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Abstract
Background: aaTHEP1, the gene product of aq_1292 from Aquifex aeolicus, shows sequence
homology to proteins from most thermophiles, hyperthermophiles, and higher organisms such as
man, mouse, and fly. In contrast, there are almost no homologous proteins in mesophilic unicellular
microorganisms. aaTHEP1 is a thermophilic enzyme exhibiting both ATPase and GTPase activity in
vitro. Although annotated as a nucleotide kinase, such an activity could not be confirmed for
aaTHEP1 experimentally and the in vivo function of aaTHEP1 is still unknown.

Results: Here we report the crystal structure of selenomethionine substituted nucleotide-free
aaTHEP1 at 1.4 Å resolution using a multiple anomalous dispersion phasing protocol. The protein
is composed of a single domain that belongs to the family of 3-layer (α/β/α)-structures consisting
of nine central strands flanked by six helices. The closest structural homologue as determined by
DALI is the RecA family. In contrast to the latter proteins, aaTHEP1 possesses an extension of the
β-sheet consisting of four additional β-strands.

Conclusion: We conclude that the structure of aaTHEP1 represents a variation of the RecA fold.
Although the catalytic function of aaTHEP1 remains unclear, structural details indicate that it does
not belong to the group of GTPases, kinases or adenosyltransferases. A mainly positive
electrostatic surface indicates that aaTHEP1 might be a DNA/RNA modifying enzyme. The
resolved structure of aaTHEP1 can serve as paradigm for the complete THEP1 family.

Background
Comparative genomics led to the definition of 4873 clus-
ters of orthologous groups of proteins (COGs) by com-
paring protein sequences encoded in (currently 66)
completely sequenced genomes [1]. Aimed at finding
thermophile-specific proteins among bacteria, extended
phylogenetic patterns searches based on the COG-data-

base were performed. Using this strategy, COG1618 was
detected as a cluster containing proteins from all ther-
mophilic and hyperthermophilic but only one mesophilic
organism [2-4]. Surprisingly, although also absent from
unicellular eukaryotes, COG1618-homologs are present
in many higher multicellular organism such as Homo sapi-
ens, Mus musculus, Danio rerio, Rattus norvegicus, etc.
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Because of this unusual phylogenetic distribution,
aaTHEP1, the gene product of aq_1292 from the hyper-
thermophilic bacterium Aquifex aeolicus, was characterised
biochemically as the first member of COG1618 proteins
[2]. The analysis revealed that aaTHEP1 is an NTPase cat-
alyzing ATP and GTP hydrolysis at turnover rates of 5 × 10-

3 s-1and 9 × 10-3 s-1, respectively, with a Km in the micro-
molar range and a temperature optimum between 70 and
80°C. Although COG1618 proteins are annotated as
"predicted nucleotide kinases"such an activity could not
be confirmed for aaTHEP1 experimentally and its in vivo
function remains unknown. To further characterize the
aaTHEP1 function, we resolved its three dimensional
structure by X-ray crystallography.

Results and discussion
Overall structure, domain class and architecture
Selenomethionine substituted aaTHEP1 was purified as
described earlier [2] and eluted as a monomer from the
final gel filtration column. Analysis of its nucleotide load-
ing state using HPLC revealed that it was partially loaded

with ADP (approx. 30%, data not shown). It was crystal-
lized using PEG3350 as precipitant in the presence of
KH2PO4 (see Methods) and crystals diffracted up to 1.4 Å
using synchrotron radiation (see Table 1). Initial phases
were obtained using a MAD phasing protocol (see Meth-
ods) and a model was build and refined. The final model
has an Rcryst of 16.8% and an Rfree of 20.8% and contains
one aaTHEP1 molecule in the asymmetric unit. 172
amino acid residues, 249 water molecules, one phos-
phate, one magnesium and two sodium ions were
included in the model. No electron density was found for
residues D38-K43 which are part of a disordered loop.

aaTHEP1 consists of a single compact domain confirming
the gel filtration experiments as well as the resistance of
aaTHEP1 to limited proteolysis [2]. It is build up of nine
strands and six helixes in the sequential order βαβββββα
βααβαβα (Figures 1, 2, 3) which is in agreement with pre-
viously recorded CD-spectra showing an equal ratio of β-
sheets and α-helices [2]. All nine strands form a single
sheet in topological order 918723465 wherein a five-

Table 1: Data collection and refinement statistics A summary of all relevant crystallographic parameters during data collection and 
the refinement procedures is shown.

Data collection

Beamline Swiss Light Source X06SA
Space group P2(1)
Unit-cell dimensions a = 35.0 Å b = 64.2 Å c = 39.6 Å
Unit-cell angles α = 90.0° β = 105.2° γ = 90.0°
Vm 2.17 Å 3/Da
Solvent content 43.3 %
Wavelength λpeak = 0.97625 Å λinfl = 0.97980 Å
Resolution 20 - 1.4 Å 20 - 1.4 Å
Completeness 95.3 % 95.6 %
Reflections (unique) 227088 (64230) 227487 (64213)
Rsymm

a,b total 5.7% 3.7%
Rsymm

a,b last shell 37.3% 19.2%
I/σ(I) total 11.67 19.31
I/σ(I) last shell 3.49 6.62
Wilson-B 20.86 Å2 19.61 Å2

Phasing
Anomalous phasing power λinfl = 1.7 λpeak = 1.8
Anomalous phasing power last shell λinfl = 0.46 λpeak = 0.48
FOM 42%
FOM last shell 15%
FOM after solvent flattening 86%
FOM after solvent flattening, last shell 73%

Refinement
Resolution 18.2 - 1.4 Å
Reflections unique (test set) 31501(1679)
Number of amino acids 178
Number of atoms 1679
Number of water molecules 293
Rcryst 16.8%
Rfree 20.8%
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stranded parallel and a four-stranded antiparallel region
can be distinguished (Figure 3). Whereas the parallel part
of the sheet almost lies in a plane, its antiparallel region is
curved defining a convex (outer) and a concave (inner)
side of the beta-structure (Figure 2). Spatially restricted to
the parallel region, two α-helixes are located outside of
the sheet. In contrast, a set of four helixes is distributed
over the whole bended sheet at its inner side. This set con-

sists of three parallel large α-helixes in identical N- to C-
orientation who are accompanied by a further perpendic-
ularly arranged much smaller 3/10-helix located near
their N-terminal sides. The edge of the antiparallel region
of the sheet forms a small bended lid that covers this
smaller 3/10-helix.

Secondary structure of aaTHEP1 and multiple sequence alignment to homologous sequencesFigure 1
Secondary structure of aaTHEP1 and multiple sequence alignment to homologous sequences. Multiple sequence 
alignment of aaTHEP1 with the four most homologous sequences from both, thermophiles and eukaryotes in the order as they 
were detected by BLAST. The aligned sequences are THEP1 from Aquifex aeolicus VF5 (aaTHEP1, accession number 
NP_213886), THEP1 from Thermotoga maritima MSB8 (tmTHEP1, accession number NP_227852), THEP1 from Pyrococcus 
horikoshii OT3 (phTHEP1, accession number NP_142728), THEP1 from Methanocaldococcus jannaschii DSM 2661, accession 
number NP_248567), THEP1 from Pyrococcus furiosus DSM 3638 (accession number NP_578230), THEP1 from Mus musculus 
(mmTHEP1, accession number NP_079912), THEP1 from Danio rerio (drTHEP1, accession number NP_001003463), THEP1 
from Rattus norvegicus (rnTHEP1, accession number XP_341723) and THEP1 from Homo sapiens (hsTHEP1, accession number 
NP_115700). The secondary structure of aaTHEP1 as calculated by DSSP and the locations of the Walker A (P-loop) and 
Walker B motif are shown with reference to the aaTHEP1 sequence. Six amino acids that could not be resolved are indicated 
by a white box (n. r.). Conservation of residues by 100%, 80% and 60% are coloured red, orange and yellow, respectively.

A. aeolicus : ------------------MKIIITGEPGVGKTTLVKKIVERL---GKRAIGFWTEEVRDPETKKRTGFRIITTE

T. maritima : ------------------MKILITGRPGVGKTTLIKKLSRLL----QNAGGFYTEEMR--EGEKRIGFKIITLD

P. horikoshii : ------------------MRFFVSGMPGVGKTTLAKRIADEVRREGFKVGGIITEEIR--EGGKRTGFRVIALD

M. jannaschii : MIYNFKHYIHQFKGCGETMRIFITGMPGVGKTTLALKIAEKLKELGYKVGGFITKEIR--DGGKRVGFKIITLD

P. furiosus : ---------------MKKFRFFVSGMPGVGKTTLAKRIADEIKREGFKVGGIITQEIR--SGARRSGFRVIALD

M. musculus : ----------------MSRHVFLTGPPGVGKTTLIQKAIEVLQSSGLPVDGFYTQEVR--QEGKRIGFDVVTLS

D. rerio : -----------------MKHVFLTGVPGVGKTTLVKKVCDAL--SGLSVSGFYTEEVR--EHGRRVGFDVVTVS

R. norvegicus : --------------MHMAQHVFLTGSPGVGKTTLIQKAITVLQSSGLPVDGFYTQEVR--QGGKRIGFDVVTLS

H. sapiens : ----------------MARHVFLTGPPGVGKTTLIHKASEVLKSSGVPVDGFYTEEVR--QGGRRIGFDVVTLS

A. aeolicus : -GKKKIFS---SKFFTSKK--LVGSYGVNVQYFEELAIPILERAYREAKKDRRKVIIIDEIGKMELFSKKFRDL

T. maritima : -GEEGILARTDLPSP-----YRVGKYYVNLKDLEEIGVRSLERAF-----QEKDLIIVDEIGKMELLSRKFREV

P. horikoshii : TGEIGRLAYVGYGYP------RLGKYVIDVEGFERVAIPALSRAL-----RGADLIVIDEIGPMEFKSNEFLKA

M. jannaschii : TNEETILAYVGDGKI------KVGKYAVFIENLDNVGVEAIKRAL-----KDADIIIIDELGAMEFKSRKFSEV

P. furiosus : TGEIGRLAYVGQGYP------RLGRYVIDVESFEKVAIPAISRAL-----REGDLIVIDEIGPMEFKSNEFLKA

M. musculus : -GAQGPLSRVGSQPLPGKPECRVGQYVVNLDSFEQLALPVLRNAG-SSCGPKHRVCIIDEIGKMELFSQPFIQA

D. rerio : -GDRGRLSRVSSGSAAGGREYRVGQYVVDLQSFESLALPLFRNMQ-EGSG--KQLFVMDEVGKMELFSQPFIRA

R. norvegicus : -GAQGPLSRVGSQPLPGKADCRVGQYEVDLASFEQLVLPVLRNAV-PSCGLRHRVCVIDEVGKMELFSQPFIQA

H. sapiens : -GTRGPLSRVGLEPPPGKRECRVGQYVVDLTSFEQLALPVLRNAD-CSSGPGQRVCVIDEIGKMELFSQLFIQA

A. aeolicus : VRQIMHDPNVNVVATIPIRDVHP--LVKEIRRLPGAVLIELTPENRDVILEDILSLLER--------------

T. maritima : VEKIFDSE-KDVIATIKKS-SDP--FVEKIKNRNDVVIFELNEKNRNSLLNEILSVLKFNRGEKQ--------

P. horikoshii : LGLVLKSE-KHLLATVHRR------LVDRYRPLG--EYYWLTPENRNAVFSEILGRIKGLLKEK---------

M. jannaschii : VDEVIKSD-KPLLATLHRN------WVNKFKDKG--ELYTLTIENREKLFEEILNKILAGLK-----------

P. furiosus : LGLVLRSE-KPLLATVHRR------FVERYRPLG--EYYWLTPENREAVFSEILVKIKELLRENENAGNKAQD

M. musculus : VRQMLSTPGIIVVGTIPVPKGKPLALVEEIRKRRDVKVFNVTRDNRNSLLPDIVAVVQSSRT-----------

D. rerio : VRQILEKSCCSVLGTIPVPKGKPLALVEELRSRADVKIFTVTKENRDVIFDDIVSAVRECLK-----------

R. norvegicus : VRQTLSTPGIIVLGTIPISRGKPLALVEEIRKRRDVKVFSVTRENRNSLLPDIVAVVQSSRS-----------

H. sapiens : VRQTLSTPGTIILGTIPVPKGKPLALVEEIRNRKDVKVFNVTKENRNHLLPDIVTCVQSSRK-----------

|Walker B|

|Walker A|

β1 α1 β2 β3n. r.

β4 β5 β6 α2 β7 α3 α4

α4 α5 α6β8 β9

10 20 30 40 50
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130 140 150 160 170
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Three dimensional structure of aaTHEP1Figure 2
Three dimensional structure of aaTHEP1. Ribbon representation of the overall three dimensional structure of aaTHEP1. 
Walker A (P-loop) and Walker B motifs are coloured in blue and magenta, respectively.
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In summary, the overall topology of aaTHEP1 is a central
sheet with helical structures on each side. According to the
CATH protein structure classification [5], aaTHEP1 is
assigned to class 3.40.50.300 i. e. "P-loop containing
nucleotide triphosphate hydrolases, homologous super-
families with Rossmann fold topology" which are mixed
alpha-beta proteins with 3-layer(α/β/α) sandwich
architecture.

Structural alignments and fold classification
For comparison with other structures in the pdb-database,
the DALI algorithm was employed [6]. The closest homo-
logue of aaTHEP1 was found to be cob(I)alamin adeno-
syltransferase (pdb-code: 1G5R, Z-score = 9.9) that
catalyzes the final step in the conversion of vitamin B(12)
to coenzyme B(12) and has a RecA-like protein fold. A

comparison between the topologies of aaTHEP1,
cob(I)alamin adenosyltransferase and RecA clearly shows
the structural similarity (Fig. 3) despite only 9% sequence
identity in the aligned region. In contrast to cob(I)alamin
adenosyltransferase and RecA, aaTHEP1 contains an
extension of its β-sheet consisting of strands β3-β6. We
conclude that the structure of aaTHEP1 represents a varia-
tion of the RecA protein fold.

Topology of the P-loop
Although being closest DALI-homologue, the structure of
cob(I)alamin adenosyltransferase (CobA) differs
significantly from aaTHEP1 within the P-loop (Figure 4).
Whereas aaTHEP1 bears a P-loop typical for P-loop
hydrolases, the P-loop of CobA is shorter by one amino
acid which flattens its structure. This is an essential feature

Topology of aaTHEP1Figure 3
Topology of aaTHEP1. Topology of aaTHEP1 in comparison to RecA (pdb-code: 2REB) and Cobalamin-transferase (CobA; 
pdb-code: 1G5R). The location of the P-loop is indicated in blue, the common core is boxed. The drawing was prepared 
according to the topology as analyzed by Bauer et al. [7].
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for the adenosyl transfer reaction [7]. Thus, we do not
expect aaTHEP1 to catalyze an adenosyl transfer. A survey
comparing sequences and structures of all P-loop-fold
proteins led to the definition of two major divisions, the
GK- and the ASCE-class of NTPases [8]. Whereas the GK-
class includes all GTPases and kinases, the ASCE-class
includes all further NTPases. Structurally, the GK-class
enzymes contain adjacent P-loop and Walker B strands. In
contrast, as it is the case for both aaTHEP1 and the RecA
superfamily, the ASCE-proteins contain an additional
strand between and a catalytic essential glutamate (E107
in aaTHEP1) within the Walker B motif, thus indicating
that aaTHEP1 neither belongs to the group of GTPases nor
to the kinase family.

The catalytic centre
No electron density for an ADP molecule was found indi-
cating that only the nucleotide-free protein crystallized.

However, we found electron density for a phosphate ion
in the putative nucleotide binding site where the β-phos-
phate of the nucleotide is expected. This is a usual phe-
nomenon, since negatively charged ions are often found
in empty nucleotide binding sites (e. g. [9]).

In other ATPases and GTPases, the aspartate residue of the
consensus site DxxG (D106 in aaTHEP1) is involved in
positioning a water-bridged magnesium ion presumably
important for nucleotide hydrolysis [10,11]. In the nucle-
otide free aaTHEP1, there is also a magnesium ion at the
corresponding position which is octahedrally coordinated
to the hydroxyl group of T14 of the P-loop, a phosphate
oxygen and four water molecules. One of these water mol-
ecules (W24) makes a hydrogen bond to D106. Thus, the
arrangement of the magnesium ion is similar as this
found in the nucleotide-bound conformation of other
ATPases and GTPases.

To determine possible orientations of the nucleotide
which was biochemically shown to undergo hydrolysis
[2], we constructed a superposition of aaTHEP1 with RAS
complexed with GppNHp (pdb-code: 5P21 [12]), and
RecA complexed with ADP (pdb-code: 1MO3,[13]) by
aligning the P-loop including the precedent β-strand for
spatial orientation (Figure 5). We then analyzed the
resulting position of the nucleotides (GppNHp from Ras
and ADP from RecA) relative to the aaTHEP1 surface (Fig-
ure 5). In both cases, the nucleotide would be located in a
cleft of the aaTHEP1 surface and would sterically not clash
with residues of aaTHEP1. The position of the phosphates
is rather similar whereas the orientation of the ribose and
especially the position of the base is markedly different in
the ADP and GppNHp although the base would be close
to conserved residues in both orientations. We cannot
exactly envisage the base orientation of the nucleotide
bound to aaTHEP1, but it is very likely that the overall ori-
entation of the nucleotide and the position of the phos-
phates is correctly predicted. Consequently, the large
remaining cleft located adjacently to the predicted
position of the γ-phosphate is unoccupied. The pocket
itself is rather unpolar but it is lined by a highly conserved
patch of basic residues (Figure 5) to which a negatively
charged cosubstrate, e. g. DNA/RNA could bind.

The protein surface
The location of conserved residues in a protein structure
often points to sites which are functionally important, e.
g. the catalytic centre or conserved binding sites [14]. To
detect putative binding sites of aaTHEP1, we colour coded
the surface of aaTHEP1 with respect to the conservation of
exposed amino acids. As can be seen in Figure 5, there is
only one highly conserved region located in and around a
cleft of the protein surface which includes the Walker A
motif (P-loop). We conclude that this particular region

4 P-loop topology of aaTHEP1Figure 4
4 P-loop topology of aaTHEP1. Structural superposition 
of the P-loops of aaTHEP1 (red) and CobA (green).
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represents the functionally most important site, i. e. the
nucleotide and cosubstrate binding site of aaTHEP1. Not
even a single amino acid residue conserved in all species
aligned in Figure 1 can be detected on the residual protein
surface of aaTHEP1. For that reason, we conclude that
binding of the physiological cosubstrate is restricted to the
neighbourhood of the nucleotide binding pocket.

Analysis of the electrostatic surface potential of aaTHEP1
strikingly revealed a number of positively charged clus-
ters, whereas almost no negatively charged regions can be
found (Figure 5). This is in agreement with the strong
binding of aaTHEP1 to cation exchangers and its theoret-
ical pI of 9.9. The largest positively charged spot is located

in a conserved region close to the nucleotide binding cleft.
Based on this observation and the similarity to the RecA
protein we speculate that aaTHEP1 may be a DNA or RNA
modifying enzyme. Gene functions can be predicted by
searching for the conservation of operons and gene orders
because genes found in gene strings, particularly in multi-
ple genomes, can be assumed to be functionally linked
[15]. For THEP1, we detected 4 genomes (Aeropyrum per-
nix K1, Archaeoglobus fulgidus DSM 4304, Thermoplasma
acidophilum DSM 1728 and Thermoplasma volcanium
GSS1) where the THEP1-gene is immediately followed by
a COG1867 protein on the same strand. In Pyrococcus furi-
osus, this protein is characterized as a N2, N2-dimethyl-
guanosine tRNA methyltransferase [16]. Thus, aaTHEP1

Analysis of the protein surface of aaTHEP1Figure 5
Analysis of the protein surface of aaTHEP1. Shown are surface and cartoon representations of aaTHEP1 in identical ori-
entations. Conserved residues are colour coded as in Figure 1 (top). Positive electrostatic surface potentials as determined by 
Swiss pdb-viewer [43] are depicted blue, negative potentials in red (middle). Shown are two views related by a 180° rotation 
around the y-axis. In the magnified part of the active cleft, a GTP and ATP molecule can be seen. The positions of those nucle-
otides were constructed by superimposing the structures of the H-Ras P21 protein complexed with GppNHp (pdb-code: 
5P21, [12]) and RecA complexed with ADP (pdb-code: 1MO3, [13]), respectively.
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may also play a role in tRNA modification. Furthermore,
both COG1867 proteins and THEP1 proteins can be
considered to belong to the group of PACE-proteins (pro-
teins from Archaea without assigned function that are
conserved in Eukarya) [17]. PACE proteins are described
being involved in fundamental cellular functions and
several of them are obviously related to RNA metabolism
[18].

The human homologue
The human homologue MGC13186 (hsTHEP1) shows
39% sequence identity to aaTHEP1 (Figure 1) and was
first described in a study aiming at identifying full-length
ORF for all human and mouse genes[19]. No function is
yet described for this protein. However, gene profiling
data from UniGene are available [20]. hsTHEP1 is widely
expressed in most of the examined tissues including brain,
heart, lymph node, skin and pancreas whereas no expres-
sion was found in blood, thymus, bladder and spleen. It
is especially highly expressed in embryonic and various
tumour tissues. From these data we conclude that
hsTHEP1 has a general function in many human tissues.

Conclusion
The crystal structure of aaTHEP1 uncovered a modified
RecA-like fold. Although the function of aaTHEP1
remains unclear, the structure led us to conclude that the
enzyme does not belong to the group of GTPase, kinases
or adenosyltransferases. Analysis of the electrostatic sur-
face potential revealed several positively charged clusters
indicating the presence of putative nucleic acid binding
sites. Since aaTHEP1 has homologues in thermophilic
bacteria and vertebrates it can serve as a model for the
complete COG1618 protein family.

Methods
Nomenclature
To aid a consistent nomenclature of the THEP1 protein
family we propose to adopt the name THEP1 to all mem-
bers across the species, e.g. hsTHEP1 for the human pro-
tein, mmTHEP1 for the mouse protein, etc..

Crystallization, data collection, processing, structure 
solution, refinement and validation
Recombinant aaTHEP1 was purified from Escherichia coli
as described earlier [2]. Bacteria were grown in minimal
media without methionine containing 50 mg/l L-
selenomethionine [21]. Crystals of the dimension 250 ×
80 × 35 µm3 were obtained by the hanging drop method
after mixing equal volumes of 13 mg/ml aaTHEP1 with
reservoir buffer containing 15 % PEG-3350 and 0.1 M
potassiumdihydrogenphosphate. For cryo-protection,
crystals were soaked for 10 sec in 30 % PEG-3350, 200
mM potassiumdihydrogenphosphate and flash-frozen in
liquid nitrogen. The diffraction data were collected at the

Swiss Light Source (SLS) from a single crystal. Data were
processed and scaled using XDS [22] and XSCALE [22].
The positions of the three selenium sites in the asymmet-
ric unit were determined using SHELXD [23]. Those posi-
tions were refined and the electron density of the protein
calculated by SHARP [24]. Solvent flattening and histo-
gram matching were done by SOLOMON [25] and DM
[26]. ARP/WARP was used to automatically build 85% of
the backbone and sidechains [27]. For further model
interpretation XFIT XtalView [28] was used. Refinements
were made with Refmac [29]. PROCHECK [30] and What-
check [31] were used to validate the structure. Secondary
structures were calculated using DSSP [32,33]. DALI-
searches [6] were carried out at [34], GRATH [35] at [36]
and further structural comparisons using SSAP [37] were
done at [38]. BLAST was performed at [39]. Figure 1 was
prepared using GeneDoc available at [40]. All figures
depicting structures were prepared using PyMol [41] or
Swiss pdb-viewer [42,43]. The X-Ray coordinates and
structure factors have been deposited in the PDB database
under pdb-code 1YE8.
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