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Alignment and variant calling 
CRAM-level data for all previously and newly sequenced samples were realigned to 

the human genome build GRCh38 using the BWA tool (version 0.7). Variants were 

jointly called using the Genome Analysis Toolkit (GATK, version 4.1), following the 

Broad Institute best-practice guidelines for germline single nucleotide variants (SNVs) 

and short insertions/deletions (indels). Briefly, HaplotypeCaller was used in GVCF 

mode to process samples individually, such that every position in the genome was 

assigned with a likelihood of being or not being a variant. The GenomicsDB 

(https://github.com/Intel-HLS/GenomicsDB) tool was used then to import and merge 

the per-sample GVCF genotype data. Samples were then jointly genotyped for high 

confidence alleles using the GenotypeGVCFs tool. The Variant Quality Score 

Recalibration (VQSR) in GATK was applied independently for SNVs and indels to 

assess variant call accuracy. The complete process was executed using standard 

pipelines from the Human Genetics Informatics (HGI) unit at the Wellcome Trust 

Sanger Institute (WTSI). 

To perform scalable downstream analysis of the sequencing data, the multi-sample 

cohort-VCF generated from the previous step was imported into Hail 0.2 

(https://hail.is), a python-like library for analysing genomic data at scale, using the 

function hl.import_vcf. Subsequence sample- and variant-level quality control (QC) 

was performed using the Hail framework (see below), following mainly the workflows 

proposed by the gnomAD project1, otherwise explicitly specified. The Hail-based 

pipelines used in this study are publicly available on GitHub 

(https://github.com/enriquea/wes_chd_ukbb). 
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Sample QC 

Hard filters.  
To compute sample QC metrics, a set of high-confidence variants was defined by 

applying the following criteria: (i) bi-allelic, (ii) variants with high call-rate (> 0.99) 

across all samples in the call set and (iii) common single nucleonic variants (allelic 

frequency > 0.1%). The individual's chromosomal sex was inferred by calculating the 

inbreeding coefficient (F-stat) on chromosome X over the set of variants described 

above. The hl.impute_sex Hail function was used to perform the computation. This 

approach adopts the same implementation as the PLINK tool (v1.7). In addition, the 

coverage of the chromosome Y (normalized to chromosome 20) was used with the F 

stat to define the sample sex as follow: male: F > 0.6 and normalized Y coverage > 

0.1, female: F < 0.4 and normalized Y coverage < 0.1. Samples with values outside 

these ranges were labelled as sex unspecific (Supplemental data, Figure S1). 

Samples were marked as failing hard filters if: a) chromosomal sex was unspecific, b) 

exhibited sample-specific low call rates (< 0.85) and c) mean coverage on 

chromosome 20 was equal to zero. Table S1 (Supplemental data) summarises the 

number of samples affected per hard filter. 

 

Inferring population ancestry.  
The 1000 Genomes Phase 3 sequence data aligned to the human genome build 

GRCh38 (European Variation Archive (EVA) accession: PRJEB30460) was used to 

impute the global ancestry within the samples in the exome sequencing cohort. Both 

datasets were first merged based on locus and reference/alternate alleles. After 

merging, the Hail function hl.hwe_normalized_pca was used to compute the top 15 
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principal components on the subset of the well-behaved variants, defined as described 

above (see Hard filters section). A total of ~76,000 variants were included in the final 

set. 

The set of 2,548 samples with known ancestry (from the 1000 Genomes Phase 3 

dataset) was leveraged to build a random forest-based classifier using the top 15 

computed principal components (PCs) as input features. Two-thirds of these samples 

were used as a training dataset and the remainder used as a test dataset. This step 

was combined with a recursive feature (a.k.a principal components) elimination 

procedure to define the optimal combination of PCs achieving the highest accuracy in 

the classification on the test data. In addition, a 10-fold cross-validation step was used 

for tuning the model parameters as previously described2. 

The model achieving the highest accuracy (>0.97) was then used to predict the 

ancestry of the remaining samples (discovery dataset with unknown ancestry). Each 

sample was broadly assigned to one of European (EUR), American (AMR), African 

(AFR), East Asian (EAS) or South Asian (SAS) population labels if random forest 

probability (p) > 0.8. Samples failing this threshold were labelled as OTHER. Figure 

S2 and Table S2 (Supplemental data) summarise the ancestry inference process 

results. The implemented approach showed high accuracy in classifying samples with 

reported ethnicity from the UK Biobank cohort (Supplemental data, Table S3). 

 

Inferring sample relatedness. 
 The hl.pc_relate function from Hail was used to compute the relatedness between 

samples. Relatedness was computed among samples passing the hard filters. A 

variant was considered for inferring relatedness if it met the following criteria: 1) 

protein-coding exonic variant, 2) autosomal, 3) bi-allelic single nucleotide variants 
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(SNVs), 4) call rate across samples > 95%, 5) allele frequency (internal) > 1% and 6) 

LD-pruned with a cut-off at r2 = 0.1. After running hl.pc_relate, Hail's 

hl.maximal_independent_set function was used to select the largest set of samples 

with no pair of samples related at the second-degree relatedness or closer (kinship 

coefficient > 0.125), prioritising cases over controls. This process filtered out a total of 

3,782 samples (either twin/duplicated or first-degree relatives). 

 

Platform inference.  
Detailed capture platform meta-data information was missing for a fraction of the 

samples within the assembled cohort (~20%). To impute a platform for these samples, 

we adopted the data-driven approach proposed by gnomAD1. In brief, a list of the 

known exome capture intervals across multiple exome capture products was compiled 

for imputing samples platforms (including Agilent Sure Select All Exons products 

(version 2 to 5) and IDT xGEN). Only bi-allelic variants falling within these regions 

were included in the analysis. A sample per interval call-rate matrix was computed by 

considering the set of biallelic variants within each interval. The call-rate values were 

further discretised as non-called (0) and called (1) by applying a call-rate cut-off at 

0.25 and principal component analysis performed on the discrete matrix. The top 

seven principal components (variance explained higher than 98%) were used as input 

for HDBSCAN (https://hdbscan.readthedocs.io), an unsupervised clustering method 

that allowed us to group and assign generic sample platform labels. Figure S3 shows 

the samples projected onto principal components two and three. This method 

assigned the platform accurately for 100% of the samples in the UK Biobank (those 

with known platform labels), demonstrating the validity of this approach. 
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Platform- and population-specific outliers filtering.  
Sample ancestry and capture platform are two of the most frequent cofounders when 

analysing exome sequencing data. Thus, we computed a set of sample quality control 

metrics stratified by population and platform to detect sample outliers. Specifically, we 

computed the number of deletions, the number of insertions, the number of SNVs, the 

ratio of deletions to insertions, the ratio of transitions to transversions, and the ratio of 

heterozygous to homozygous variants using the Hail function hl.sample_qc. A sample 

was marked as an outlier and filtered out if the value for a given QC metric was four 

median absolute deviations (MAD) from its median. Table S4 (Supplemental data) 

summarises the number of samples detected as outliers per evaluated QC metric. 

 

Final sample QC and evaluation.  
After applying the above sample QC steps and filtering out the samples without 

approval for analysis, our cohort consisted of 49,308 samples (Supplemental data, 

Table S5). At this stage, multi-allelic variants were split using the Hail function 

hl.split_multi_hts, and the dataset was filtered to high-quality genotypes. Genotypes 

were defined as high-quality if: a) dept of coverage >= 10, b) genotype quality >= 20 

and c) genotype allele balance of heterozygotes > 0.20. 

In addition, we evaluated the per sample distribution of the depth of coverage (DP) 

and genotype quality (GQ) stratified by case/control and male/female status. Our 

analysis revealed a comparable distribution of these metrics between cases/controls 

(Supplemental data, Figure S4) and male/females (Supplemental data, Figure S5). 

Mean DP values ranged between 20-35X (recommended cut-off is >10X) whereas GQ 

values ranged between 50-80 (recommended cut-off is >20).  
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Variant QC 
To define a set of high-quality variants for downstream analysis, we then applied 

several QC steps to the variants present in samples passing the sample QC process.  

 

Hard filters.  
We followed the variant QC scheme proposed by Karczewski et al.1, where variants 

were flagged as failing hard filters if they showed a) an excess of heterozygotes 

(inbreeding coefficient < -0.3) and b) an absence of at least one sample with a high-

quality genotype (allele-count zero, as defined above). 

 

RF model.  
A random forest (RF) model was trained and applied to distinguish true variations from 

potential false positives1. Positive training sets were downloaded from gnomAD 

repository (gs://gcp-public-data--gnomad/truth-sets/hail-0.2). Variants failing 

traditional GATK hard filters (QD < 2 or FS > 60 or MQ < 30) were used as a negative 

training set. Allele- and site-specific sequencing quality metrics were used as features 

for training the model (Supplemental data, Table S6). Features were imputed using 

its median where the value was missing. The chromosome 20 (test set) was left out of 

the training process for evaluation proposes. The final RF model achieved an accuracy 

>0.97 on this set of variants (test set). A variant was filtered out if the RF probability of 

being false positive was higher than 0.8. 
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VQSR filter.  
In addition to the proposed RF model, we applied the conventional GATK Variant 

Quality Score Recalibration (VQSR) as a complementary approach to filter out low-

quality variants. We used the recommended annotations and training datasets as 

suggested by the GATK best practices (https://gatkforums.broadinstitute.org/gatk). 

Both SNVs and indels were excluded if they failed the VQSR filter, according to the 

default settings. This allowed us to identify a fraction of variants that were likely false 

positives that passed the RF filter (Supplemental data, Figure S6). 

 

Coverage.  
Finally, we defined a variant as passing the QC if a) was covered by the major capture 

platforms used in the assembled cohort (different versions of Agilent Sure Select All 

Exome and IDT xGen panel 1 and b) showed coverage of 10X or more in at least the 

90% of the samples in the gnomAD genome dataset (version 3.1.0). 

 

Table S7 (Supplemental data) summarises the number of variants affected by each 

applied filter and the final number of variants considered for further analysis. 

 

Variant annotation 
The cohort-VCF file was annotated using the Variant Effect Predictor tool (API version 

94) with the flag --everything. The most severe variant consequence per protein-

coding transcript was considered. The variant consequence severity was set based 

on the severity rank from Ensembl (https://www.ensembl.org), which prioritise variants 

as follows: protein-truncating > protein-altering > synonymous variants. The VEP tool 
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functionalities were extended by using the plug-ins CADD (version 1.6) and dbNSFP3 

(version 4.1a) to annotate different missense variant pathogenicity scores (CADD4, 

MPC5, REVEL6 and MVP7).  
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Supplemental Data (Sample and Variant QC) 
 
 

 
 
Figure S1. a) Inbreeding coefficient (F-stat) distribution computed over 57,628 samples. b) Inbreeding coefficient 

(x-axis) vs. normalized chromosome Y coverage (y-axis). Sample chromosomal sex was defined as follow, i) 

female: F < 0.4 and coverage chrY < 0.1, ii) male: F > 0.6 and coverage chrY > 0.1, iii) aneuploidy: F < 0.4 and 

coverage chrY >= 0.1, iv) samples failing any of these criteria were flagged as ‘ambiguous sex’. 

 
 
 
 
Table S1. The number of affected samples per hard filter. 
 

Hard filters N. of samples Percent (%) 

Low call rate 9 0.02 

Low coverage 1 0.00 

Ambiguous sex 30 0.05 

Sex aneuploidy 34 0.06 

Filters combined 72 0.12 
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Figure S2. Samples projected onto the top four ancestry principal components (PCs) and their classification into 

five major ancestral populations. Samples were assigned to SAS, EAS, AMR, AFR or EUR if random forest 

probability (p) > 0.8. Samples failing this threshold were labelled as OTHER (grey). a) PC1 vs PC2 and b) PC3 vs 

PC4. 

 

 

Table S2. The number of samples assigned per population. As expected, most samples were assigned to 

European ancestries (~91%). Approximately 3% of the samples were not assigned to a specific population 

(labelled as OTHER).  

Population N. of samples Percent (%) 

AFR 1,196 2.07 

AMR 111 0.19 

EAS 313 0.54 

EUR 52,844 91.63 

OTHER 1,772 3.07 

SAS 1,437 2.49 
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Table S3. Confusion matrix with assigned population vs reported ethnicity for samples from the UK Biobank 

(UKBB). 

Assigned 

population 
Reported 

ethnicity 
N. of samples per 

assigned population 
N. of samples per 

reported ethnicity 
Percent true 

classified (%) 

AFR African 319 332 96.08 

EUR British 42450 43184 98.30 

EAS Chinese 169 173 97.69 

SAS Indian 690 708 97.46 

EUR Irish 1495 1498 99.80 

SAS Pakistani 138 138 100.00 

 
 

 
Figure S3. Samples projected onto the platform's principal components (PC) two and three. No generic platform 

(grey dots) was assigned for less than 0.5% of the samples (n=233). The proposed clustering approach accurately 

assigned 100% of the samples in the UK Biobank cohort (samples with known capture platform information, 

orange cluster). The exome capture platform intervals used in the analysis are described in the Methods section.  
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Table S4. The number of samples detected as outliers by evaluating different sample quality control (QC) 

metrics. Samples were grouped as per assigned population/platform, and QC metrics were computed per group. 

Multiple samples (n=104) were detected as outliers by two or more QC metrics.  

QC metrics N. of sample outliers Percent (%) 

Number of SNPs 134 0.23 

Number of deletions 85 0.15 

Number of insertions 85 0.15 

Ratio transmission/transversion 89 0.15 

Ratio insertion/deletion 14 0.02 

Ratio heterozygous/homozygous 266 0.46 

 
 

 

 

 

Table S5. Number of remaining samples after each filter stage. *Population filter refers here to samples with 

assigned European ancestries. 

 

Filter stages Remaining samples 

Unfiltered 57,628 

Hard filters 57,560 

Hard filters, relatedness 53,862 

Hard filters, relatedness, QC outliers 53,507 

Hard filters, relatedness, QC outliers, *population 49,308 
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Figure S4. Distribution of per sample averaged QC metrics stratified by phenotype (case/control). a) Mean 

depth of coverage (DP) and b) Mean genotype quality (GQ). QC metrics were computed per sample across 

autosomal variants. 

 

 

Figure S5. Distribution of per sample averaged QC metrics stratified by sex (female/male). a) Mean depth of 

coverage (DP) and b) Mean genotype quality (GQ). QC metrics were computed per sample across autosomal 

variants. 
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Table S6. Features used in the random forest model to predict the variant probability of being true positive or 

false positive. 

RF features Description Importance 

variant_type SNV or indel 0.011 

SOR Symmetric Odds Ratio of 2x2 contingency table to 

detect strand bias 
0.105 

ReadPosRankSum Z-score from Wilcoxon rank-sum test of Alt vs Ref read 

position bias 
0.016 

InbreedingCoeff Inbreeding coefficient as estimated from the genotype 

likelihoods per-sample when compared against the 

Hardy-Weinberg expectation 

0.103 

FS Phred-scaled p-value using Fisher's exact test to detect 

strand bias 
0.041 

DP Approximate read depth 0.003 

QD Allele-specific Variant Confidence/Quality by Depth 0.704 

was_mixed True if both SNVs and indels are present at the site 0.001 

n_alt_alleles Number of alleles at the site 0.001 

MQRankSum Z-score From Wilcoxon rank-sum test of Alt vs Ref read 

mapping qualities 
0.010 
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Table S7. The number of remaining variants per filter stage. RF: Random Forest filter, VQSR: Variant Quality 

Score Recalibration, Coverage: >10X in at least 90% of the samples in gnomAD genome cohort. 

 

Filter stages Remaining variants 

Unfiltered 11,433,645 

Hard filters 11,406,658 

Hard filters, RF 9,490,151 

Hard filters, RF, VQSR 9,191,448 

Hard filters, RF, VQSR, Coverage 9,134,464 

 
 

 

 

Figure S6. Variant quality score recalibration (x-axis) vs Radom Forest (RF) probability of being true positive (y-

axis). Variants (SNVs and indels) are depicted for chromosome 20. The dashed line indicates the cut-off used for 

the RF probability (=0.2). Concordant (red dots): variants pass both the RF and VQSR filters; discordant (blue 

dots): variants fail at least one of the RF or VQSR filters.  

 


