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Abstract 21 

Single-cell analyses can be confounded by assigning unrelated groups of cells to common 22 

developmental trajectories. For instance, cancer cells and admixed normal epithelial cells could 23 

potentially adopt similar cell states thus complicating analyses of their developmental potential. 24 

Here, we develop and benchmark CCISM (for Cancer Cell Identification using Somatic Mutations) to 25 

exploit genomic single nucleotide variants for the disambiguation of cancer cells from genomically 26 

normal non-cancer epithelial cells in single-cell data. In colorectal cancer datasets, we find that our 27 

method and others based on gene expression or allelic imbalances identify overlapping sets of cancer 28 

versus normal epithelial cells, depending on molecular characteristics of individual cancers. Further, 29 

we define consensus cell identities of normal and cancer epithelial cells with higher transcriptome 30 

cluster homogeneity than those derived using existing tools. Using the consensus identities, we 31 

identify significant shifts of cell state distributions in genomically normal epithelial cells developing in 32 

the cancer microenvironment, with immature states increased at the expense of terminal 33 

differentiation throughout the colon, and a novel stem-like cell state arising in the left colon. 34 

Trajectory analyses show that the new cell state extends the pseudo-time range of normal colon 35 

stem-like cells in a cancer context. We identify cancer-associated fibroblasts as sources of WNT and 36 

BMP ligands potentially contributing to increased plasticity of stem cells in the cancer 37 

microenvironment. Our analyses advocate careful interpretation of cell heterogeneity and plasticity 38 

in the cancer context and the consideration of genomic information in addition to gene expression 39 

data when possible. 40 

 41 

Novelty and Impact 42 

Single-cell analyses have become standard to assess cell heterogeneity and developmental 43 

hierarchies in cancer tissues. However, these datasets are complex and contain cancer and non-44 

cancer lineage cells. Here, we develop and systematically benchmark tools to distinguish between 45 

cancer and non-cancer single-cell transcriptomes, based on gene expression or different levels of 46 

genomic information. We provide strategies to combine results of different tools into consensus calls 47 

tailored to the biology and genetic characteristics of the individual cancer.  48 
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Introduction 50 

Cancer cells mix and interact with their microenvironment 1,2. In colorectal carcinoma (CRC) and in 51 

other epithelial cancers, transformed cells intermingle with non-cancer epithelial cells in areas known 52 

as the invasive front (IF)3,4. Furthermore, normal tissues adjacent to tumours are re-shaped beyond 53 

the cancer’s boundary, influenced by local immune responses and inflammation 5, paracrine signals 6, 54 

and genetic aberrations preceding malignant transformation 7, as has been shown by multiplexed 55 

tissue imaging 8, single-cell 9 and bulk transcriptomics 10 .  This gradual change in cell composition 56 

from normal to cancer poses challenges for single-cell transcriptomics, as it is not immediately 57 

apparent from the transcriptome whether certain cells arise from malignant or normal lineages. 58 

In CRC, single-cell transcriptome analyses revealed two overarching intrinsic consensus molecular 59 

subtypes (iCMS), termed iCMS2 and iCMS311. These transcriptome subtypes are linked to patient 60 

characteristics such as localization of cancer, and to molecular features such as microsatellite 61 

stability, mutational burden, the extent of copy number aberrations, and patterns of driver 62 

mutations 12–15. That means, left-sided tumours frequently arise due to the loss of the tumour 63 

suppressor gene APC and additionally harbour mutations in KRAS, SMAD4, and TP53; these 64 

mutational patterns lead to WNT and MYC signalling pathway activation. Furthermore, CRCs in this 65 

context are most frequently microsatellite-stable (MSS), display extensive copy number aberrations 66 

and gene expression patterns characteristic of intrinsic molecular subtype iCMS2. In contrast, CRCs 67 

progressing via serrated precursors are found mainly in the right colon, carry mutations in KRAS or 68 

BRAF, display activation of the TGF-beta signalling pathway, can be microsatellite-instable (MSI) or 69 

MSS, have a higher mutational burden but fewer copy-number changes, and show gene expression 70 

patterns of metaplasia and intrinsic molecular subtype iCMS3. We expect that the different cancer 71 

cell characteristics could also lead to a variable accuracy of cell type calling in single-cell analysis.  72 

Numerous studies have conducted single-cell level analyses of CRC 16–18. These investigations were 73 

either performed under the assumption that all epithelial cells derived from the cancer tissue 74 

samples are bona fide cancer cells, or they have relied solely on transcriptome-derived 75 

characteristics to differentiate between cancer and normal epithelial cells. Broadly applicable and 76 

robust methods to confidently distinguish genomically normal epithelial cells from genomically 77 

aberrant cancer cells remain elusive, especially for datasets derived from regions where both types 78 

of cells coexist, such as at the IF. 79 

Here, we use different computational tools to disambiguate cancer and non-cancer epithelial cells in 80 

single-cell transcriptome data of ten CRC patients across a range of clinical and molecular 81 

characteristics, using additional information derived from associated whole-genome sequencing 82 
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data. Analysis of consensus sets of cancer and normal cells shows that genomically normal epithelial 83 

cells adjacent to the cancer can adopt cell states that are unlike those of epithelial cell populations in 84 

normal tissue. Developmental trajectories of non-cancer epithelium were altered in the cancer 85 

neighbourhood, as stem-like and immature differentiation states were overrepresented among 86 

genomically normal cells in cancer tissue samples. We identify multiple new paracrine interactions 87 

potentially modulating normal cell development in the tumour microenvironment, including cancer-88 

specific fibroblasts as a source of the key stemness factor WNT. 89 

  90 
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Results 92 

Transcriptome information is insufficient for cancer cell calling in CRC  93 

To reliably distinguish cancer from normal cells in single-cell RNAseq data, we complemented single-94 

cell data of ten treatment-naive CRC patients of a previous study 17 with whole-genome sequencing 95 

data of cancer and normal samples. Clinical and pathology assessment of the cohort shows a broad 96 

distribution along the longitudinal axis of the colon, and driver mutations in APC, BRAF, P53, beta-97 

Catenin, and KRAS in subsets of the cancers (Fig. 1A). Using updated bioinformatic pipelines, 73 294 98 

cells passed quality controls after ambient RNA and doublet removal.  Of these, 43 110 99 

transcriptomes were from cancer tissue and 30 184 from normal tissue samples adjacent to tumour. 100 

39 168 cells were annotated as epithelial, 31 663 as immune cells and 2 463 as of stromal cell origin 101 

(Fig. 1B). 102 

We first sought to distinguish cancer from normal epithelial cells in the cancer samples using 103 

transcriptome information. In a UMAP representation of all epithelial cell transcriptomes, a fraction 104 

of the 17 623 transcriptomes derived from cancer samples partially clustered on a separate 105 

“community” while another fraction interspersed with the normal tissue-derived epithelial cells (Fig 106 

1C). We used probabilistic label transfer from published gene expression data11 to assign cancer 107 

sample epithelial cells to the cancerous iCMS2 or iCMS3 epithelial cell states, or a normal cell state 108 

(Fig. 1D, E). In total, 10 589 cells were classified as iCMS2 or iCMS3, and therefore were assigned as 109 

cancer cells by this method. Cancer cells from P09, P13, P16 and P21 received predominantly called 110 

as iCMS2, whereas P07, P08, P14, P20, P26 and P35 were mostly iCMS3, in line with previous 111 

analyses showing that MSI cancers are usually iCM3. However, our analysis also showed that cells 112 

displaying transcriptome features of iCMS2 and iCMS3 can be present side-by-side in the same 113 

cancers (Fig. 1E).  Almost all the cells receiving iCMS2/iCMS3 calls were located on the cancer cell 114 

community of the UMAP in contrast to the 7 034 cancer tissue-derived epithelial cells receiving the 115 

“normal” label that were mostly scattered among cells derived from normal tissue samples. 116 

We also inferred cancer cell identity by expression-derived copy number calls, using inferCNV 19 (Fig. 117 

1F,G). Using hierarchical clustering based on copy number-driven genome-averaged expression 118 

patterns (Fig. S1), we assigned cell clusters as cancer when their averaged expression pattern 119 

deviated more than three standard deviations from epithelial cells in the normal tissue samples. This 120 

method did not yield results for the MSS cancer P14, which did not exhibit detectable alterations in 121 

the averaged expression patterns. For the remaining cancer samples, inferCNV identified a total of 122 

10 509 abnormal transcriptomes, whereas 7 114 cells were assigned as normal epithelial cell states. 123 

 124 
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 126 

 127 

Figure 1. Cancer cell calling based on transcriptome information. A Anatomical locations and mutational 128 
patterns of the samples. C: cecum, A: ascending colon, D: descending colon, S: sigmoid, and R: rectum. Mutations 129 
(in brackets) A: APC, B: BRAF, C: CTNNB1, K: KRAS, P: TP53. B UMAP of all 73 294 cells, coloured by three major 130 
cell type compartments: epithelial (blue), immune (orange), and stromal cells (green). C, D, F UMAPs of epithelial 131 
cells only. (C) colour code by the sample origin and the microsatellite status. Cancer sample (MSI), red; cancer 132 
sample (MSS), yellow; normal sample, grey. (D) colour code for cancer sample cells by iCMS assignment; iCMS2 133 
(yellow), iCMS3 (pink), or normal (blue), normal samples (not scored, grey). (F) colour code of cancer sample cells 134 
by inferCNV. Copy number status aberrant (CNA; orange), normal (CNN; blue), or not applicable (NA; purple) 135 
when the clones in the sample are not differentiable, normal samples (not scored, grey). E, G stacked bar plots 136 
summarising iCMS and inferCNV information, respectively, by cancer sample.  H Quantification of the agreement 137 
between iCMS and inferCNV calls as an upset plot, colour-coded by patient, as indicated. 138 

 139 

Taken together, the transcriptome-based analyses showed a large overlap for calling cancer versus 140 

genomically-normal cells (Fig. 1H). However, 1 441 cells received conflicting calls and cells from P14 141 

could not be properly assigned. Thus, these methods are not suitable to generally define 142 

genomically-normal versus cancer epithelial cells in CRC samples with high accuracy.  143 
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Exploiting cancer specific SNV information for cancer cell calling with CCISM  145 

Given that transcriptome analyses can potentially be confounded by expression similarities between 146 

cancer and normal epithelial cell states, we hypothesized that independently derived somatic 147 

variants that are observed in single-cell sequencing reads constitute the most unambiguous evidence 148 

that a cell originated from a cancer lineage. We therefore utilised cancer-specific somatic variants 149 

derived from bulk whole-genome sequencing data of matched samples to interrogate the associated 150 

single-cell transcriptomes.  151 

Comparison of normal and cancer genomes yielded 2-12 cancer-specific somatic single nucleotide 152 

variants (SNVs) per million bases of genome sequence (MB) in most CRCs, except for the MSI CRCs 153 

P26 and P35 which had up to 50 SNVs/MB (Fig. 2A). The mean number of expressed SNVs per cell in 154 

the single-cell transcriptomes correlated with the SNV frequency in the whole-genome sequencing 155 

data and was for many CRCs less than 10 SNVs per cell, but up to 60 SNVs/cell for the MSI CRC P35. 156 

To make use of SNV patterns for the classification of single-cell data, we developed CCISM (for 157 

Cancer Cell Identification by Somatic Mutations). Input data are the UMI-collapsed read counts for 158 

reference and alternative allele observed per cell and variant, which are obtained from the single-cell 159 

sequencing reads as well as a list of high-quality somatic variants derived from bulk whole-genome or 160 

whole-exome data. Based on this input, CCISM computes for each cell a posterior cancer cell 161 

assignment by expectation maximization. Importantly, these are cell-specific values and not derived 162 

from clustering. At the same time, benchmark simulations can be used to estimate expected 163 

sensitivity and specificity values for the dataset at hand (Fig. 2B). 164 

We first used simulations based on the total allele count matrices from our single-cell RNAseq 165 

datasets to benchmark CCISM against cardelinoEM 20 and vireo 21. Compared to these existing tools 166 

with related functionality, CCISM has similar specificity but superior computational efficiency (Fig. 167 

2C). We also obtained better sensitivity especially at high tumour content, mainly because we 168 

employed a fixed parameter for the probability to observe variant alleles in normal cells instead of 169 

estimates. Note that sensitivity depends on the number of expressed SNVs per cell and reaches 170 

optimal values at three or more expressed SNVs per cell (Fig. 2D). Across the datasets used to initiate 171 

the simulations, we found sensitivity strongly associated with mutational burden and therefore 172 

highly correlated to the average number of expressed SNVs per cell (Fig. S2A). A subsampling analysis 173 

revealed that most datasets were not saturated for SNV coverage despite being sequenced to depths 174 

of more than 90 000 autosomal reads per cell on average (Fig. 2E).  175 

 176 
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 180 

Figure 2. CCISM identifies cancer cells with somatic single nucleotide variants. A Scatterplot of the number of 181 
SNVs in whole genome sequencing data and the average number of expressed SNVs per cell in single-cell RNA 182 
sequencing data coloured by patient. B CCISM’s workflow diagram from input data (scRNAseq and bulk DNAseq 183 
data), allele count calculation by cellSNP-lite to CCISM modelling. Benchmark simulations can be generated from 184 
input counts (blue). C Boxplots of tool performances in simulation data regarding runtime in seconds (right), false 185 
positive rate (FPR, middle), and true positive rate (TPR, left) between CCISM (green), cardelinoEM (orange), and 186 
vireo (pear). D Line plots comparing model performances (CCISM, green circle; cardelinoEM, orange cross; vireo, 187 
pear star) as function of tumour fraction (upper) and mean number of expressed SNVs per cell (lower). E Line 188 
plot of CCISM’s performance (TPR) in single-cell transcriptomes subsampled to five different mean numbers of 189 
reads per cell, colour-coded by patient.   190 
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CCISM and Numbat can be used cooperatively to define consensus normal and cancer cell lineage 192 

populations  193 

We applied CCISM to our CRC single-cell RNA dataset resulting in 9 738 cancer cell calls (Fig. 3A). The 194 

predicted cancer cells show a widely overlapping localization with cells previously classified using 195 

expression-based copy-number variation inference with inferCNV or iCMS2/iCMS3 gene expression 196 

(Fig. 1D, F). However, CCISM generated more cancer cell calls in UMAP neighbourhoods identified as 197 

normal by iCMS or inferCNV (Fig. 3A, see rectangular insets), suggesting that the use of cancer-198 

specific variant information retrieves cells of cancer lineages that are transcriptomically less 199 

divergent from genomically normal epithelial cells.  200 

For comparison, we employed Numbat 22, a recently developed tool using allele frequency shifts of 201 

common germline variants to facilitate cancer cell calling via detection of copy number changes. In 202 

our single-cell dataset, Numbat identified 11 008 cells as of cancerous origin, again showing an 203 

incomplete overlap with cancer cells identified by the other methods (Fig. 3B, Fig. 3C). 204 

Initially, 2 562 cells received conflicting assignments by CCISM and Numbat (Fig. 3D). Therefore, we 205 

studied strengths and weaknesses of both tools, considering individual tumour characteristics (Fig. 206 

3D-E, Fig. S2B, S2C, S2D). On the one hand, we found that in MSS CRCs, most cells with a conflicting 207 

assignment were earmarked as cancer cells by Numbat; however, these cells did not receive a high-208 

confidence cancer cell score by CCISM, as they contained only a median of one SNV, with 707 cells 209 

expressing no SNV at all. On the other hand, cells with conflicting assignment in MSI CRC samples 210 

mostly (272/314) received a high-confidence cancer cell score by CCISM, and these contained a 211 

median of 16 SNVs, while cancer cell scores computed by Numbat were generally low. Therefore, we 212 

developed a set of rules to arrive at a cancer cell consensus based on genomic information (Fig. 3F): 213 

epithelial cells of cancer samples receiving high scores (>0.5) by Numbat were assigned as cancer 214 

cells, except for cells of MSI cancers that were assigned as normal by CCISM (<0.5), which then 215 

received a normal call. Epithelial cells of cancer samples receiving high scores by CCISM (>0.5) were 216 

also assigned cancer cells, except when this call of MSS CRC cells conflicted with a low score by 217 

Numbat (<0.5), in which case the cell was called “unclear”. Using these consensus call rules, we were 218 

able to assign 11 238 cells as cancer cells (Fig. 3G, H). 570 of these were not recognized as cancer 219 

cells by iCMS transcriptional signatures or by inferCNV. 5 969 cells were assigned as derived from 220 

normal epithelial lineages, using SNV or haplotype information (Fig. S2C). A remaining set of only 416 221 

cells was assigned as “unclear” and removed from further analysis, as they contained no reliable SNV 222 

or haplotype information.  223 

 224 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 27, 2024. ; https://doi.org/10.1101/2024.02.23.581690doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.23.581690
http://creativecommons.org/licenses/by-nc/4.0/


 
 

10 

 225 

 226 

Figure 3. Cancer cell calling based on genomic information. A, B UMAPs of epithelial cells. A Colour-code by 227 
CCISM calls (cancer cell, orange; normal cell, blue). Insets given for inferCNV and iCMS calls. Cells from normal 228 
samples are given in gray. B Colour-code by Numbat call (cancer cell, orange; normal cell, blue). Cells from normal 229 
samples are given in gray. C Venn diagram of the intersections of cancer cell calls from iCMS (pink), inferCNV 230 
(yellow), CCISM (green), and Numbat (blue). D Upset plot of the intersections of cancer cell calls from CCISM and 231 
Numbat coloured by microsatellite status of the sample (MSI, red; MSS, yellow). E Heatmaps of the cancer cell 232 
scores (0.0, blue; 0.5, dark grey; 1.0, orange) from Numbat (upper) and CCISM (lower) across cancer samples. F 233 
Decision matrix for consensus cancer cell calls, based on CCISM, Numbat and microsatellite status. G Stacked 234 
barplot of the consensus derived from CCISM and Numbat (cancer cell, orange; normal cell, blue; undefined, 235 
purple). H UMAP of the consensus calls, colour code as in G, excluding cells with an “unclear” call. 236 
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Consensus cell identity leads to higher homogeneity of transcriptome clustering and enables 242 
phenotypic comparison.  243 

The final cell assignment to cancer or normal lineages resulted in a substantial separation of the 244 

populations when visualized on the UMAP (Fig. 3H). We quantified distributions of consensus call 245 

cancer versus normal calls in the corresponding louvain cluster structure (Fig. 4A, Fig. 4B). We found 246 

that normal and cancer cell communities were best separated when using the consensus call, 247 

compared to relying on the different methods that use transcriptome or genomic information 248 

individually (Fig. 4C, Fig. S3A-D). Using the consensus annotation, cancer cells were distributed in a 249 

highly patient-specific manner, but genomically normal epithelial cells intermingled as well as 250 

epithelial cells derived from normal tissue samples (Fig. S3E). While the consensus call requires 251 

additional genomic data, the correspondence to the louvain cluster structure also implies that 252 

transcriptomes alone may contain sufficient information for the disambiguation of cancer and 253 

normal lineage epithelial cells, at least in our CRC single-cell data set.  254 

We found that the genomically normal epithelial cells from cancer samples showed distinct cluster 255 

distributions when compared to the normal tissue epithelial cells (Fig. 4B). In particular, louvain 256 

cluster 9 was almost exclusively composed of genomically-normal epithelial cells of cancer samples, 257 

and these were derived predominantly from tissue samples of patients P09, P16 and P20, and P21 258 

with a left-sided (sigmoid colon and rectum) origin (Fig. 1A, Fig 4D). We further explored the 259 

identities of epithelial cells using label transfer 17. Cluster 9 contained mainly stem cells, transiently-260 

amplifying cells or enterocyte precursors (Fig. 4E), and their assignment to a distinct louvain cluster 261 

suggested that these cells adopted a cell state that was induced by the cancer microenvironment and 262 

therefore not found in normal colon. When we analysed cluster 9-specific expression patterns, the 263 

most strongly defining gene for cluster 9 epithelial cells was PLA2G2A, encoding a secreted phospho-264 

lipase (Fig. 4F, G).  265 

Mapping of well-established colon and CRC cell-type signatures (Table S1) onto the epithelial single-266 

cell transcriptomes derived from cancer and normal samples unveiled further differences in 267 

differentiation programs in the cancer’s vicinity, as Goblet cell transcriptomes derived from cancer 268 

samples were enriched for a Paneth cell signature, indicating that the cancer microenvironment 269 

perturbs secretory lineage fate decisions (Fig. S4A). Indeed, the occurrence of metaplastic Paneth 270 

cells has been widely documented in inflammation and also in cancer of the colon 23,24.   271 
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 272 

 273 

Figure 4. Consensus calls identify a cluster of genomically normal cells unique to left-sided cancer samples. A 274 
UMAP of epithelial cells, coloured by louvain clustering. B Stacked bar plot of consensus calls across 20 louvain 275 
clusters (cancer sample and genomically cancer, orange; cancer sample and genomically normal, blue, normal 276 
sample, grey). C Bar plot of cluster homogeneity scores for cancer cell calls by different methods as indicated. D 277 
Relative fractions of genomically normal cells in cluster 9, by cancer location (see Fig. 1A). p-value from mixed-278 
effects binomial model, *** p < 0.001.  E Pie chart of the epithelial cell types in louvain cluster 9, as indicated. 279 
Colour code: Enterocyte (dark green), Enterocyte progenitor (light green), Immature Goblet (light purple), 280 
Stem/TA (dark blue), and Stem (light blue). F Dot plot of top 10 marker genes for louvain cluster 9. Colour of dot 281 
represents the mean normalised expression of the gene, and the size of the dot shows the fraction cells 282 
expressing the gene. G UMAP coloured by PLA2G2A expression, which is the top gene marker specific to louvain 283 
cluster 9.  284 
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The CRC microenvironment modulates epithelial cell states and developmental trajectories 286 

We next assessed cell type frequencies among the genomically normal epithelial cells from cancer 287 

samples and compared them to normal tissue sample epithelium, excluding patients P08, P21, P26 288 

and P35 which either had no matched normal sample or very few genomically normal cells (Fig. 5A). 289 

We found that the cancer-adjacent epithelial cells were significantly enriched for stem cells, 290 

immature goblet cells, and enterocyte progenitors, while they contained lower proportions of 291 

terminally differentiated cell types, such as differentiated enterocytes, goblet cells and tuft cells (Fig. 292 

S5B). 293 

We then wanted to infer cell developmental trajectories. For this, we first embedded epithelial cells 294 

from normal and cancer samples into a common diffusion map, thereby emphasizing continuous cell 295 

distributions (Fig. 5B). In this embedding, diffusion component (DC) 1 was largely correlated to tuft 296 

cell identify, whereas DC2 distributed all other cell types along an apparent differentiation axis, with 297 

genomically cancer cells occupying one end. Binning the non-cancer cell types along the DC2 axis (Fig. 298 

5C), we observed that genomically normal stem cells from cancer samples occupied a larger range on 299 

the DC2 axis compared to stem cells from normal tissue samples. In contrast, while immature goblet 300 

cells and enterocyte progenitors were also more frequent among the cancer-adjacent normal 301 

epithelium, they were confined to a similar range on the DC2 diffusion axis compared to normal 302 

tissue samples. These results were corroborated by ordering the cell lineages along a pseudo-time 303 

axis using CytoTrace 25 (Fig. 5D, E). Here, stem cells had a wider distribution in the cancer 304 

microenvironment samples, whereas all other cell types were distributed in a fashion comparable to 305 

normal tissue. It is of note that the cancer sample-specific stem cell zone extending into the 306 

developmental trajectory is composed mainly of cluster 9 stem cells (Fig. 5F), derived from CRCs in 307 

the left colon. Together, these analyses suggest that the cancer microenvironment affects 308 

differentiation trajectories of normal colonic epithelial cells in their vicinity. The primary difference 309 

appears to be stabilization of the stem cell transcriptional state, which in a left-sided CRC 310 

microenvironment extends further along the developmental trajectory.  In addition, proportions of 311 

immature to terminally differentiated cell states are shifted towards the immature cell states in 312 

vicinity to CRC. 313 
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 314 

Figure 5. Cell states and developmental trajectories are altered in genomically normal cells of cancer samples 315 
compared to normal colon epithelium. A Stacked bar plots of epithelial cell types in normal samples (upper) and 316 
genomically normal cell populations (lower), including Enterocyte (dark green), Enterocyte progenitor (light 317 
green), Goblet (dark purple), Immature Goblet (light purple), Tuft (yellow), Stem/TA (dark blue), and Stem (light 318 
blue). B Diffusion map with additional histograms of first and second dimensions/axes coloured by epithelial cell 319 
types.  Colour code as in A, with the addition of genomically cancer cells (red). C Stacked bar plots of the epithelial 320 
cell type compositions across binned diffusion map dimension 2 in normal sample and genomically normal cells, 321 
as indicated. D UMAP coloured by Cytotrace developmental pseudotime, from early (0, yellow) to late (1, dark 322 
purple) in pseudotime space. E, F Violin plots of Cytotrace pseudotime across epithelial cell types and consensus 323 
call groups, as indicated.  324 
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The CRC tumour microenvironment is enriched for morphogenetic signal interactions 325 

We next analysed potential paracrine interactions that could underlie the observed differences in cell 326 

type frequencies and developmental trajectories between the CRC microenvironment and the 327 

normal colon. Our dataset contains a high proportion of immune cells and a lower proportion of 328 

stromal cells (Fig. 1B). Specifically, among the 31 663 immune cells, 23 433 were derived from cancer, 329 

as were 2 054 of the 2 463 stromal cells.  We annotated stromal and immune cell types at a medium 330 

granularity using established signatures (Fig. 6A, S6B), in order to strike a balance between accuracy 331 

and cluster size. We found that among immune cells, monocytes, macrophages and regulatory T cells 332 

were most enriched in the cancer samples, while among stromal cells, fibroblasts were 333 

overrepresented in the cancer microenvironment.  334 

We then used CellChat 26 to infer interactions in the normal and the cancer samples on a 335 

comprehensive basis (Fig. S6C for all interactions). Quantitative analysis revealed that fibroblasts had 336 

the most extensive network of outgoing signalling interactions (Fig. 6B) and this network was even 337 

larger in cancer samples (Fig. 6C). Endothelial cells and pericytes were rich sources of outgoing 338 

signalling interactions in cancer compared to normal. In contrast, endothelial cells, macrophages and 339 

pericytes were prominent signal receivers particularly in the cancer microenvironment, whereas 340 

CD8+ T cells received the most signals in both, normal and cancer samples (Fig. 6B). Normal epithelial 341 

cells emitted and received relatively few signals. Therefore, we analysed key morphogenetic 342 

signalling pathway interactions, WNT, BMP and FGF, known to pattern the epithelium in more detail 343 

(Fig. 6D).  We found that fibroblasts were rich sources of FGF signals potentially received by goblet 344 

cells, and of Wnt signals received e.g. by stem cells, and these interactions were seen in both tumour 345 

and normal tissue. In addition, BMP interactions known to abrogate the stem cell state 27 were 346 

diminished in the cancer microenvironment, in particular due to lower BMP expression from 347 

fibroblasts. Thus, our data predicts that differences in fibroblast signalling could underlie the changes 348 

in normal epithelial cell developmental trajectories that were mainly detected in stem and immature 349 

cell population. Indeed, cross-referencing the interactions predicted by CellChat with a curated list of 350 

signalling pathway ligands and receptors (Fig. 6E, S6D, S6E; Table S2), we found that WNT2 and the 351 

TGF-beta ligand INHBA were most strongly overexpressed by cancer-associated fibroblasts compared 352 

to normal fibroblasts, while BMP4 and the WNT co-ligand RSPO3 were expressed at lower levels 353 

compared to normal tissue samples. 354 

 355 
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 356 

 357 

Figure 6. Signalling networks of normal epithelial and genomically normal cells with their respective 358 
microenvironments. A UMAP of all the cells under analysis, coloured by detailed immune and stromal cell types, 359 
and epithelial cells in grey B-D Analyses by CellChat B Scatterplots of incoming and outgoing signals in normal 360 
and cancer samples, as indicated. C Heatmap of differential cell-cell communications of cancer samples in 361 
contrast to normal samples. D Aggregated network graphs of WNT, BMP, and FGF pathways in normal samples 362 
versus cancer samples, as indicated. E Volcano plot of differentially expressed ligand genes in immune and 363 
stromal cell types, as indicated. 364 
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Discussion 366 

Single-cell data of cancer tissue often contain transcriptomes of both cancerous and normal 367 

epithelial cells. In this study, we used both transcriptome and genome sequence information to trace 368 

back the origins of epithelial cell transcriptomes. Across a cohort of CRCs of stages T1-T4 and with 369 

different molecular characteristics, a combination of haplotype and SNV level information allowed us 370 

to differentiate with high accuracy between cancerous cells and those that are found within cancer 371 

tissue but are genomically normal. Using consensus sets of normal and cancer cells, we identified one 372 

cluster of genomically normal epithelial cells that was derived from cancer tissue samples exclusively, 373 

implying that the cancer microenvironment can result in the adoption of non-standard epithelial cell 374 

states in the colon.  375 

Our new tool CCISM makes use of somatic SNVs observed in single-cell sequencing reads for cancer 376 

cell identification. While this approach currently requires somatic SNVs independently obtained from 377 

matched tumour-normal whole-genome or whole-exome sequencing of the same cancers, it 378 

provides the most unambiguous evidence that a cell originated from a cancer lineage. To further 379 

benchmark our approach, we also used Numbat, which estimates copy-number variation from shifts 380 

in haplotype frequencies over common genetic variants to identify cancer cells, as well as two 381 

additional methods that use transcriptome information exclusively. While cancer cell calls from the 382 

different approaches show substantial overlap, we find that in our cohort of CRCs the different tools 383 

have distinct strengths and limitations contingent on the underlying cancer biology. Therefore, 384 

workflows for cancer cell identification should be specifically tailored for the data under analysis.  In 385 

the final cell annotation of our CRC dataset, cancer and genomically normal cells were largely 386 

separated in the underlying louvain cluster structure, implying that cancer and normal epithelial cells 387 

do not share common cell states during their developmental trajectories. However, we also observed 388 

altered cancer sample-specific cell states in genomically normal epithelial cells, which thus might 389 

easily be mistaken for genuine cancer cells. We also caution that our result of largely non-390 

overlapping cell states between normal and cancer may not transfer to cohorts of other stages or 391 

types of cancer. 392 

Using the consensus sets of genomically normal and cancer cells defined here, we identified 393 

genomically normal PLA2G2A-positive stem-like cells arising specifically in the cancer context in the 394 

left colon (sigmoid and rectum). PLA2G2A is the human homologue of the gene underlying the 395 

mouse Mom-1 locus 28, a genetic modifier of familial cancer susceptibility shown to confer cancer 396 

resistance in mouse models 29. The functional relevance of these stem-like cells remains elusive. On 397 

one hand, extension of stem-like and immature cell states along the differentiation trajectory could 398 

represent a misguided regenerative process hijacked by paracrine signals of the cancer 399 
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microenvironment 30,31. Indeed, we identify novel paracrine interactions in the CRC 400 

microenvironment that were dominated by fibroblasts, as recently also found for breast cancer 32. 401 

These signals could guide tissue remodelling in the proximity of cancer, which is commonly 402 

accompanied by inflammation 33. On the other hand, induction of PLA2G2A, which we identified as 403 

the most specific marker gene of the novel stem-like cells arising near the cancer, could be part of a 404 

feedback mechanism to protect the organ from cancer. In agreement with such a function, PLA2G2A 405 

is a secreted phospho-lipase that controls tissue homeostasis via modulation of inflammatory 406 

responses and is a key player in reducing cancer susceptibility 34. The exclusive occurrence of the 407 

cancer-induced PLA2G2A-positive cells in the left colon suggests regional specificity of the underlying 408 

mechanisms along the longitudinal axis of the colon. Supporting region-specific models of cell 409 

differentiation, different cell compositions and interaction have been identified in the left-410 

sided/sigmoid colon, such as increased plasma cell interactions 35. 411 

Cancer tissue has been shown to extend its influence far beyond its perimeter. Several potential 412 

mechanisms with different ranges exist: tumours expressing hormones will affect the complete 413 

patient’s body regardless of localization 36, while inflammatory responses and other differences in 414 

cell composition can have long-range, yet local, effects 37. A recent study found prognostic value of 415 

gene expression signatures derived from normal-adjacent to CRC issue harvested at a distance of 416 

approximately 10 cm from the cancer 38, suggesting the existence of long-range interactions between 417 

the CRC and surrounding tissues. Thus, gene expression patterns of our normal controls, harvested 418 

approximately 10-30 cm from the cancer, may not represent a true normal state, and in extension, 419 

our study may underestimate the influence of cancer cells and the cancer microenvironment on 420 

adjacent genomically normal colon cells.  421 

New technological developments constantly change single-cell methodology. Employing advances in 422 

sequencing depth and transcriptome coverage, e.g., by long read sequencing or specific protocols39, a 423 

more comprehensive readout of somatic SNVs could be achieved. This would help improve cell 424 

lineage determination, e.g., for cancers with few genomic aberrations, such as childhood cancers. 425 

With increased coverage, robust de novo calling of somatic SNVs could even be feasible directly from 426 

single-cell data 40. In summary, our study provides general rules for distinguishing between cancer 427 

and non-cancer single-cell transcriptomes and provides recommendations how to account for the 428 

biology and genetic characteristics of CRC. The rules can easily be adapted for cancers of different 429 

origins. 430 

  431 
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Methods 432 

Sample collection and data preprocessing  433 

The sample collection and experimental processing of the clinical specimen for single-cell RNA 434 

sequencing data has been described before 17 and the new data for P35 was collected and processed 435 

using the same protocols. In short, tissues were processed using the Miltenyi Human Tumor 436 

Dissociation Kit (Miltenyi, #130-095-929) and a Miltenyi gentleMACS Tissue Dissociator (Miltenyi, 437 

#130-096-427), using program 37C_h_TDK_1 for 30–45 min. Single-cell libraries were generated 438 

using the Chromium Single-Cell 3´Reagent Kits v3 and the Chromium Controller (10× Genomics). 439 

Libraries were sequenced on a HiSeq 4000 Sequencer (Illumina) at 200–400 mio. reads per library. 440 

Driver mutations were called as described previously 17. 441 

Whole genome sequencing (WGS) data was performed using genomic DNA isolated from 442 

microdissected material of snap-frozen (-80°C) CRC tissue, adjacent to material used for single-cell 443 

sequencing.  DNA was isolated using Qiagen Allprep Kits and sequenced on the Illumina NovaSeq 444 

6000 platform using 2 x 150bp reads. 230-360m reads were generated per sample. Reads were 445 

mapped using bwa-mem 43 version 0.7.17 against release GRCh38 of the human genome with decoys 446 

and virus sequences. For single-cell RNA sequencing data, UMIs were quantified using CellRanger 447 

3.0.2 44  with reference transcriptome GRCh38.  See Table S3 for sequencing statistics. 448 

Single-cell data quality control 449 

All analyses on single-cell data were conducted with Python 3.9.10, Scanpy 1.8.0 45, Numpy seed set 450 

at 123, R 4.1.2, and Seurat 4.1.1 46, if not specifically mentioned. CellBender v0.2.2 47 was used to 451 

remove ambient RNA with default parameters, 5000 expected cells, and FDR rate at 0.01. We used 452 

Scrublet 48 for doublet removal and chose the score threshold at 0.3 after inspecting the observed 453 

and simulated doublet scores distributions of all the samples. The detected doublet rates ranged 454 

from 0.7% to 2.9%. For quality control, cells with min_counts < 1 000, min genes < 500, or 455 

mitochondrial percentage > 80% were removed, resulting in a total number of 73 294 cells. The 456 

count matrix was then normalized and log1p transformed. The top 2 000 highly variable genes 457 

(HVGs) were identified with “patient” as the batch key. Principal component analysis (PCA) was 458 

conducted, and we calculated a UMAP using 50 neighbours and 20 principal components.  459 

Somatic variant calling in WGS and genotyping of single-cell RNA-seq 460 

Somatic variants in whole genome sequencing data were called by Mutect2 from GATK version 461 

4.2.0.0  49 using default parameters. The GATK public resources were used for germline variant loci, 462 

common biallelic loci were used to estimate possible contamination, and for the panel of normals. 463 
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CellSNP-lite50 1.2.2 was used to count somatic variants in single-cell RNA sequencing data against 464 

WGS filtered.vcf files with parameters --genotype -p 22 --minMAF 0.001 --minCOUNT 1.  465 

CCISM model and data simulation 466 

Cancer Cell Identification using Expectation Maximization (CCISM) is a tool for the classification of 467 

single-cell expression data based on the expectation-maximization method in Cardelino20. Given the 468 

total number dij of (UMI-collapsed) reads covering variant i in cell j (reference and variant allele), and 469 

the number aij of UMIs supporting the alternative allele, we evaluate the likelihood pT,j that cell j is a 470 

tumor cell using a binomial model:  471 

 472 

Here, θT is the "success probability" for the somatic variants, measuring how likely it is to observe 473 

UMIs supporting the variant allele. Similarly, we compute pN,j as the likelihood that cell j is normal, 474 

with a fixed nonzero parameter θN=0.01 allowing for sequencing errors and uncertainties in the 475 

variant calls. We calculate pT,j and pN,j in the E-step and estimate the parameter θT in the M-step as 476 

weighted sum over the counts dij and aij:  477 

 478 

E- and M-steps are iterated until convergence of the likelihood 479 

 480 

Finally, the likelihoods are normalized to give the posterior cancer cell assignment of a particular cell 481 

pj = pT,j /(pT,j + pN,j) and a cutoff pj  > .5 is used to define likely cancer cells.   482 

For the benchmark simulations (see also McCarthy et al.20), we take the matrix dij from a given 483 

dataset and simulate values aij using a binomial distribution with parameters θT=0.4 and θN=0.0001 484 

for randomly assigned tumour and normal cell identity, respectively. We used the R package 485 

cardelino (v0.6.5) and the BinomMixtureVB function from the vireoSNP package (v0.5.6) for 486 

comparison. 487 

Methodology for consensus cancer calls and trajectory assignments 488 

Epithelial, immune, and stromal cell identity was scored and assigned using previously published cell 489 

type markers 51. We ran a separate PCA for the epithelial cell compartment and chose 20 neighbours 490 

and 15 PCs for the UMAP visualization.  491 
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Copy number inference from gene expression profile was performed using inferCNV v1.3.3 19 with 492 

default parameters on all the epithelial cells with CellBender-processed 47 counts (filtered_h5). The 493 

input gene expression profiles were smoothed with a window of 101 genes. The generated 494 

dendrograms were cut at k=2 for each patient, and clones were assigned as copy number-aberrant if 495 

their averaged smoothed gene expression profile deviated by more than 3 standard deviations from 496 

that of clones containing cells of normal samples. Numbat 22 1.0.3 was run with the epithelial cells 497 

from the matched normal samples and using default parameters, which included cellSNP-lite 1.2.2 498 

for pile up and Eagle v2.4.1 for phasing the reads. The four samples from P09 (n1, n2, t1, t2) were 499 

piled up and phased together, and P26t and P35t were piled-up and phased separately as there were 500 

no matched normal samples. The rest of the samples were processed as paired normal and tumour 501 

samples.  502 

For iCMS label transfer, we downloaded the CellRanger-processed count matrix 503 

(‘Epithelial_Count_matrix.h5 ‘), and the cell-level metadata (‘Epithelial_metadata.csv’) from the 504 

source data11 (Synapse accession code: syn26844071, 505 

https://www.synapse.org/#!Synapse:syn26844071/), filtered by min_genes = 500 and min_counts = 506 

1000, and concatenated this count matrix with ours. The resulting matrix was integrated by scVI with 507 

data source as covariate and passed to scANVI to learn the iCMS labels. We found that learning with 508 

only the Joanito et al. 11 gene list (1 318 genes including a signature for normal cells obtained by 509 

personal request from the authors) was suboptimal since it only captured a small proportion of gene 510 

expression variance. Therefore, we used the union of all highly variable genes in either dataset and 511 

the iCMS signature genes. The resulting matrix was integrated by scVI with data source as covariate 512 

and passed to scANVI to learn the iCMS labels.  513 

For the consensus cell identity assignment, we extracted the assignment probability from the outputs 514 

of Numbat (p_cnv) and CCISM (CCISM_p), and assigned the cell identity by the following rules: A cell 515 

is annotated as genomically cancer cell if (1) p_cnv and CCISM_p are both > 0.5; or (2) CCISM_p = 0.5 516 

and p_cnv > 0.5 ; or (3) p_cnv > 0.5 in MSS samples; or (4) CCISM_p > 0.5 in MSI samples. A cell is 517 

annotated as genomically normal cell if p_cnv and CCISM_p are both < 0.5. A cell that does not fit 518 

into any of the categories above is annotated as ‘unclear’ and removed from the downstream 519 

analysis 520 

For detailed epithelial cell type annotation, we used scVI and scANVI to integrate datasets and learn 521 

cell type labels from Uhlitz et al. The scVI models were trained on the raw count matrix 522 

(adata.layer[‘count’]) of 2000 highly variable genes using scvi-tools 0.19.0 with patient and 523 

percent_ribo as covariates. These models were used by scANVI as input to predict cell type labels of 524 

newly included cells based on the annotation of previously annotated cells.  525 
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The linear mixed model for cell type composition was composed using the ‘glmer’ function with 526 

binomial distribution from the lmer package 52. For each cell type, we tested if there is a difference 527 

between genomically normal cells and healthy cells from normal samples, where patient was 528 

included as a random effect variable. 529 

To enhance concrete transcriptomic contrasts between cancer and normal cells, 1498 cells from 530 

normal samples but were assigned as tumour-centric cell type, namely TC1-4, were removed from 531 

the downstream analysis. The epithelial cell type of genomically cancer cells was then assigned as 532 

‘cancer-like’ in transcriptomic analysis. Diffusion maps were calculated with 15 neighbours and 533 

CytoTrace pseudotime as implemented in CellRank 1.5.2.dev236+gab03900 53. 534 

Methodology for scoring CRC signalling pathways and inferring paracrine interactions 535 

We curated a list of known ligands and receptors of key signalling pathways in CRC and a list of CRC 536 

signature genes for specific phenotypes from literature (Table S1). The expression levels of CRC 537 

signatures were calculated using ‘score_gene’ function in Scanpy. The paracrine interactions within 538 

normal and tumour samples were inferred by CellChat 1.6.1.  539 

Data and Code availability 540 

Processed single-cell RNA sequencing data and somatic variant allele counts are available on zenodo 541 

via doi:10.5281/zenodo.10692019. CCISM is available from github.com/bihealth/CCISM. Analysis 542 

code is available from github.com/bihealth/Wei_et_al_2024.  543 
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