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Alignment and variant calling

CRAM-level data for all previously and newly sequenced samples were realigned to
the human genome build GRCh38 using the BWA tool (version 0.7). Variants were
jointly called using the Genome Analysis Toolkit (GATK, version 4.1), following the
Broad Institute best-practice guidelines for germline single nucleotide variants (SNVs)
and short insertions/deletions (indels). Briefly, HaplotypeCaller was used in GVCF
mode to process samples individually, such that every position in the genome was
assigned with a likelihood of being or not being a variant. The GenomicsDB
(https://github.com/Intel-HLS/GenomicsDB) tool was used then to import and merge
the per-sample GVCF genotype data. Samples were then jointly genotyped for high
confidence alleles using the GenotypeGVCFs tool. The Variant Quality Score
Recalibration (VQSR) in GATK was applied independently for SNVs and indels to
assess variant call accuracy. The complete process was executed using standard
pipelines from the Human Genetics Informatics (HGI) unit at the Wellcome Trust
Sanger Institute (WTSI).

To perform scalable downstream analysis of the sequencing data, the multi-sample
cohort-VCF generated from the previous step was imported into Hail 0.2
(https://hail.is), a python-like library for analysing genomic data at scale, using the
function hl.import_vcf. Subsequence sample- and variant-level quality control (QC)
was performed using the Hail framework (see below), following mainly the workflows
proposed by the gnomAD project!, otherwise explicitly specified. The Hail-based
pipelines used in this study are publicly available on GitHub

(https://github.com/enriquea/wes_chd_ukbb).
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Sample QC

Hard filters.

To compute sample QC metrics, a set of high-confidence variants was defined by
applying the following criteria: (i) bi-allelic, (ii) variants with high call-rate (> 0.99)
across all samples in the call set and (iii) common single nucleonic variants (allelic
frequency > 0.1%). The individual's chromosomal sex was inferred by calculating the
inbreeding coefficient (F-stat) on chromosome X over the set of variants described
above. The hl.impute_sex Hail function was used to perform the computation. This
approach adopts the same implementation as the PLINK tool (v1.7). In addition, the
coverage of the chromosome Y (normalized to chromosome 20) was used with the F
stat to define the sample sex as follow: male: F > 0.6 and normalized Y coverage >
0.1, female: F < 0.4 and normalized Y coverage < 0.1. Samples with values outside
these ranges were labelled as sex unspecific (Supplemental data, Figure S1).
Samples were marked as failing hard filters if: a) chromosomal sex was unspecific, b)
exhibited sample-specific low call rates (< 0.85) and c) mean coverage on
chromosome 20 was equal to zero. Table S1 (Supplemental data) summarises the

number of samples affected per hard filter.

Inferring population ancestry.
The 1000 Genomes Phase 3 sequence data aligned to the human genome build

GRCh38 (European Variation Archive (EVA) accession: PRJEB30460) was used to
impute the global ancestry within the samples in the exome sequencing cohort. Both
datasets were first merged based on locus and reference/alternate alleles. After

merging, the Hail function hl.hwe_normalized_pca was used to compute the top 15
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principal components on the subset of the well-behaved variants, defined as described
above (see Hard filters section). A total of ~76,000 variants were included in the final
set.

The set of 2,548 samples with known ancestry (from the 1000 Genomes Phase 3
dataset) was leveraged to build a random forest-based classifier using the top 15
computed principal components (PCs) as input features. Two-thirds of these samples
were used as a training dataset and the remainder used as a test dataset. This step
was combined with a recursive feature (a.k.a principal components) elimination
procedure to define the optimal combination of PCs achieving the highest accuracy in
the classification on the test data. In addition, a 10-fold cross-validation step was used
for tuning the model parameters as previously described?.

The model achieving the highest accuracy (>0.97) was then used to predict the
ancestry of the remaining samples (discovery dataset with unknown ancestry). Each
sample was broadly assigned to one of European (EUR), American (AMR), African
(AFR), East Asian (EAS) or South Asian (SAS) population labels if random forest
probability (p) > 0.8. Samples failing this threshold were labelled as OTHER. Figure
S2 and Table S2 (Supplemental data) summarise the ancestry inference process
results. The implemented approach showed high accuracy in classifying samples with

reported ethnicity from the UK Biobank cohort (Supplemental data, Table S3).

Inferring sample relatedness.
The hl.pc_relate function from Hail was used to compute the relatedness between

samples. Relatedness was computed among samples passing the hard filters. A
variant was considered for inferring relatedness if it met the following criteria: 1)

protein-coding exonic variant, 2) autosomal, 3) bi-allelic single nucleotide variants
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(SNVs), 4) call rate across samples > 95%, 5) allele frequency (internal) > 1% and 6)
LD-pruned with a cut-off at r2 = 0.1. After running hl.pc_relate, Hail's
hl.maximal_independent_set function was used to select the largest set of samples
with no pair of samples related at the second-degree relatedness or closer (kinship
coefficient > 0.125), prioritising cases over controls. This process filtered out a total of

3,782 samples (either twin/duplicated or first-degree relatives).

Platform inference.
Detailed capture platform meta-data information was missing for a fraction of the

samples within the assembled cohort (~20%). To impute a platform for these samples,
we adopted the data-driven approach proposed by gnomAD". In brief, a list of the
known exome capture intervals across multiple exome capture products was compiled
for imputing samples platforms (including Agilent Sure Select All Exons products
(version 2 to 5) and IDT xGEN). Only bi-allelic variants falling within these regions
were included in the analysis. A sample per interval call-rate matrix was computed by
considering the set of biallelic variants within each interval. The call-rate values were
further discretised as non-called (0) and called (1) by applying a call-rate cut-off at
0.25 and principal component analysis performed on the discrete matrix. The top
seven principal components (variance explained higher than 98%) were used as input
for HDBSCAN (https://hdbscan.readthedocs.io), an unsupervised clustering method
that allowed us to group and assign generic sample platform labels. Figure S3 shows
the samples projected onto principal components two and three. This method
assigned the platform accurately for 100% of the samples in the UK Biobank (those

with known platform labels), demonstrating the validity of this approach.
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Platform- and population-specific outliers filtering.

Sample ancestry and capture platform are two of the most frequent cofounders when
analysing exome sequencing data. Thus, we computed a set of sample quality control
metrics stratified by population and platform to detect sample outliers. Specifically, we
computed the number of deletions, the number of insertions, the number of SNVs, the
ratio of deletions to insertions, the ratio of transitions to transversions, and the ratio of
heterozygous to homozygous variants using the Hail function hl.sample_qgc. A sample
was marked as an outlier and filtered out if the value for a given QC metric was four
median absolute deviations (MAD) from its median. Table S4 (Supplemental data)

summarises the number of samples detected as outliers per evaluated QC metric.

Final sample QC and evaluation.
After applying the above sample QC steps and filtering out the samples without

approval for analysis, our cohort consisted of 49,308 samples (Supplemental data,
Table S5). At this stage, multi-allelic variants were split using the Hail function
hl.split_multi_hts, and the dataset was filtered to high-quality genotypes. Genotypes
were defined as high-quality if: a) dept of coverage >= 10, b) genotype quality >= 20
and c) genotype allele balance of heterozygotes > 0.20.

In addition, we evaluated the per sample distribution of the depth of coverage (DP)
and genotype quality (GQ) stratified by case/control and male/female status. Our
analysis revealed a comparable distribution of these metrics between cases/controls
(Supplemental data, Figure S4) and male/females (Supplemental data, Figure S5).
Mean DP values ranged between 20-35X (recommended cut-off is >10X) whereas GQ

values ranged between 50-80 (recommended cut-off is >20).
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Variant QC

To define a set of high-quality variants for downstream analysis, we then applied

several QC steps to the variants present in samples passing the sample QC process.

Hard filters.

We followed the variant QC scheme proposed by Karczewski et al.', where variants
were flagged as failing hard filters if they showed a) an excess of heterozygotes
(inbreeding coefficient < -0.3) and b) an absence of at least one sample with a high-

quality genotype (allele-count zero, as defined above).

RF model.

A random forest (RF) model was trained and applied to distinguish true variations from
potential false positives'. Positive training sets were downloaded from gnomAD
repository  (gs://gcp-public-data--gnomad/truth-sets/hail-0.2).  Variants  failing
traditional GATK hard filters (QD < 2 or FS > 60 or MQ < 30) were used as a negative
training set. Allele- and site-specific sequencing quality metrics were used as features
for training the model (Supplemental data, Table S6). Features were imputed using
its median where the value was missing. The chromosome 20 (test set) was left out of
the training process for evaluation proposes. The final RF model achieved an accuracy
>0.97 on this set of variants (test set). A variant was filtered out if the RF probability of

being false positive was higher than 0.8.
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VQSR filter.

In addition to the proposed RF model, we applied the conventional GATK Variant
Quality Score Recalibration (VQSR) as a complementary approach to filter out low-
quality variants. We used the recommended annotations and training datasets as
suggested by the GATK best practices (https://gatkforums.broadinstitute.org/gatk).
Both SNVs and indels were excluded if they failed the VQSR filter, according to the
default settings. This allowed us to identify a fraction of variants that were likely false

positives that passed the RF filter (Supplemental data, Figure S6).

Coverage.
Finally, we defined a variant as passing the QC if a) was covered by the major capture

platforms used in the assembled cohort (different versions of Agilent Sure Select All
Exome and IDT xGen panel 1 and b) showed coverage of 10X or more in at least the

90% of the samples in the gnomAD genome dataset (version 3.1.0).

Table S7 (Supplemental data) summarises the number of variants affected by each

applied filter and the final number of variants considered for further analysis.

Variant annotation

The cohort-VCF file was annotated using the Variant Effect Predictor tool (AP version
94) with the flag --everything. The most severe variant consequence per protein-
coding transcript was considered. The variant consequence severity was set based
on the severity rank from Ensembl (https://www.ensembl.org), which prioritise variants

as follows: protein-truncating > protein-altering > synonymous variants. The VEP tool
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functionalities were extended by using the plug-ins CADD (version 1.6) and dbNSFP?

(version 4.1a) to annotate different missense variant pathogenicity scores (CADD*,

MPC?®, REVEL® and MVP7).
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Supplemental Data (Sample and Variant QC)
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Figure S1. a) Inbreeding coefficient (F-stat) distribution computed over 57,628 samples. b) Inbreeding coefficient
(x-axis) vs. normalized chromosome Y coverage (y-axis). Sample chromosomal sex was defined as follow, i)
female: F < 0.4 and coverage chrY < 0.1, ii) male: F > 0.6 and coverage chrY > 0.1, iii) aneuploidy: F < 0.4 and

coverage chrY >= 0.1, iv) samples failing any of these criteria were flagged as ‘ambiguous sex’.

Table S1. The number of affected samples per hard filter.

Hard filters N. of samples Percent (%)
Low call rate 9 0.02
Low coverage 1 0.00
Ambiguous sex 30 0.05
Sex aneuploidy 34 0.06

Filters combined 72 0.12
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Figure S2. Samples projected onto the top four ancestry principal components (PCs) and their classification into
five major ancestral populations. Samples were assigned to SAS, EAS, AMR, AFR or EUR if random forest
probability (p) > 0.8. Samples failing this threshold were labelled as OTHER (grey). a) PC1 vs PC2 and b) PC3 vs

PCA4.

Table S2. The number of samples assigned per population. As expected, most samples were assigned to
European ancestries (~91%). Approximately 3% of the samples were not assigned to a specific population

(labelled as OTHER).

Population N. of samples Percent (%)
AFR 1,196 2.07
AMR 111 0.19
EAS 313 0.54
EUR 52,844 91.63
OTHER 1,772 3.07

SAS 1,437 2.49
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Table S3. Confusion matrix with assigned population vs reported ethnicity for samples from the UK Biobank

(UKBB).

Assigned Reported N. of samples per N. of samples per Percent true
population ethnicity assigned population reported ethnicity classified (%)

AFR African 319 332 96.08
EUR British 42450 43184 98.30
EAS Chinese 169 173 97.69
SAS Indian 690 708 97.46
EUR Irish 1495 1498 99.80
SAS Pakistani 138 138 100.00
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Figure S3. Samples projected onto the platform's principal components (PC) two and three. No generic platform
(grey dots) was assigned for less than 0.5% of the samples (n=233). The proposed clustering approach accurately

assigned 100% of the samples in the UK Biobank cohort (samples with known capture platform information,

orange cluster). The exome capture platform intervals used in the analysis are described in the Methods section.
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Table S4. The number of samples detected as outliers by evaluating different sample quality control (QC)
metrics. Samples were grouped as per assigned population/platform, and QC metrics were computed per group.

Multiple samples (n=104) were detected as outliers by two or more QC metrics.

QC metrics N. of sample outliers Percent (%)

Number of SNPs 134 0.23
Number of deletions 85 0.15
Number of insertions 85 0.15
Ratio transmission/transversion 89 0.15
Ratio insertion/deletion 14 0.02
Ratio heterozygous/homozygous 266 0.46

Table S5. Number of remaining samples after each filter stage. *Population filter refers here to samples with

assigned European ancestries.

Filter stages Remaining samples

Unfiltered 57,628
Hard filters 57,560
Hard filters, relatedness 53,862
Hard filters, relatedness, QC outliers 53,507

Hard filters, relatedness, QC outliers, *population 49,308
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Figure S4. Distribution of per sample averaged QC metrics stratified by phenotype (case/control). a) Mean

depth of coverage (DP) and b) Mean genotype quality (GQ). QC metrics were computed per sample across

autosomal variants.
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Figure S5. Distribution of per sample averaged QC metrics stratified by sex (female/male). a) Mean depth of

coverage (DP) and b) Mean genotype quality (GQ). QC metrics were computed per sample across autosomal

variants.
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Table S6. Features used in the random forest model to predict the variant probability of being true positive or

false positive.

RF features Description Importance
variant_type SNV or indel 0.011
SOR Symmetric Odds Ratio of 2x2 contingency table to 0.105

detect strand bias

ReadPosRankSum Z-score from Wilcoxon rank-sum test of Alt vs Ref read 0.016
position bias
InbreedingCoeff Inbreeding coefficient as estimated from the genotype 0.103

likelihoods per-sample when compared against the

Hardy-Weinberg expectation

FS Phred-scaled p-value using Fisher's exact test to detect 0.041
strand bias

DP Approximate read depth 0.003

Qb Allele-specific Variant Confidence/Quality by Depth 0.704

was_mixed True if both SNVs and indels are present at the site 0.001

n_alt_alleles Number of alleles at the site 0.001

MQRankSum Z-score From Wilcoxon rank-sum test of Alt vs Ref read 0.010

mapping qualities
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Table S7. The number of remaining variants per filter stage. RF: Random Forest filter, VQSR: Variant Quality

Score Recalibration, Coverage: >10X in at least 90% of the samples in gnomAD genome cohort.

Filter stages Remaining variants
Unfiltered 11,433,645
Hard filters 11,406,658
Hard filters, RF 9,490,151
Hard filters, RF, VQSR 9,191,448
Hard filters, RF, VQSR, Coverage 9,134,464
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Figure S6. Variant quality score recalibration (x-axis) vs Radom Forest (RF) probability of being true positive (y-
axis). Variants (SNVs and indels) are depicted for chromosome 20. The dashed line indicates the cut-off used for
the RF probability (=0.2). Concordant (red dots): variants pass both the RF and VQSR filters; discordant (blue

dots): variants fail at least one of the RF or VQSR filters.



