity of Texas MD Anderson Cancer Center, Houston, TX, USA. 6Department of 
Cellular and Molecular Oncology, The University of Texas MD Anderson Cancer 
Center, Houston, TX, USA. 7Department of Surgical Oncology, The University of 
Texas MD Anderson Cancer Center, Houston, TX, USA. 8Department of Genitourinary 
Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, 
TX, USA. 9Department of Pathology, The University of Texas MD Anderson Cancer 
Center, Houston, TX, USA.
*Corresponding author. Email: aviale@​mdanderson.​org (A.V.); iho@​mdanderson.
org (I.-L.H.); alexcyli2015@​gmail.​com (C.-Y.L.)
†These authors contributed equally to this work.
‡Present address: Mission Bio, South San Francisco, CA 94080, USA.
§Present address: IRBM, Pomezia (Rome), Italy.

Copyright © 2024 The 
Authors, some rights 
reserved; exclusive 
licensee American 
Association for the 
Advancement of 
Science. No claim to 
original U.S. 
Government Works. 
Distributed under a 
Creative Commons 
Attribution 
NonCommercial 
License 4.0 (CC BY-NC). 

mailto:aviale@​mdanderson.​org
mailto:iho@​mdanderson.​org
mailto:iho@​mdanderson.​org
mailto:alexcyli2015@​gmail.​com
http://crossmark.crossref.org/dialog/?doi=10.1126%2Fsciadv.add9342&domain=pdf&date_stamp=2024-03-13


Ho et al., Sci. Adv. 10, eadd9342 (2024)     13 March 2024

S c i e n c e  A d v a n c e s  |  R e s e ar  c h  A r t i c l e

2 of 21

To study the clonal evolution of PDAC from primary lesion growth 
to overt disease dissemination, we leveraged Clonal Replica Tumors 
(CRTs), an innovative in vivo platform to generate cohorts of animals 
bearing human tumors that are essentially identical in their clonal 
composition (30). Here, we reconstruct in mouse the complex dy-
namics of PDAC clones during unperturbed tumor expansion over a 
period of 3 months and capture the metastatic spreading of tumor 
cells at the organismal level with unparalleled high resolution. Our 
study goes beyond measuring colonization as a single end point and 
investigates the metastatic process as intrinsic within the natural evo-
lution of a complex ecosystem in which distinct populations of cells 
continuously compete for fitness in the pancreas restrained microen-
vironment. Our results formally demonstrate that the fitness of a sub-
clone within the primary lesion is the major determinant of whether 
it eventually disseminates and successfully initiates a tumor at sec-
ondary sites.

RESULTS
A high-resolution longitudinal model enables the study of 
unperturbed tumor expansion
To generate a relevant model that captures PDAC diversity and main-
tains the clinical features of the original tumor as much as possible, we 
derived the cell line PATC124 from an early passage xenograft (31) 
established from a patient who underwent pancreaticoduodenectomy 
for stage IIA pancreatic cancer (T3N0M0). Isolated cells were con-
firmed to be genetically heterogeneous using single-cell copy number 
analysis, and copy number variation (CNV) was documented among 
subclonal populations (Fig. 1A and fig. S1A). When implanted ortho-
topically in NSG mice, the established cell line PATC124 manifested 
primary tumors within approximately 30 to 45 days that maintained 
the histologically features of the parental xenograft tissue. In addition, 
after a latency of approximately 3 months, the liver in all transplanted 
NSG animals was colonized with secondary tumors (Fig. 1B); this re-
capitulated the clinical history of the patient, who succumbed to liver 
metastasis 17 months after diagnosis.

We previously established a lentiviral barcoding platform to study 
clonally identical tumors in large cohorts of animals, which we 
named CRTs (30). Here, we have modified our approach to generate 
orthotopic CRTs (oCRTs) that we use for longitudinal studies. Briefly, 
we transduce isolated cells with a high-complexity barcode library at 
low multiplicity of infection (MOI < 0.1) to ensure one integrant per 
cell, select the barcoded population of cells using puromycin, and 
then minimally passage cells in vitro to stabilize the barcoded popu-
lation before expansion and orthotopic injection into the pancreas of 
recipient NSG animals (30). We then study unperturbed tumor ex-
pansion at the organismal level in cohorts (n = 2) that are euthanized 
to collect primary tumor (pancreas), blood (~0.8 ml), whole liver, 
and lung tissues over a period of 3 months. Last, barcoded cell popu-
lations in each tissue are analyzed by next-generation sequencing 
(NGS) (Fig. 1C).

We compared the subclonal composition of PATC124 cells from 
all the primary tumors by NGS barcode analysis. Pairwise compari-
son demonstrated that the proportion of the paired barcodes within 
each primary tumor was highly correlated through the 10-week time 
point (Pearson’s R = 0.999 at day 0, 0.991 at week 4, 0.904 at week 6, 
and 0.963 at week 10), with decreased correlation observed at the final 
time point (week 14; R = 0.727) (Fig. 1D). We further showed that all 
PATC124 oCRTs shared a common set of lineages represented by 934 

barcodes that were present from the beginning of the experiment (day 0, 
transplantation) through study end point (week 14) (Fig. 1D). This 
common set of barcodes represented 93% of the barcoded cells in the 
inoculum at day 0, and it represented virtually the entire tumor mass 
of the primary tumors at each following time point (between 92.4 and 
99.5%). Of note, the correlation of the common barcodes between 
primary tumors at each time point remained high (between R = 0.990 
and R = 0.998) until the last time point (week 14; R = 0.714). The high 
representation of tumor mass by a subset of common lineages as well 
as the high correlation among independent tumors with regard to 
subclonal composition satisfy the criteria we previously defined for 
CRTs (30), suggesting that our orthotopic approach, oCRTs, can sup-
port studies of clonally identical tumors through at least 10 weeks, 
after which time barcode correlation begins to diminish and animals 
become moribund.

To further assess the robustness of PATC124 oCRTs for longitudi-
nal tracing, we performed a series of data simulation and statistical 
tests (fig. S1B). First, we defined very stringent criteria of similarity 
using both the differences between the replica vials of injected cells 
(identical technical replicates) and the differences between clonal lin-
eages that support oCRTs at week 4. We applied these criteria to simu-
late each oCRT 5000 times and calculated Pearson’s correlation for 
pairwise comparisons of individual subclones and of average Euclidean 
distance of subclones within whole tumors. This confirmed that the 
clonal similarity of paired oCRTs is maintained over time, and tumors, 
although experience a pattern of natural divergence toward the final 
time point, are still considered identical by statistical tests at week 14 
(Fig. 1E and fig. S1, C and D).

In summary, oCRTs progress very similarly over time, but intrinsic 
(genetic/epigenetic) or extrinsic (microenvironmental) factors in the 
confined environment of the mouse pancreas may influence individ-
ual clonal fitness as the tumor expands, leading to a progressive diver-
gence between individual tumors. However, even when correlation 
dropped at week 14, tumors appeared minimally divergent within 
paired animals, with only 0.96% of tumor lineages that presented a 
discordance between 1 and 5% in terms of representation (Fig. 1F). To 
validate and strengthen our conclusions, we generated a second and 
third model of oCRT from other two patient-derived xenograft (PDX) 
cell lines (fig. S1, E and F): PATC69, a PDX-derived cell line estab-
lished from a patient who underwent distal pancreatectomy for stage 
IIA pancreatic cancer (T3N0M0) and eventually succumbed to lung 
metastasis at 25 months after diagnosis, and PATC108, a PDX cell line 
established from a patient who underwent pancreaticoduodenectomy 
for stage IIA pancreatic cancer (T3N0M0) and showed no evidence of 
secondary disease. Specifically, PATC69 oCRTs are maintained by 229 
common clones that represent virtually the entire tumor mass and 
have a correlation of 0.99 (fig. S1E) and PATC108 oCRTs are main-
tained by 1240 common clones that represent 98 to 99% of the tumor 
mass with a correlation above 0.84 (fig. S1F). Thus, our empirically 
derived data support that oCRTs within a cohort are interchangeable 
for a period of at least 14 weeks, and we conclude that this platform is 
suitable for longitudinal studies of subclonal expansion and dis-
semination.

Complex clonal dynamics characterize unperturbed tumor 
expansion at the primary site
On the basis of the above results, we used our PATC124 oCRT model 
to study the unperturbed clonal dynamics of primary tumors. To ex-
haustively capture clonal behaviors over time, we analyzed common 
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Fig. 1. Quantitative longitudinal characterization of clonal dynamics during unperturbed tumor expansion and dissemination in oCRTs. (A) Single-cell CNV analysis of 
PATC124 cells through Tapestri platform. The heatmap (left) shows the distribution of 24 clones based on 126 variants and their mean allele frequency. The right heatmap shows 
the hierarchical clustering of the copy number profiles across the genome. The height of each clone represents their respective fraction in the sample. (B) Metastatic organotro-
pism of PATC124 oCRTs. When moribund conditions were observable, livers and lungs were collected for gross anatomical analysis (top quadrants) and histological analysis (bot-
tom quadrants) (scale bar, 200 μm). (C) Schematic of the longitudinal PATC124 oCRT study. (D) Clonal correlation among PATC124 oCRTs at different time points. Top, barcoded 
lineages shared by primary tumors at each time point and their relative representation (%) of tumor mass; middle, set of 934 barcodes common to all tumors and their relative 
representation (%) of tumor mass; bottom, scatter plots displaying representation of individual lineages derived from n = 2 tumors at each time point (red, set of common clones). 
(E) Resampling bootstrap tests of the 3751 barcodes from n = 2 PATC124 tumors at each time point. Pearson’s correlation (left) and Euclidean distance (right) tests on simulated 
data were based on the empirically measured difference between the two tumors at injected and week 4. Distribution curves represent the simulated “true” values, and the dotted 
lines represent the empirical observed values. If the empirical value falls within and/or above the true distribution (Pearson’s correlation) or within and/or below (Euclidean dis-
tance), it indicates insufficient evidence to determine that the two samples are different. (F) Differential representation of the 934 common barcodes from n = 2 PATC124 tumors
at each time point. Each dot represents a unique barcode, and the y axis indicates the difference in percentage of the same barcode in the two tumors at each time point.



Ho et al., Sci. Adv. 10, eadd9342 (2024)     13 March 2024

S c i e n c e  A d v a n c e s  |  R e s e ar  c h  A r t i c l e

4 of 21

barcodes in primary tumors at each time point throughout a 3-month 
study. Cluster analysis of relative representation within the tumor, 
normalized to representation in the barcoded cell inoculum at the 
time of injection, was used to visualize the full spectrum of clonal fit-
ness dynamics during unperturbed tumor expansion (Fig. 2A). This 
analysis revealed that, contrary to most established theoretical models 
of tumor evolution (32), many lineages did not progress linearly over 
time. That is, rather than experiencing a continuous gain or loss of 
fitness, such as was observed for clusters 1, 7, and 10, many subclonal 
lineages displayed far more complex fluctuations; for example, clus-
ters 2, 3, 5, and 12 experienced an initial gain of fitness followed by 
loss of fitness, while cluster 11 initially demonstrated a loss of fitness 
followed by a loss followed by a pronounced gain of fitness. Some 
clusters were characterized by even more complex dynamicity, chang-
ing their fitness trajectory multiple times during tumor expansion 
(clusters 4 and 9).

To further characterize the complexity of clonal dynamics, we 
clustered the lineages into quartiles based on week 14 cumulative 
clonal abundance (Fig.  2B). Complex dynamics were maintained 
across all the quartiles, implying that oscillating fitness is independent 
of the representation subclones have within the tumor (Fig.  2C). 
When the relative representation of subclones is tracked over time 
during unperturbed tumor expansion, it clearly demonstrates an al-
ternating clonal dominance (ACD); that is, the relative representation 
of individual subclones over time can change drastically, and lineages 
can dominate the tumor volume for a discrete time and then be over-
taken by other lineages (Fig. 2C). Some lineages experienced a loss in 
fitness over time, but they remained detectable through the study end 
point, albeit at low abundance (Fig. 2C). We captured lineages that 
were lowly represented during early time points, remaining function-
ally dormant, but then experienced a burst in fitness (fig. S2A). It ap-
pears that ACD is a common behavior during unperturbed clonal 
expansion, as shown by the other PDX-derived models (fig. S2, B and 
C). We extended our observation to oCRTs derived from a clinically 
relevant pancreatic cancer mouse model with p48-Cre, KrasG12D, and 
Trp53R172H (KPC) (33), demonstrating that ACD is a feature of tu-
mors that also expand into immunocompetent microenvironments 
(fig. S2D).

This empirical dataset paints a picture of highly dynamic tumor 
clonal architecture, even in unperturbed tumors, documenting a con-
tinuous reshuffling of tumor clonal composition in response to evolu-
tive pressures of the confined environment. We further confirm a rich 
reservoir of lowly represented subclones that are persistent through-
out tumor expansion and that have the potential to expand and estab-
lish dominance and a new equilibrium.

Distinct growth dynamic phenotypes characterize 
metastatic lineages
To study tumor dissemination, we performed a quantitative longitu-
dinal survey of the PATC124 primary tumor, blood, liver, lung, and 
ascites at each time point. We used a spike-in control, a “conversion 
scale” of known cell counts carrying unique barcodes that are distinct 
from the clonal tracking library to enable conversion of barcode reads 
into cell count, thus quantifying both clonal complexity (barcode 
composition) and cell number (Fig. 3, A and B).

Analysis of whole-body blood retrieved by cardiac puncture indi-
cated that circulating tumor cells (CTCs) were rare, on the order of 
tens or hundreds per milliliter of blood. The number of CTCs was 
variable and not very consistent across animals and time points, with 

a gradual increase in cell number observed at study end point 
(Fig. 3A). However, a note of caution should be considered when ana-
lyzing blood data, as the variability could be attributed to the shed-
ding of tumor DNA in circulation from primary tumors, thus making 
it difficult to confirm the source.

Similarly to the blood, the number of cells detected in the lungs 
fluctuated over time, probably owing to the specific organotropism of 
the cell line model under study. The number of cells in the liver con-
sistently increased across all time points, and at week 14, all animals 
had a large number of cells detected in the ascitic fluid (Fig. 3A).

As expected, at end point, the barcode composition of the 
PATC124 primary tumor was richer and more complex than any of 
the other tissues examined, with 934 distinct lineages detected 
(Fig. 1D). Although clonal composition was largely reduced com-
pared to the primary tumor in the liver and lungs, we still deter-
mined that approximately 47% (438) of the subclones present in the 
primary tumor had disseminated (fig. S2E). Of these metastatic sub-
clones, ~42% had a specific organotropism (97 and 89 lineages 
found exclusively in the liver or lung, respectively), while 58% (252) 
subclones were detected in both organs (fig. S2E).

Next, we further investigated the dissemination dynamics of the 
PATC69 and PATC108 primary tumors. In PATC69, a metastatic 
model that develops macroscopic nodes in the lung (fig. S1E), 93% 
(213) of the 229 barcodes that constitute the set of common barcodes
across all primary tumors were detected in the periphery (fig. S3A).
Unexpectedly, in PATC108, 30% (373) of the 1240 barcodes that con-
stitute the set of common barcodes were detected in the periphery
(fig. S3B), despite patient and mice data demonstrating the model to
be nonmetastatic. These findings were unexpected based on the meta-
static cascade model, which predicts rare dissemination and tissue
engraftment of tumor cells (6, 7), and suggest that, even in the absence
of colonization, cells can still shed from primary tumors and be found 
in the periphery.

Next, we analyzed clonal dynamics of dissemination and coloniza-
tion. Unlike the lungs and blood, where the number of cells and com-
plexity of barcodes varied over time, in the PATC124 model, seeding 
to the liver was accomplished early by large number of lineages. The 
number of cells in the liver increased gradually across time points, 
while the complexity was relatively stable (Fig. 3, A and B). Cluster 
analysis of subclone expansion in the liver uncovered at least two ma-
jor behaviors (Fig. 3C): subclones that were detected early in the liver 
and then expanded (colonizing subclones) (clusters 2, 3, and 5; 26.4, 
8.9, and 8.0%, respectively), and subclones that seeded early and un-
derwent transient expansion before losing fitness and disappearing 
(abortive subclones) (clusters 1, 4, and 6; 45.8, 8.3, and 2.6%, respec-
tively). Colonizing subclones represented 43% of the clones that seed 
in the liver clones (151 of 349), and they could undergo either a more 
constant, gradual expansion (cluster 3), reaching an early plateau 
(cluster 5) or remain relatively static for several weeks followed by ex-
pansion at later time points (cluster 2). Subclones that seeded the liver 
(~57%) were abortive, indicating that they were proliferative exhaust-
ed or failed to adapt to the new environment (Fig. 3C). This abortive 
colonization phenotype was further exacerbated in the lung, where 
virtually all detected subclones underwent multiple transient expan-
sions before being counter-selected, failing to generate metastasis 
(Fig. 3D). To demonstrate that barcode sequencing is detecting real 
cells, we performed immunofluorescence staining for the major histo-
compatibility complex using an anti–human leukocyte antigen (HLA) 
antibody. Lung samples from our PATC124 model sequenced at week 
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Fig. 2. Longitudinal study of oCRTs shows ACD during tumor expansion. (A) Barcode analysis of n = 2 PATC124 tumors per time point was weighted, smoothed, and 
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Ho et al., Sci. Adv. 10, eadd9342 (2024)     13 March 2024

S c i e n c e  A d v a n c e s  |  R e s e ar  c h  A r t i c l e

7 of 21

14 revealed the presence of small clusters of human cells despite the 
absence of large metastatic nodes, which is consistent with the se-
quencing data (fig. S3E). Evaluation of the proliferative index through 
immunostaining for Ki67 showed positivity of the human tumor cells, 
although at a much lower extent than tumor cells in the liver, where 
metastatic cells grow as large nodes (fig. S3E).

Similar behaviors were found in both PATC69 and PATC108 
models (fig. S3, C and D). Unexpectedly, on the basis of patient clini-
cal history and tumor tropism in mice, where PATC69 macroscopic 
metastatic nodes were detected only in the lungs (fig. S1E), the clonal 
composition of disseminated cells appeared almost identical between 
lungs and liver, with 97% overlap (fig. S3A). Of note, despite no visible 
macro-metastases, 63 clones showed expansion in the liver as ob-
served in the lung, although at a lower extent (fig. S3C). When we 
stained PATC69 liver and lung with anti-HLA and Ki67 antibodies, 
we clearly observed some regions in the liver to be sparsely populated 
by disorganized cells positive for HLA that appear different from the 
more organized and proliferative macro-metastatic nodes found in 
lungs (fig. S3F), suggesting that cells shed from primary tumors got 
trapped in the liver as single cells or small clusters and gradually ac-
cumulated in considerable numbers due to liver’s extensive vascula-
ture and large organ size. Despite the nonselective seeding and 
different patterns of growth in different organs, these data also dem-
onstrate that a substantial fraction of tumor clones undergo abortive 
colonization in PATC69 [70% of clones (150 of 213) in liver and 48% 
of clones (98 of 206) in lung] (fig. S3C).

When examining clonal dynamics in the liver and lung of the non-
metastatic PATC108 model, we found behaviors compatible with 
both clonal expansion and abortive colonization, although the ex-
tremely low cell numbers caution against any conclusive interpreta-
tion (fig. S3D). Coupled with visual and histological findings showing 
no visible macroscopic metastasis being detected but a few isolated 
human cells only (fig. S3G), data suggest that PATC108 cells, although 
capable of dissemination, fail to adapt to the microenvironments of 
distal organs and thus cannot form metastasis, which is consistent 
with the clinical history of the patient whom PATC108 cells origi-
nated from.

Because oCRTs enable us to study the same lineages derived from 
the same primary tumor at distinct sites, focusing on PATC124 mod-
el, we next investigated the parallel evolution of subclones at the pri-
mary and peripheral sites. By overlaying the dynamic growth curve of 
a subclone in the primary tumor with its behavior in the liver, we can 
appreciate that some subclones have relatively similar growth behav-
ior in both environments (Fig. 3E and fig. S2F), whereas some sub-
clones behave quite differently in the two environments (Fig. 3F and 
fig.  S2F). These observations suggest that selective environmental 
pressures and intrinsic clonal features both contribute to the fitness of 
a lineage to colonize a distant organ.

Because of the selective organotropism of the model under study, 
we further characterized the macroscopic metastatic lesions found 
in the liver of PATC124 oCRTs at week 14. By coupling NGS bar-
code detection with laser-capture microdissection, the clonal com-
position of individual nodes of the metastatic lesion as well as the 
spatial distribution of the metastatic subclones within the primary 
tumor were mapped (Fig. 3G). Large liver lesions (10 of 12) were 
mostly monoclonal in composition, representing the repetitive lo-
calization of the same three subclones (Met 2, 10; Met 4, 9; and Met 
1, 3, 6 to 8, 11), with fewer (2 of 12) oligoclonal lesions dominated 
by a single lineage (Met 5, 12) (Fig. 3G). Subclones that sustain 8 of 

the 10 large monoclonal liver lesions were diffused within the pri-
mary tumor, whereas the remaining 2 (nodes 4 and 9) derived from 
a single subclone that populated a specific region of the primary tu-
mor (#41). Regarding the polyclonal nodes, Met 12 was sustained by 
a combination of clones spread throughout the primary tumor, and 
Met 5 derived from three subclones that were in close proximity 
within the primary tumor, suggesting that this metastasis originated 
from a single cluster of cells.

Intrinsic long-term replicative potential is a key factor 
determining clonal fitness and metastasis outcome
Because multiple nodes in the liver were sustained by single clones 
that were highly represented in the pancreas tumor (Fig. 3G), we hy-
pothesized that the fitness and abundance of a lineage in the primary 
tumor may be predictive of successful dissemination to peripheral 
sites. To test this, we arranged a heatmap of subclones in the PATC124 
primary tumor at the last time point (week 14) from low to high 
abundance, and we annotated the clones that were detected in the tis-
sue outside of the primary tumor applying a cutoff of 200 cells, as used 
in the clinic to define metastasis (34).

This analysis showed that most of the clones that were highly rep-
resented within the primary tumor (high fitness) were detected in the 
periphery (Fig.  4A). Moreover, subclonal abundance at early time 
points (weeks 4, 6, and 10) also showed high correlation with dissem-
ination at week 14 (fig.  S4A). Consistently, similar correlation was 
confirmed in both PATC69 and PATC108 models (fig. S4, B and C). 
This was further supported by comparing plots of percent composi-
tion of the primary tumor for all subclones that disseminated versus 
those that did not, which demonstrated that the subclones that 
reached the periphery comprised a much larger volume of the pri-
mary tumor (Fig. 4B). Although relative fitness of subclones in the 
primary tumor highly correlated with clonal dissemination potential, 
we also identified subclones with low abundance in the primary tu-
mor that disseminated, as well as subclones with relatively high abun-
dance that were not found in the periphery (Fig.  4, A and B, and 
fig. S4, A to C).

We posited that the intertwined relationship between intrinsic fit-
ness in the primary tumor and dissemination potential may be related 
to the intrinsic ability of any given lineage to propagate, also known as 
long-term proliferative capability or long-term self-renewal (LTSR) 
(30, 35). To minimize the confounding effect of clonal abundance in 
these studies, immediately after puromycin, while barcode composi-
tion is highly complex and distribution is normal, we took a small ali-
quot for NGS analysis and split the remaining barcoded PATC124 
cells into two equal parts for two parallel experiments in vivo (Fig. 4C 
and fig. S4D). One part was transplanted orthotopically to evaluate 
the intrinsic metastatic potential of independent subclones (“meta-
static potential study”; n = 3 animals); the other part was assessed in a 
serial transplantation assay to determine the LTSR of the tumor sub-
clones [“LTSR study”; animals receiving initial cell injection and 
tumor retransplanted for a total of three subsequent rounds of se-
rial transplantation (F1 to F4, n  =  3 animals per transplantation)] 
(fig. S4D). The primary tumor, liver, and lung from animals in the 
metastatic potential study, as well as the tumors from the fourth trans-
plantation (F4) of the LTSR study, were harvested and submitted for 
NGS. Barcode analysis of tissues from both studies identified 333 lin-
eages that were both present in either the liver or lungs in the meta-
static potential study and present in the F4 primary tumors in the 
LTSR study (Fig.  4D). This small number of subclones—less than 
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Fig. 4. Intrinsic LTSR is highly correlated with metastatic potential. (A) Heatmap of average subclonal abundance (percentage) in the PATC124 primary tumors with 
metastasis status (yes, >200 tumor cells/no, <200 tumor cells) at week 14. Quartiles are as defined in Fig. 2. Dissemination of each subclone is indicated on the left of each 
heatmap in quartiles (yellow, no dissemination; blue, dissemination). (B) Average clonal abundance in the PATC124 primary tumors (percentage) at week 14 for meta-
static clones (top) and nonmetastatic clones (bottom). (C) Barcode distribution of different PATC124 samples in the LTSR study and metastatic potential study. The shaded 
area represents the distribution of 333 lineages that were present both in the F4 tumors in the LTSR study and in the liver and/or lung metastases collected in the meta-
static potential study (F4∩Mets). (D) Distribution of PATC124 lineages with LTSR and metastatic potential. Left, Venn diagram of shrinking complexity of barcodes from 
original sample through F4 and for F4∩Mets (red); right, relative tumor mass represented by F4∩Mets in the F4 tumor, liver, and lung metastasis. (E) Distribution of 202,701 
barcodes (percent of tumor) in the initial sample for the metastatic potential and LTSR studies (gray). The 333 F4∩Mets are shown in red.



Ho et al., Sci. Adv. 10, eadd9342 (2024)     13 March 2024

S c i e n c e  A d v a n c e s  |  R e s e ar  c h  A r t i c l e

9 of 21

0.2% of the implanted subclones (202,701) in the original prepared 
sample—sustained ~96% of the F4 primary tumors and gave rise to 
~99 and ~89% of liver and lung metastases, respectively (Fig. 4D). We 
confirmed that the 333 clones endowed with high LTSR and high dis-
semination potential were not overrepresented (relative abundance) 
in the initial population of barcoded cells (Fig. 4E), as well as in pri-
mary tumors from the metastatic potential study and F4 from the 
LTSR study (Fig.  4C). Together, our data demonstrate that a very 
small number of subclones is endowed with robust dissemination po-
tential as well as LTSR, and indicate that intrinsic properties of cells 
rather than solely tumor representation are responsible for dissemina-
tion. Of note, only a fraction (~31%) of tumor cells endowed with 
LTSR are able to disseminate.

NMDA signaling is a key determinant of metastasis
Leveraging the capabilities of the CRT platform to isolate subpopula-
tions of naïve cells of interest based on their behavior in vivo (30), we 
selected six subclones with distinct metastatic potential identified in 
the longitudinal study of PATC124 for further analysis. Three sub-
clones each were selected, which displayed metastatic behavior (pro-
met) or which were not detected in the peripheral tissues (non-met). 
We performed whole-exome sequencing (WES) for each of the six 
clones and analyzed their mutational landscape and CNV profiles. All 
of the subclones harbored mutations in KRAS and TP53, which are 
characteristic of the PDAC genomic landscape. Other mutations were 
also identified in all six lineages, including mutations in the DNA 
damage checkpoint genes, ATM and ATR genes. However, overall, the 
six lineages were characterized by heterogeneous mutational and 
CNV profiles (fig. S5, A and B), and we were not able to associate a 
particular genetic trait with the metastatic phenotype. We cannot ex-
clude that this could be due to limitations in the sequencing approach 
as well as the low number of samples profiled.

To determine whether gene expression patterns may drive me-
tastasis, we applied supervised clustering to bulk transcriptomic 
analysis of the six subclones, which identified 387 deregulated genes 
in the pro-met lineages compared to the non-met lineages (Fig. 5A, 
left). Ingenuity Pathway Analysis (IPA) showed that genes related to 
glutamatergic synaptic neural transmission, such as the N-methyl-​
d-aspartate (NMDA) receptor and α-amino-3-hydroxy-5-methyl-
4-isoxazolepropionic acid (AMPA) receptor, as well as genes 
involved in neurovascular coupling signaling were enriched in pro-
met subclones compared to the non-met subclones (Fig. 5A, right). 
Because the NMDA signaling has been demonstrated to mediate 
tumor invasion in models of pancreatic, neuroendocrine, and breast 
tumors (36–38), in addition to the availability of US Food and Drug 
Administration (FDA)–approved inhibitor drugs, we prioritized 
genes in this pathway for functional characterization in the two 
most distinct pro-met subclones (M-1 and M-2) and two non-met 
subclones (NM-2 and NM-3). After assessing that all four clones 
were tumorigenic and engrafted as monoclonal tumors upon or-
thotopic injection, barring some expected volumetric variability 
(fig. S5C), their metastatic behavior was validated, and it matched 
the documented behavior in the longitudinal oCRT study in each 
case (Fig. 5B). To further corroborate this observation, we mixed the 
two metastatic clones (M-1 and M-2) and the two nonmetastatic 
clones (NM-2 and NM-3) in a 1:1:1:1 ratio (25% each) and per-
formed longitudinal dynamic analysis. In the orthotopic tumors, we 
found that, while the ratio of all four clones was equal at injection, 
the two metastatic clones soon became dominant clones in  vivo, 

thus demonstrating higher fitness, and outcompete the nonmeta-
static clones that had barely expanded (Fig. 5C). When clones are 
combined, the metastatic patterns in liver and lung confirmed our 
previous findings that the two metastatic clones are highly meta-
static and have preferred organotropism to the liver instead of lung. 
Although detected in the lung, the number of cells remained two 
magnitudes lower than those detected in the liver, where metastatic 
clones formed large nodes (Fig. 5C). On the contrary, the two non-
metastatic clones were barely detected in secondary organs (Fig. 5C). 
Regarding CTCs, our data showed that the metastatic, but not the 
nonmetastatic, clones could be detected in circulation (Fig. 5C).

We then validated the transcriptomic data by reverse transcription 
quantitative polymerase chain reaction (PCR), confirming that the 
NMDA receptors GRIN2A (glutamate ionotropic receptor NMDA 
type subunit 2A), GRIA2 (glutamate ionotropic receptor AMPA type 
subunit 2), and CaMK4 (calmodulin-dependent protein kinase type 
IV) were significantly up-regulated in the pro-met subclones com-
pared to the non-met subclones (Fig. 5D). In addition, compared to
non-met, the pro-met lineages were characterized by a higher basal
intracellular calcium concentration (Fig. 5E) as well as a more inva-
sive phenotype (Fig. 5F), and the invasion is glutamate receptor path-
way–dependent (fig. S5E), strongly suggesting a functional role for
glutamatergic signaling in metastatic subclones.

To test whether inhibition of NMDA receptors would affect the 
invasive phenotype, we performed an in  vitro invasion assay with 
both pro-met subclones treated or not with memantine, a noncom-
petitive NMDA receptor antagonist that is FDA-approved to treat 
neurological disorders. Cells grown in medium containing 25, 50, or 
100 μM memantine for 24 hours had statistically significantly fewer 
invading cells compared to no-memantine controls (Fig.  5G and 
fig. S5, D and E). To test the effect of memantine on tumor dissemina-
tion in vivo, we established orthotopic prometastatic biclonal tumors 
mixing with equal ratio (1:1) M-1 and M-2 clones, and then random-
ized animals to receive intraperitoneal injection of vehicle or meman-
tine (10 mg/kg, once daily) for 5 days on, 2 days off for 2 months. At 
the end of drug treatment, the livers were collected and processed for 
NGS barcode quantification using a spike-in scale control to quantify 
the number of metastatic cells. Animals that received memantine 
treatment had fewer metastatic burden compared to animals treated 
with vehicle (Fig. 5H), indicating that memantine treatment can de-
crease dissemination of tumor subclones that sustain metastases. 
However, when we looked at the orthotopic tumor weights from the 
control and memantine-treated group, the data suggested that me-
mantine treatment did inhibit the growth of primary tumors com-
pared to the control (fig. S5F); thus, we cannot rule out the possibility 
that memantine had suppressed tumor cell metastasis/dissemination 
by decreasing the fitness of metastatic clones in the primary tumors, 
although it inhibits the invasion of tumor cells in vitro. Either way, the 
intrinsic up-regulation of the NMDA pathway may be an actionable 
biomarker and/or drug target for tumor subclones with a prometasta-
sis phenotype.

Prometastasis signatures preexist in primary tumors and 
predict patient survival
From our transcriptomic analysis of the pro-met and the non-met 
isogenic subclones, we established a 200-gene signature associated 
with the pro-met phenotype. First, we confirmed that the signature 
can identify a specific cell subset within human tumors. To do so, 
we matched the metastasis gene signature to the single-cell RNA 
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Fig. 5. Transcriptome profiling of metastatic subclones identifies actionable vulnerabilities in metastasis. (A) Heatmap of differential gene expression of isogenic 
clones with distinct metastatic potential as determined in longitudinal PATC124 oCRT studies (left). IPA analysis of pro-met (M-1 to M-3) and non-met (NM-1 to NM-3) clones 
identifies enrichment of glutamate receptors and neurovascular coupling signaling pathways in pro-met lineages. (B) Representative histology images from primary tumor 
and liver metastasis derived from PATC124 monoclonal orthotopic tumors ~2 months after injection. Scale bar, 200 μm. (C) Equal ratio of two metastatic (M-1 and M-2) and
two nonmetastatic (NM-2 and NM-3) PATC124 clones was mixed followed by orthotopic transplantation. Primary tumors, livers, lungs, and blood were harvested at different 
time points, and barcode composition was assessed by sequencing. Cell number at each time point is converted on the basis of spike-in scales. (D) qRT-PCR validation of 
mRNA expression level of GRIN2A, GRIA2, and CAMK4 in two pro-met and two non-met PATC124 subclones. Representative data are shown of two independent experiments. 
Statistical significance was assessed with Student’s t test. (E) Basal intracellular calcium concentration of PATC124 clonal lineages selected on the basis of differential meta-
static behavior. Statistical significance was assessed using one-way analysis of variance (ANOVA). (F and G) Representative images of invasion assay indicating the basal inva-
sion potential of two pro-met and two non-met PATC124 subclones (F) and the effect of the noncompetitive NMDA antagonist 25 or 100 μM memantine on invasive potential
of cells (G). Quantification of invaded cells per field is shown as means ± SD of two independent experiments. Statistical significance was assessed using one-way
ANOVA. Scale bar, 200 μm. (H) Effect of memantine (10 mg/kg) on liver metastasis of two metastatic isolated PATC124 clones. Data are presented as means ± SD in number of
barcoded cells detected in the liver at 11 weeks (n = 3). Barcode reads were converted to cell number using a spike-in scale.
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sequencing (RNA-seq) data of the parental tumor cell line (PATC124) 
used to establish oCRTs and found that ~13% of the cells (453 of 3397) 
are enriched in the metastasis signature, suggesting that the cells that 
sustain metastasis preexist and can be identified in the primary tumor 
cell line (fig. S6A). To further demonstrate the relevance of these find-
ings, we tested the ability of the signature in identifying cells that sus-
tain metastasis in publicly available single-cell and spatial RNA-seq 
datasets of patients with pancreatic cancer (39). While only a small 
sample size was available for the analysis (n = 3), the only tumor that 
did not present histopathological signs of invasion also did not display 
any enrichment in metastatic cells at the single-cell level (Fig. 6, A to 
C, left, and fig. S6, B to D). Only 4.5% of the tumor cells (91 of 2019) 
have been identified as metastatic (Fig. 6A), against 19.5 and 31.8% of 
tumors that histopathologically showed lymphovascular invasion 
(203 of 1039 and 448 of 1408, respectively) (Fig. 6, B and C). Of note, 
when we used the signature to analyze spatial datasets from the same 
tumors, we found that metastatic cells formed distinct clusters in the 
two patients with invasive lesions. In contrast, in the patient with the 
noninvasive tumor, the limited number of metastatic cells appeared 
scattered throughout the neoplastic lesion (Fig. 6, A to C, right).

Next, to assess whether the detection of metastatic cells may have 
prognostic clinical relevance, we integrated RNA-seq data from pan-
creatic cancer The Cancer Genome Atlas (TCGA) cohort (comprising 
primary tumor samples, n = 178) and the PRISM cohort (which in-
cludes metastasis samples, n = 45) (40) (total N = 223) and used the 
metastasis signature to segregate patients. We applied multivariate 
Cox proportional hazard model on patient survival data with pro-
met/non-met signatures and age. We found that the pro-met and 
non-met signatures were associated with significantly poor prognosis 
(more hazardous) or better prognosis (less hazardous), respectively, 
with age being insignificant in terms of overall survival (Fig. 6D). To 
further investigate whether pro-met signature could predict patient 
survival, we defined each sample as met_dominant or non-met_dom-
inant group based on the enrichment score using single-sample gene 
set enrichment analysis (ssGSEA) and performed a Kaplan-Meier 
survival analysis. As reported in Fig.  6E, the met_dominant group 
(met-up) showed significant worse survival compared to the non-
met_dominant group (met-down), confirming the potential of our 
metastatic signature to identify patients at risk of developing meta-
static disease.

These data underscore the clinical significance of our research and 
illustrate how transcriptional features from isolated clones can be 
used to predict patient survival by detecting preexisting metastatic 
cells within primary tumors.

DISCUSSION
Clonal competition is the major process that subtends tumor evolu-
tion. As a tumor develops and expands, cell-intrinsic factors deter-
mine the fitness of tumor clones to the changing microenvironment 
and define subclonal tumor composition over time. Therefore, tumors 
can be viewed as complex ecosystems where clonal lineages compete 
with one another as they adapt to and coevolve with stromal cells and 
in response to external perturbations. Tumor evolution science has 
made progress in deconvoluting tumor progression using multiomics 
tumor profiling at various stages of the disease; however, the field 
lacks adequate in  vivo experimental models of cancer for unper-
turbed, longitudinal lineage tracing with high resolution and repre-
sentative of the heterogeneity of human tumors. To address this need 

for robust experimental systems to study tumor evolution, we estab-
lished oCRTs, a high-resolution model of heterogeneous, patient-
derived tumor models to quantitatively dissect clonal dynamics 
during tumor expansion without perturbing the tumor ecosystem.

Over a 3-month longitudinal study, we observed an astonishing 
and unexpected degree of oscillation in the fitness of subclonal popu-
lations. Within the same tumor, we documented subclonal lineages 
that (i) gradually decreased or increased over time, (ii) transiently in-
creased followed by a gradually decreasing, (iii) were mostly dormant 
followed by aggressive outgrowth, (iv) displayed a sigmoidal progres-
sion of increase-decrease-increase in representation, (v) increased for 
most of the follow-up period followed by a sudden decrease, and (vi) 
initially decreased followed by a gradual increase in representation. 
The net result of these concurrent, complex clonal behaviors is a high 
degree of ACD where, at any time, certain clonal lineages experience 
a sudden drop in fitness and are replaced by other clones with rela-
tively higher fitness that expand and overtake the tumor.

This dynamic behavior was observed in our system devoid of any 
external evolutionary pressure and represents solely behaviors driv-
en by the tumor microenvironment. It is likely that space, oxygen, 
and nutrient limitations are major drivers of ACD. Our data indicate 
that, as the tumor expands, subclones compete for resources, and 
the most-fit lineages expand and dominate the tumor’s bulk. At 
some point, the larger tumor encounters a new stressor in its envi-
ronment, such as hypoxia, nutrient deprivation, or physical forces 
(e.g., space limitations), resulting in a shift in the relative fitness and 
initiating an involution-expansion cycle of the subclones until a new 
equilibrium is achieved. This process can repeat multiple times as 
the microenvironmental conditions change and can be confined to 
specific regions of the tumor only. Notably, we observed ACD even 
when the tumor size remained relatively constant, as well as at late 
time points when the tumor decreased in mass due to extensive ne-
crosis. Our studies in human-derived xenografts were conducted in 
immunodeficient animals; however, when repeated in KPC-derived 
models, we found similar oscillating clonal dynamics, confirming 
that ACD is also a property of tumors that expand in intact immune 
microenvironments.

Our studies showed that a large fraction (30 to 90%) of the lin-
eages that sustain primary tumor growth can be found at a secondary 
site at some point during tumor progression as well as in tumors that 
do not develop macro-metastasis. This was an unexpected finding on 
the basis of the metastatic cascade model, which predicts very high 
attrition of tumor cells that escape the primary tumor (41, 42). The 
finding that a large fraction of tumor cells can reach a secondary or-
gan is probably explained by the high sensitivity of our approach, 
which is able to detect as few as one to three barcoded cells in the en-
tire liver. Although many subclones could seed distant organs, we 
confirmed that only a few of them were capable of colonization to 
form a discernable metastatic node. Rather, most of the lineages that 
reached secondary sites displayed an abortive phenotype, undergoing 
a transient expansion before disappearing at later time points. This 
previously undescribed behavior was observed in both the liver and 
the lung and can be influenced by the intrinsic organotropism of 
patient-derived models under study. This suggests that tumor cell 
seeding is probably a generalized nonspecific behavior of disseminat-
ed cells, whereas the microenvironment of secondary sites is the criti-
cal determinant of the success of tumor cell expansion, as postulated 
by “seed and soil” theory of metastasization (6). This notion is further 
supported by the fact that matched barcoded lineages frequently 
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Fig. 6. Molecular signatures associated with metastatic subclones predict survival outcomes for patients with PDAC. (A to C) Single-cell and spatial transcriptomics 
of the same patient samples without (A) or with [(B) and (C)] lymphovascular invasion. The left panels show Uniform Manifold Approximation and Projection (UMAP) of 
tumor cells identified from single-cell sequencing as in fig. S5 (B to D). Cells with a significant closer distance (P < 0.05) to met-up signature than met-down signature are 
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displayed markedly differential fitness at the primary tumor site ver-
sus in the periphery. In support of findings recently reported by other 
authors (43), we found that metastases may originate as polyclonal 
and can subsequently evolve as monoclonal/oligoclonal, when one or 
few clones become dominant probably due to selection imposed by 
the microenvironment.

We noted an interesting correlation between the outgrowth 
metastases and ACD in the paired primary tumor. Specifically, 
the first notable shift in clonal dominance was usually observed 
at week 6, which is also when we detected expansion of meta-
static subclones in the liver. Although strictly hypothetical at 
this time, we are intrigued by the idea that the coincident chang-
es in growth at the two sites might be related to microenviron-
mental changes in the primary tumor. For example, events that 
trigger ACD and clonal reshuffling in the primary tumor could 
mobilize tumor cells, or they could promote diffusible signals 
that could be received and responded to by tumor cells at sec-
ondary sites.

We also determined that the abundance of a lineage within the 
primary tumor is highly correlated with metastatic dissemination. 
This finding was not unexpected (44), and multiple evidences have 
been previously reported (15, 45, 46), but the resolution of our 
oCRT platform also allowed us to determine that there are many 
exceptions to this rule. We observed multiple subclones that were 
highly represented in the primary tumor that were not found out-
side the primary site, as well as lowly represented subclones that 
were able to expand at secondary sites. These exceptions indicate 
that cell-intrinsic factors also contribute to the metastatic pheno-
type; what these cell-intrinsic factors are and whether they are al-
ways present in metastatic subclones that were also highly abundant 
remain to be determined. In this vein, further characterization of 
metastatic subclones revealed that they are endowed with LTSR, 
which represents an unbiased demonstration of a cell-intrinsic 
property that could influence metastatic potential, independently 
from abundance in the primary tumor.

In summary, the oCRT approach represents a technological ad-
vancement in modeling human disease and revealed a new level of 
subclonal complexity intrinsic within tumors. oCRTs enable longitu-
dinal studies to quantify the subclonal heterogeneity over time, re-
vealing unexpectedly heterogeneous growth dynamics and frequent 
ACD. This study has also emphasized the extent of functional diver-
sity that occurs naturally during tumor expansion and demonstrates 
that tumor evolution can be driven by cell-intrinsic properties that 
promote fitness of some lineages in harsh conditions to ensure tumor 
survival.

METHODS
Generation of CRTs
Patient-derived samples
Tumor-derived samples were obtained at MD Anderson Cancer 
center with consent from (i) a 62-year-old Caucasian male patient 
(PATC124), (ii) a 64-year-old Caucasian male patient (PATC69), 
and (iii) a 71-year-old male patient (PATC108) who underwent 
pancreaticoduodenectomy for T3N0M0 pancreatic cancer. Ap-
proval of all patient-derived sample collection methods can be 
found in Institutional Review Board–approved protocol LAB07-
0854 chaired by J. Fleming [University of Texas MD Anderson 
Cancer Center (UTMDACC)].

PDX cell isolation and culture
Early passage xenografts (F1) from primary human PDAC (31, 47) 
were harvested and processed as previously described (47). Briefly, 
tumors were minced into very small pieces under sterile conditions 
followed by mechanical dissociation with the Human Tumor Disso-
ciation Kit (Miltenyi Biotec) and enzymatic digestion. After diges-
tion, single isolated cells were seeded at high confluency on collagen 
IV–coated plates (Corning) in Dulbecco’s modified Eagle’s medium 
(DMEM)/F12 medium (Gibco) supplemented with 10% fetal bovine 
serum (FBS) (Gibco), 1% bovine serum albumin (Fisher Scientific), 
0.5 μM hydrocortisone (Sigma-Aldrich), 10 mM Hepes (Invitrogen), 
cholera toxin (100 ng/ml, Sigma-Aldrich), insulin-transferrin-
selenium (5 ml/liter, BD), and penicillin-streptomycin (100 μg/ml, 
Gibco). To remove stromal cell contamination, brief trypsinization 
(0.25% trypsin-EDTA, Gibco) was periodically performed to elimi-
nate fibroblasts. The purity of the PDX-derived human cell culture 
was confirmed over time by flow cytometry through the evaluation 
of HLA-ABC and mouse H-2Kd histocompatibility complex anti-
gens (Becton Dickinson). Final isolated human cells were main-
tained in culture for a maximum of couple of passages before being 
switched to DMEM plus 10% FBS and transduced with the bar-
code library.
KPC pancreatic cancer mouse model
Mice were housed in a pathogen-free facility at the UTMDACC. All 
manipulations were performed under the Institutional Animal Care 
and Use Committee–approved protocol (00001843-RN01). p48-Cre 
mice (48), LSL-​KrasG12D (The Jackson Laboratory, no. 008179), and 
Trp53R172H (provided by G. Lozano, UTMDACC) were crossed to 
generate the KPC pancreatic cancer mouse model. Spontaneous pan-
creatic tumors were entirely harvested and digested, and KPC cells 
were derived. In brief, entire tumors were minced into small pieces 
with sterile blades and incubated at 37°C for 45 min with collagenase 
IV (Gibco)–dispase II (Roche), 2 mg/ml for enzymatic digestion. 
Cells were then centrifuged and further digested with 0.25% trypsin 
(Gibco) for 5 min at 37°C to obtain a single-cell suspension. After be-
ing maintained and expanded in DMEM (Gibco) supplemented with 
10% FBS (Gibco) and penicillin-streptomycin (100 μg/ml, Gibco), 
tumor cells were enriched with anti-EpCAM antibody via flow cy-
tometry sorter to establish KPC cells.
Barcoding and generation of CRTs
The CloneTracker 50M Lentiviral Barcode Library was purchased 
from Cellecta. Established PDX-derived tumor cells or KPC cells at 
70% confluence were suspended in medium containing a very low 
MOI (<0.2) of barcode library viral particles and infected overnight 
in the presence of polybrene (8 μg/ml) in 245-mm square plates 
(Corning). After 48 hours, the cells were detached; infection was con-
firmed, and its efficiency was evaluated by flow cytometry [percentage 
of red fluorescent protein (RFP)–positive cells]. The cells were then 
plated in media with puromycin at an optimal concentration to elimi-
nate uninfected cells. When confluent, barcoded cells were detached, 
washed, and plated in two 245-mm square plates (passage 1). The me-
dium was changed every 2 to 3 days, and the cells were allowed to 
become confluent. When approximately 80% confluency was reached, 
the passage 1 plates were detached, washed, and pooled before being 
split into two equal parts: one stored for NGS for barcode composi-
tion, and the other part was plated in two 245-mm square plates (pas-
sage 2). When the cells became confluent again, passage 2 cells were 
detached, washed, pooled, and split into two equal parts: one cryopre-
served in BamBanker (Wako Chemicals), and the other part was 
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plated in two 245-mm square plates (passage 3). The procedure was 
repeated, with “odd passages” being snap-frozen for sequencing, and 
all “even passages” being cryopreserved for reculturing and high-
throughput clone isolation.
Quantitative scale
To perform quantitative analysis in metastasis, a five-log cell spike in 
control—a conversion scale of known cell counts carrying unique 
barcodes distinct from the clonal tracking library—was added to 
metastatic samples before DNA extraction (see Table 1 for unique 
barcode sequences). In brief, 293T cells were infected individually 
with lentiviral particles containing unique barcodes that are not pres-
ent in the lineage tracing library but share the same plasmid back-
bone (pRSI16) at very low MOI (<0.1). After confirmation and 
evaluation of infection by flow cytometry (percentage of RFP-positive 
cells), infected cells were selected in puromycin and expanded. Serial 
dilutions of each unique barcoded cells were performed and mixed 
with each other and subsequently aliquoted in a multitude of 1.5-ml 
vials to generate a “scale.” For quantification of metastases at distal 
organs, each scale contained barcoded cells represented as follows: 
BC.3063.3418 1 × 101, BC.4451.4842 1 × 102, BC.4858.5013 1 × 103, 
BC.5022.5430 1 × 104, BC.5993.6943 1 × 105. After sequencing, 
reads generated by unique barcoded cells of the scale could be used 
to normalize reads generated by samples, thus enabling conversion of 
reads to more interpretable numbers of cells.

In vivo transplantation and treatments
All studies were performed in NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ 
(NSG) (PDX cell lines) or C57BL/6J (KPC cell line) mice pur-
chased from The Jackson Laboratory.
Longitudinal oCRT cohort generation
Fifty mice were injected orthotopically with cells derived from stabi-
lized cultures. In brief, a 1- to 1.5-cm incision in the upper left ab-
dominal quadrant was made to expose the pancreas of recipient 
mice. Cells (3 × 106 per mouse) were suspended in 1:1 DMEM/
Matrigel (BD) followed by injection into the pancreas. After injec-
tion, the mouse abdominal wall was closed with absorbable sutures 
(Ethicon), while the skin was closed with metal clips (Fine Science 
Tools). The mice were then sacrificed at indicated time points, and 
harvested primary tumors and tissues were processed for next-
generation sequencing. For KPC experiments, 1.5 × 106 cells per 
mouse were orthotopically injected.
Orthotopic LTSR experiments
After barcoding, passage 4 cells were injected subcutaneously or or-
thotopically in three NSG mice. For subcutaneous tumors, 5 × 106 
cells were injected. When tumors reached 1 cm in size (~1.5 months), 
the tumors were collected, pooled, and digested to single cells. 

One-half of the recovered cells was reinjected in a new round of three 
animals, while the other half was used for sequencing. Tumors were 
passaged for three times in vivo. For orthotopic tumors, 3 × 106 cells 
were injected. Primary tumors and distant organs were collected after 
3 months of transplantation followed by sequencing for barcode 
information.
Isogenic single clone in vivo tumorigenicity assay
Isogenic single clones were transplanted orthotopically with 2 × 106 
cells. Primary tumors and distant organs were harvested 2 months 
after transplantation for histology.
In vivo tumor reconstitution assay for memantine treatment
Two metastatic clones were mixed equally with the same number of 
cells. A total of 3 million cells were then orthotopically transplanted 
into the pancreas of recipient mice (NSG). After injection, the tu-
mors were allowed to expand and grow for 3 weeks before treatment. 
For memantine treatment, mice received memantine (10 mg/kg) 
daily via intraperitoneal injection for the 3 weeks after transplanta-
tion and followed by a 5 days on/2 days off cycle for another 8 weeks. 
The livers were then harvested and submitted to NGS for barcode 
composition.
In vivo tumor reconstitution assay for longitudinal dynamics
Two metastatic clones and two nonmetastatic clones were mixed 
equally (1:1) with the same number of cells. A total of 3 × 106 cells 
were then orthotopically transplanted into the pancreas of recipient 
mice (NSG). After injection, the tumors were sacrificed at different 
time points, and primary tumors, livers, lungs, and blood were har-
vested and submitted to NGS for barcode composition.

CRT sample processing and analysis
Genomic DNA extraction and PCR for NGS library production
Genomic DNA extraction and PCR for NGS library production were 
adapted from a published protocol with minor modifications (47). In 
brief, scale for cell number quantification was added to distant organ 
sample before processing. For cell pellets from in vitro samples, DNA 
was extracted with DNeasy Blood & Tissue Kits (Qiagen) according 
to the manufacturer’s protocol. For tissues, frozen tumors/tissues 
were minced and suspended in Buffer P1 (Qiagen, 1  ml of buf-
fer/100 mg of tumor) supplemented with ribonuclease A (100 μg/ml, 
Thermo Fisher Scientific) followed by disassociation with a gen-
tleMACS homogenizer (Miltenyi Biotec). Samples were then trans-
ferred to a 15-ml polypropylene tube (Falcon) and lysed by adding 
1/20 volume of 10% SDS (Promega) and 1/20 volume of proteinase K 
(Qiagen) followed by incubation at 56°C for 20 min. Genomic DNA 
was sheared by passing the lysate 10 to 15 times through a 22-gauge 
syringe needle followed by phenol:chloroform:isoamyl alcohol 
(25:24:1, pH 8.0, Sigma-Aldrich) and chloroform:isoamyl alcohol 
(24:1, Sigma-Aldrich) purification. The final aqueous phase was 
transferred to a new tube, and 0.1 volume of 3 M NaOAc (Sigma-
Aldrich) and 0.8 volume of isopropanol (Fisher Scientific) were added 
to precipitate genomic DNA. DNA was pelleted by centrifuging at 
14,000 rpm for 20 min and subsequently washed once in 70% ethanol 
(Fisher Scientific) and centrifuged again for 5 min at 14,000 rpm. The 
DNA pellet was air-dried and dissolved overnight in UltraPure dis-
tilled water (Thermo Fisher Scientific), and final DNA concentration 
was assessed by NanoDrop 2000 (Thermo Fisher Scientific) quan-
tification.

For the generation of NGS libraries, barcodes were amplified with 
Titanium Taq DNA polymerase (Clontech-Takara) through two 
rounds of PCR. In brief, the first PCRs were performed for 16 cycles 

Table 1. Sequences of scale barcodes. 

Name Sequence

BC.3063.3418 CATGCACACAGTACACTGTTCGGTGTTGTGTGCAACTGAC

BC.4451.4842 CAACGTTGTGACTGTGACTTCGGTGTGTCAGTACTGTGAC

BC.4858.5013 GTGTCACAGTACTGACTGTTCGTGTGTGGTCAACTGTGAC

BC.5022.5430 GTCATGGTCAACTGTGACTTCGGTTGCAACTGTGTGACTG

BC.5993.6943 TGGTGTTGCATGTGACTGTTCGCACATGACCAGTTGTGAC
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with 13K_R2 (5′-AGTAGCGTGAAGAGCAGAGAA-3′) and FHTS3 
(5′-TCGGATTCAAGCAAAAGACGGCATA-3′). The second PCRs 
were performed for 12 cycles with P5_NR2 (5′-AATGATACGGCGA
CCACCGAGACGAGCACCGACAACAACGCAGA-3′) and Gx1_Bp 
(5′-TCAAGCAGAAGACGGCATACGAAGACA-3′). PCR amplifi-
cation products were analyzed by agarose gel electrophoresis (2.5%, 
Lonza) for the expected 279–base pair (bp) size and then extracted 
from the agarose gel with the QIAquick Gel Purification kit (Qiagen). 
The amount of purified PCR product was quantified using the High 
Sensitivity D1000 ScreenTape and Agilent 4200 TapeStation system 
(Agilent Technologies). Barcode representation was measured by 
NGS on an Illumina HiSeq2000 with 13K_Seq (5′-AGAGGTTC
AGAGTTCTACAGTCCGAA-3′) as the sequencing primer.
Tissue multiregional sequencing via LCM
Paired primary tumor and liver from the same animal were har-
vested, fixed, and embedded followed by tissue sectioning. Six-
micrometer slices were mounted on membrane slides (MMI) for 
hematoxylin and eosin staining to identify regions of interest. For 
the primary tumor, 41 regions were captured via laser capture mi-
crodissection (LCM) (MMI Cellcut) with necrotic area excluded. 
For the liver, 12 visible metastatic lesions were captured via 
LCM. Each individual region or lesion was collected in an isolation 
cap (MMI) and then transferred to a 96-well PCR plate. For each 
well, 16 μl of lysis buffer [10 mM tris-HCl (pH 7.5), 10 mM NaCl, 
10 mM MgCl2, 0.19% NP-40, and 2 μg of proteinase K] was added and 
incubated at 50°C for 3 hours to extract genomic DNA. The plate 
was then incubated at 95°C for 30 min to inactivate proteinase 
K. For the mixture containing Titanium Taq DNA polymerase
(Clontech-Takara), individual forward primer with unique index
Ion-A-BC-GexBP1 (5′-CCATCTCATCCCTGCGTGTCTCCGACT-
CAGXXXXXXXXXXGATTCAAGCAGAAGACGGCATAC-
GAAGACAG-3′), X bases refers to Ion Xpress 96 adaptor barcode 
sequence), and a common reverse primer GexSeqS-IonP1 (5′-CCA
CTACGCCTCCGCTTTCCTCTCTATGGGCAGTCGGTGATT-
GAGGTTCAGAGTTCTACAGTC-3′), both at 600 nM final concen-
tration, were added to each well and amplified with the following 
cycling profile: 95°C 3 min, 6 cycles of 95°C 30 s, 56°C 10 s, 72°C 
10 s, followed by 30 cycles of 95°C 30 s, 62°C 10 s, 72°C 10 s, and 
then final extension at 72°C for 2 min and 4°C hold. Ten microliters 
of PCR products from each well were pooled together (total 960 μl), 
and 500 μl of the pooled product was used for size selection with 1X 
AMPure XP (Beckman Coulter). The final library product was 
quantified with the High Sensitivity D1000 ScreenTape and Agilent 
4200 TapeStation system (Agilent Technologies) followed by se-
quencing with the Ion Torrent Proton NGS platform (Thermo Fisher 
Scientific).
Barcode data alignment
Barcode sequencing data were processed and aligned through a cus-
tom pipeline. Cutadapt (https://doi.org/10.14806/ej.17.1.200) was 
used to trim adaptor sequences from the reads. After trimming, we 
used Bowtie (https://doi.org/10.1186/gb-2009-10-3-r25) to align the 
reads to the barcode library while allowing one mismatch. SAMtools 
(https://doi.org/10.1093/bioinformatics/btp352) was then used to 
extract read counts of the aligned barcodes.
Conversion from barcode read to cell number
For quantitative analysis and to normalize between tumor samples, 
we spiked in the conversion scale of known cell numbers containing a 
unique set of barcodes during sample processing. For each clonal 
tracking barcode, we divided the reads by one of the scale’s read 

numbers and multiplied the value by the cell number corresponding 
to that specific scale

Estimated cell number  =  (Barcode read × scale cell number 
spiked in)/(scale read)

*The Conversion Scale spike-in equals to 10,000 cells for liver,
lung, blood, and ascites samples.

Longitudinal CRT data analysis
Data cleaning and filtering criteria
Missing data were removed, and technical errors were adjusted. 

For the resampling bootstrap test: Barcodes with nonzero reads 
at both injection and week 4 in each mouse were first selected. 
Among those, barcodes that contributed to the cumulative abun-
dance percentage of 99.9% at any time point were kept, leading to a 
total of N = 3751 barcodes for the following analysis.

For barcode dynamic clustering analysis in primary tumors: A set 
of common barcodes present in all primary tumors across all time 
points was selected (N = 934) for the following analysis.

For barcode dynamic clustering analysis in the metastatic tumors: 
Within the N = 934 barcodes derived from primary tumors, bar-
codes with nonzero reads in the liver or lung of any mouse at any 
time point were kept, yielding N = 349 barcodes for liver metastases 
and N = 341 barcodes for lung metastases.
Resampling bootstrap test
A resampling bootstrap test was performed to demonstrate wheth-
er tumor growth patterns for different mice were similar (i.e., ho-
mogeneous) among different observation stages. We used the 
early-stage data observed at injection and week 4 as the bench-
mark to generate pseudo-data to test the difference between the 
two mice at each time point. The specific steps of the resampling 
bootstrap test are given below:

Step 1. Calculate the difference of percentages of each barcode 
between two mice.

The logit transformation of the percentage of each barcode for each 
mouse at each time point was first calculated. A value of 0.5 was added 
if the number of reads equaled 0 before we performed logit transfor-
mation on the percentage. At any time point t, for each barcode i = 1, 
…, N, the absolute difference of logit transformed percentages, dti, be-
tween two mice (mouse A and mouse B) was calculated, i.e.,

where p
j

ti is the abundance percentage of barcode i in mouse j at time
t, i = 1, …, N, j = mouse A or B, t = week 0, 4, 6, 10, or 14.

Step 2. Determine the parameters of the null distribution based 
on data from the injection and week 4 time points.

We used the observations from the early stage time points 
(injection and week 4) as references and determined the param-
eters associated with the null distribution. At each time point, a 
total of N  =  3751 absolute differences were obtained and the 
pooled data, including absolute differences at injection and 
week 4, were coalesced (N = 7502). On the basis of the empirical 
distribution of the pooled data, we divided the sample into three 
subgroups: (i) small differences (≤20% quantile), (ii) median 
differences (>20%, ≤80% quantile), and (iii) large differences 
(>80% quantile). Assuming that abs (dti) followed a normal dis-
tribution with mean μg and variance σ2

g
 in each group g = 1,2,3, 

we obtained the corresponding moment estimators, denoted by 
μ̂g and σ̂2

g
 , respectively.

dti = abs
[

logit
(

pA
ti

)

− logit
(

pB
ti

)]

https://doi.org/10.14806/ej.17.1.200
https://doi.org/10.1186/gb-2009-10-3-r25
https://doi.org/10.1093/bioinformatics/btp352


Ho et al., Sci. Adv. 10, eadd9342 (2024)     13 March 2024

S c i e n c e  A d v a n c e s  |  R e s e ar  c h  A r t i c l e

16 of 21

Step 3. Simulate the pseudo samples under the null hypothesis.
At any time point t, for each barcode i = 1, …, N, we generate a 

total of K = 5000 pseudo sample for mice A and mice B:

where logit(p
ti
) = [logit(pA

ti
) + logit(pB

ti
)]∕2 and �ti~w1N(μ̂1, σ̂

2

1
)+

w2N(μ̂2, σ̂
2

2
)+w3N(μ̂3, σ̂

2

3
) , with (w1, w2, w3) = (0.2,0.6,0.2).

Step 4. Calculate the P value using the resampling data.
We used two statistics as the similarity measurements to test the 

similarity between the two mice at the same time point. The two test 
statistics were:

1) Statistic 1: 𝑇1 was the Pearson correlation coefficient between
pA
ti
 and pB

ti
 , i = 1, …, N. If 𝑇1 was close to 1, mice A and B were

similar.
2) Statistic 2: 𝑇2 was the average Euclidean distance between pA

ti
 

and pB
ti
 , i = 1, …, N. If 𝑇2 was close to 0, mice A and B were similar.

The corresponding P values were then obtained on the basis of 
the observed data and the simulated data obtained from step 3.
Dynamic clustering
To analyze the barcode dynamic over time, the method of Cluster-
ing Large Applications (CLARA) (49) was applied to cluster the 
slopes of barcodes between each two consecutive time points. The 
final number of clusters was determined on the basis of the total 
within the sum of square (WSS) (50).
K-plot
To adjust the effect of injection and make all barcodes more compa-
rable, we “moved” all barcodes to have the same start point at injec-
tion. Each line represented a locally weighted smoothing (lowess)
line (51) of each cluster.

High-throughput clonal isolation
The high-throughput clone isolation workflow was adapted from a 
published protocol [Seth et al. (30)].
Deconvolution of barcode complexity from cell culture to NGS
Established cell cultures were deconvoluted at lower clonal complexi-
ty by seeding 5 × 103 per well barcoded cells in 96-well plates. Once 
the wells reached ~80% confluency, the cells were detached with 30 μl 
of 0.25% trypsin-EDTA. One-third of the cells (10  μl) were trans-
ferred to the corresponding well position on a 96-well PCR “sister” 
replica plate for further NGS library processing. The remaining cells 
were mixed with dimethyl sulfoxide (DMSO)–FBS (20:80) freezing 
solution and frozen at −80°C. Frozen plates were later used for flow-
activated sorting to isolate single clones.

To detect the barcode composition of each well on the stored frozen 
plates, 4.7 μl of lysis buffer [10 mM tris-HCl (pH 7.5), 10 mM NaCl, 
10 mM MgCl2, 0.19% NP-40, and 2 μg of proteinase K] was added to 
each well of the sister replica plates containing 10 μl of cells-trypsin. The 
replica plate was then incubated at 50°C for 40 min and then at 95°C for 
15 min to inactivate proteinase K. A mixture containing Titanium Taq 
DNA polymerase (Clontech-Takara), individual forward primer with 
unique index Ion-A-BC-GexBP1 (5′-CCATCTCATCCCTGCGT-
GTCTCCGACTCAGXXXXXXXXXXGATTCAAGCAGAAGACG-
GCATACGAAGACAG-3′), X bases refers to Ion Xpress 96 adaptor 
barcode sequence), and a common reverse primer GexSeqS-IonP1 (5′-
CCACTACGCCTCCGCTTTCCTCTCTATGGGCAGTCGGT-
GATTGAGGTTCAGAGTTCTACAGTC-3′), both at 600 nM final 

concentration, were added to each well and amplified with the follow-
ing cycling profile: 95°C 3 min, 6 cycles of 95°C 30 s, 56°C 10 s, 72°C 
10 s, followed by 22 cycles of 95°C 30 s, 62°C 10 s, 72°C 10 s, and then 
final extension at 72°C for 2 min and 4°C hold. Ten microliters of 
PCR products from each well was pooled together (total 960 μl). Five 
hundred microliters of the pooled product was concentrated 10-fold 
with one time 1.8× AMPure XP purification (Beckman Coulter) by 
eluting with 50 μl of elution buffer. The 50-μl concentrated DNA was 
loaded on a 2% agarose gel for band purification. Expected bands 
(size ~185 bp) were cut, and DNA was purified using QIAquick gel 
extraction kit (Qiagen). Following gel purification, DNA was quanti-
fied with the High Sensitivity D1000 ScreenTape and Agilent 4200 
TapeStation system (Agilent Technologies). The library was then se-
quenced with the Ion Torrent Proton NGS platform (Thermo Fisher 
Scientific).
Isolation of single barcoded cells, flow-activated cell sorting, 
and positional sequencing
After identification of wells with higher representation of clones of in-
terest, previously frozen plates were kept on ice, and 180 μl of 37°C 
warm DMEM per well was added to thaw wells of interest. The thawed 
cells were then transferred to another 96-well plate and recovered in 
the 37°C incubator. After 2 days, the cells were detached and resus-
pended in DMEM/FBS containing SYTOX Green (Thermo Fisher Sci-
entific) to sort live single cells in 96-well plates containing DMEM 
supplemented with 20% FBS and 1% penicillin-streptomycin. Single-
cell colonies were then left to grow with periodic monitoring. When 
the wells reached ~50% confluency, the cells were detached and split 
into two plates using the approach described in the previous section. 
After lysing, cells were prepared for PCR according to the manual of 
Titanium Taq DNA polymerase (Clontech-Takara) using individual 
forward primer with unique index Ion-A-BC-GexBP1 (5′-CCATCT-
C ATC C C TG C G TG TC TC C G AC TC AG X X X X X X X X X X -
GATTCAAGCAGAAGACGGCATACGAAGACAG-3′), with X 
bases referring to Ion Xpress 96 adaptor barcode sequence (Thermo 
Fisher Scientific, catalog 4474517), and a common unique indexed 
reverse primer GexSeqS-bc-IonP1 (5′-CCACTACGCCTCC-
GCTTTCCTCTCTATGGGCAGTCGGTGATYYYYYYYYCGAG-
GTTCAGAGTTCTACAGTC-3′, with Y referring to individual “plate 
index” (Table 1), both at 600 nM final concentration and added to each 
well. Wells were then amplified with the cycling profile of 95°C 3 min, 
7 cycles of 95°C 30 s, 56°C 10 s, 72°C 10 s, followed by 23 cycles of 95°C 
30 s, 62°C 10 s, 72°C 10 s, and then final extension at 72°C for 2 min 
and 4°C hold. Each well now contained amplified barcodes with NGS-
compatible adaptors with unique well indexes, as well as unique plate 
indexes. All the PCR products were pooled from each well and each 
plate, and 50 μl was loaded on a 2% agarose gel for band purification. 
The expected band size ~190 bp was cut, and DNA was purified using 
QIAquick gel extraction kit (Qiagen). Following gel purification, DNA 
was quantified with the High Sensitivity D1000 ScreenTape and 
Agilent 4200 TapeStation system (Agilent Technologies). The library 
was then sequenced with the Ion Torrent Proton NGS platform 
(Thermo Fisher Scientific).
Barcode analysis of Ion Torrent data
Fastq were demultiplexed for row and column barcodes using Ion 
Torrent NGS software. Upon considering differences in the se-
quencing platform and the nature of clonal sample, a highly stringent 
analysis strategy was used. Subsequent analysis was performed us-
ing custom R scripts, developed using Bioconductor packages (Bio-
strings and ShortRead) (52) (https://bioconductor.org/packages/

logit
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release/bioc/html/Biostrings.html). Briefly, we extracted reads that 
follow the pattern “5′-TCAAGCAGAAGACGGCATACGAAGA-
C A G T T C G N N N N N N N N N N N N N N N N N N T T C -
GNNNNNNNNNNNNNNNNNNTTCGGACTGTAGAACTCT-
GAACCTCRYYYYYYYY-3′,” where Ns represent barcode 2 and 
barcode 1, respectively, and Ys represent the plate barcode (see Ta-
ble 2). Barcodes of each read were then compared with the library 
(CellTracker 50M Lentiviral Double-Barcoded Library, Cellecta), 
allowing for mismatches. Reads from where both barcodes aligned 
uniquely with the sequences in the library with minimum hamming 
distance were used for downstream analysis. The reads were then 
separated into different plates using plate-specific indexes. A read 
number cutoff of 100 reads was applied to remove false-positive bar-
code ID from each of the 96 samples (well index). Wells containing 
clones of interest represented as the dominant fraction of reads were 
chosen for further expansion. In case the same barcode was detected 
in multiple wells, wells with the maximum percent representations 
were chosen for downstream expansion and isolation. It is possible, 
although exceptional, that more than one unique barcode was as-
sociated with each sample due to a negligible percentage of double 
barcoding and the accuracy of flow-activated single-cell sorting.
Expansion of isolated clonal cultures and Sanger barcode 
validation
After identification of wells of interest, wells were thawed as previ-
ously described and allowed to expand in tissue culture plates for fur-
ther barcode Sanger validation. Briefly, after expansion, a fraction of 
clonal cells was used to extract genomic DNA using DNeasy Blood & 
Tissue Kits (Qiagen) according to the manufacturer’s protocol. For 
PCR amplification, GexBP1 (5′-TCAAGCAGAAGACGGCATAC-
GAAGACA-3′) and SangerNR2 (5′-ACGAGCACCGACAACAAC-
GCAGA-3′) were used as forward and reverse primers, at final 
concentration 600 nM, and followed cycling condition 95°C 3 min, 
38 cycles of 95°C 30 s, 60°C 20 s, 72°C 10 s, followed by final extension 
at 72°C for 2 min and 4°C hold. PCR products were then loaded on a 
2% agarose gel, and the expected band at 242 bp was cut followed by 
DNA purification using the QIAquick gel extraction kit (Qiagen) 
for Sanger sequencing. SangerNR2 was used as the sequencing primer 
(5′-ACGAGCACCGACAACAACGCAGA-3′).

Omics analysis
WES of isolated clones
Genomic DNA from six isolated clones as well as parental cells of the 
PDX cell line was extracted and subjected to WES. Exome capture 
was performed on 500 ng of DNA per sample based on the Kapa 
Hyper Prep using the Agilent SureSelect Human All Exon kit accord-
ing to the manufacturer’s instructions. WES was performed on the 

Illumina HiSeq 2500 sequencing platform. Pair-end reads in FASTQ 
format were generated from BCL raw data using Illumina CASAVA. The 
reads were aligned to the hg19 reference genome using BWA (53). 
Duplicate reads were removed using Picard (http://broadinstitute.
github.io/picard/), and local realignments were performed using 
GATK (54).
Mutation calling and CNV identification
A pooled common normal was used as control for germline muta-
tions and polymorphism variants. Somatic single-nucleotide variants 
(SNVs) were identified using MuTect (55), and small insertions and 
deletions (InDels) were identified using Pindel (56). A series of post-
calling filtering were applied for somatic mutations including (i) total 
read count in tumor sample  ≥20, (ii) total read count in germline 
sample ≥10, (iii) VAF (variant allele frequency) ≥0.02 in tumor sam-
ple and ≤0.02 in matched normal sample, and (iv) a population fre-
quency threshold of 0.5% was used to filter out common variants in 
the databases of dbSNP129 (57), 1000 Genome Projects (58), Exome 
Aggregation Consortium (59), and ESP6500 (60). To understand the 
potential functional consequence of detected variants, we annotated 
them using Annovar (61) and dbNSFP (62), and compared them with 
those from dbSNP (63), ClinVar (64), COSMIC (65), and TCGA da-
tabases. CNVs were identified using an in-house algorithm named 
ExomeCN. The copy number log2 ratios of tumor versus matched 
normal were calculated across the entire capture regions and then 
subjected to segmentation using CBS (66). A cutoff of log2 ratio ≤−0.4 
was applied to identify copy losses, and log2 ratio ≥0.4 was applied to 
identify copy gains.
RNA-seq analysis
Total RNA from six isolated clones of the PDX1 cell line was extracted 
using RNeasy Mini Kit (Qiagen) following the manufacturer’s in-
structions. Quantity and quality were measured using the RNA 
ScreenTape Analysis (Agilent Technologies). Raw sequencing data 
were converted to fastq format and aligned to hg19 reference genome 
using the Spliced Transcripts Alignment to a Reference (STAR) algo-
rithm (67). HTSeq-count was used to generate the raw read counts for 
each gene (68). DESeq2 was used for data processing, normalization, 
and differential expression analysis following standard procedures 
(69). The differentially expressed genes (DEGs) were selected by the 
criteria of the log2(foldchange) ≤−1 or ≥1, and the cutoff of the ad-
justed P value was 0.05. IPA was conducted with default parameters 
(https://qiagenbioinformatics.com/products/ingenuity-pathway-
analysis/). In brief, the DEGs were obtained by comparing the pro-
met clones versus the non-met clones using DEseq2. The genes were 
then mapped to IPA database with either Ensembl gene ID or HUGO 
gene symbols. The mapped DEGs and corresponding log2Foldchange, 
P values, and adjusted P values were used as input for IPA core 

Table 2. Plate indexes. 

GExSeqS-bc-IonP1 5′-CCACTACGCCTCCGCTTTCCTCTCTATGGGCAGTCGGTGATYYYYYYYYTGAGGTTCAGAGTTCTACAGTC-3′
GExSeqS-bc1-IonP1 5′-CCACTACGCCTCCGCTTTCCTCTCTATGGGCAGTCGGTGATTATATCCACGAGGTTCAGAGTTCTACAGTC-3′
GExSeqS-bc3-IonP1 5′-CCACTACGCCTCCGCTTTCCTCTCTATGGGCAGTCGGTGATTATCCATACGAGGTTCAGAGTTCTACAGTC-3′
GExSeqS-bc5-IonP1 5′-CCACTACGCCTCCGCTTTCCTCTCTATGGGCAGTCGGTGATTCCATATACGAGGTTCAGAGTTCTACAGTC-3′
GExSeqS-bc7-IonP1 5′-CCACTACGCCTCCGCTTTCCTCTCTATGGGCAGTCGGTGATTATAGGTACGAGGTTCAGAGTTCTACAGTC-3′
GExSeqS-bc9-IonP1 5′-CCACTACGCCTCCGCTTTCCTCTCTATGGGCAGTCGGTGATTAGGTATACGAGGTTCAGAGTTCTACAGTC-3′

https://bioconductor.org/packages/release/bioc/html/Biostrings.html
http://broadinstitute.github.io/picard/
http://broadinstitute.github.io/picard/
https://qiagenbioinformatics.com/products/ingenuity-pathway-analysis/
https://qiagenbioinformatics.com/products/ingenuity-pathway-analysis/
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analysis to determine the canonical pathway enrichment. Metastasis 
and nonmetastasis gene signatures were selected using the top 100 
most DEGs.
Single-cell CNV analysis through MissionBio Tapestri platform
Cells were resuspended in Tapestri cell buffer for single-cell suspen-
sion at concentration of 4000 cells per microliter. Cell encapsulations, 
lysis, barcoding, and library preparation were performed with Tap-
estri V3 workflow (Mission Bio, San Francisco, CA, USA). The 
sequencing was performed on Illumina’s NGS platform. The genome-
wide CNV panel was designed by Mission Bio targeting single-
nucleotide polymorphisms (SNPs) evenly spaced out across unmasked 
regions of the human genome, approximately 10 million bp apart. A 
minimum of 10 amplicons were used for smaller chromosomes de-
spite a smaller gap between amplicons, when possible. Candidate 
SNPs were selected by filtering the dbSNP 151 database for synony-
mous mutations with a minor allele frequency > 0.35 within regions 
of moderate GC content (28 to 62%). The FASTQ file was processed 
using the Tapestri Pipeline (https://portal.missionbio.com/), which 
outputs an h5 file. The h5 file contains the allele frequency (AF) calls 
for all cells for each position on all amplicons and the read counts to 
each cell and amplicon. A total of 708 amplicons and 2217 cells were 
used for SNP and CNV analysis. The 493 variants obtained had more 
than 50% of the cells with DP >10, GQ >30, AF for WT calls <5, AF 
for HOM calls >95, AF for HET calls >30, and at least 1% of the cells 
mutated. The copy number for each clone was estimated using a refer-
ence cell line (Spiked-in Raji) as a reference and assuming that Chro-
mosome X has a mean copy number of 1 in all cells. The copy number 
estimation was performed using the “compute_ploidy” function in 
the Mission Bio Mosaic package.
Single-cell CNV analysis through 10x Genomics platform
About 4000 cells were captured followed by library preparation 
using the 10x Genomics Chromium Single-Cell DNA Reagent Kit 
according to the manufacturer’s protocol. The library was then 
sequenced on the Illumina NovaSeq S2 platform. Downstream 
analysis on single-cell CNV was performed according to 10x Ge-
nomics’ instruction (https://support.10xgenomics.com/single-cell-
dna/software/overview/welcome). In brief, sample demultiplexing, 
barcode processing, read alignment, copy number estimation, and 
hierarchical clustering were performed through Cell Ranger (10x 
Genomics). The visualization of intratumoral heterogeneity and 
hierarchical clustering was acquired through Loupe scDNA Brows-
er (10x Genomics).
Single-cell RNA-seq of PDX cell lines
Five thousand cells of PDX1 parental cells were captured followed by 
library preparation using 10x Genomics Chromium single cell 3’ V3 
chemistry according to the manufacturer’s protocol. The library was 
then sequenced on the Illumina NovaSeq S2 platform. Downstream 
analysis on the resulting single-cell sequencing data was conducted 
using the R package Seurat (70). Raw data had 4642 cells with 21,808 
genes. The dataset was filtered with the following criteria: number of 
genes greater than 200 (removing low-quality cells) and less than 6700 
(removing possible doublets or multiplets); reading count less than 
60,000 (removing possible doublets or multiplets); percent of mito-
chondria less than 5% (removing low-quality or dead cells). The 
cleaned dataset resulted in a total of 3397 cells. Homemade metastasis 
gene signatures were obtained from bulk RNA-seq analysis. The top 
100 up-regulated genes (met-up) and top 100 down-regulated genes 
(met-down) were selected as the two gene lists. The R package AUCell 
(71) was used to identify cells with the 100 met-up and 100 met-down

metastasis signatures (i.e., cells enriched with the genes in these two 
signatures). Together, 639 cells were identified as having either the 100 
met-up, 100 met-down, or both signatures (correspondingly, 2758 
cells were not enriched in these two signatures). Among the 639 cells, 
specifically, “met” was defined as cells enriched in 100 met-up but not 
in 100 met-down (n = 453). A UMAP (Uniform Manifold Approxi-
mation and Projection) plot was generated for cells with metastasis 
signatures only.
Human pancreatic cancer spatial transcriptomic analysis
Single-cell sequencing and spatial transcriptomics data of three pan-
creatic cancer patient samples (39) were downloaded from HTAN 
Data Coordinating Center Data Portal: https://data.humantumorat-
las.org/. Spatial transcriptomics data were normalized with the 
“SCTransform” function of R Seurat package and scaled. The “variable.
feature.n” parameter was set to the number of total features to ensure 
that the normalized and scaled matrix included enough genes for 
gene signature analysis. The nearest template prediction (NTP) algo-
rithm from R package “CMScaller” was used to analyze the gene ex-
pression matrix obtained from spatial transcriptomics analysis (72, 
73). The 100 met-up and 100 met-down genes were used as the tem-
plates. The “nPerm” parameter of the “ntp” function was set to 1000 
for P value estimation. If the prediction of a spot shows that its gene 
expression is closer to the met-up gene template than the met-down 
templates with a P value <0.05, the spot was assigned as Met. Other-
wise, they were assigned as “All others.” The cell types of the spots 
were inferred from single-cell sequencing data of the same patient 
samples that were filtered, normalized with “SCTransformation,” and 
clustered as described in the published data (39). Cell types of single 
cells were assigned and were used to annotate the spot-level cell types 
with the “FindTransferAnchors” and “TransferData” functions from 
R Seurat package. The distance to the met-up and met-down tem-
plates of single cells was also calculated with the NTP algorithm as 
described above.
Human pancreatic cancer survival analysis
ssGSEA (74) method from the GSVA (75) (v1.48.3) R package was 
used via “gsva” function with “method = ‘ssgsea’” and “ssgsea.norm = 
TRUE” on transcripts per million values for all TCGA + META-
PRISM samples in the same run. After calculating gene set enrich-
ment scores for samples, gene set enrichment scores were normalized 
for standard normal distribution (mean = 0, SD = 1). Cox propor-
tional hazard model was fit with overall survival of all samples (TCGA + 
META-PRISM, n  =  223) using standard normalized enrichment 
scores. Then, all samples were dichotomized into two groups, met_
up_dominant and met_down_dominant, using standard normalized 
gene set enrichment scores (If met_up_enrichment_score  >  met_
down_enrichment_score, then this sample is met_up_dominant, and 
vice versa). Last, overall survival of met_up_dominant and met_
down_dominant groups was compared with Kaplan-Meier plots us-
ing log-rank test. All survival analysis was performed in R v4.3.1 
using “survival” and “survminer” packages.

Hematoxylin and eosin staining
Collected tissues were fixed overnight with buffered paraformal-
dehyde (PFA) followed by 70% ethanol and embedded in paraffin 
using Leica ASP300S processor. Tissue blocks were sectioned with 
a microtome (Leica RM2235). Slides were then deparaffined and 
stained with hematoxylin and eosin. Images were captured with a 
Nikon DS-Fi1 digital camera using a wide-field Nikon Eclipse-Ci 
microscope.

https://portal.missionbio.com/
https://support.10xgenomics.com/single-cell-dna/software/overview/welcome
https://support.10xgenomics.com/single-cell-dna/software/overview/welcome
https://data.humantumoratlas.org/
https://data.humantumoratlas.org/
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Invasion assay
Invasion assays were performed with Corning BioCoat Matrigel Inva-
sion Chambers according to the manufacturer’s instructions. In brief, 
cells were starved with serum-free medium for 24 hours. Cells (1 × 
105 to 2 × 105) in 0.5-ml serum-free medium were added to the in-
serts, and medium plus 10% FBS were added to the wells as chemoat-
tractant with or without NMDAR agonist glutamate or antagonist 
memantine. After 24 hours, the cells were fixed with 4% PFA followed 
by 0.5% crystal violet staining. Images were captured with a wide-field 
Nikon Eclipse-Ni microscope. The number of invaded cells was deter-
mined using ImageJ software.

Reverse transcription and quantitative real-time PCR
Total RNA from each clone was extracted with Qiagen RNeasy Mini 
Kit according to the manufacturer’s instructions. One microgram of 
RNA was used to generate cDNA using Thermo Fisher Scientific 
SuperScript VILO Master Mix. Ten nanograms of cDNA was used for 
quantitative PCR using Applied Biosystems PowerUp SYBR Green 
PCR Master Mix with gene-specific primers (see Table  3). Relative 
gene expression level was determined by the comparative CT (ΔΔCT) 
method and normalized to glyceraldehyde-3-phosphate dehydroge-
nase (GAPDH).

Intracellular Ca2+ assay
Intracellular Ca2+ concentration was determined by the Enzo 
FLUOFORTE Calcium Assay Kit according to the manufacturer’s 
instructions. In brief, 8 × 104 cells per well were plated in a 96-well 
plate for overnight. The cells were then stained with FLUOFORTE 
Dye for 1 hour at room temperature followed by fluorescence detec-
tion at Ex = 490 nm/Em = 525 nm using the PHERAStar HTS micro-
plate reader (BMG Labtech).

MTT cell viability assay
The MTT assay (Sigma-Aldrich) was performed according to the 
manufacturer’s instructions. In brief, 5 × 103 cells per well were plated 
in a 96-well plate for overnight. The cells were then treated with differ-
ent concentrations of memantine for 48 hours followed by incubation 
with complete medium containing MTT (0.4 mg/ml) at 37°C for 
4 hours. The reduced MTT crystals were dissolved in DMSO (Sigma-
Aldrich), and the absorbance was detected at 570 nm using the 
PHERAStar HTS microplate reader (BMG Labtech).

Statistical analysis
In vitro and in vivo data are presented as the means ± SD. Statistical 
analyses were performed using a two-tailed unpaired Student’s t test 

or one-way analysis of variance (ANOVA) after the evaluation of vari-
ance. No statistical methods were applied to predetermine sample size.

Supplementary Materials
This PDF file includes:
Figs. S1 to S6
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