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SUMMARY
The female reproductive tract (FRT) undergoes extensive remodeling during reproductive cycling. This recur-
rent remodeling and how it shapes organ-specific aging remains poorly explored. Using single-cell and
spatial transcriptomics, we systematically characterized morphological and gene expression changes
occurring in ovary, oviduct, uterus, cervix, and vagina at each phase of the mouse estrous cycle, during de-
cidualization, and into aging. These analyses reveal that fibroblasts play central—and highly organ-specific—
roles in FRT remodeling by orchestrating extracellular matrix (ECM) reorganization and inflammation. Our re-
sults suggest a model wherein recurrent FRT remodeling over reproductive lifespan drives the gradual, age-
related development of fibrosis and chronic inflammation. This hypothesis was directly tested using chemical
ablation of cycling, which reduced fibrotic accumulation during aging. Our atlas provides extensive detail into
how estrus, pregnancy, and aging shape the organs of the female reproductive tract and reveals the unex-
pected cost of the recurrent remodeling required for reproduction.
INTRODUCTION

During the estrous cycle, the mammalian female reproductive

tract (FRT) undergoes extensive remodeling in preparation for

ovulation and pregnancy. The physiological changes to the

FRT are similar between humans and other mammals, with the

notable exception of the human-specific spontaneous terminal

differentiation of endometrial stromal cells (SCs).1 These termi-

nally differentiated cells subsequently break down and are
Cell 187, 981–998, Febr
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shed during menstruation. In most other mammals, this final dif-

ferentiation requires a fertilized egg and can be modeled by

inducing pregnancy.2 The reproductive cycle’s effect on themul-

tiple organs of the FRT remains incompletely characterized. Prior

analyses of the mammalian estrous cycle have had a number of

limitations: they were often microscopy-based,3–8 only analyzed

individual organs of the FRT,9–13 only assayed the activity of one

or few genes,14,15 used bulk tissues,16 and/or have been primar-

ily qualitative.17
uary 15, 2024 ª 2024 The Author(s). Published by Elsevier Inc. 981
C BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).
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A remarkable feature of the FRT is its capacity to resolve

cyclical inflammatory events rapidly and re-establish normal

reproductive function. Unresolved inflammation and remodel-

ing due to aging or other factors can lead to chronic inflamma-

tion and fibrosis.18 In mammals, many conserved reproductive

processes display hallmark signs of inflammation19 and extra-

cellular matrix (ECM) remodeling,20 both of which are orches-

trated by fibroblasts, a key source of inflammatory cytokines

and ECM components.21 Failure of fibroblasts to return to ho-

meostasis can result in persistence of inflammation and ECM

production.21–23

The FRT organs vary extensively in their susceptibility to age-

related pathologies. With aging, the decrease and ultimate

exhaustion of ovarian follicles results in diminished estrogen pro-

duction24 and the cessation of ovarian cycling. This is accompa-

nied by extensive physiological changes to all FRT organs.25

Exogenous restoration of estrogen can alleviate some, but not

all, age-related physiological changes, as the decrease in preg-

nancy and implantation rates appear irreversible.26,27

To explore how the FRT is remodeled during the female life-

time, we characterized at single-cell resolution ovary, oviduct,

uterus, cervix, and vagina at each phase of the mouse estrous

cycle, during decidualization, and into old age. Our analyses

reveal that the physiological differences between the upper

(ovary, oviduct, uterus) and lower reproductive tract (cervix, va-

gina) are closely mirrored by compositional and transcriptional

differences. We discovered that fibroblasts play a key role in

shaping the cyclic inflammation and remodeling that naturally

occur during the estrous cycle via their cell-cell communication

networks. Finally, we provide direct evidence that these recur-

ring cyclic changes contribute to the age-related accumulation

of fibrosis and inflammation in the FRT.

RESULTS

Single-cell characterization of the cycling FRT
We profiled how the FRT is remodeled during the estrous cycle,

decidualization, and aging using single-cell RNA sequencing

(scRNA-seq) and spatial transcriptomics. To accurately and

robustly quantify the compositional and transcriptional dy-
Figure 1. The estrous cycle drives organ-specific compositional chang
(A) Single-cell analysis was performed on the ovary, oviduct, uterus, cervix, and

profiled in multiple biological replicates at the four phases of the estrous cycle, dur

(P), estrus (E), metestrus (M), and diestrus (D). See also Figure S1E. Spatial trans

uteruses in three biological replicates.

(B) Proportional heatmap of the most abundant cell types by organ.

(C) The compositional variability across the cycle for each cell type in each organ,

indicated. Uncertainty estimates are shown in Figure S2B.

(D) The ratio of immune to other cells across the cycle. The ratios shown are the ave

second P point is a repetition of the first P point to allow easier comparison betw

(E) The ratio of epithelia to stroma across the cycle. The relative concentration of e

maximum value of the cycle, white is 0).

(F) Average activity score of genes promoting cell proliferation (GO:0008284) in e

activity scores between estrous cycle phase are listed in Table S7.

(G) Similarity of gene expression between the cycle phases for each cell type, quan

indicate magnitude of transcriptional changes; for example, most cell types are m

(H) Average activity score of cytokine regulatory genes (GO:0001816) in immune c

cycle phase are listed in Table S7.
namics of the FRT, every experiment in each condition wasmap-

ped by between three and seven biological replicates. We char-

acterized the cellular composition and transcriptional states

present in FRT organs, and spleen as a control organ, by collect-

ing 378,516 single-cell transcriptomes from normally cycling

youngmice in each of the four cycle phases (proestrus [P], estrus

[E], metestrus [M], and diestrus [D]), as well as 30,966 cells from

early pregnancy, 128,499 cells from an aging time course, and

74,129 cells from acyclic old mice (Figure 1A; Table S1). Addi-

tionally, to explore in vivo spatial transcriptional landscapes,

we used the 103 Visium system to profile 27 sections of young

ovaries in D, 33 sections of acyclic old ovaries, 27 sections of

young uteruses in D, and 65 sections of old uteruses in three

to five biological replicates (Figure 1A).

In young cycling mice, we analyzed the single-cell transcrip-

tomes from all cycle phases and organs to identify cell types

and their organ specificity. We annotated cell types by

combining two automated approaches with extensive manual

comparison of marker gene expression (STAR Methods).

We identified approximately 50 cell types, including all expected

stromal, epithelial, and immune-cell sub-populations (Figures

1B, S1A, and S1B; Table S2).

We identified cell types shared across the entire FRT and

quantified the shift in cell-type compositions between the upper

and lower tracts (Figure 1B). The composition of the immune

compartment profoundly shifts between the upper and lower

tracts; the upper tract is enriched in adaptive immune cells,

whereas the lower reproductive tract is dominated by innate im-

mune cells (Figure S1C). In addition, the balance between M1

andM2macrophages profoundly changes between organs (Fig-

ure S1D). In the uterus and oviduct, wound-healing-associated

M2 macrophages dominate the cellular landscape, where they

are likely involved in hormonally induced tissue remodeling.29

In contrast, the pro-inflammatory M1 macrophages dominate

the ovary, where they are required for folliculogenesis.30 M1

macrophages are also prevalent in cervix and vagina, consistent

with their higher pathogen exposure. Similar to human, mouse

natural killer cells are concentrated in the uterus.31

Our comprehensive analyses of all five FRT organs identified

their component cell types, quantified the compositional
es
vagina, with the spleen as a nonreproductive control organ. All organs were

ing aging, and pregnancy. Vaginal smears were used to stagemice in proestrus

criptomics was performed on multiple sections of young and old ovaries and

shown as an interquartile range. The two most variable cell types per organ are

rage across biological replicates, standard errors are shown in Figure S2C. The

een diestrus and proestrus.

stradiol (E2) and progesterone (P4) at each stage28 is shown above (black is the

pithelial cells. See also Figure S3A. p values indicating significance of pathway

tified using optimal transport and displayed as a flower plot (inset). Petal lengths

ore transcriptionally dynamic in the cervix and vagina than in the upper FRT.

ells. p values indicating significance of pathway activity scores between estrous
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differences between organs, and revealed an anti- versus pro-in-

flammatory transition between the upper and the lower tract.

Estrous cycling dramatically remodels the cervical and
vaginal immune compartments
To understand how tissue environment, hormone state, and

intrinsic cell identity combine to shape each organ’s tissue land-

scape, we assessed how the cellular composition of the FRT

varies across the estrous cycle. We precisely staged the cycle

phase of each mouse by identifying the cell types present in

vaginal smears (Figure S1E; STAR Methods), which we

confirmed by unbiased reconstruction of the transcriptional

pseudotime trajectory of uterine stromal fibroblasts (Figure S1F;

STAR Methods). Indeed, the cells identified in smears (Fig-

ure S1E) were consistent with vaginal single-cell data. For

example, the proportion of nucleated epithelial cells (such as

basal epithelial cells [BEpC] and intermediate epithelial cells

[IEpcC]) is highest in P and lowest at M (Figures S1G and S2A).

We quantified which cell types are most variable in each organ

by calculating the inter-quartile range of cell-type proportions

across the cycle (STAR Methods). The vagina has the most cy-

cle-variable cell types as well as the highest average amplitude

of compositional changes in the FRT (Figures 1C and S2B). In

the uterus and cervix, fewer cell types vary across the cycle,

while the oviduct and ovary are relatively invariant in their

composition.

We then asked how the immune compartment of the FRT is re-

modeled across the cycle (Figures 1D, S2A, S2C, and S2D). We

found that the fraction of immune cells is lowest during P and E in

the lower FRT organs. The vagina and cervix show considerably

greater variation in their content of immune cells, with a

maximum at M, while the ovary and oviduct remain relatively

invariant. For the vagina, we independently confirmed the sharp

increase in immune cell numbers in M by quantifying the fraction

of immune cells across the cycle via flow cytometry (Figures S1H

and S2E). In the uterus, the immune cell proportion is modestly

modulated across the cycle. Although there is considerable vari-

ability across biological replicates, immune-cell proportion

seems to peak earlier at E, followed by a slower decline. This

observation suggests a mechanism for the enhanced bacterial

surveillance specific to E phase previously observed.32

For specific immune cell types, we saw shifts in cell sub-pop-

ulation abundances during estrous cycling. For instance, in

oviduct M1 macrophage abundance peaks at E, whereas M2

abundance peaks at M (Figures S2A and S2D). In the uterus,

both M1 and M2 abundances peak during E, whereas natural

killer (NK) abundance is highest at M.

Our analyses newly quantified how the different organs of the

FRT are immunologically distinct. The lower reproductive tract

undergoes cyclical, acute immune influx, which is also seen to

a smaller extent in the uterus, while the ovary and oviduct main-

tain a relatively invariant population of immune cells. More gener-

ally, the variation in immune cell composition and activation

could explain why immune responses and protection of the

reproductive system (e.g., vaccine-induced immunity) have

been previously reported to vary along the cycle.33

The cycle dynamics of cellular abundance can be explored in

an interactive online tool (see Data and code availability).
984 Cell 187, 981–998, February 15, 2024
Uterus undergoes profound cyclical epithelial to stromal
remodeling
Cell proliferation and death can be regulated by systemic steroid

hormones.34 To evaluate whether tissue proliferation and re-

modeling is synchronized among the five organs of the FRT,

we calculated the ratio of epithelia to stroma (Figures 1E and

S2F). With the exception of the uterus, FRT organs are relatively

stable throughout the cycle. In the uterus, the ratio of epithelial to

stromal peaks in P, likely due to an increase in epithelial prolifer-

ation coincident with the estrogen (E2) surge (P versus M, linear

mixed model, padj = 0.028) (Figures 1E, 1F, and S3A; Table S7).

In contrast, progesterone promotes stromal proliferation and in-

hibits E2-induced epithelial proliferation,35 and, indeed, stromal

proliferation coincides with peak progesterone levels and is

greatest at E and M (Figures S2G and S3B).

The most notable contrast in tissue remodeling is between the

vagina and uterus. In the vagina, there are cell-type-specific

changes within the epithelial compartment across the cycle

(Figures 1C and S1G) that do not impact the overall balance of

epithelia to stroma (Figure 1E). In contrast, the uterus shows

strong changes in its epithelial to stromal ratio (Figure 1E).

In sum, our data reveal how epithelial/stromal proliferation is

precisely regulated during the cycle. The regulation of cell-type

abundances in the FRT is highly organ-specific, despite the influ-

ence of systemic sex hormones.
Tissue morphological changes are tracked by gene
expression
We considered the possibility that organs such as the ovary and

oviduct, where cell abundances are relatively stable across the

cycle, might instead show substantial changes in transcription.

We scored the magnitude of transcriptional change between

phases of the cycle for each cell type in every FRT organ using

optimal transport analysis (STARMethods; Figure 1G). This anal-

ysis revealed that the vagina and cervix are high in both cell-type

variability and gene expression changes; in contrast, the cells in

the uterus, oviduct, and ovary show less of both (Figures 1C and

1G). Similarly, the abundance of immune cells closely corre-

sponds to their functional activation, which we orthogonally

measured by single-cell scoring of cytokine gene expression

(Figures 1H and S3C; Table S7).

Thus, organs with the largest morphological changes also

have the largest transcriptional changes across all cell types.
Fibroblast functions are dynamically regulated
throughout the cycle, but not coordinated between
organs
In nonreproductive tissues, fibroblasts control inflammation and

wound healing.36 We considered whether fibroblasts may play

the same functional roles in the different cycling FRT organs.

We first used over-representation analysis to identify the func-

tional pathways enriched among genes with significant differen-

tial expression between adjacent cycle phases (Figure 2A; STAR

Methods). This revealed that ECM remodeling and tumor necro-

sis factor (Tnf) regulation of inflammation are core programs of

fibroblasts during the cycle. However, between organs, the ac-

tivity of these two functional pathways assessed using AUCell
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Figure 2. Gene expression dynamics of fibroblasts across the FRT

(A) Functional pathways enriched in genes differentially expressed between phases of the cycle in fibroblasts.

(B) Activity scores of inflammatory genes averaged across all fibroblasts in each phase. See also Figure S3D. p values indicating significance of pathway activity

scores between estrous cycle phase are listed in Table S7.

(C) Activity scores of ECM organization genes, as in (B). See also Figure S3E. p values indicating significance of pathway activity scores between estrous cycle

phase are listed in Table S7.

(D) Schematic of the cell-to-cell ligand-receptor and ligand-target analyses.

(E) Z scores of ligand-receptor products averaged across phases. Ligand expression is averaged across all cell types; receptors are in fibroblasts only. See also

Figure S4A. The receptor-ligand interactions shown were deemed significantly different between FRT organs by a permutation test (Table S4).

(legend continued on next page)
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is often out of phase or even anti-correlated (Figures 2B, 2C,

S3D, and S3E; Table S7; STAR Methods).

The activation of inflammatory pathways in fibroblasts shows

two organ-specific patterns (Figure 2B): in the vagina, cervix, and

oviduct, inflammation peaks at M, and in the uterus and ovary, it

peaks at P. Thus, the vaginal immune cell infiltration we previ-

ously observed at M (Figure S1G) is accompanied by fibroblast

inflammatory activation. In contrast, ECM organization shows

no coordinated pattern across FRT organs (Figure 2C).

Compared with the other organs, the uterus has the most exten-

sive ECM remodeling, which peaks at P and reaches its mini-

mum during E (padj = 0.08, P versus E, linear mixed model).

We considered whether FRT organs from the same mouse

shared a similar inflammatory state. This is not the case: differ-

ences in inflammation activity scores are primarily tissue specific

and not individual specific (Figure S3F).

Our data show that cycling fibroblast programs are similar be-

tween organs, yet often out of phase, suggesting that fibroblast

functions are regulated by a combination of systemic and local

cues. Differentially and co-expressed gene clusters can be

explored in our interactive online tool (Data and code availability).

Cell-cell communication and transcription factor
activity reveal high inflammation in the lower FRT and
extensive ECM remodeling in the uterus
Fibroblasts coordinate organ function and homeostasis via

communication with other cell types through ligand-receptor in-

teractions.21,37 We performed cell-to-cell communication anal-

ysis to identify the activity of ligand-receptor interactions and

their organ specificity (Figure 2D; STAR Methods). We focused

on how ligands from all cell types converged on fibroblasts by

calculating communication scores as the product between (1)

the expression of ligands averaged over all cell types in all

phases (the ‘‘ambient’’ ligand expression) and (2) the expression

of receptors averaged over fibroblasts in all phases (Figures 2E

and S4A; Table S4; STAR Methods).

Vaginal and cervical fibroblasts have the highest communica-

tion scores for pro-inflammatory Tnf and Il1b and the lowest

scores for anti-inflammatory Il10, Il11, and Tgfb (Figures 2E and

S4A). In contrast, uterine fibroblasts receive primarily anti-inflam-

matory signaling and theoviduct andovary have amixture of anti-

andpro-inflammatory signaling. For eachorgan,weaveraged the

inflammation scores across the cycle and found that the vagina

has the strongest responses (Figure 2F). A similar analysis of

ECM reorganization demonstrated that the uterus and oviduct

undergo the largest structural remodeling, followed by the vagina

(Figure 2G). Indeed, fibroblasts in theuterus andoviduct show the

highest communication scores for ECM-associated signaling

(Figures 2E and S4A). Most notably, these tissues show the high-

est activity of transforming growth factor b (TGFb) signaling,

which is considered to be the master regulator of fibrosis.38 We
(F) Activity scores of inflammatory genes averaged across all fibroblasts in each p

weighted by phase length.

(G) Activity scores of ECM genes, as in (F). These scores are the average of the

(H) Spearman correlation across organs between the expression product of a lig

(I) Averaged activity scores of targets of transcription factors associated with

significantly different between the FRT organs by a permutation test (STAR Meth

986 Cell 187, 981–998, February 15, 2024
verified that increased cell-to-cell communication activates

downstream pathways in fibroblasts for most of the ligands by

scoring the activity of their target genes39 (Figures 2H and S4B;

STARMethods). Thus, if an organ has high ligand-receptor activ-

ity, then it has high ligand-target activity.

Finally, to identify candidate regulators involved in organ-spe-

cific inflammatory and ECM processes, we quantified the asso-

ciated transcription factor activity across the cycle using Single-

cell regulatory network inference and clustering (SCENIC)

(Figure 2I; STARMethods). As expected, we found that the activ-

ity of inflammation-associated transcription factors is highest in

the vagina, while the activity of ECM-related transcription factors

is highest in the uterus (Figure 2I).

We confirmed that fibroblasts are central regulators of inflam-

mation and ECM across the FRT. We discovered that the timing

and underlying transcriptional regulators of fibroblast activation

are highly organ-specific. Cell-to-cell communication and tran-

scription factor activity can be explored in our interactive online

tool (Data and code availability).

Signaling to fibroblasts is highly organ-specific
We then sought to identify which cell types were responsible for

signaling to fibroblasts by partitioning the transcription of each

ligand by cell-of-origin (Figure S5; STAR Methods). In the lower

reproductive tract, M1 macrophages (source of Il1b, Tnf, Il12a)

and memory T cells (source of Ifng, Csf2) appear to be respon-

sible for most pro-inflammatory signaling. In the upper repro-

ductive tract, M2 macrophages (source of Il10) and fibro-

blasts/theca cells (source of Il11) generate the predominantly

anti-inflammatory environment (Figure S5). Our findings agree

with studies in other organ systems, which have identified mac-

rophages as primary producers of Tnf and Il12a and T cells as

producers of Ifng.40 The cell types responsible for inflammatory

ligand production are often organ-specific; in contrast, fibro-

blast ECM is generally autocrine-controlled by signaling from

SCs (Figure S5).

Wealsoevaluated theestrous cycledynamicsof inflammation-

associated cell-to-cell communication in the vagina and uterus.

In the vagina, M shows a combination of high pro-inflammatory

and low anti-inflammatory ligand-receptor activity (Figure S4C).

The main source of pro-inflammatory ligands are T cells (Csf2)

and macrophages (Il1b), which infiltrate the tissue at this phase

(Figures S1G, S2A, and S5). The main source of anti-inflamma-

tory signaling are epithelial cells (Tgfb) (Figure S5), which propor-

tionally decrease at this phase (Figures S1G and S2A). In the

uterus, at M and D, we observe an increase in anti-inflammatory

ligand signaling (e.g., Tgfb) (Figure S4D) due to expansion of SCs

(Figure 1E), which are themain source of Tgfb ligands (Figure S5).

At the same time, we observed a decrease in anti-inflammatory

ligand signaling (e.g., Tnf) (Figure S4D), which is caused by the

decrease in the immune cell proportion (Figures 1D and S5).
hase in each organ. These scores are the average of the scores shown in (B),

scores shown in (C), weighted by phase length.

and-receptor pair and the activity score of predicted targets of the ligand.

inflammation and ECM regulation in fibroblasts. Shown activity scores were

ods).
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Figure 3. Spatial niches of fibroblasts with high inflammatory and ECM remodeling activity

(A) H&E staining of the young ovary. Scale bars, 500 mm.

(B–D) Proportion of granulosa (GC) (B), epithelial (EpC) (C), and stromal cells (SC) (D) per spot in the ovary shown in (A).

(E) H&E staining of the young uterus.

(F–H) Proportion of columnar epithelial (CEpC) (F), glandular (GlC) (G), and stromal cells (SC) (H) per spot in the uterus shown in (E).

(I) Schematics of mixed linear model used to determine the best predictor of fibroblast inflammation score (STAR Methods).

(J) Proportion of SC inflammation scores in the ovary explained by inflammation scores of cell types in the neighborhood.

(legend continued on next page)
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Spatial transcriptomics analysis reveals that
inflammatory fibroblasts, but not immune cells, shape
inflammatory niches
To characterize which cell types shape the microenvironment of

fibroblasts, we expanded our analysis with spatially resolved

transcriptomics of young ovaries and uteruses. First, we used

our droplet-based, single-cell transcriptomes to deconvolute

the spatial data into component gene expression profiles of

every cell type inside every spot (Figures S6A–S6I; STAR

Methods). Our analysis accurately identified specific ovarian

structures, including follicles, surface epithelia, and the stroma

(Figures 3A–3D). In the uterus, deconvolution similarly revealed

the location of the luminal epithelia, glandular epithelia, and the

stroma (Figures 3E–3H). The rankings of cell-type proportions

in our spatial data and our single-cell data are comparable in

both organs, with an under-representation of epithelial cells in

single-cell data (Figures S6J and S6K). Next, we used linear

mixed models to identify the best predictor of fibroblast inflam-

mation status (Figure 3I; STAR Methods). In both ovary and

uterus, fibroblast inflammation is best predicted by inflammation

of neighboring SCs (Figures 3J, S6L, and S6M) and poorly pre-

dicted by either the activation or proportion of surrounding im-

mune cells (Figures S6L and S6M). Similarly, fibroblast ECM re-

modeling is best predicted by the ECM activity of surrounding

fibroblasts (Figures 3K, S6N, and S6O). Thus, fibroblast auto-

crine signaling maintains both inflammation and ECM status.

Fibroblasts are primary consumer cells of most
inflammatory and ECM cytokines
Having previously identified the likely ligand-producing cell types,

we then sought to identify the likely recipient cell types. To do so,

we calculated what fraction of inflammatory and ECM cytokines

could potentially be absorbed by each cell type, reflecting their

competition as signal sinks41 (Figure 3L; STAR Methods). This

analysis revealed that in both the uterus and the ovary, fibroblasts

are the first- or second-best primary consumer cell ofmost inflam-

matory and ECM-related cytokines (Figure 3M).

We thenmore generally leveraged the spatial data to refine our

cell-to-cell analysis by explicitly modeling the physical proximity

between cell types as well as weighing the communication

scores by the fraction of ligand-consuming cell types. We calcu-

lated communication scores by multiplying the expression of

ligands (averaged over all cell types in the neighborhood) by

the expression of receptors (averaged over fibroblasts as in

scRNA-seq analysis). This score was weighted by the proportion

of signal received by fibroblasts (STARMethods). The cell-to-cell

networks derived from spatial and scRNA-seq based analyses

are in good overall agreement (Figures S6P–S6S).

Modeling the human menstrual cycle using mouse
decidualization
During the first trimester of human pregnancy, the immune

microenvironment of the decidua prevents inflammatory re-
(K) Proportion of SC ECM scores in the ovary explained by ECM scores of cell ty

(L) Schematic of the cell-to-cell ligand-receptor analysis based on spatial data.

(M) Proportion of ligand signal captured by different cell types in the ovary and u

See also Figure S6.
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sponses.42 Here, we first asked whether mouse decidual cells

also display an anti-inflammatory profile, and then sought to

quantify the degree of transcriptional conservation between hu-

man and mouse cycling fibroblasts.

To parallel the spontaneous decidual reaction that occurs dur-

ing the human cycle, we induced decidualization in mice by

inducing pregnancy, and characterized the uterine architecture

at embryonic day 5.5 by scRNA-seq in seven biological replicates

(Figure 4A). A subset of SCs unique to pregnant mice transcrip-

tionally expresses the classical markers of decidualization: Alpl,

Bmp2, and Prl8a2 (Figure 4B; see online resource in Data and

code availability).43–45 As expected, many SCs from pregnant

uteruses do not express thesemarkers because themouse uterus

decidualizes heterogeneously.46 We confirmed decidualization

histologically using H&E staining (Figure 4C). Compared with the

M phase, the pregnant uterus is characterized by the appearance

of decidual cells, accompanied by a proportional increase in NK

cells, glandular cells (GlCs), and fibroblasts (Figures 4D and

S7A). Additionally, to cell compositional changes, decidualization

in mice causes extensive transcriptional changes in inflammation,

ECM, and embryo development pathways (Figure S7B).

We asked whether the decidualized cells and fibroblasts in

mice express the same transcriptional programs previously

identified in human uterine fibroblasts (Figures 4E and S7C;

Table S5).13 We used the same mutual information approach

as the original study to re-identify 1,670 human genes that are

differentially expressed across the menstrual cycle and to iden-

tify differentially regulated genes across themouse estrous cycle

(STAR Methods). At every phase of the cycle, the dynamic gene

expression changes in human and mouse are more similar than

expected by chance (STAR Methods), and the phase of decidu-

alization has an especially high percentage of similarity (Fig-

ure 4E). These genes are enriched for ECM, inflammation, and

cycle regulation and implantation pathways (Figure S7D). Most

of these processes show species-specific differences in activity

across the cycle (Figures 4F–4H and S7E); however, the transi-

tion to decidualization is largely conserved. When compared

with fibroblasts, decidual SCs show consistently lower activity

of ECM- and inflammation-related genes (Figures 4G and 4H)

and transcription factors (Figure 4I).

In sum, our analyses revealed that mouse decidual cells

display a markedly anti-inflammatory transcriptional profile and

that the transition to decidualization is largely conserved be-

tween mouse and human.

Aging leads to primordial follicle depletion and immune
cell infiltration
We sought to better understand the dynamic age-related

changes within the FRT that culminate in acyclicity.47 We

collected longitudinal samples of all five FRT organs to generate

tissue pathology and single-cell transcriptomes as well as the

spatially resolved transcriptomes of the acyclic 18-month-old

ovary and uterus.
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Figure 4. Regulation of the reproductive cycle and decidualization in mouse and human

(A) Uniform Manifold Approximation and Projection (UMAP) plot of the integration of the pregnant and metestrus samples. Shown in this panel is a subsample of

19,724 of the total 40,828 cells used in the analyses.

(B) UMAP from (A) subsetted to stromal cells and split by condition showing the expression of marker gene of decidualization Alpl.

(C) H&E staining of pregnant mouse uterus showing decidualization at the implantation site. Scale bars, 20 mm.

(D) Difference in average % of each cell type between pregnant and metestrus samples. To compare the changes in other cell types upon decidualization,

decidual cells, present only in pregnancy, were omitted and cell abundance was re-calculated.

(E) Differentially expressed genes (DEGs) in mouse uterine fibroblasts and decidual cells and human fibroblasts across the cycles. In red the % of homologous

DEGs that showed the same directionality of regulation in paired mouse-human phases (e.g., up-regulation in both species). In gray % of genes that showed

opposite directionality of regulation (e.g., up-regulation in humans, down-regulation inmice). Black line shows the% of the conserved genes expected by chance

in each phase. As bar labels only mouse phase comparisons are shown (Pr, pregnant; F, fibroblast; DeCs, stromal decidual cells).

(legend continued on next page)
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Pathology confirmed that 18-month-old mice often display im-

mune infiltration in most organs, atrophy of the ovary, and local-

ized hyperplasias in the ovary and uterus (Figure 5A; see Data

and code availability).48,49 All 18-month-old mice were acyclic,

which was uniformly associated with depletion of primordial fol-

licle pools (Figure 5B), similar to the physiology of aged primates

and humans.50,51

Using our single-cell transcriptomics data, we identified

extensive statistically significant changes in cell-type abun-

dances by comparing cell-type proportions between aged and

young mice in D (Figures 5C and S8A–S8C), the phase most

similar to acyclicity.49 The ovary shows a decrease in the propor-

tion of follicle-associated cells, such as theca cells (ThC), granu-

losa cells (GC), and luteal cells (LC), as expected due to the

exhaustion of ovarian follicles and corpora lutea in acyclic

mice.52 We independently confirmed this decrease by both his-

topathology and RNAscope (Figures 5A and S8C). As expected,

we found that the proportion of fibroblasts increases in ovary52

and decreases in the oviduct and uterus.53

By evaluating the entire FRT, we quantified how aging in-

creases the fraction of immune cells in the upper reproductive

tract, whereas aging decreases the immune cells in the lower

reproductive tract. Prior studies on single organs found similar

results in isolation.54–56 The remodeling of the immune compart-

ment is organ-specific: the uterus shows an increase in M1 and

M2 macrophages, the cervix and vagina have a decrease in M1

macrophages, while the oviduct has an increase in NK, B, and

dendritic cells. The control organ, the spleen, displays statisti-

cally significant differences only in invariant NKT cell (iNKT)

and plasma cell (PC) proportions (Figures 5C and S8A;

Table S3), in agreement with previous reports.57

In sum, aging results in substantial changes to the cell-type

composition of FRT organs, most notably immune infiltration in

the upper reproductive tract.

Age-related gene expression changes are organ-specific
We then compared the gene expression programs between

young and old mice using optimal transport analysis. In contrast

with the transcriptional changes associated with the estrous cy-

cle, which are concentrated in the lower FRT, during aging both

the upper and lower FRT show extensive gene expression

changes (Figure 5D).We found that themagnitude of age-related

changes in cell-type transcription is highly organ-specific. For

example, fibroblasts show transcriptional changes during aging

in all organs, but in the ovary, fibroblasts are the most strongly

altered cell type.

In addition to average gene expression changes, an increase

in cell-to-cell transcriptional variability has also been shown to

be associated with aging,58,59 though this variability may be

cell-type specific.57 Simultaneously profiling all five FRT organs
(F) Activity scores of genes that regulate embryo implantation (GO:0007566), av

early; Pl, proliferative late; Se, secretory early; Sm, secretory mid; Sl, secretory l

(G) Activity scores of inflammatory genes as in (F).

(H) Activity scores of ECM genes as in (F).

(I) Averaged activity scores of targets of transcription factors associated with inflam

in pregnancy.

See also Figure S7.
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allowed us to investigate how gene-wise transcriptional vari-

ability changes during aging for over 50 different cell types and

whether cell types that are common between organs age in a

similar manner (Figures 5E, S8D, and S8E; Table S6). We scored

the age-associated transcriptional variability against the natural

cyclical variation found in these organs using Shannon entropy

(STAR Methods; Figure S8E).

Whether FRT organs age at the same rate has been a long-

standing debate.60 Our results indicate that aging strongly in-

creases the cell-to-cell variability in the majority of cell types—

especially in the ovary. This age-related phenotype is often

cell-type specific: transcriptional variability in mucosa associ-

ated T-cells (MAIT) and epithelial cells (EpC) increases substan-

tially with age, whereas in M1 and M2 macrophages it remains

largely unaffected (Figures 5E and S8D). Fibroblasts show

modest cell-to-cell variability between young and old mice.

The transcriptional variability of many epithelial cells (BEpC,

columnar epithelial cells [CEpC], and IEpC) is substantially

changed with age in the uterus, cervix, and vagina, but by less

than the variation observed during normal cycling (Figure S8D).

In sum, the age-related gene expression changes for each cell

type are organ-specific, and the age-related increase in cell-to-

cell variability is most pronounced in the ovary.

Organ-specific impact of fibroblast chronic
inflammation during FRT aging
Fibroblasts can retain inflammatory memory22 and thus shape

age-related changes to organ physiology and function. To test

the extent and impact of inflammatory responses in aged fibro-

blasts, we measured fibroblast inflammation in the upper FRT

of 3-, 9-, 12-, and 15-month-old mice in D, as well as that of

18-month-old acyclic mice, and in the lower FRT of 3-month-

old mice in D and of 18-month-old acyclic mice using AUCell

(STARMethods). We then modeled the association of inflamma-

tion with age using a linear mixed model (Figure 6A). Aging re-

sults in a significant increase in fibroblast inflammation in all or-

gans except the ovary. Interestingly, the rate of increase is

significantly different between FRT organs (p value < 0.05 of

the organ-age interaction terms; STARMethods), with the cervix

and uterus displaying the most pronounced increases.

We quantified what fraction of this inflammation is due to a

subset of highly active fibroblasts versus a general increase in

all fibroblasts. The distribution of inflammation scores of fibro-

blasts differed significantly between young and old uteruses

(Figure 6B; p value = 0.002, using the waddR package

v.1.14.061). We dissected these distributions via decomposi-

tional analysis, revealing that they differ in shape, location, and

size. In other words, the total increase in fibroblast inflammation

is driven by both an expansion of inflamed sub-populations as

well as a general increase in inflammation across all fibroblasts.
eraged across all mouse or human fibroblasts in each phase (Pe, proliferative

ate). Red dot indicates the activity score in mouse decidual cells.

mation and ECM inmouse fibroblasts and decidual cells, across the cycle and
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We tested the hypothesis that recurrent, cycle-related inflam-

mation of fibroblasts across the reproductive lifespan might

accumulate into age-related chronic inflammation. We quanti-

fied the amplitude of the organ-wide inflammation scores in

young mouse fibroblasts during the cycle and compared it with

age-related inflammation. The higher an organ’s amplitude of

inflammation is during the cycle at a young age, the higher the

organ’s fibroblast inflammation score will be in old age (Fig-

ure 6C). In contrast, immune cells do not display such an asso-

ciation (Figure 6D). Although the data are correlative, these re-

sults are in agreement with fibroblasts retaining a cumulative

memory of past inflammation.

We asked whether age-related inflammation in fibroblasts is

associated with altered cell-to-cell communication. Using our

single-cell transcriptomics data, we found elevated inflammation

activity in ligand-receptor interactions (Figure 6E). Using spatial

transcriptomics data in the uterus, we found that the fraction of

inflammatory signaling captured by fibroblasts increases upon

aging (Figure 6F), despite a decrease in the fraction of fibroblasts

(Figure 5C).

We then asked whether activated fibroblasts in the ovary and

uterus form physical clusters with enhanced inflammation. We

first calculated the inflammation activity scores for each SC

spot in the ovary (Figure 6G). We binarized these scores into

high (top 25%) and low inflammation (Figure 6H), and we con-

structed spatial graphs by connecting neighboring high inflam-

mation spots (Figure 6I). We evaluated their degree of connectiv-

ity by calculating cluster coefficients. We observed that cluster

sizes increase with age only in the uterus (p value = 0.046, Wil-

coxon test), suggesting that foci of inflamed fibroblasts expand

with age (Figure 6K).

Tissue fibrosis accumulates with age in the oviduct,
uterus, and vagina
We considered the possibility that imperfect resolution of the

recurrent ECM remodeling in the estrous cycle could drive

age-related accumulation of collagen underlying fibrosis. This

hypothesis was partly based on two prior observations: (1) that

chronic exposure of fibroblasts to inflammatory cytokines can

result in collagen deposition and fibrosis52,62 and (2) that women

with more cycles have an increased risk of pathologies.63–67

We thus longitudinally measured intercellular collagen in FRT

organs using Picrosirius red staining in 3-, 12-, 15-, 18-, and

21-month-old mice (STAR Methods). In the uterus, collagen in-

creases most rapidly over aging (stained area increase of 3.2%

per 6 months, padj < 10�4) (Figures 7A and 7B), followed closely

by the oviduct (2.7%, padj < 10�3) and the vagina (2.3%, padj =

0.005). In contrast, the ovary and cervix do not show collagen in-
Figure 5. Organ-specific impact of aging on the FRT

(A) H&E staining of young and aged ovaries. F, follicle; CL, corpus luteum. Scale

(B) Pathologist assessment of the presence of primordial follicles in each young a

scored 1, and if no primordial follicle was present, it was scored 0. Young, n = 3

(C) Difference in average % of each cell type between aged and diestrus sample

(D) Similarity of gene expression programs between the aged and diestrus mic

magnitude of transcriptional changes. Optimal transport distances of fibroblasts

(E) Number of genes with increased differential Shannon entropy (ShE) of all cell

See also Figure S8.
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creases (Figures 7A and 7B). Independent qualitative analysis by

pathologists confirmed prevalent fibrosis in the stroma of the

aged oviduct, vagina, and uterus (see Data and code availability).

Signaling to fibroblasts via Tgfb is the primary driver of fibrosis in

multiple organs.38,68 Our cell-to-cell communication analysis

shows that the uterus and oviduct, the two tissues with the high-

est rate of fibrosis development with age, also show the highest

scores of Tgfb1-3 signaling to fibroblasts (Figure 2E). Interest-

ingly, the vagina, which also has a high level of fibrosis develop-

ment with age, has a low level of Tgfb signaling in young mice;

however, this increases significantly with age (Figure 6E). In

contrast, the ovary shows the smallest increase in fibrosis with

age and also a low level of Tgfb signaling. In agreement with

our conclusion that ECM gene activity in fibroblasts is best pre-

dicted by the presence of other ECM-producing fibroblasts in

the neighborhood (Figures S6L–S6O), we found that fibroblasts

are both top producers (Figure S5) and top consumers (Fig-

ure 3M) of Tgfb1-3 mRNA/ligand in the highly fibrotic uterus

and oviduct.

Cycling directly contributes to fibrosis
For each FRT organ, the age-related collagen accumulation rate

is best predicted by themaximumphase-specific ECMactivity in

the cycle (Figure 7C). In other words, the intensity of ECM remod-

eling in fibroblasts during the estrous cycle corresponds with the

severity of age-related fibrosis. Thus, intensity of ECM remodel-

ing in each organ corresponds with the severity of fibrosis and

predisposes each organ differently to fibrosis development.

Aging and cycling are intrinsically linked; to uncouple their ef-

fects on fibrosis development, we used a chemical protocol to

prematurely terminate cycling in the FRT of young mice. Admin-

istration of 4-vinylcyclohexene diepoxide (VCD) causes the loss

of small ovarian follicles in mice and rats, rapidly leading to

acyclicity.69

We administered VCD to 2-month-old mice, and confirmed

their acyclicity by 5 months of age. These mice were then further

aged for 6 months and sacrificed at 11 months of age, in parallel

with sham-injection control mice. Their uteri and oviducts were

collected to assess the development of fibrosis (Figure 7D). In

the uterus, fibrosis was significantly reduced in the aged VCD

group, where cycling had been prematurely terminated (p value

0.032); the same general trendwas observed in the oviduct (n.s.).

In contrast, the control group, whose organs had both aged and

cycled, showed greater fibrotic development (Figures 7E

and 7F).

In sum, our results show that both aging and cycling indepen-

dently contribute to fibrosis development through incompletely

resolved ECM remodeling.
bars, 300 mm.

nd old ovary. If primordial follicles were detected in the slide, the sample was

; old, n = 3.

s.

e for each cell type, quantified using optimal transport. Line lengths indicate

are colored in red.

types in diestrus compared with old age.
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DISCUSSION

Oocyte release involves large-scale, cyclical tissue remodeling

across five hormonally controlled organs in therian mammals. To
better understand this system, we mapped the cellular composi-

tional and transcriptional changes that occur during each estrous

cycle phase, arising from earliest pregnancy and during aging at

single-cell resolution in every organ of the mouse FRT.
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Our data reveal how the organs of the mouse FRT undergo

recurrent drastic immune infiltration, ECM remodeling, and cell

proliferation in each cycle. In most adult tissues, the ECM re-

modeling and cell proliferation associated with wounding leaves

fibrotic scarring. However, it has long been thought that in the

FRT, in particular the uterus, these events are resolved by

scar-free remodeling. Instead, we find that in the uterus, oviduct,

and vagina, fibrosis accumulates steadily with aging and cycling

due to incomplete resolution of collagen deposition.

Here, we propose a model wherein the incomplete resolution

of inflammation and ECM remodeling leads to the accumulation

of cycle-related fibrosis and chronic inflammation. Such a

gradual development of fibrosis and chronic inflammation would

predispose organs to disease development.70,71 We tested this

hypothesis by inducing premature acyclicity to decouple estrous
994 Cell 187, 981–998, February 15, 2024
cycling from biological aging, thus directly demonstrating in the

uterus and oviduct that reducing the number of E cycles reduces

fibrotic accumulation.

How the lifetime number of reproductive cycles shapes cancer

risk is an actively debated question.64 In humans, the risk of

developing endometrial carcinomas appears to be suppressed

by events that reduce the number of menstrual cycles, such as

continuous hormonal contraception, a larger number of preg-

nancies, later menarche, and earlymenopause.63–65 On balance,

the fewer the number of cycles, the lower the cancer risk.66,67 To

date, the molecular mechanisms underlying these epidemiolog-

ical observations remain unknown. A proposed explanation is

that the increase in lifetime number of menstrual cycles in-

creases the length of time of exposure of the uterus to unop-

posed estrogen72 and that unopposed estrogen may be mildly
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mutagenic.73,74 Our study determined that cycling generates a

detrimental microenvironment that may compound the effect

of estrogen-dependent mutagenesis in the endometrium.

In sum, our atlas reveals an unexpected cost incurred by the

recurrent remodeling required by the FRT for reproduction and

illuminates how estrous, pregnancy, and aging together shape

the FRT.

Limitations of the study
This study is a deep characterization of how estrus cycling im-

pacts the female reproductive tissues in mouse as a widely

used model system and will be useful to guide further studies

in human FRT. Differentially expressed genes in mouse uterine

fibroblasts and decidual cells across the cycle and in deciduali-

zation were determined using scRNA-seq. Using these genes as

markers of decidualization may require additional validation us-

ing orthogonal methods. Our major finding—that recurrent

cycling contributes to fibrotic accumulation during aging—is

consistent with numerous human epidemiological results but

has not yet been directly confirmed in corresponding human tis-

sues. Our study analyzes the FRT using a set of single-cell and

spatial transcriptomics approaches but only indirectly addresses

upstream regulation and does not analyze the impact of estrus

cycling on the proteome.
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Windahl, S.H., Börjesson, A.E., Farman, H.H., Poutanen, M., Benrick, A.,

et al. (2015). Measurement of a comprehensive sex steroid profile in ro-

dent serum by high-sensitive gas chromatography-tandem mass spec-

trometry. Endocrinology 156, 2492–2502.

29. Madsen, D.H., Leonard, D., Masedunskas, A., Moyer, A., Jürgensen,

H.J., Peters, D.E., Amornphimoltham, P., Selvaraj, A., Yamada, S.S.,

Brenner, D.A., et al. (2013). M2-like macrophages are responsible for

collagen degradation through a mannose receptor-mediated pathway.

J. Cell Biol. 202, 951–966.

30. Ono, Y., Nagai, M., Yoshino, O., Koga, K., Nawaz, A., Hatta, H., Nishi-

zono, H., Izumi, G., Nakashima, A., Imura, J., et al. (2018). CD11c+ M1-

like macrophages (MFs) but not CD206+ M2-like MF are involved in fol-

liculogenesis in mice ovary. Sci. Rep. 8, 8171.

31. Sojka, D.K., Yang, L., and Yokoyama, W.M. (2019). Uterine natural killer

cells. Front. Immunol. 10, 960.

32. Islam, E.A., Shaik-Dasthagirisaheb, Y., Kaushic, C., Wetzler, L.M., and

Gray-Owen, S.D. (2016). The reproductive cycle is a pathogenic determi-

nant during gonococcal pelvic inflammatory disease in mice. Mucosal

Immunol. 9, 1051–1064.

33. Gallichan, W.S., and Rosenthal, K.L. (1996). Effects of the estrous cycle

on local humoral immune responses and protection of intranasally immu-

nized female mice against herpes simplex virus type 2 infection in the

genital tract. Virology 224, 487–497.

34. Wood, G.A., Fata, J.E., Watson, K.L.M., and Khokha, R. (2007). Circu-

lating hormones and estrous stage predict cellular and stromal remodel-

ing in murine uterus. Reproduction 133, 1035–1044.

35. Li, Q., Kannan, A., DeMayo, F.J., Lydon, J.P., Cooke, P.S., Yamagishi, H.,

Srivastava, D., Bagchi, M.K., andBagchi, I.C. (2011). The Antiproliferative

Action of Progesterone in Uterine Epithelium Is Mediated by Hand2. Sci-

ence 331, 912–916.

36. Kendall, R.T., and Feghali-Bostwick, C.A. (2014). Fibroblasts in fibrosis:

Novel roles and mediators. Front. Pharmacol. 5, 123.

37. DeLeon-Pennell, K.Y., Barker, T.H., and Lindsey, M.L. (2020). Fibro-

blasts: The arbiters of extracellular matrix remodeling. Matrix Biol. 91–

92, 1–7.

38. Meng, X.M., Nikolic-Paterson, D.J., and Lan, H.Y. (2016). TGF-b: the

master regulator of fibrosis. Nat. Rev. Nephrol. 12, 325–338.

39. Browaeys, R., Saelens, W., and Saeys, Y. (2020). NicheNet: modeling

intercellular communication by linking ligands to target genes. Nat.

Methods 17, 159–162.

40. Altan-Bonnet, G., and Mukherjee, R. (2019). Cytokine-mediated commu-

nication: a quantitative appraisal of immune complexity. Nat. Rev. Immu-

nol. 19, 205–217.

41. Oyler-Yaniv, A., Oyler-Yaniv, J., Whitlock, B.M., Liu, Z., Germain, R.N.,

Huse, M., Altan-Bonnet, G., and Krichevsky, O. (2017). A Tunable

Diffusion-Consumption Mechanism of Cytokine Propagation Enables

Plasticity in Cell-to-Cell Communication in the Immune System. Immu-

nity 46, 609–620.

42. Vento-Tormo, R., Efremova, M., Botting, R.A., Turco, M.Y., Vento-

Tormo, M., Meyer, K.B., Park, J.E., Stephenson, E., Pola�nski, K.,

http://refhub.elsevier.com/S0092-8674(24)00058-8/sref6
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref6
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref6
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref7
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref7
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref7
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref8
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref8
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref8
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref9
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref9
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref9
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref9
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref10
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref10
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref10
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref10
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref11
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref11
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref11
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref12
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref12
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref12
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref12
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref13
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref13
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref13
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref13
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref14
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref14
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref14
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref14
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref14
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref14
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref15
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref15
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref15
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref15
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref15
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref16
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref16
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref16
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref16
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref17
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref17
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref17
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref18
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref18
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref19
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref19
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref19
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref20
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref20
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref20
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref21
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref21
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref21
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref22
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref22
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref23
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref23
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref24
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref24
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref24
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref25
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref25
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref26
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref26
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref27
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref27
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref27
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref27
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref28
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref28
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref28
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref28
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref28
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref29
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref29
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref29
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref29
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref29
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref30
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref30
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref30
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref30
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref31
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref31
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref32
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref32
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref32
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref32
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref33
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref33
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref33
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref33
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref34
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref34
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref34
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref35
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref35
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref35
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref35
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref36
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref36
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref37
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref37
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref37
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref38
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref38
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref39
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref39
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref39
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref40
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref40
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref40
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref41
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref41
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref41
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref41
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref41
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref42
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref42
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref42


ll
OPEN ACCESSResource
Goncalves, A., et al. (2018). Single-cell reconstruction of the early

maternal–fetal interface in humans. Nature 563, 347–353.

43. Finn, C.A., and Hinchliffe, J.R. (1964). Reaction of the mouse uterus dur-

ing implantation and deciduoma formation as demonstrated by changes

in the distribution of alkaline phosphatase. J. Reprod. Fertil. 8, 331–338.

44. Ramathal, C.Y., Bagchi, I.C., Taylor, R.N., and Bagchi, M.K. (2010).

Endometrial decidualization: Of mice and men. Semin. Reprod. Med.

28, 17–26.

45. Soares, M.J., Müller, H., Orwig, K.E., Peters, T.J., and Dai, G. (1998). The

Uteroplacental Prolactin Family and Pregnancy1. Biol. Reprod. 58,

273–284.

46. Zhao, M., Zhang, W.Q., and Liu, J.L. (2017). A study on regional differ-

ences in decidualization of the mouse uterus. Reproduction 153,

645–653.

47. Broekmans, F.J., Soules, M.R., and Fauser, B.C. (2009). Ovarian aging:

Mechanisms and clinical consequences. Endocr. Rev. 30, 465–493.

48. Finch, C.E. (2014). The menopause and aging, a comparative perspec-

tive. J. Steroid Biochem. Mol. Biol. 142, 132–141.

49. Felicio, L.S., Nelson, J.F., and Finch, C.E. (1984). Longitudinal studies of

estrous cyclicity in aging C57BL/6Jmice: II. Cessation of cyclicity and the

duration of persistent vaginal cornification. Biol. Reprod. 31, 446–453.

50. Wang, S., Zheng, Y., Li, J., Yu, Y., Zhang, W., Song, M., Liu, Z., Min, Z.,

Hu, H., Jing, Y., et al. (2020). Single-Cell Transcriptomic Atlas of Primate

Ovarian Aging. Cell 180, 585–600.e19.

51. Jin, C., Wang, X., Hudgins, A.D., Gamliel, A., Pei, M., Kim, S., Contreras,

D., Hoeijmakers, J., Campisi, J., Lobo, R., et al. (2022). The regulatory

landscapes of human ovarian ageing. Preprint at bioRxiv.

52. Lliberos, C., Liew, S.H., Zareie, P., La Gruta, N.L., Mansell, A., and Hutt,

K. (2021). Evaluation of inflammation and follicle depletion during ovarian

ageing in mice. Sci. Rep. 11, 278.

53. Craig, S.S., and Jollie, W.P. (1985). Age changes in density of endome-

trial stromal cells of the rat. Exp. Gerontol. 20, 93–97.

54. Elmes, M., Szyszka, A., Pauliat, C., Clifford, B., Daniel, Z., Cheng, Z.,

Wathes, C., andMcMullen, S. (2015). Maternal age effects onmyometrial

expression of contractile proteins, uterine gene expression, and contrac-

tile activity during labor in the rat. Physiol. Rep. 3, e12305.

55. Rodriguez-Garcia, M., Patel, M.V., Shen, Z., and Wira, C.R. (2021). The

impact of aging on innate and adaptive immunity in the human female

genital tract. Aging Cell 20, e13361.

56. Yaakov, T.B., Wasserman, T., and Savir, Y. (2021). Aged mouse ovarian

immune milieu shows a shift towards adaptive immunity and attenuated

cell function. Preprint at bioRxiv.

57. Kimmel, J.C., Penland, L., Rubinstein, N.D., Hendrickson, D.G., Kelley,

D.R., and Rosenthal, A.Z. (2019). Murine single-cell RNA-seq reveals

cell-identity- and tissue-specific trajectories of aging. Genome Res. 29,

2088–2103.

58. Enge, M., Arda, H.E., Mignardi, M., Beausang, J., Bottino, R., Kim, S.K.,

Quake, S.R., Enge, M., Arda, H.E., Mignardi, M., et al. (2017). Single-Cell

Analysis of Human Pancreas Reveals Transcriptional Signatures of Aging

and Somatic Article Single-Cell Analysis of Human Pancreas Reveals

Transcriptional Signatures of Aging and Somatic Mutation Patterns.

Cell 171, 321–323.e14.

59. Martinez-Jimenez, C.P., Eling, N., Chen, H., Vallejos, C.A., Kolodziejc-

zyk, A.A., Connor, F., Stojic, L., Rayner, T.F., Stubbington, M.J.T., Teich-

mann, S.A., et al. (2017). Aging increases cell-to-cell transcriptional vari-

ability upon immune stimulation. Science 1436, 1433–1436.

60. Horvath, S. (2013). DNAmethylation age of human tissues and cell types.

Genome Biol. 14, R115.

61. Schefzik, R., Flesch, J., and Goncalves, A. (2021). Fast identification of

differential distributions in single-cell RNA-sequencing data with waddR.

Bioinformatics 37, 3204–3211.
62. Selman, M., and Pardo, A. (2021). Fibroageing: An ageing pathological

feature driven by dysregulated extracellular matrix-cell mechanobiology.

Ageing Res. Rev. 70, 101393.

63. Havrilesky, L.J., Moorman, P.G., Lowery, W.J., Gierisch, J.M., Coeytaux,

R.R., Urrutia, R.P., Dinan, M., McBroom, A.J., Hasselblad, V., Sanders,

G.D., et al. (2013). Oral Contraceptive Pills as Primary Prevention for

Ovarian Cancer: A Systematic Review and Meta-analysis. Obstet. Gyne-

col. 122, 139–147.

64. Iversen, L., Sivasubramaniam, S., Lee, A.J., Fielding, S., and Hannaford,

P.C. (2017). Lifetime cancer risk and combined oral contraceptives: the

Royal College of General Practitioners’ Oral Contraception Study. Am.

J. Obstet. Gynecol. 216, 580.e1–580.e9.

65. Michels, K.A., Pfeiffer, R.M., Brinton, L.A., and Trabert, B. (2018). Modi-

fication of the Associations Between Duration of Oral Contraceptive Use

and Ovarian, Endometrial, Breast, and Colorectal Cancers. JAMA Oncol.

4, 516–521.

66. Gavrilyuk, O., Braaten, T., Weiderpass, E., Licaj, I., and Lund, E. (2018).

Lifetime number of years of menstruation as a risk index for postmeno-

pausal endometrial cancer in the Norwegian Women and Cancer Study.

Acta Obstet. Gynecol. Scand. 97, 1168–1177.

67. D’Urso, S., Arumugam, P., Weider, T., Hwang, L.D., Bond, T.A., Kemp,

J.P., Warrington, N.M., Evans, D.M., O’Mara, T.A., and Moen, G.H.

(2022). Mendelian randomization analysis of factors related to ovulation

and reproductive function and endometrial cancer risk. BMC Med.

20, 419.

68. Kim, K.K., Sheppard, D., and Chapman, H.A. (2018). TGF-b1 Signaling

and Tissue Fibrosis. Cold Spring Harb. Perspect. Biol. 10, a022293.

69. Brooks, H.L., Pollow, D.P., and Hoyer, P.B. (2016). The VCD Mouse

Model of Menopause and Perimenopause for the Study of Sex Differ-

ences in Cardiovascular Disease and the Metabolic Syndrome. Physi-

ology (Bethesda) 31, 250–257.

70. Dossus, L., Lukanova, A., Rinaldi, S., Allen, N., Cust, A.E., Becker, S.,

Tjonneland, A., Hansen, L., Overvad, K., Chabbert-Buffet, N., et al.

(2013). Hormonal, Metabolic, and Inflammatory Profiles and Endometrial

Cancer Risk Within the EPIC Cohort—A Factor Analysis. Am. J. Epide-

miol. 177, 787–799.

71. Pradip, D., Jennifer, A., and Nandini, D. (2021). Cancer-Associated Fibro-

blasts in Conversation with Tumor Cells in Endometrial Cancers: A Part-

ner in Crime. Int. J. Mol. Sci. 22, 9121.

72. O’Connor, K.A., Ferrell, R.J., Brindle, E., Shofer, J., Holman, D.J., Miller,

R.C., Schechter, D.E., Singer, B., andWeinstein, M. (2009). Total and Un-

opposed Estrogen Exposure across Stages of the Transition to Meno-

pause. Cancer Epidemiol. Biomarkers Prev. 18, 828–836.

73. Liehr, J.G. (2000). Is Estradiol a Genotoxic Mutagenic Carcinogen? En-

docr. Rev. 21, 40–54.

74. Moore, L., Leongamornlert, D., Coorens, T.H.H., Sanders, M.A., Ellis, P.,

Dentro, S.C., Dawson, K.J., Butler, T., Rahbari, R., and Mitchell, T.J.

(2018). The mutational landscape of normal human endometrial epithe-

lium. Nature 580, 640–646.

75. Hao, Y., Hao, S., Andersen-Nissen, E., Mauck, W.M., Zheng, S., Butler,

A., Lee, M.J., Wilk, A.J., Darby, C., Zager, M., et al. (2021). Integrated

analysis of multimodal single-cell data. Cell 184, 3573–3587.e29.

76. McCarthy, D.J., Campbell, K.R., Lun, A.T., and Wills, Q.F. (2017). Scater:

pre-processing, quality control, normalization and visualization of single-

cell RNA-seq data in R. Bioinformatics 33, 1179–1186.

77. Lun, A.T.L., and Marioni, J.C. (2016). Overcoming confounding plate ef-

fects in differential expression analyses of single-cell RNA-seq data.

Biostatistics 18, 451–464.

78. Pliner, H.A., Shendure, J., and Trapnell, C. (2019). Supervised classifica-

tion enables rapid annotation of cell atlases. Nat. Methods 16, 983–986.

79. Meyer, D., Dimitriadou, E., Hornik, K.,Weingessel, A., and Leisch, F. (2023).

e1071: misc functions of the department of statistics, probability theory
Cell 187, 981–998, February 15, 2024 997

http://refhub.elsevier.com/S0092-8674(24)00058-8/sref42
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref42
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref43
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref43
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref43
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref44
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref44
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref44
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref45
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref45
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref45
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref46
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref46
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref46
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref47
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref47
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref48
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref48
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref52
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref52
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref52
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref50
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref50
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref50
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref51
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref51
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref51
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref53
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref53
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref53
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref54
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref54
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref55
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref55
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref55
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref55
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref56
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref56
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref56
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref57
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref57
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref57
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref58
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref58
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref58
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref58
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref59
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref59
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref59
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref59
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref59
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref59
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref60
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref60
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref60
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref60
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref61
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref61
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref62
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref62
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref62
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref63
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref63
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref63
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref64
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref64
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref64
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref64
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref64
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref65
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref65
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref65
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref65
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref66
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref66
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref66
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref66
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref67
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref67
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref67
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref67
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref68
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref68
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref68
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref68
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref68
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref69
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref69
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref70
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref70
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref70
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref70
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref71
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref71
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref71
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref71
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref71
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref72
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref72
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref72
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref73
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref73
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref73
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref73
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref74
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref74
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref75
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref75
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref75
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref75
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref76
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref76
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref76
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref77
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref77
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref77
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref78
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref78
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref78
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref79
http://refhub.elsevier.com/S0092-8674(24)00058-8/sref79


ll
OPEN ACCESS Resource
group (formerly: E1071). https://cran.r-project.org/web/packages/e1071/

e1071.pdf.

80. Frauhammer, F., and Anders, S. (2022). cellpypes: Cell Type Pipes for R.

Version 0.1.1 (Zenodo. https://zenodo.org/records/6555728.

81. Van Den Boogaart, K.G., and Tolosana-Delgado, R. (2008). ‘‘composi-

tions’’: A unified R package to analyze compositional data. Comput. Geo-

sci. 34, 320–338.
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and Tamayo, P. (2015). The Molecular Signatures Database (MSigDB)

Hallmark Gene Set Collection. Cell Syst. 1, 417–425.

92. Ramakrishnan, K., Grey, B., and Haesun, P. (2016). A high-performance

parallel algorithm for nonnegative matrix factorization. In Proceedings of

the 21st ACM SIGPLAN Symposium on Principles and Practice of Paral-

lel Programming, 9, pp. 1–11. PPoPP 16.

93. Schneider, C.A., Rasband, W.S., and Eliceiri, K.W. (2012). NIH Image to

ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675.
998 Cell 187, 981–998, February 15, 2024
94. Lachmann, A., Giorgi, F.M., Lopez, G., and Califano, A. (2016). ARACNe-

AP: gene network reverse engineering through adaptive partitioning

inference of mutual information. Bioinformatics 32, 2233–2235.
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Antibodies

F4/80:PB Invitrogen Cat#MF48028; RRID: AB_10373419

NK1.1:BV785 BioLegend Cat#108749; Clone PK136; RRID:

AB_2564304

CD11C:PE-Cy7 BioLegend Cat#117317; Clone: N418; RRID:

AB_493569

CD11b:APC eBioscience Cat# 25-0112; Clone: M1/70; RRID:

AB_469588

CD45:AF700 Invitrogen Cat#56-0451-82; Clone: 30-F11;

RRID: RRID AB_891454

Anti-alpha smooth muscle actin Abcam Cat#ab5694; RRID: AB_2223021

Anti-Desmin Thermo scientific Cat#RB-9014-Po; RRID: AB_149768

Anti-Cytokeratin Dako /Agilent Cat#Z0622; RRID: AB_2650434

Gr1:APC-eF786 eBioscience Cat#RB6-8C5; RRID: AB_1074825

Chemicals, peptides, and recombinant proteins

Viability Dye eF506 eBioscience Cat#65-0866-14

Propidium iodide solution (1,0 mg/ml) Invitrogen Cat#P3566

Tissue-Tek� O.C.T. Compound Sakura Finetek Cat#4583

DAPI Invitrogen Cat#D3571

Collagenase I Worthington Cat#LS0004194

Collagenase II Worthington Cat#LS0004174

Collagenase IV Worthington Cat#LS0004186

Bovine hyaluronidase (from Testes) VWR Cat#SIALH3884

Crystal violet Sigma-Aldrich Cat#61135

4-vinylcyclohexene diepoxide Sigma-Aldrich Cat#94956-100ML

Sesame oil Sigma-Aldrich Cat#S3547-250ML

Fast panotic coloring set Laborclin Cat#620529

Paraformaldehyde Dinamica Cat#P.10.0804.000.00

Picro-Sirius red Morphisto Cat#13422.00500

Giemsa’s Azur-Eosin-Methylenblue Sigma Aldrich Cat# 1.09204.0500

AFOG Morphisto Cat#11881.0010

Kongored 0,5 % in Ethanol 50 % Morphisto Cat# 11794.00100

Hematoxylin solution modified according to Gill III Merck Cat#105174

Eosin Y Merck Cat#1.15935.0100

Panoptical staining Carl Roth Cat#6487.1

Formalin solution, neutral buffered 10% Sigma-Aldrich Cat#HT501128-4L

ProLong� Gold Antifade Mountant with DNA Stain DAPI Invitrogen Cat#P36931

Opal dyes 520, 570 and 690 Akoya Biosciences Cat#FP1487001KT

Critical commercial assays

Chromium Single Cell 3’

Reagent Kit v3.0 and Chromium Next GEM Single Cell 30

Reagents Kits v3.1

10X Genomics Cat#PN-1000075 and Cat#PN-1000121

Single Index Kit T Set A 10X Genomics Cat#PN-1000213

Dual Index Kit TT Set A 10X Genomics Cat#PN-1000215

Visium Spatial Gene Expression Slide & Reagents Kit 10X Genomics Cat#PN-1000184

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

RNAScope Multiplex Fluorescent V2 Assay ACD Cat#323100

Deposited data

Sequencing raw and analyzed data of the mouse FRT tissues

across estrous cycle and aging (ovary, oviduct, uterus, cervix

and vagina) and decidualization (uterus) using 10x scRNA-seq

This paper Arrayexpress: E-MTAB-11491,

E-MTAB-12889

Sequencing raw and analyzed data of the young and old

mouse ovaries and uterus using 10x Visium

This paper Arrayexpress: E-MTAB-12105

Imaging raw and processed data This paper Biostudies: S-BIAD482, S-BIAD476

Flow cytometry raw data This paper Biostudies: S-BSST864

Sequencing raw and analyzed data of the human endometrium

across menstrual cycle

Wang et al.13 GEO: GSE111976

Experimental models: Organisms/strains

Mouse: C57BL/6JRj Janvier Labs Cat#B6J

Mouse: C57BL/6Ly5.1 Charles Rivers Cat#B6.SJL-PtprcaPepcb/BoyCrl

Mouse: C57BL/6N Charles Rivers Cat#B6N

Mouse: C57BL/6 Central Vivarium, Universidade

Federal de Pelotas

N/A

Oligonucleotides

RNAScope probe Col1a1 ACD Cat#319371-C1

RNAscope 3-plex Negative Control Probe ACD Cat#320871

Software and algorithms

Cellranger 10X Genomics https://support.10xgenomics.com/single-

cell-gene-expression/software/overview/

welcome

Seurat Hao et al.75 https://cran.r-project.org/web/packages/

Seurat/index.html

Scater McCarthy et al.76 https://bioconductor.org/packages/

release/bioc/html/scater.html

Scran Lun77 https://bioconductor.org/packages/

release/bioc/html/scran.html

Garnett Pliner et al.78 https://cole-trapnell-lab.github.io/garnett/

docs/

e1071 Meyer et al.79 https://cran.r-project.org/web/packages/

e1071/index.html

kNN pooling Frauhammer and Anders80 https://cran.r-project.org/web/packages/

cellpypes/cellpypes.pdf

Compositions Van Den Boogaart and

Tolosana-Delgado81
https://cran.r-project.org/web/packages/

compositions/index.html

lme4 Bates et al.82 https://cran.r-project.org/web/packages/

lme4/index.html

NicheNet Browaeys et al.39 https://github.com/saeyslab/nichenetr

glmmTMB Brooks et al.83 https://cran.r-project.org/web/packages/

glmmTMB/index.html

DestVI Lopez et al.84 https://pypi.org/project/scvi-colab/

MuMIn Barton and Barton85 https://cran.r-project.org/web/packages/

MuMIn/index.html

pySCENIC Van de Sande et al.86 https://pypi.org/project/pyscenic/

Slingshot Street et al.87 https://bioconductor.org/packages/

release/bioc/html/slingshot.html

Mda Hastie88 https://cran.r-project.org/web/packages/

mda/index.html

(Continued on next page)
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EntropyExplorer Wang et al.89 http://cran.nexr.com/web/packages/

EntropyExplorer/index.html

Fitdistrplus Delignette-Muller and Dutang90 https://cran.r-project.org/web/

packages/fitdistrplus/index.html

MsigDB Liberzon et al.91 https://www.gsea-msigdb.org/gsea/

msigdb/

PLANC Ramakrishnan et al.92 https://github.com/ramkikannan/planc

ImageJ Schneider et al.93 https://imagej.net/ij/download.html

Spaceranger 10X Genomics https://www.10xgenomics.com/

support/software/space-ranger

ARACNe-AP Lachmann et al.94 https://github.com/califano-lab/

ARACNe-AP

BD FACSDiva Software BD Biosciences https://www.bdbiosciences.com/en-

us/products/software/instrument-

software/bd-facsdiva-software

AUCell Aibar et al.95 https://bioconductor.org/packages/

release/bioc/html/AUCell.html

FlowJo BD Biosciences https://www.bdbiosciences.com/en-us/

products/software/flowjo-v10-software

CellChatDB Jin et al.96 www.cellchat.org/cellchatdb

CellTalkDB Shao et al.97 https://github.com/ZJUFanLab/

CellTalkDB

Original code used to perform scRNA-seq and spatial

transcriptomics analyses

This paper https://doi.org/10.5281/zenodo.

10259662

Other

Interactive tool for exploring dynamics of cellular abundance,

gene expression, cell-to-cell communication and transcription

factor regulatory networks in female reproductive tract

This paper https://cancerevolution.dkfz.de/estrus/
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Angela

Goncalves (a.goncalves@dkfz-heidelberg.de).

Materials availability
This study did not generate new unique reagents.

Data and code availability
All sequencing data (10x scRNA-seq and 10x Visium) and expression count matrices (10x scRNA-seq) are deposited in ArrayExpress

and are publicly available as of the date of publication. All accession numbers are listed in the Key resources table. Imaging raw and

processed data, and pathology reports are available in Biostudies. Flow cytometry raw data and theMIFlowCyt protocol are available

in Biostudies. Results of scRNA-seq and spatial transcriptomics analysis are available at Biostudies. All accession numbers are listed

in the Key resources table. Dynamics of cellular abundance, gene expression, cell-to-cell communication and transcription factor

regulatory networks in FRT organs in estrous cycle, decidualization and aging, can be explored through an interactive tool at

https://cancerevolution.dkfz.de/estrus/. This paper analyzes existing, publicly available data, the accession number is listed in the

Key resources table.

All original code has been deposited at Zenodo and is publicly available as of the date of publication. DOIs are listed in the Key

resources table.

Any additional information required to reanalyze the data reported in this paper is available from the Lead contact upon request.
Cell 187, 981–998.e1–e10, February 15, 2024 e3

mailto:a.goncalves@dkfz-heidelberg.de
https://cancerevolution.dkfz.de/estrus/
http://cran.nexr.com/web/packages/EntropyExplorer/index.html
http://cran.nexr.com/web/packages/EntropyExplorer/index.html
https://cran.r-project.org/web/packages/fitdistrplus/index.html
https://cran.r-project.org/web/packages/fitdistrplus/index.html
https://www.gsea-msigdb.org/gsea/msigdb/
https://www.gsea-msigdb.org/gsea/msigdb/
https://github.com/ramkikannan/planc
https://imagej.net/ij/download.html
https://www.10xgenomics.com/support/software/space-ranger
https://www.10xgenomics.com/support/software/space-ranger
https://github.com/califano-lab/ARACNe-AP
https://github.com/califano-lab/ARACNe-AP
https://www.bdbiosciences.com/en-us/products/software/instrument-software/bd-facsdiva-software
https://www.bdbiosciences.com/en-us/products/software/instrument-software/bd-facsdiva-software
https://www.bdbiosciences.com/en-us/products/software/instrument-software/bd-facsdiva-software
https://bioconductor.org/packages/release/bioc/html/AUCell.html
https://bioconductor.org/packages/release/bioc/html/AUCell.html
https://www.bdbiosciences.com/en-us/products/software/flowjo-v10-software
https://www.bdbiosciences.com/en-us/products/software/flowjo-v10-software
http://www.cellchat.org/cellchatdb
https://github.com/ZJUFanLab/CellTalkDB
https://github.com/ZJUFanLab/CellTalkDB
https://doi.org/10.5281/zenodo.10259662
https://doi.org/10.5281/zenodo.10259662
https://cancerevolution.dkfz.de/estrus/


ll
OPEN ACCESS Resource
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Mouse colony management
The C57BL/6 substrains J, N and Ly5.1 were obtained from Charles Rivers or Janvier. This study used only female mice. Mice ages

ranged from 3months to 18 months of age. Exact ages, treatment and mouse strain information are listed in Table S1. Females were

maintained as virgins and housed in groups of up to six mice in Tecniplast GM500 IVC cages with a 12-hour light / 12-hour dark cycle.

Mice had ad libitum access to water, food (Kliba 3437), and environmental enrichments. All colonies were regularly controlled for in-

fections using sentinel mice to ensure a healthy status. None of the animals were involved in previous procedures. All experiments

were carried out in accordance with and approval of the German Cancer Research Center ethical committee and local governmental

regulations (Regierungspräsidium Karlsruhe, animal license number DKFZ366). VCD experiment procedures were approved by the

Ethics Committee of the Federal University of Pelotas (UFPel). All female mice were randomly assigned to experimental groups.

METHOD DETAILS

Estrous cycle staging cytology
Vaginal smears were collected using a pasteur pipette containing PBS and leaned towards or inserted in the vagina of the restrained

mouse. Mucous tissue was then trickled on dry glass slides and stained by crystal violet staining solution (Sigma-Aldrich 61135) or

panoptic staining (Carl Roth 6487.1). Cellular composition of the smears was analyzed according to known cell distribution patterns98

using a ZEISS Discovery.V12 Stereoscope and images were acquired via a ZEISS Cell Observer� system with AxioCam MRc cam-

era. If possible, smears were collected and analyzed frommultiple consecutive days to better estimate estrous cycle course. On the

day of tissue collection, estimation of the estrous cycle phase by smears was further complemented by the state of the vaginal open-

ing and the thickness and vascularization of the uterine horns.99

Induction of decidualization
Threemonth old female C57BL/6J virgin mice were synchronized 3 days prior tomating by housing in cages containing bedding from

C57BL/6 male mice. These females were allowed to mate with C57BL/6 males in one to one matings overnight. On the following

morning, all plug-positive females were housed together and kept for 5 days (5.5 days post coitum) until sacrifice for organ harvest-

ing. On average, two out of three plug-positive mice were pregnant at the day of sacrifice. Two uterine pieces, each enveloping an

implanted embryo were removed per mouse and further processed for 10x or histology as described below.

VCD treatment
At 60 days of age, C57BL/6 mice in VCD group received 4-vinylcyclohexene diepoxide (VCD; Sigma-Aldrich; i.p.; 160 mg/kg) diluted

in sesame oil for 20 consecutive days.69 The control group received sesame oil i.p. injections as placebo. At 5 months of age mice

were submitted to vaginal cytology analysis for 5 consecutive days. We confirmed that 100% of the females in the VCD group were

not cyclic. Females were euthanized at 11 months of age to collect oviducts and uteruses, which were stored in 10% paraformalde-

hyde solution.

Tissue collection and preparation
Ovaries, oviducts, uteruses, cervices, vaginas, and spleens from 3 month old mice in all four phases of the estrous cycle were

collected in triplicate. Same tissues were collected from 18 month old mice in quintuplicate. Seven replicates were collected for de-

cidualized uteruses. Additional biological replicates for samples that failed QC requirements were generated as deemed necessary.

No sample size estimation was performed. Samples ‘‘Ind001-vagina06’’ and ‘‘Ind001-uterus07’’, ‘‘18mo_Ind001-ovary01’’,

‘‘18mo_Ind001-spleen01’’ and ‘‘18mo_Ind001-ovary02’’ were excluded from the analysis due to problematic sample preparation.

Instead, additional mice were sacrificed to collect the vagina in proestrus (‘‘Ind001-vagina13’’), uterus in diestrus (‘‘Ind001-

uterus16’’), ovary from 18 month old mice (‘‘18mo_Ind001-ovary04’’, ‘‘18mo_Ind001-ovary05’’) and spleen ‘‘18mo_Ind001-

spleen05’’. Reproductive tract organs and spleen were collected from mice immediately following cervical dislocation. All organs

were manually dissected using a ZEISS Discovery.V12 Stereoscope to remove surrounding fat and connective tissue. Samples

were then either processed by enzymatic digestion for single cell sequencing, fixed in 10% formalin for FFPE-histology, or fixed

and slowly frozen in O.C.T. Medium (ThermoFisher) for cryo-histology.

Generation of single cell suspensions
To generate single cell suspensions, freshly isolated whole organs including ovary, oviduct and tissue pieces from uterus, cervix,

vagina and spleen were treated by enzymatic digestion. All tissues were initially incubated separately in 2 ml Eppendorf tubes con-

taining 600 ml of 0,25% trypsin in HBSS and digested at 37�Cwith gentle rocking. After 30minutes, 600mL of a second digestion buffer

containing Collagenase I (1.25mg/mL), II (0.5 mg/mL), IV (0.5mg/mL), and Hyaluronidase (0.1mg/uL) in HBSSwas added for another

2 hours. After quenching the digestion by adding 600mL HBSS with 10% FBS, the cell suspensions were passed through a 40mm cell

strainer (Greiner Bio One) to remove cell debris and buffer residue. Cell suspensions were gently centrifuged at 350g for 8 min at 4�C.
Cells were resuspended in PBS containing 0,04% BSA, 1 mM EDTA and propidium iodide (PI) was added to final concentration of
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1 mg/ml prior to fluorescence-activated cell sorting (FACS). Larger cells such as oocytes and smooth muscle cells were excluded in

the cell straining step.

Histopathology and fibrosis quantification
After overnight fixation in 10% buffered formalin, representative specimens of the ovary, oviduct, uterus, cervix, vagina, and spleen,

together with control and VCD-treated oviducts and uteruses were routinely dehydrated, embedded in paraffin, and cut into 4 mm-

thick sections. All tissue sections were stained using a H&E standard protocol. Briefly, tissues were deparaffinized using xylene and

rehydrated in ethanol and distilled water. Sections were then stained in Gill-hematoxylin, rinsed with water and counterstained with

eosin, followed by dehydration and air-drying. In selected tissue sections, a Giemsa, Picrosirius Red, Congo Red, and AFOG (Acid

Fuchsin Orange G) stain were performed according to respective standard protocols. Giemsa staining was performed using 20%

Giemsa stain for 20 min, differentiating slides in acidified water, followed by ethanol, isopropanol and xylene and air-drying samples.

To perform Picro-sirius Red staining, tissues were deparaffinized using xylene, rehydrated in ethanol and distilled water and incu-

bated in Picro-sirius Red solution for 1 hour. This was followed by washing with two changes of acetic acid water, dehydration

with ethanol and clearing with xylene. To perform Congo Red staining, sections were deparaffinized and hydrated. Samples were

then stained using Weigert’s hematoxylin for 3 mins, submerged in tap water for 3 mins, differentiated in HCl alcohol and again sub-

merged in tap water for 3mins. Sections were then stained in Congo red solution for 20minutes, dehydrated with ethanol and cleared

with xylene. For AFOG staining, slides were deparaffinized in xylol and rehydrated in ethanol and distilled water. Slides were incu-

bated in Bouin’s solution for 1 h at 60�C, followed by wash in tap water. Slides were then stained using Weigert’s hematoxylin for

2 mins, differentiated in HCl alcohol, submerged in tap water for 3 mins and incubated in 1% phosphomolybdic acid. After washing

in running distilled water slides were stained with AFOG and dehydrated with ethanol and xylol. Step-by-step protocols are available

in Biostudies (see key resources table). To detect potential tumors, tumor classification immunohistochemistry was performed with

anti-a smooth muscle actin (Abcam, ab5694), anti-desmin (ThermoFisher, RB-9014-Po), and anti-pan-cytokeratin (DAKO, Z0622).

Whole-slide scans were acquired using the Aperio AT2 slide scanner (Leica) at 40x resolution. Raw image files are available from

BioStudies (see data and code availability). To quantify fibrosis in longitudinal aging study, high-resolution whole tissue section im-

ages of Picrosirius red stained samples were acquired at 20x using a ZEISS Cell Observer� brightfield microscope and an AxioCam

MRc camera. Whole tissue images of control and VCD samples were acquired using the Aperio AT2 slide scanner (Leica) at 40x res-

olution. Fiji software93 (ImageJ ver. 1.53f51) was used to quantify percent of fibrotic area by setting a signal threshold in stroma-con-

taining regions. RGB images were split into three channels. Signal quantification was performed on the green channel. Threshold was

set to correspondwith the fibrotic area previously assessed by a pathologist and regions of interest were drawn around stroma areas.

Collagen accumulations were defined as % of area with positive signal. The macro is available from the GitHub repository (data and

code availability).

In the aging study, two replicates were used for 12, 15 and 21 month old mice, and three replicates were used for 3 and 18 month

oldmice. No sample size estimationwas performed. Analyseswere performed independently by two authors (I.W. and A.T.) to reduce

stroma area selection bias. Technical replicates or quantified regions of interest from the same sample were averaged and treated as

one biological replicate in a linear regressionmodel. Model was fitted under beta distribution using the glmmTMBpackage83 (v 1.1.5).

P-values were corrected for multiple testing using Benjamini-Hochberg procedure.

Wilcoxon test was used to test if VCD group and control group show significant difference in % area with collagen depositions.

RNA in situ hybridization
To detect and quantify Collagen, Type 1, alpha 1 (Col1a1, ACD 319371) mRNA, an ISHwas performed using the RNAScopeMultiplex

Fluorescent V2 Assay (ACD 323100) with Opal fluorophore reagents (Akoya Biosciences). Collected fresh and fixed frozen samples

were cut at 10mm thickness using a Leica CM3050S cryotome. Target probes (Col1a1, 319371-C1) were applied to the sample and

baked at 40�C for 2h. Opal dyes 520 (FP1487001KT), 570 (FP1488001KT) and 690 (FP1497001KT) were applied at a 1:1000 to 1:750

dilution and counterstained with DAPI. Images were taken using the ZEISS Cell Observer� fluorescence microscope and a ZEISS

AxioCam MRm camera at 20x resolution.

Collagen signal was quantified as percent area of total DAPI area using ImageJ (v 1.53t). Samples which were run with negative

control probes (ACD 320871) were used to subtract background signals beforehand. The macro for assessing signal thresholds is

available from GitHub (data and code availability). Step-by-step protocol is available on the ACD Bio webpage (https://acdbio.

com/rnascope-multiplex-fluorescent-v2-assay).

Flow cytometry staining and acquisition
After dissection and digestion, cells were filtered through 40 mm cell strainers (Falcon), followed by washing and centrifugation for

5 min at 250 g at 4�C. For flow cytometric analysis, cells were resuspended in 20 ml PBS plus Viability Dye eF506 (eBioscience,

conc. 1:500) and incubated for 10 min at RT in the dark. Proceeding with cell staining, 100 ml PBS plus 2% FCS with corresponding

antibodies (see key resources table) was added and cells were incubated for 30 min at 4�C in the dark. Post staining, cells were

washed again and analyzed using the BD LSR II cytometer according to manufacturer’s instructions and marker combinations

and gating strategies. FAC sorting as preparation for single-cell transcriptional analysis was performed on the FACSAria II from

BD Biosciences using an 85mm nozzle. Gating of live cells was achieved by exclusion of PI-high cells. Doublets were excluded by
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plotting SSC width versus SSC area. Approximately 70.000 cells were collected in sorting media (containing 0.04% BSA and 1mM

EDTA in PBS) in 1.5 ml Eppendorf tubes, chilled on ice, and immediately processed for single-cell transcriptional analysis. Step-by-

step protocol (MIFlowCyt protocol) is available in Biostudies (see key resources table).

Generation of single cell transcriptomes
Mouse reproductive tissues and spleenwere enzymatically dissociated and FAC sorted, and the undiluted single-cell suspension at a

concentration of 467 cells/ml was loaded per channel of either the ChromiumTM Single Cell B or G Chip (10X Genomics� Chromium

Single Cell 3’ Reagent Kits v3.0 and Chromium Next GEM Single Cell 3’ Reagents Kits v3.1, respectively), aiming for a recovery of

5,000 cells. On ChromiumNext GEMChip, Gel Beads-in-emulsion (GEMs) were formed by combining barcodedGel Beads, aMaster

Mix containing cells, and Partitioning Oil. Reverse transcription performed in GEMs produced barcoded, full-length cDNA from poly-

adenylated mRNA. Following purification of the cDNA from the reverse transcription reaction mixture, cDNA was amplified for 11

cycles using a thermal cycler (C1000 Touch, Bio-Rad). Indexed libraries were finally constructed via End Repair, A-tailing, Adaptor

Ligation, and amplified by PCR. Libraries were prepared using Single Index Kit T Set A (10X Genomics) for indexing. Libraries were

sequenced on Illumina NovaSeq 6000 using a paired-end run sequencing with 26 bp length on read 1 and 98 bp on read 2. Step-by-

step protocol is available on the 10x Genomics support web-page (https://www.10xgenomics.com/support).

Spatial transcriptomics
Three month oldMus musculus (C57Bl6/J) female mice were sacrificed at diestrus together with 18 month old mice. No sample size

estimation was performed. Ovaries and uteruses were dissected and embedded into an optimum cutting temperaturematrix (O.C.T.,

Tissue Tek) using a bath of pre-cooled (-60-70�C) isopentane (Sigma) on dry ice. Blocks were cut using cryo-microtome (CM3050S,

Leica), head temperature set at -10oC. 10 mm thick tissue slices were placed on Visium Spatial Gene Expression Slides (10X Geno-

mics) and stained with Hematoxylin and Eosin (H&E). For ovaries staining time in hematoxylin was 5 min, 30 s in blueing agent, and

1min in eosin; for uteruses 7min in hematoxylin, 30 s in blueing agent and 2minutes in eosin. To releasemRNA from the cells, tissues

were permeabilized. Optimal permeabilization time for ovarian and uterine tissues was 18 and 24minutes, respectively. Reverse tran-

scription was performed on poly-adenylatedmRNA captured on the slide. Spatially barcoded, full-length cDNAwas amplified using a

thermal cycler (C1000 Touch, Bio-Rad). Libraries were prepared using Dual Index Kit TT Set A (10X Genomics) for indexing. Samples

were sequenced on NovaSeq6000 using a paired-end run sequencing with 28 bp length on read 1 and 91 bp on read 2. Step-by-step

protocol is available on the 10x Genomics support web-page (https://www.10xgenomics.com/support).

Filtering and normalization of scRNA-seq data
Raw sequencing reads were processed using Cellranger analysis pipeline (v 3.0.1). The "cellranger count" command was used to

generate filtered and raw matrices. Reads were aligned against the mouse genome version mm10 (Ensembl release 93). Filtered

gene-barcode count matrices were further analyzed using the R package Seurat v 4.0.5.75

To remove low quality cells, an adaptive filtering threshold approach was used based on high mitochondrial RNA content, extreme

numbers of counts (count depth), and extreme numbers of genes per barcode. Cells were filtered based on the median absolute de-

viation (MAD) from themedian value of eachmetric across all cells. Specifically, we considered a value as an outlier when differing by

more than 3MADs from themedian. The filtering stepwas performed using the R package Scater v 1.16.2.76 Counts were normalized

using the ScTransform normalization approach of Seurat. Cell cycle gene effect was regressed out using the CellCycleScoring func-

tion in Seurat. All clusters in all samples showed consistently low doublet scores using doubletCluster and doubletCells of R package

Scran v 1.16.0.77

Cell type annotation of scRNA-seq data
Each organ was processed independently for cell type annotation. Organ-specific UMAPs were constructed using a subset of fea-

tures (genes) exhibiting high cell-to-cell variation which were identified by modeling the mean-variance relationship. The top 2000

features were used to perform PCA analysis. To cluster the cells, a K-nearest neighbor (kNN) graph based on the euclidean distance

in PCA space was first constructed using the first 30 PC components as input. Next, the Louvain algorithm was applied to iteratively

group cells. We identified the cell types in each cluster using a combination of manual and automated approaches from known

marker genes. First, clusters were assigned to known cell populations using cell type–specific markers obtained through the

FindAllMarkers function. Multiple testing correction was performed using Benjamini-Hochberg procedure. Second, the R package

Garnett v 0.1.2078 in cluster extension mode was used to annotate cells in a semi-automated manner. Because some clusters re-

mained unclassified by either the manual or semi-automated approach - or in rare cases were differently classified by the two ap-

proaches - a Support vector Machine with rejection (SVMrej) was applied as an additional automated classifier. Cluster annotations

in agreement between themanual and automated approachwere used as the training set for the SVMrej. The e1071 library
79 (v 1.7-13)

was used to implement the SVMrej classifier. Classification was performed using a linear kernel with the cost function set to 10. Rejec-

tion rates of 10% and 30%were used to classify level 1 and level 2 annotations, respectively. Cell clusters of 18 month old and preg-

nant mice were annotated using an SVMrej classifier trained on cell clusters of normally cycling young mice.
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Batch correction of scRNA-seq data
Cells frommultiple organs in the estrous cycle were integrated together for visualization purposes. Integration and batch correction of

samples of young cycling mice was performed using the Reciprocal PCA together with ‘‘LogNormalize’’ normalization method from

Seurat. For each organ, in order to remove batch effects we chose the sample with the highest number of cells (regardless of its cycle

phase) to anchor pairwise comparisons. Integration of young (diestrus) and old mice followed a similar approach.

Integration of samples of pregnant mice with metestrus samples was performed separately using Canonical correlation analysis

together with SCT normalization (Seurat). Batch corrected data was used only for UMAP visualization purposes; all other down-

stream analyses including differential expression were performed on uncorrected data. To improve the visualization of gene expres-

sion in UMAP plots, we used a kNN-pooling approach.80 A kNN graph was constructed based on euclidean distance in PCA space,

and cell counts were pooled across 50 nearest neighbor cells, thus decreasing technical noise in scRNA-seq caused by dropout

events.

Inter-quartile range calculation
Cell proportions for each cell type in each biological replicate were calculated and averaged per estrous phase. These averages were

then used to calculate the interquartile range for each cell type. To display the uncertainty, the cell proportions for each cell type in

each biological replicate were calculated. All possible combinations of one replicate mouse per estrous phase were listed and all

possible interquartile ranges were calculated.

Differential cell abundance analysis
To assess if the proportions of cell populations in individual organs change along the estrous cycle and in aging, a compositional

regression model was used. Cell population compositions were used as dependent variables, and estrous cycle phases or age as

independent variables. Estrous cycle phases were compared in a pair-wise manner. Components of the compositions were amal-

gamated and expressed as compositions of two components due to low number of replicates. Prior to model fitting, composition

components were transformed using isometric Log-Ratio Transformation. The R package Compositions81 (v 2.0-4) was used to

perform the Log-Ratio transformation and compositional regression. Innate vs adaptive immune cells ratio was calculated as ratio

of number of innate immune cells (N, DC, M1Mp, M2Mp, Mp and MaC) and number of adaptive immune cells (NKC, BC, iNkT,

MAIT, MTC) in each individual.

Optimal transport
Balanced optimal transport (OT) analysis was performed to assess the magnitude of transcriptional changes between cell popula-

tions of all organs in different phases of the estrous cycle, as well as between old and young (diestrus) cell populations. For specific

subgroups of samples, we performed simultaneous NMF embeddings; these two subgroups included all organs of all estrous phases

and all organs of young (diestrus) together with all organs of old mice. NMF embeddings were calculated on the set of top 2000 most

highly-variable genes using the Block Principal Pivotingmethod of the PLANC library (v 0.81).92 Rank 10 of NMF embeddings, chosen

based on decrease in cophenetic coefficient,100 was used for OT distance calculation. OT distances were calculated for all cell pop-

ulations which contained at least 100 cells in any of the compared groups. As the balanced optimal transport problem is constrained

with a mass balance condition, the OT distance between two cell populations was calculated as an average of 100 random samples

of 100 cells in a stochastic sampling approach. We tested different sample sizes using simulated data and determined that sampling

100 cells can accurately quantify differences in gene expression distributions. The OT distance was defined as a minimum-cost flow

solution problem and was solved using Munkres algorithm.57

Differential gene expression (DGE) analysis
DGE analysis was performed using amixed generalized negative binomial regression model with random intercept. Normalized gene

counts were used as the dependent variable, while estrous cycle phases or age were used as the independent variable, and sample

label as random effect. Model was fitted gene-wise for each cell subpopulation. Estrous cycle phases were compared in a pair-wise

manner. Themodel fittingwas performed using the glm.nb function of lme4R package82 (v 1.1-27.1). Only genes that were expressed

across 10 cells with at least 1 count were used in model fitting. If the model fitting showed singular fit (indicating overfitting) the

p-value was set to NA. P-values were corrected for multiple testing using Benjamini-Hochberg procedure. All genes with padj value

smaller than 0.05 were considered differentially expressed.

Overrepresentation analysis (ORA)
A hypergeometric test was used to perform ORA analysis. Gene sets used in ORA analysis are part of the MsigDB91 (https://www.

gsea-msigdb.org/gsea/msigdb/, v 7.2) pathway collection (H; C2: Kegg, Reactome; and C5: GO Biological Process). For the ORA in

Figure 2, we used MSigDB H and Reactome, and excluded pathways with the term ‘‘Disease’’ in their descriptor. Multiple testing

correction was performed using the Benjamini-Hochberg procedure. All pathwayswith an adjusted p-value < 0.1 in at least one organ

are shown.
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Scoring of gene set activity in single-cell RNA-seq data
Scoring of gene set activity was performed using the AUCell R package v.1.10.0.95 AUCell was used to assess if certain gene sets

were enriched within the top 5% or 10% expressed genes for each cell. Gene sets used in the analysis are the same as gene sets

used in ORA. To score the activity of inflammatory and ECM genes pathway HALLMARK_INFLAMMATORY_RESPONSE and

REACTOME_EXTRACELLULAR_MATRIX _ORGANIZATION were used, respectively. HALLMARK_INFLAMMATORY_RESPONSE

is a manually curated gene set containing 200 genes that define inflammation, 40 of which are cytokines and growth factors, and

41 of which are cell differentiation markers.91 Moreover, the gene set contains 37 genes previously shown to be upregulated in fibro-

blasts with a pro-inflammatory phenotype that is common across 4 chronic-inflammatory diseases in both human andmouse.101 For

the scoring of the activity of target genes of each ligand in fibroblasts, we used the NicheNet (v 1.1.1) ligand-target model to obtain a

list of predicted targets for each ligand.39 AUCell scores were calculated for each cell and averaged across conditions for each cell

population. Average scores across the cycle were weighted to account for the different phase lengths (the cycle was roughly esti-

mated to be partitioned 60% diestrus and the remainder equally divided between proestrus, estrus and metestrus.98 A mixed gener-

alized linear regression model with random intercept was used to test the significance of the activity score changes across the

estrous cycle. Activity scores were used as the dependent variable, while estrous cycle phases were used as the independent var-

iable, and sample label as random effect. Model was fitted under beta distribution using the glmmTMB package (v 1.1.5). P-values

were corrected for multiple testing using Benjamini-Hochberg procedure.

DGE analysis using Mutual-information (MI)
The human endometrium dataset was retrieved from NCBI’s Gene Expression Omnibus (accession code GEO: GSE111976). Raw

count matrices of FluidigmC1 dataset were normalized using the ScTransform normalization approach. Cycle phase labels of human

samples were assigned based on the original publication’s metadata.13 Dependence of gene expression and cycle phase label in

fibroblasts and decidual cells was calculated as the MI between these two variables, as described in 13. The same calculation

was performed for the human fibroblasts. Briefly, for each gene, MI was calculated using the Java implementation of ARACNe-

AP (v 1.0).94 The statistical significance of MI was evaluated using the permutation approach, in which MI value for each gene

was compared to a null distribution obtained by permuting cycle phase labels 1,000 times. Multiple testing correction was performed

using Benjamini-Hochberg. As themouse dataset was substantially bigger than the human dataset, MI and its associated p-value for

the mouse dataset were calculated on 100 random samples of 2000 cells in a stochastic sampling approach. P-values associated

with genes in all mouse random samples were aggregated using Fisher’smethod (R package aggregation, v 1.0.1). Genes associated

with padj value smaller than 0.05 were considered as cycle-associated genes in mouse and human. We identified the set of

conserved transcriptional changes between human and mouse cycles by identifying homologous cycle-associated genes that

showed the same directionality of regulation in comparison to adjacent cycle phases in paired mouse-human cycle phases. For

instance, a mouse gene upregulated in proestrus compared to diestrus and the homologous human gene upregulated in proliferative

early compared to secretory late. Genes that showed opposite directionality of regulation (e.g. up-regulation in humans, down-regu-

lation in mice) were considered divergent. Mouse and human cycle phases were paired based on ovulation timing and uterine cycle

events (proliferation vs secretion).102,103 Proestrus was paired with proliferative early phase, estrus with proliferative late, metestrus

with secretory early, decidualization with secretory mid and diestrus with secretory late. Cells of menstruation phase in humans could

not be paired with normally cycling mouse cells and were excluded from this analysis. To calculate the proportion of the conserved

genes expected by chance in each cycle phase, labels of upregulated, downregulated and neutral (not up- or down- regulated) genes

of all homologs in mouse and human for corresponding cycle phases were permuted 100 times and proportions of the conserved/

divergent genes were calculated per cycle phase. Final value of conserved genes proportion was calculated as an average of pro-

portion of conserved downregulated and upregulated genes in all permutations runs.

Cell-to-cell communication analysis
To assess cellular communication from different cell types to fibroblasts, we used a multiplication of expression between receptors

and ligands (expression product) as a communication score. The list of mouse ligand-receptor pairs that was used in the analysis was

extracted from CellChat96 and CelltalkDB repositories.97 To compare cellular crosstalk among the different organs, we first focused

on the average expression values of ligands in all cell types and receptors in fibroblasts, regardless of the source of the ligand. To

calculate the communication score, averaged ligand expression counts in all cells from all cycle phases were multiplied with aver-

aged receptor counts in fibroblasts. For multi-subunit receptors, the subunit with the minimum average expression was used in our

calculations as previously proposed.104 This analysis was performed in each reproductive tissue.

The statistical significance of the difference of expression product in all reproductive organs was evaluated using a permutation

approach. All pairwise combinations of log ratios of expression product in all organs for each ligand-receptor pair were compared

to null distribution obtained by permuting the organ labels 1000 times. A similar approach was used to evaluate the statistical sig-

nificance of the difference of expression product upon aging. For each organ, log ratios of expression product of old and young fi-

broblasts in diestrus were compared to a null distribution obtained by permuting the age labels 1000 times.Multiple testing correction

was performed using the Benjamini-Hochberg procedure. This analysis does not take into account the spatial distribution of the cells.

For selected ligand-receptor pairs, we then determined which cell types were the likely sources of the ligand. The total sum of

ligand counts for each cell type was calculated, thus taking into consideration the cell abundance and average expression of ligand
e8 Cell 187, 981–998.e1–e10, February 15, 2024
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in each cell type. These sumswere subsequently transformed into z-scores across cell types.We chose to closely analyze the ligand-

receptor pairs related to inflammation and ECM, based on the known role of receptor-ligand interactions in shaping their func-

tions.105–107

Spatial transcriptomics analysis
The raw reads were processed using spaceranger (10X Genomics, v 1.3.1). To deconvolute the spatial data and estimate gene

expression for every cell type inside every spot DestVI v.1.0.3 was used together with corresponding tissue single-cell reference
84. Cell proportions calculated for each spot were thresholded using an automatic thresholding strategy implemented in the

DestVI utilities package (v 0.1). Lower cell proportions thresholds were inspected and manually adjusted according to tissue archi-

tecture inferred from histology images of the slides, as recommended by the developers of DestVI. For example, luteal cells are ex-

pected to be exclusively located in the corpus luteum. DestVi automatically detected high proportions of luteal cells in the corpus

luteum and low proportions outside of the corpus luteum. To optimize this, the lower threshold for detection of luteal cells was

adjusted in a way that ignores background values of luteal cells in the stroma. Detection thresholds, cell proportions and imputation

reads are available through Biostudies (see data and code availability).

To explore the spatial niches of inflamed stromal cells in young uteruses and ovaries, amixed linear generalizedmodel with random

intercept was used. In the uterus stromal cells are fibroblasts, in the ovary stromal cells are theca cells and fibroblasts. Theca cells

and fibroblasts have very similar transcriptional profiles so it was not possible to train DestVI to successfully distinguish between

them. Inflammation activity scores calculated using AUCell were used as the dependent variable, while the proportion of different

cell types in the neighborhood or their inflammation score were used as the independent variable, and sample label as random effect.

Model was fitted using lme4 package (v 1.1-27.1). To determine the proportion of the variance explained for the dependent variable

marginal R squared values were calculated using the MuMIn package85 (v 1.47.5).

To test if highly inflamed stromal cells cluster together cluster coefficients were calculated. First, inflammation activity scores for

each stromal cell (SC) spot in each ovary and uterus were calculated using AUCell. SC spots are defined as spots with a minimum

estimated proportion of stromal cells (as estimated by DestVI). Using DestVI, we performed cell-type specific imputation of gene

expression across all spots. Imputed values represent the average gene expression of all cells of specific cell type on each spot.

Imputed values of SC cells were used as input for AUCell. We considered only sections of ovaries and uterus which had at least

20 and 50 spatially connected stromal cells, respectively. Spatially connected stromal cells are defined as spatially connected spots

with a minimum estimated proportion of stromal cells. Different thresholds for two tissues were chosen based on differences in their

tissue architecture. Ovary has a large number of different structures interspersed in the stroma, such as follicle and corpora luteum/

albicans, while stroma in the uterus tends to be in amore continuous layer. Therefore the threshold for the ovary was lowered in com-

parison to the uterus. Next, inflammation scores in these sections were binarized by assigning the high inflammation label to the top

25% spot with the highest score. Finally, spatial graphs of SC spots with high inflammation labels were constructed by connecting

spots which are direct neighbors and their global cluster coefficients (type set to "average") were calculated using iGraph package

(v 1.5.0).

The cell-to-cell communication analysis based on spatial data was used to confirm and expand the initial scRNA-seq analysis. The

cell-to-cell communication analysis was performed by calculating a ligand-receptor interaction score in each neighborhood. For

each spot, the neighborhood refers to the combination of the spot itself and the directly adjacent spots. We assume that ligand mol-

ecules can diffuse freely throughout the neighborhood. To calculate the amount of available ligand in each spot, the ligand expression

in all cell types was averaged across all the spots in the neighborhood. An interaction score was then computed for each ligand-re-

ceptor pair in the database (see cell-to-cell communication analysis) by multiplying the available ligand expression in the spot by the

receptor expression in fibroblasts. This score was weighted by the proportion of signal captured by fibroblasts.

To compute the proportion of signal captured by each cell-type, we calculated the proportion of receptor expressed in that cell-

type inside each neighborhood, and averaged across all neighborhoods.

Single-Cell Regulatory Network analysis
pySCENIC (v 0.12.1) was used to perform single-cell regulatory network analysis in fibroblasts86 by using SCT normalized gene

expression values of specific subsets of cells, i.e. fibroblasts of all organs in all phases of the cycle, fibroblast of all organs in diestrus

and aged samples, and uterine fibroblasts in metestrus and pregnant samples. The gene co-expression networks were determined

using grnboost2, enriched transcription factor motifs were predicted using ctx function and regulon activity scores were calculated

using AUCell. To assess if regulons are differentially active across FRT organs or in aging, the activity score for each regulon was

compared to null distributions obtained by permuting organ- or age-labels 1000 times. Multiple testing correction was performed

using Benjamini-Hochberg procedure.

Selection of the subset of transcription factors related to inflammation and ECMwas based on the overlap and enrichment of tran-

scription factor target genes and target genes of selected ligands obtained from the NicheNet database. Additionally, classification of

transcription factors as fibrosis and/or inflammation associated was based on the enrichment score of transcription factor target

genes in inflammation (Hallmark collection) and ECMorganization (Reactome collection) pathways. Transcription factor target genes

were identified in pySCENIC analysis. Jaccard index was used to quantify overlap between target genes and pathway related genes,

and a hypergeometric test was used to assess the enrichment.
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Single-cell trajectory inference
Slingshot (v 1.6.1) was used to infer fibroblast trajectories along the estrous cycle.87 Linear discriminant analysis (LDA) was used to

perform dimensionality reduction. LDA was performed on cycle-associated genes determined in MI approach using the mda

R package88 (v 0.5–3). We clustered the cells using k-Means, and we fitted the principal curve through fibroblast clusters using

the Slingshot function.

Transcriptional heterogeneity analysis
Differential Shannon Entropy (ShE) was used to assess the differences in transcriptional heterogeneity between young (diestrus) and

old cell populations. Differential ShEwas calculated using the EntropyExplorer package (v 1.1).89 Multiple testing correction was per-

formed using the Benjamini-Hochberg procedure. To exclude that differential Shannon entropy is confoundedwithmean expression,

we plotted the mean difference against differential Shannon entropy for all genes in fibroblasts in the ovary. We conclude that the

difference in Shannon entropy is not driven by differences in means between young and old.

Linear mixed models of inflammation
To estimate the rate of inflammaging in the different organs, we fit a linear mixed model at the cell level including age, organ and the

interaction of age and organ as fixed effects, and individual (mouse) as a varying intercept random effect.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis and R/python packages used to perform it are described for each bioinformatics analysis in the corresponding

section of the Method details section. Exact value of biological replicates/animals (n) can be found in the figure legends and results

section. Number of biological replicates for scRNA-seq and spatial transcriptomics experiments is listed in Figure 1A. For all other

experiments this number is listed in the figure legend which describes the result of the experiment. Statistical significance was

defined as p-value or p-value adjusted smaller than 0.05. Functions descdist and fitdist of R package fitdistrplus90 (v 1.1-11) were

used to assess the underlying data distributions.

ADDITIONAL RESOURCES

Dynamics of cellular abundance, gene expression, cell-to-cell communication and transcription factor regulatory networks in FRT

organs in estrous cycle, decidualization and aging, can be explored through our interactive tool at https://cancerevolution.dkfz.

de/estrus/.
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Figure S1. Single-cell characterization of the female reproductive tract, related to Figure 1

(A) Selected marker genes used to classify ovarian cell types. Full plots of marker genes used to classify all FRT organs are available in Biostudies (see Data and

code availability).

(B) UMAP plot of the young cycling mouse cells. Cell types were assigned to epithelial (red), immune (green), stroma (blue), and endothelial (gray) compartments.

Organ subpanels show the same UMAP embedding as the central figure, but restricted to cells originating from each organ.

(C) Ln ratio of innate (N, DC, M1Mp, M2Mp, Mp, and MaC) and adaptive (NKC, BC, iNkT, MAIT, MTC) immune cells’ abundances in FRT organs. Each data point

represents a biological replicate.

(D) Ln ratio of M1 to M2 macrophages in FRT organs. Each data point represents a biological replicate.

(E) Crystal violet staining of vaginal smears of young cycling mice. Cycle phases (proestrus, estrus, metestrus, and diestrus) were assigned based on occurrence

of leukocytes and nucleated and cornified epithelial cells.

(F) Pseudotime-time trajectory of uterine fibroblasts across the cycle. Cell clusters are colored according to cycle phases. Dimensionality reduction was per-

formed using linear discriminant analysis (LDA) and cell features projected to the first two linear discriminant (LD) components were plotted.

(G) The average% across biological replicates of each cell type in the vagina at each phase of the cycle. Barplots showing for each cell type and its composition

across the biological replicates are shown in Figure S2A. Statistical significance of cell abundance proportion changes across estrous cycle is listed in Table S3.

(H) The cyclical changes in the vaginal immune compartment assessed using flow cytometry (‘‘n,’’ number of biological replicates).
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Figure S2. Changes in cell-type abundances in FRT tissues across the estrous cycle, related to Figure 1

(A) Barplots showing for each cell type and its composition across the biological replicates. Cell types that exceed at least 1% of total cells in each tissue are

shown. Statistical significance of cell abundance proportion changes across estrous cycle is listed in Table S3.

(B) Uncertainty of interquartile ranges of cell-type proportions for each phase of the cycle, calculated as all possible combinations of one replicate mouse per

estrous phase. Red dot indicates interquartile range of cell-type proportions averaged over biological replicates, which is plotted in Figure 1C. Plots showing the

uncertainty of the interquartile ranges for all cell types are available through Biostudies (see Data and code availability).

(C) The ratio of immune to other cells for each biological replicate is plotted. The ratios are shown together with their standard errors.

(D) Compositional changes of M2Mp, NK, and M1Mp cells across the cycle in all FRT organs.

(E) Fluorescence-activated cell sorting (FACS) gating strategy used to quantify immune cells in vaginal and uterine samples across the cycle.

(F) The ratio of epithelia to stroma for each biological replicate is plotted. The ratios are shown together with their standard errors.

(G) Average activity score of genes promoting cell proliferation (GO:0008284) calculated in stromal cells using AUCell. p values indicating significance of pathway

activity scores between estrous cycle phase are listed in Table S7.
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Figure S3. Distribution of activity score of pathways relevant to FRT function, related to Figures 1 and 2

(A) Distribution of activity score of genes promoting cell proliferation (GO:0008284), calculated in epithelial cells using AUCell.

(B) Distribution of activity score of genes promoting cell proliferation (GO:0008284), calculated in stromal cells using AUCell.

(C) Distribution of activity score of cytokine regulatory genes (GO:0001816), calculated in immune cells using AUCell.

(D) Distribution of activity score of inflammatory genes calculated in fibroblast using AUCell.

(E) Distribution of activity score of ECM organizational genes calculated in fibroblast using AUCell.

(F) Average activity score of inflammatory genes calculated in fibroblasts of separate FRT organs per individual.
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Figure S4. Inflammation- and ECM-related cell-to-cell communication scores in FRT tissues across the estrous cycle, related to Figures 1

and 2

(A) Heatmap showing the Z scores of ligand-receptor products in each individual. Ligand expression is averaged across all cell types; receptors are in fibro-

blasts only.

(B) Scatterplot showing correlation between expression product of TNF::TNFRSF1B and the activity score of predicted targets of the Tnf ligand.

(C) Heatmap showing the Z scores of inflammatory ligand-receptor products in the vagina and uterus across cycle phases. Ligand expression is averaged across

all cell types; receptors are in fibroblasts only.
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Figure S5. Ligand expression in all cell types of ovary, oviduct, uterus, cervix, and vagina, related to Figure 2
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Figure S6. Spatial transcriptomics characterization of the FRT, related to Figure 3

(A) H&E staining of young ovary.

(B–I) Proportion of granulosa cells (GCs) (B), stromal cells (SCs) (C), epithelial cells (EpCs) (D), B cells (BCs) (E), luteal cells (LCs) (F), antigen-presenting cells

(APCs) (G), T cells (TCs) (H), and endothelial cells (ECs) (I) per spot in the young ovary shown in (A).

(J and K) Barplots showing % of each cell type in the ovary (J) and uterus (K) in single-cell RNA-seq and Visium slides V11M25-311_B1 and V12N14-363_B1.

(L and M) Proportion of SC inflammation scores in the ovary (L) and uterus (M), explained by inflammation scores of cell types in the neighborhood or by their

proportions.

(N and O) Proportion of SC ECM scores in the ovary (N) and uterus (O), explained by ECM scores of cell types in the neighborhood or by their proportions.

(P and Q) Agreement between communication scores calculated in scRNA-seq and spatial-transcriptomics-based analysis of the ovary (P) and uterus (Q).

(R and S) Agreement between ligand expression, calculated in scRNA-seq and spatial-transcriptomics-based analysis of the ovary (R) and uterus (S).
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Figure S7. Single-cell characterization of the decidualized FRT, related to Figure 4

(A) Barplots showing % of each cell type in the uterus in metestrus and in pregnancy in each biological replicate.

(B) Over-representation analysis of differentially expressed genes between metestrus and pregnant mice in fibroblasts and decidual cells using mixed linear

model (STAR Methods).

(C) Scatterplot of adjusted p values of mouse and human homologous, differentially expressed genes across the cycles, calculated using the MI approach.

(D) ORA analysis of differentially regulated genes that intersected in mouse and human cycles, identified using MI approach (STAR Methods).

(E) Activity scores of genes in overrepresented pathways (B) determined by AUCell and averaged across all mouse or human fibroblasts andmouse decidual cells

in paired cycle phases. The average scores are shown together with their standard deviations.
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Figure S8. Single-cell characterization of the aged FRT, related to Figure 5

(A) Barplots showing the % of each cell type in the ovary, oviduct, uterus, cervix, vagina, and spleen in old age and diestrus in each biological replicate.

(B) Quantification of immune and myeloid cell proportions in the uterus and vagina of young and old mice using FACS. Uterus: young n = 3; old n = 5. Vagina:

young n = 6; old n = 5.

(C) Expression of Col1a1 in the uterus of young and old mice, detected using RNA hybridization. Col1a1 signal is defined as% area of total DAPI area. Bar height

indicates the average value of two biological replicates.

(D) Number of genes with differential Shannon entropy (ShE) of all cell types in the ovary, oviduct, uterus, cervix, and vagina in diestrus compared with other

phases of the cycle and old age. Dots on the left side of the y axis indicate increased entropy relative to diestrus (e.g., higher ShE in old age compared with

diestrus) and dots on the right side indicate decreased entropy.

(E) Difference of mean plotted against differential Shannon entropy between young and old for all genes in fibroblasts in the ovary.
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