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Cell polarity involves the asymmetric distribution of cellular
components such as signaling molecules and organelles within
a cell, asymmetries of a cell’s shape as well as contacts with
neighbouring cells. Gradients and mechanical forces often act
as global cues that bias cell polarity and orientation, and polar-
ity is coordinated by communication between adjacent cells.
Advances in fluorescence microscopy combined with deep learn-
ing algorithms for image segmentation open up a wealth of pos-
sibilities to understand cell polarity behaviour in health and
disease. We have therefore developed the open-source pack-
age Polarity-JaM, which offers versatile methods for perform-
ing reproducible exploratory image analysis. Multi-channel sin-
gle cell segmentation is performed using a flexible and user-
friendly interface to state-of-the-art deep learning algorithms.
Interpretable single-cell features are automatically extracted,
including cell and organelle orientation, cell-cell contact mor-
phology, signaling molecule gradients, as well as collective ori-
entation, tissue-wide size and shape variation. Circular statistics
of cell polarity, including polarity indices, confidence intervals,
and circular correlation analysis, can be computed using our
web application. We have developed data graphs for compre-
hensive visualisation of key statistical measures and suggest the
use of an adapted polarity index when the expected polarisation
direction or the direction of a global cue is known a priori.
The focus of our analysis is on fluorescence image data from en-
dothelial cells (ECs) and their polarisation behaviour. ECs line
the inside of blood vessels and are essential for vessel formation
and repair, as well as for various cardiovascular diseases, can-
cer, and inflammation. However, the general architecture of the
software will allow it to be applied to other cell types and im-
age modalities. The package is built in in Python, allowing re-
searchers to seamlessly integrate Polarity-JaM into their image
and data analysis workflows, see https://polarityjam.
readthedocs.io. In addition, a web application for statis-
tical analysis, available at www.polarityjam.com, and a Na-
pari plugin are available, each with a graphical user interface to
facilitate exploratory analysis.
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Introduction
Cellular polarity is important in many biological phenomena
spanning from developmental processes to wound healing

and angiogenesis. Cell migration, cell division, and morpho-
genesis depend on prior polarisation and breaking of spatial
symmetry. Spatial reorganisation of the plasma membrane,
cytoskeleton, cell-cell junctions, or organelles is required to
establish an axis of polarity with a distinct direction, mean-
ing ‘front and back’, to guide directed processes (1). In these
processes, cells have to adapt and react according to multiple
and often conflicting cues from their environment (2).
Fluorescence microscopy has become an invaluable tool for
producing high-resolution, high-content images of in vitro
systems as well as in vivo tissues. These images can be ob-
tained at subcellular resolution of less than one micron, with
multiple fluorescence channels acquired in parallel, often on
multiple planes, allowing for detailed quantification of cellu-
lar polarity and asymmetries. At the same time, deep learn-
ing segmentation algorithms have developed at a staggering
pace over the past few years, enabling the segmentation of in-
dividual cells and organelles with near-human accuracy (3–
8). This opens up a wealth of unprecedented possibilities,
but also creates new challenges for comprehensible and in-
terpretable image data analysis workflows that fully exploit
these new potentials.
Each cell has a unique shape, a particular spatial distribu-
tion of organelles, and contains different absolute amounts
(measured by intensity) and distributions (gradients) of pro-
tein species. In addition, junctional cell-cell contacts exist
with their own morphological phenotypes. Taken together,
this image-based information provides a snapshot of a cell’s
state, which we aim to turn into quantitative and comparable
features. We demonstrate our investigations on image data
from endothelial cells (ECs). ECs line the inside of blood
vessels and play a crucial role in organ function and health
of the whole organism. Migration of these cells is impor-
tant for vessel formation and repair, but can also be involved
in disease processes in the cardiovascular system, cancer, or
inflammation. ECs experience shear stress when blood flow
passes through blood vessels, causing alterations at the col-
lective and single cell level, including changes in EC polar-
ity, alignment, shape, size, junctions, and gene expression.
We describe some of the measurements and their biological
correlates, see Fig. 1. The location or distribution of the or-
ganelle in the cell may be quantified in relation to the nu-
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Fig. 1. A: Endothelial cells under static conditions have a random polarity, while endothelial cells exposed to flow (the direction is indicated by the black arrow) are polarised
against flow (indicated here by the relative nuclei-Golgi polarity) and elongate. B: Examples of image-based cellular polarity, morphology, and cell-cell junction readouts in
Polarity-JaM.

cleus or the cell centre. For example, the position of nucleus
and Golgi apparatus are used to compute orientation vec-
tors for each cell, see Fig. 1 A,B. Nuclei-Golgi polarity has
been positively correlated with directed motility (9) and cell
orientation in tissue (10) in several cell types, including en-
dothelial and epithelial cells. EC polarity can be induced by
multiple signaling cues, including shear stress and VEGFA,
which can be in competition with each other (11). Various EC
shear stress sensors have been identified that induce EC po-
larisation, including Piezo1, plexinD1, focal adhesions (FA),
the VEGFR2 / PECAM1 / VE-cadherin complex, or caveo-
lae (12). As a result, ECs adapt their shape and orientation
to shear forces (10, 13). Cell shape is often measured us-
ing circularity, shape index, or length-to-width ratio (LWR).
The LWR has been positively correlated with VEGFA treat-
ment in all EC types (14), the collective signature also differs
across organs and microenvironments (15). Collective cellu-
lar orientation has also been correlated with both shear flow
types, pulsatile and laminar, which have been shown to or-
ganise collective EC phenotypes. Pulsatile flow does not or-
ganise the direction of orientation as strongly as laminar flow
(16, 17).

A major challenge in the creation of every image analysis
pipeline is identifying and measuring informative features.
This search has a large iterative component and is based on
precise and accurate measurement of the relevant microscopy
data (18). Several studies have proposed new meaningful
measures such as Quantify Polarity (19), Junction Mapper
(20) and Griottes (21) or reviewed existing ones (18). How-
ever, it is not yet possible to integrate these different as-
pects into a single pipeline and perform a multivariate anal-
ysis. These requirements and constraints motivated the de-
velopment of the Polarity-JaM package, which is built to
streamline the process of exploratory image analysis; this is

accomplished by providing the end user with functionality
that includes a wide range of features, explanatory metadata,
clear and concise documentation, and high testing coverage.
Proper meta-data and testing mean that parameters can be
tuned safely and systematically, and the functionality of the
three main components of the package can be -reasonably-
extended to new types of analysis. All relevant analysis can
be performed with our package, making installation and us-
age straightforward. For relevant terminology in our article,
we provide a glossary at the end of the supplement, see Ta-
ble S14.

To visualise and explore the wide range of cellular polarity,
morphology, and junction features, we have developed an R-
shiny application. In particular, our toolbox focusses on po-
larity data, which typically requires bespoke statistical tools
for circular data that are not available in standard toolboxes.
Circular statistics and correlations can be computed and vi-
sualised in scatter plots. We make use of phenotypic descrip-
tors that provide the user with bonafide summary statistics
that can be correlated with biological processes. For exam-
ple, flow-mediated morphogenesis in EC collectives, which
affects descriptors of cell elongation, cell shape, and nuclei
orientation, as well as nuclei-Golgi polarity and changes in
junctional morphology, can be directly correlated using cir-
cular statistics in our Web App. A central aim of our package
is to aggregate diverse biologically descriptive statistics un-
der the auspices of a single workflow that can measure mul-
tiple aspects of endothelial biology. In our Methods and Re-
sults section, relevant statistics are described and their com-
bined use demonstrated.

In this article, we present Polarity-JaM, an open-source soft-
ware suite for measuring cell features to describe collec-
tive behaviour in microscopic images. The engineering
of features is a non-trivial task and requires biological ex-
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pert knowledge as well as deep understanding of the data
and problem, which is explicitly addressed in our proposed
pipeline. We will discuss several examples typical for EC
flow assays, including quantification of polarity in subcellular
organelle arrangement, orientation of cell and nuclei shape,
subcellular signal asymmetries based on intensity measure-
ments, subcellular localisation of signaling processes, and
cell-cell junction morphology. In parallel, we will introduce
informative statistical plots that allow to display all relevant
information, including a circular histogram, the polarity in-
dex, confidence intervals and circular correlations - many of
these useful measures are often omitted or rarely used in the
quantification of collective cell systems. In summary, we pro-
pose a holistic image analysis workflow that is accessible to
the end user in bench science.

Results
Asymmetries in subcellular localisation of organelles.
Cell polarisation is a dynamic process that involves the reor-
ganisation of various cellular components, including the cy-
toskeleton, intracellular signaling molecules, organelles, and
the cell membrane. The nucleus is the most prominent or-
ganelle in eukaryotic cells and is constantly exposed to in-
trinsic and extrinsic mechanical forces that trigger dynamic
changes in nuclei morphology and position (22). The cen-
trosome is outside the nucleus, also referred to as the micro-
tubule organisation centre (MTOC) and, unlike its name, is
rarely located at the geometric centre of the cell (23, 24). The
Golgi apparatus is involved in the establishment of cell polar-
ity by sorting and packaging proteins into distinct membrane-
bound vesicles that are then trafficked to different parts of the
cell (25). In most animal cells, the Golgi apparatus is one
complex, and its position is frequently used as a read-out for
cell polarity and indicator of migration direction. Note that
there are several other organelles in other cell types that could
be used as readouts, which are not discussed here. In sum-
mary, organelles are positioned around the nucleus, and their
positions are crucial to many directed processes, such as cell
division, directed migration, asymmetric adhesion, or hetero-
geneous cell-cell contact. Their positioning may have pas-
sive or active effects on crucial mechanisms, including Rho
GTPase signaling, but also Map Kinase signalling (26, 27).
Sprouting angiogenesis and vascular remodelling are based
on EC polarity and directed migration (28, 29). A common
readout in microscopic images of ECs in vivo and in vitro are
relative nuclei-Golgi locations. In response to flow-induced
shear stress, the Golgi is located upstream of the nucleus
against the flow direction (10). The nuclei-Golgi polarity is
often used as a proxy for the migration direction in static im-
ages.
We will exemplify our approach using nuclei-Golgi position-
ing and nucleus displacement as read-out; see Fig. 2. We ap-
plied shear stress levels of 6 dyne/cm2 and 20 dyne/cm2 for
4 h under different media conditions, to induce robust collec-
tive polarisation of the EC monolayers (see Fig. 2). Micro-
scopic images contained a junction channel, a nuclei channel,
and Golgi staining. An example image is shown in Fig. S1A

and Fig. S2. Using the Cellpose (4) algorithm, we obtained
segmentations for cells and nuclei. Golgi segmentations were
obtained by applying Otsu thresholding directly to the Golgi
stained channel and superimposing the resulting mask with
the cell segmentation from Cellpose. The results are shown
in Fig. S1 B. The nuclei-Golgi vectors were automatically
calculated for each cell, see Fig. 2 A. In tandem, we also
obtained vectors from the cell centres to the nuclei centres,
which provide a measure of the direction of nuclei displace-
ment.
The collective strength of polarisation is commonly mea-
sured using the polarity index (30), which is calculated as
the resultant vector of all orientation vectors from each single
cell. Mathematically we obtain a vector for every single cell,
which in our example points from the nucleus to the Golgi:

~ri =
(

cosαi
sinαi

)
. (1)

The average of the individual vectors is used to calculate the
resultant vector from

~r = 1
N

N∑
i=1

~ri, (2)

where N is the number of cells. The length of this vector,
computed from R= ‖~r‖, is called the polarity index (PI) and
its direction is the mean of the distribution. The value of
the polarity index varies between 0 and 1 and indicates how
much the distribution is concentrated around the mean direc-
tion. A polarity index close to 1 implies that the data are
concentrated around the mean direction, while a value close
to 0 suggests that the data are randomly distributed or spread
in several directions. In summary, the polarity index indicates
the collective orientation strength of the cell layer or tissue.
Note that the polarity index is closely related to the variance
of the distribution by S = 1−R. In Fig. 2 B,D,E the value of
the polarity index is shown and indicates the strength of the
collective flow response.
To complement this analysis, we introduce a signed polar-
ity index, which is a modified version of the V-score and is
calculated to obtain the V-test statistics (31). The signed po-
larity index assumes a known polar direction. For example, if
we assume that flow is orientated from left to right and ECs
polarise against flow, we set the polar direction to an angle
of µ0 = 0 in our reference system, see Fig. 2 B. The signed
polarity index is computed from:

V = cR, (3)
with c= cos(ᾱ−µ0). (4)

The signed polarity index varies between -1 and 1 and indi-
cates the strength of polarisation with respect to an assumed
polarisation direction. In our example, a value of -1 indi-
cates that all cells are perfectly orientated against flow, while
a value of 1 indicates that all cells are perfectly orientated
with flow. For values in between, the distribution is more
spread or diverges from the polar direction. Therefore, the
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Fig. 2. Asymmetric localisation of organelles as a measure for cell polarity. A: Human umbilical vein endothelial cells (HUVECs) in culture exposed to 20 dyne/cm2 shear
stress at 4 h. Nuclei-Golgi polarity [left] and displacement of the nuclei within each cell with respect to its centre [right]. Orientation is indicated by a cyclic colour scheme and
white arrows from the centre of the nuclei to the centre of the Golgi (nucleus-Golgi polarity) or from the centre of each cell to the nucleus (nucleus-displacement polarity). The
flow direction is always from left to right. Scale bar 20 µm . B: Circular histograms of the distribution of cell orientations of a single image; the red arrow indicates the mean
direction of the cell collective and its length is the polarity index. The red dashed lines indicate the 95% confidence intervals. Black dots indicate single-cell measurements.
The grey arrow indicates the polar vector that points in the direction of flow, and the length of the black bar indicates the signed polarity index (V). C: Circular correlation
of nuclei-Golgi polarity and nuclei displacement polarity. D: Ensemble plot of nuclei-Golgi polarity generated with the Polarity-JaM app for different flow conditions, each
containing several hundreds of cells from Nr ≥ 3 biological replicates. E: Ensemble plot of the nuclei displacement orientation polarity generated with the Polarity-JaM app
for different flow conditions, each containing several hundreds of cells from Nr ≥ 3 biological replicates.
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Fig. 3. Asymmetry in cell and nuclei shape and their orientation. A: Example input image. B,D: The major and minor axes of the cell (B) and nuclei (D) shapes are indicated
with white dashed lines. The angle of the major axis with the x-axis serves as a readout for the orientation of the cells (B) and nuclei (D), which is indicated with a circular
colour scheme ranging from 0 to 180 degrees. C: Circular correlation between cell shape orientation and nuclei orientation.

signed polarity index measures both the deviation from the
expected polarity direction and the spread of the distribution.
We suggest a graphical design for the representation of the
polarity index, the signed polarity index, the polar direction,
confidence intervals, circular histogram, and single measure-
ments, see supplementary Fig. S3.
The distribution of the polarity index (R) and signed polar-
ity index (V) for Ni = 30 images per condition is shown in
Fig. S4 A, B for the nuclei-Golgi polarity and in Fig. S4 C,D
for nuclei displacement. We found that the nulcei-Golgi po-
larisation of the ECs under shear stress is highly correlated
with the displacement of the nuclei and points in the opposite
direction, Fig. 2 B,C. We found the same behaviour for a wide
range of flow conditions; see Fig. 2 D,E and Fig. S4 E, but
with different magnitudes depending on the media conditions
and magnitude of shear stress. Our web application includes
a number of different statistical tests, including the Rayleigh
test, the V-test, Watson test, and Rao’s spacing test, see Sup-
plementary Note 6. It should be noted that these tests are not
appropriate for measurements of individual cells, given that
the groups of single cells within a monolayer or tissue ex-
hibit significant correlation. We therefore recommend the use
of estimation statistics (32) to calculate effect sizes Fig. S4
of collective parameters such as the polarity index (R) and

signed polarity index (V).
In (33) a systematic analysis has demonstrated that the V-test,
which is based on the computation of the signed polarity in-
dex, is recommended over other tests if an expected direction
is known a priori. Note that here we use the flow direction as
the polar direction, whereas for the V-test the expected polar-
isation direction must be used. For the nuclei-Golgi polarity,
for example, the expected polarisation direction points in the
opposite direction to the flow direction, while for the nuclei
displacement both the flow direction and the expected polar-
isation direction are the same. The signed polarity index in
our data provides a more accurate or comparable distinction
of all conditions with respect to control, in particular for 6
dyne/cm2 and 20 dyne/cm2. In conclusion, it is advantageous
to use the signed polarity index when the expected direction
of polarisation or the direction of an external signal is known
in advance.

Shape asymmetries. Cell morphology is an important as-
pect of cell biology as it provides insight into the structure
and function of a cell. Cell morphology can be used to
study the effects of different treatments on cells, the effects
of genetic mutations, to understand how cells interact with
their environment, and to identify potential therapeutic tar-
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gets for disease. Furthermore, the cell shape is strongly con-
nected to cell polarity, direction of cell movement, orienta-
tion of cell division, and organisation of the cytoskeleton.
The shape of the cell also affects the ability of cells to in-
teract with their environment and to respond to external sig-
nals. There are also different effects on the organisation of
molecules, the protrusion can function as small pockets and
reaction chambers, while signaling gradients are more easily
stabilised along the long axis of the cell than the short axis
(27, 34). Cell shape is also coupled with the migration di-
rection; for example, in keratocyte-like motion, polarisation
occurs along the short axis of the cell (35), while other cell
types migrate along the long axis (36).

Recent studies have shown that monolayer orientation is
modulated by both physical and chemical stimuli. Vion et
al. (17) show that shear stress and VEGF-A act to modulate
the cohesiveness of cell orientation in the endothelial mono-
layer. Physiochemical stimuli interact to modulate patterns
of EC interaction across scales. As shear stress increases,
endothelial cells polarise against flow, however, this pheno-
type is ablated with EC senescence. Furthermore, Deb et al.
(16) demonstrated that cell size is modulated by shear flow.
Longer exposure to shear flow decreases cell area, while in-
creasing cell aspect ratio across longer (approx. 48 h) time
scales. The size of ECs has also been positively correlated
with senescence (37). Laminar shear stress induces endothe-
lial cell elongation (38). Alteration in substrate stiffness leads
to changes in cell shape through mechanotransduction (39).
Furthermore, cell shape can be an indicator of the mesoscale
properties of tissue or cell monolayer and is often used as
an order parameter in soft matter physics (40). In summary,
cell shape and orientation are important readouts for directed
cellular processes.

We applied our workflow to endothelial cells exposed to 6
dyne/cm2. The angle of the major axis of the cell or nucleus
shape with the x axis serves as a readout for their orientation,
see Fig. 3A,B. Here, any angle αi is identified with its oppo-
site αi + 180, thus we do not distinguish the front and back
of the cell (or nucleus). An angular histogram showing the
angle distribution was then generated with our app, which in
this case is mirrored on the x-axis. Note that angular data of
cell shape and nuclei orientation angles are referred to as ax-
ial data, which means that all orientation angles αi,1, · · · ,N
take values between 0 and 180 degrees. These axial orienta-
tion data were converted to directional data by doubling all
values θi = 2αi. The mean direction was calculated from
ᾱ = θ

2 , where θ̄ is the common circular mean of the direc-
tional data θi. Similarly, the polarity index (R) was calculated
as the length of the mean resulting vector of directional val-
ues θi. Again, the polarity index varies between 0 and 1 and
indicates how much the distribution is concentrated around
the mean. A polarity index close to 1 implies that the data are
concentrated around the mean direction, while a value close
to 0 suggests that the data are evenly distributed or random.
The V-score can be computed in the same fashion as for di-
rected circular data (see Supplementary Note 6 for more de-
tails).

Changes in intracellular state or interactions with neighbour-
ing cells can also induce changes in the shape of the cell and
its organelles, in particular the nucleus (22). We tested the
coupling of cell shape orientation to nuclei orientation in ECs
and found a significant correlation, see Fig. 3. Similarly, we
found that cell elongation and nuclei elongation are coupled.
This shows that nuclei morphology and orientation can serve
as a proxy for shape elongation and orientation.
There are different commonly used measures of shape
changes that we divide into two groups. The first group is
determined by fitting an ellipse to the cell shape, identifying
its major (longest) and minor (shortest) axes. However, this
approach does not capture the complexity of protrusions such
as filopodia or lamellipodia. The second group is computed
from the relation of area and perimeter, such as, for example,
circularity or shape index (40), see Materials and Methods for
more details. In particular, the shape index has been popular
in soft matter physics to characterise the mesoscale properties
of tissues or cell monolayers as solid or fluid (41).

Quantification of intracellular signalling gradients.
Gradients or asymmetric distributions of signaling molecules
are inherent in cell polarity. Often these asymmetries are
decoded into rather small and subtle gradients that can be
amplified by signaling feedback systems, such as the Rho
GTPase system (42, 43). The establishment of these signal-
ing gradients within single cells allows cell collectives to re-
spond to their environment in a coordinated manner and is
used to control cell migration, differentiation, and other cel-
lular processes (44). Quantifying the direction and strength
of intracellular signaling gradients between different experi-
mental conditions is therefore crucial to gain insight into the
underlying processes.
The notch signaling pathway is involved in the regulation
of various genes responsible for angiogenesis (45) and has
been shown to be a mechanosensor in adult arteries (46).
Therefore, the effects of this pathway are of great interest.
We present an automatic quantification approach of signaling
gradients for each cell with the example of the NOTCH1 pro-
tein using our tool. We investigated both circular and linear
features. First, the marker polarity is a novel circular feature,
which can be described as the direction from the geometric
cell centre to the weighted centre of marker intensity of the
cell. Second, we computed the cue directional intensity ratio
as a linear feature, which can loosely be described as the ratio
between the mean intensities of the left-hand and right-hand
cell-half of a cell perpendicular to a given cue direction. We
provide a detailed description in the Materials and Methods
section. The ratio takes values ranging from [-1, 1] where -1
indicates a strong asymmetry against a direction of the cue, 0
without visible effect, and +1 a strong asymmetry along the
direction of the cue. An example image together with a vi-
sualisation of the cue directional intensity ratio and marker
polarity is shown in Fig. 4 A (from left to right). A simi-
lar approach of using ratios on opposite sides of the cell was
introduced by (47) to determine the magnitude and angle of
polarity of a given cell.
To investigate the polarity of the Notch1 signal, we compared

6 | bioRχiv Giese, Albrecht et al. | Polarity-JaM

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 27, 2024. ; https://doi.org/10.1101/2024.01.24.577027doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.24.577027
http://creativecommons.org/licenses/by/4.0/


Fig. 4. Notch signal signaling asymmetry in endothelial cell culture exposed to flow. A: Left shows the NOTCH1 signal (orange) combined with the junction channel (blue).
Middle shows the NOTCH1 (here called marker) cue directional intensity ratio. The blue circle inside each cell marks the centroid of the cell, while the vertical dashed red lines
are perpendicular to the flow direction and thus separate the cell to front and back. Right shows the marker polarity as a directional property. B: Shows the cue directional
intensity ratio of the NOTCH1 signal with respect to the flow direction before [left], after 30 minutes [middle], and after 2h [right] of exposure to shear stress. Statistics mean
+- std from left to right: -0.0026+-0.0539, 0.0687+-0.0597, 0.0512+-0.0609. C: The circular histogram of the polarity of the NOTCH1 signal before applying shear stress [left],
after 30 minutes of exposure [middle], and after 2 h of shear stress [right]. The red arrow points towards the collective mean direction of polarity, and its length represents the
polarity index. Dashed lines indicate the 95% confidence intervals of the circular mean. Black dots indicate single-cell measurements. D: Correlation between marker polarity
and directional intensity ratio.

ECs in static conditions and exposed to shear stress for a 2 h
time period. The images contained a junction and nucleus
channel as well as a NOTCH1 staining. The junction and
nucleus channel were used for segmentation to then quantify
the intracellular NOTCH1 signaling gradient.
The result of the analysis is shown in Fig. 4 bottom row. We
observed a shift in the marker cue directional intensity ra-
tio when comparing static and shear stress conditions. We
observed a rather small, but consistent change in mean, indi-
cating a small gradient of the NOTCH1 signal, with a lower
concentration on the flow facing side, Fig. 4 B. The results
of the marker polarity analysis showed strong asymmetry ef-
fects, see Fig. 4 C, with large polarity index of 0.647 and 0.47
and V-score of 0.639 and 0.458 at 30 min and 120 min, re-
spectively, while the mean was pointing along the direction
of flow. This confirms the results from (46). A circular-linear
correlation analysis between the polarity index and the direc-
tional intensity ratio of the cue revealed a correlation coeffi-
cient of 0.721, see Fig. 4 D, which implies a strong correla-
tion between both measurements. Since signaling gradients
in a single cell are rather small and sometimes noisy(48), ra-
tio values are expected to be close to zero and show higher
variance. However, the cue directional intensity ratio is a lin-
ear feature, easy to interpret, and can be compared between
experimental setups, which is why we included it in our set
of features. The marker polarity, on the contrary, is much
more sensitive, but does not measure the magnitude of the
gradients, but only their direction.

Localised marker expression of KLF4. To complement
our investigation of signal intensity gradients, we also char-

acterised the localisation of image-based signal intensities,
which indicate the localisation of specific processes. Lo-
calisation of cellular processes in biological cells is impor-
tant because it allows for precise regulation of downstream
processes, such as gene expression, protein synthesis, signal-
ing and other cellular activities. For instance, it is important
whether molecules are localised at the cell membrane, where
they might get activated via phosphorylation, or if they fulfil
other functions through anchoring to the membrane. Locali-
sation to the nucleus is also important for a variety of cellular
processes, including gene expression or RNA processing.
To quantify the signal in the different subcellular compart-
ments, we compute the total amount and concentration of sig-
nal intensity, in the nucleus, the cytosol (without the nucleus)
and the membrane nucleus, see Fig. 5 A. We demonstrate
the capabilities of the Polarity-JaM pipeline, by quantifying
the intensity ratio of Krüppel-like factor 4 (KLF4) in the nu-
cleus with respect to the cytosol. KLF4 is a transcription
factor that is known to be upregulated via exposure to lami-
nar shear stress (49, 50). We calculated the intensity of KLF4
in the nucleus and cytosol for static, after 4 h and 16 h of 6
dyne/cm2 flow. We found a significant increase after 4 h of
flow exposure in nuclei localisation compared to control and
a slow decrease at 16h compared to 4h Fig. 5 B,C. For sta-
tistical comparison, we have used the DABEST method (51),
see Fig. 5 C.

Junction morphology. Cell–cell junctions underpin any ar-
chitecture and organisation of tissue. They vary in different
tissues, organs, and cell types and need to be dynamically re-
modelled in development, homeostasis, and diseases. For ex-
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Fig. 5. Localised single-cell fluorescence intensity quantification. A: Quantification of the intensity of KLF4 antibody staining. Overlay KLF4 and junction channel [left], KLF4
intensity in the nuclei [middle] and in the cytosol without nucleus [right]. B: Intensity ratio of the KLF4 reporter in the nucleus and in the cytosol was colour coded for each
single cell. C: Statistical comparison of the change using the DABEST method shows a significant difference between static conditions and endothelial cells exposed to flow
after 4 and 16 h. Each dot indicates a different image with N=50 - 100 cells each. Black bars indicate 95 % confidence intervals of the mean difference.

ample, endothelial cell-cell junctions must provide stability
and prevent leakage while also allowing dynamic cellular re-
arrangements during sprouting, anastomosis, and lumen for-
mation (52). The organisation and topology of junctions and
inversely the organisation and topology of endothelial cells
contain a wealth of biological information. By analysing
adjacency patterns in endothelial cells, organisational pat-
terns that are associated with tissue phenotypes can be un-
covered. There are vast differences in endothelial arrange-
ment between different tissues and organs (53).

We are using the cell–cell contact features from an already
published tool JunctionMapper to decipher cell-cell junction-
related phenotypes (20). Note, that this tool is not adapted
to studying EC in organs or in 3D tubular structures, which
will be in the scope of future studies. The normalised junc-
tion features suggested in JunctionMapper allow one to quan-
tify images of different resolution, cell type, and modalities.
In our tool, the analysis is automatically performed in a re-
gion that is defined by the cell outlines, which we obtain from
the instance segmentation using the proposed deep learning
frameworks. This outline is dilated by a user-defined thick-
ness. There are no more parameters necessary to define. The
result can be seen in Fig. S1 C. The resulting area of the di-
lated outline is the interface area, which is computed for each
single cell. We then derive the characteristic from a junction
label, for example, VE-cadherin staining in the case of ECs,
see Fig 6 A. The fragmented junction area results from Otsu
thresholding in that region, see Fig. 6 B. Using these read-
outs, we can compute three features: (1) interface occupancy
by computing the fragmented junction area over the interface
area, (2) the intensity per interface area by computing the av-
erage intensity in the interface area, and (3) cluster density
by the average intensity in the fragmented junction area. We
find a unique signature of the three junction features in ECs

after flow stimulation, see Fig 6 C, demonstrating the effec-
tiveness of our method. In static condition, the cell-cell junc-
tions are very heterogeneous, with some cells having thick
junctions and high VE-cadherin intensity, while others have
low signal intensity and low occupancy. Intensity and oc-
cupancy become more homogeneous within each field after
exposure to flow. At 6 dyne/cm2 the total intensity per inter-
face area increases as well as the interface occupancy. At 20
dyne/cm2, however, the junctions become thinner, resulting
in lower interface occupancy, while the intensity per inter-
face area remains almost the same compared to static. At the
same time, the intensity within the junction increases, result-
ing in higher values of cluster density. For the entire junction
analysis workflow, only one additional parameter needs to be
specified, namely the width of the automatically generated
outlines that serve as regions of interest for cell-cell contacts.
In summary, Polarity-JaM offers the possibility to fully auto-
mate the essential parts of the JunctionMapper workflow by
setting a single additional parameter.

Reproducability, Replicability and Interoperability. It-
erative acquisition of images and various experimental set-
tings sometimes require complex folder structures and nam-
ing schemes to organise data, leaving the researcher with the
problem of data structure and reproducibility of their analy-
sis. To help with both tasks, the Polarity-JaM pipeline has
three execution scenarios: a) single image, b) image stack,
and c) complex folder structure. Furthermore, a comprehen-
sive logging output is provided, as well as a standardised in-
put structure in yml format. The generated outputs follow
a naming scheme. The extracted collective and single cell
features are stored in a csv file. The results of the statistical
analysis from the app can be downloaded in various formats,
including pdf and svg. For different categories or conditions,
the Polarity-JaM app uses several qualitative colour schemes
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Fig. 6. Junction morphology quantification. A: Examples of endothelial cells in static condition, exposed to 6 dyne/cm2 and 20 dyne/cm2. VE-cadherin staining is shown in
blue. B: Pictograms of quantities extracted from the images. C: Statistical comparison of three normalized morphological junction features interface occupancy [left], intensity
per interface area [middle] and cluster density [right] demonstrate a significant change in junction dynamics after exposure to flow. Black bars indicate 95 % confidence
intervals of the mean difference.

that are colour-blind friendly (54), the infrastructure follows
a similar principle as PlotTwist, which was designed for time
series analysis. Metadata and log information are also saved
in a human-readable format on disk. Polarity-JaM uses well-
established non-proprietary formats (such as csv, yml, tiff,
svg) to aid interoperability, following a recommendation in
(55). All statistical analysis for circular features shown in
this study and more can be performed in the App. Our tool
can be combined with other tools such as Griottes (21), po-
larity features can be mapped on spatial network graphs and
their relation can be explored using the same segmentation.
Exploitative image analysis requires interactivity to quality
check each analysis step. Hence, Polarity-JaM is designed
with a simple Python API that is optimised for usage within
a Jupyter Notebook(56). We provide several examples in
our documentation on how to perform such an analysis. An
overview of the entire Polarity-JaM software suite is depicted
in Fig. 7. We additionally equip Polarity-JaM with a Napari

(57) plugin with a graphical user interface to enable direct
feedback on segmentation and features. Finally, Polarity-JaM
is available via PyPI (Python Package Index). Taken together,
we are committed to the principles of FAIR research (58).

Discussion

Our image data processing and analysis workflow can be used
to simultaneously compute features of cell polarity, including
organelle localisation, cell shape, and signalling gradients,
allowing single-cell and collective high-content endothelial
phenotyping. Circular statistics can be performed interac-
tively via a web application. We also provide an informative
graphical design for directional and axial data. We recom-
mend the use of the signed polarity index when a polarisation
direction is expected on the basis of an external polarisation
cue, as is the case in most endothelial flow assays.
With the focus of the Polarity-JaM toolbox on a diverse fea-
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Fig. 7. The workflow enables processing large image data stacks for automated
feature extraction. The Python API can be used to facilitate quality control with
the help of a Jupyter Notebook. The results can be analysed statistically using a
graphical user interface.

ture set and replicability and interactivity, we provide means
for answering various biologically motivated experimental
questions and for the extraction of aspects that are other-
wise easy to overlook. For instance, collective orientation
and cell size have been inversely correlated with endothelial
cell senescence. Older endothelial cells tend to be larger and
share a less pronounced direction of orientation (37). The
orientation as a collective phenotype can be correlated with
processes such as flow and senescence. Multivariate analysis,
for example, including size in the image analysis, could per-
haps differentiate between endothelial phenotypes by flow or
those by cellular senescence.
This investigation has been exemplified for endothelial cells,
but can also be applied to other cell types such as the planar
polarity of cardiomyocytes (59), epithelial cell tissues (19)
and potentially other cell types. The image modality is not
restricted to fluorescence microscopy but can be also applied
to phase contrast or other - here the only restriction is that the
image can be decomposed into masks of single cells. The cur-
rent version of Polarity-JaM integrates different segmentation
models, including Cellpose (8), microSAM (7) a fine-tuned
model based on SAM (6), and DeepCell (5). There is a vivid
community around all these segmentation algorithms (7, 8);
therefore, we provide an interface to these models, which can
also be adapted by the user. This will help maintain this soft-
ware and ensure long-term use. Future development needs to
address better segmentation of subcellular structures, includ-
ing cell-cell junctions, cytoskeleton, and focal adhesion sites,
using deep learning methods.
The quantification of junctional morphology is based on
the features suggested in (20) including junction occupancy,
cluster density, and intensity per interface area. While these

features provide good indicators for junctional changes and
adaptations, they may not be exhaustive referring to the man-
ual morphological classification of adherens junctions, which
is frequently done in five common categories: straight junc-
tions, thick junctions, thick to reticular junctions, reticular
junctions, and fingers (60). To automate the translation into
this classification, further work is needed on junction seg-
mentation, as well as an advanced classifier using manual
training data, which was not ready at the time of this pub-
lication but will be addressed in the future.
Future challenges involve tissue and organoid image data in
3D space, which introduces more challenges in algorithmic
development including robust segmentation (mainly due to
the lack of training data), anisotropy in image acquisition,
and the size of the image data. Also, efficient extraction of
cell and nuclei features, which are by default not included in
common packages, need to be developed. Multiplex imag-
ing will stimulate further developments, as this image data
modality dramatically increases the content of the informa-
tion and therefore challenges meaningful feature extractions
and comprehensive statistical spatial and circular approaches
to compute cross correlations (61).
The focus of this pipeline is on static images. However, the
pipeline could also be applied to a series of images, and fea-
ture extraction would be performed for each frame. The ex-
tracted data can be stitched together by label identification
(62). Computational models can be informed by a wealth
of quantitative data through our approach, including vertex
models (40), but also the cellular Potts model(35, 63) or
agent-based models (64, 65). The spatial context of can be
further explored using tools such as Griottes (21) and the cir-
cular version of Moran’s I (66) to extract collective pheno-
types. Mechanistically, this will also help to predict different
states of tissues and dynamics from static biomedical images
(41, 67, 68), which is an interesting avenue for future research
with a wide range of applications.

Materials and Methods
Experimental setup.

Cell culture and fluid shear stress assays. Commercially
available human umbilical venous endothelial cells (HU-
VECs, pooled donors, PromoCell) were cultured and used
at passages 2-4 at 37°C and 5% CO2 humid incubator, in en-
dothelial growth medium containing growth factors (EGM2,
Lonza) for optimal cell growth. For passaging and fluid shear
stress (FSS) assays, cells were washed once in sterile PBS,
followed by a 5 minute incubation in Trypsin at 37 °C and
5% CO2, then neutralized with FBS and EGM2. Cells were
centrifuged for 5 minutes at 480 g and counted. For FSS as-
says, cells were seeded in 0.4 ibiTreat Luer flow slides (Ibidi)
coated with 0.2 percent gelatin at a cell concentration of 2
million cells per ml. 100 µl of cell suspension were added
to each slide and incubated overnight at 37°C and 5% CO2.
The following day, the slides were connected to red perfusion
sets assembled onto perfusion units (Ibidi) and connected to a
pump (Ibidi). Laminar shear stress was applied at 6 dyne/cm2
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or 20 dyne/cm2 for 4, 16, or 24 h inside a 37 °C and 5 % CO2
humidity incubator. Static controls were kept in the same in-
cubator for the duration of the experiment.

Immunofluorescence. At the end of a FSS assay, slides were
disconnected from perfusion units and immediately fixated
in 4 % PFA for 10 minutes, then washed 3 times in PBS.
Slides were then blocked and permeabilized in CBB (Clau-
dio’s Blocking Buffer, see supporting information) for 30
minutes, followed by 1 h of incubation with primary an-
tibodies at room temperature. Cells were washed 3 times
with PBS, then incubated 1 h with secondary antibodies at
room temperature, followed by another triple washing step,
5 minute incubation with DAPI, and finally mounted with a
Mowiol + Dabco mixture in a 9:1 ratio. The primary and
secondary antibodies used can be found in Table S1.

Confocal imaging. FSS immunostained slides were imaged
on a confocal microscope (Carl Zeiss, LSM 980) using a
Plan-Apochromat 20x/0.8 NA Ph2 air objective. For each
sample, 10 random positions throughout the flow slide were
be selected and a Z-stack covering the entire depth of the
monolayer were acquired. Slides were imaged with a two-
channel setup, with channel one using the 488 and 633 lasers
and channel two using the 405 and 561 lasers. Pinhole size
was set to 1AU for both channels.

Image Analysis.

Segmentation. To isolate individual cells in a microscopic
image, a process also known as instance segmentation, we
used Cellpose, a deep neural network algorithm. Accurate in-
stance segmentation can be created with pre-trained models
it is provided with. These models can generalise well across
both cell type and image modalities. For our analysis we used
the model "cyto" for cell and "nuclei" for nuclei instance seg-
mentation. For Golgi segmentation, Otsu-thresholding was
performed. Subsequently, the segmentation mask was used to
get the corresponding Golgi instance label. The performance
of instance segmentation algorithms can vary for different
modalities. Downstream analysis of features describing in-
dividual cells and their relationship with each other strongly
depend on the quality of these segmentations. At this point
Polarity-JaM offers three segmentation algorithms that the
user can choose from: Cellpose, DeepCell, and microSAM.
Additional segmentation algorithms are realised with the help
of Album (69), a decentralised distribution platform where
solutions (in this case implementations of segmentation algo-
rithms) are distributed with their execution environment and
can be used without additional overhead for the user. All
of these show state of the art performance and are included
in Polarity-JaM to enable segmentation for a broad range of
modalities and cell types.

Single cell and organelle features. Common features are
available within the regionprops scikit-image package (70).
We extend the available measurements by various features.
For a complete list of all features, see the Appendix 3.

Most features require central image moments (71) that can be
calculated from the raw moments

mi,j =
∑
x

∑
y

xi ·yj · I(x,y), (5)

with i, j = 0,1... are exponents, x,y the pixel coordinates,
where I(x,y) refers to the image intensity at position x,y.
Generally, the centre of mass of a grey scale image (e.g. a
channel) is now given by

M = (x̄, ȳ) = (m1,0
m0,0

,
m0,1
m0,0

). (6)

The central moments are then

µi,j =
∑
x

∑
y

(x− x̄)i ∗ (y− ȳ)j ∗ I(x,y). (7)

Shape orientation. With the central moments, we compute
the orientation

φ= π

2 + 1
2 atan2(2µ1,1,µ2,0−µ0,2), (8)

which describes the angle of the major with the x-axis in the
interval [0,π] in radians or 0 to 180 degrees. Various features
can be defined with the orientation, such as the cell shape ori-
entation or the nucleus orientation in case the nucleus channel
is provided.

Nucleus and organelle displacement. The displacement ori-
entation from the nucleus to the centre of mass of the cell can
be defined as

α= π−atan2(x̄t− x̄r, ȳt− ȳr), (9)

where index r indicates moments that are calculated on a ref-
erence channel, and t moments that are calculated on the tar-
get channel. In the case of nuclei-Golgi polarity, the target
is the Golgi channel and the reference the nuclei channel.
The orientation takes values in [0,2π] in radians, which cor-
responds to 0 to 360 degrees, in this study. Analogously, the
orientation from i) nucleus to organelle, ii) centre of mass of
a marker channel to cell centroid, and iii) centre of mass of a
marker channel to nucleus centroid can be defined.

Signaling gradient quantification. We define the

sr = (1−2I(x,y)Al)
I(x,y)Acell

, (10)

for a cell, where Al is the area of the left cell half perpendic-
ular along a given a cue direction θ and Acell the area of the
cell. Mathematically, the area Al is described as

Al =Au∩Acell (11)

with
Au = {v̄ = (x,y)|v̄ · v̄c < 0}, (12)

and v̄c = (cos(θ),sin(θ)), where the polar direction or ex-
pected cue direction θ is given in radians.
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Circular statistics. All statistical methods were implemented
in R and R-shiny. We have applied the statistical tests from
the CircStats package (31) for directional and axial data. For
measures on a linear scale, we applied the DABEST (‘data
analysis with bootstrap-coupled estimation’) method from
(51).

Availability, code, and issues. The pipeline was de-
veloped in Python and is available through PyPi(72).
The code for the R-shiny(73) application was writ-
ten in R (https://www.r-project.org) and Rstudio
(https://www.rstudio.com). The Polarity-JaM app can
be used online via (www.polarityjam.com) without the
installation procedure. Both the Polarity-JaM pipeline
and the app can also be used offline. Additionally, both
can be installed and used separately through album (69),
a framework for scientific data processing with soft-
ware solutions of heterogeneous tools. The link can
be found https://album-app.gitlab.io/catalogs/helmholtz-
imaging/de.mdc-berlin/polarityjam. The code for
pipeline, app, and Napari plugin is published un-
der the MIT licence and is available through GitHub
(https://github.com/polarityjam). Additional documen-
tation and information can be found at readthedocs
(https://polarityjam.readthedocs.io). Issues and requests are
tracked on GitHub issues. Collaboration and extension are
possible and welcome. Instructions and best practices can be
found in the documentation.
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Supplementary Note 1: Figures

Supplementary Figure S1. Segmentation visualizations. A: Channel information B: Cellpose cell and nuclei segmentation, otsu
threshold on organelle channel (here: Golgi) C: View on a single cell, together with the membrane, junction, nuclei, organelle (here:
golgi) and cytosol mask.
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Supplementary Figure S2. Feature visualizations. A: Circularity, B: Elongation, C: Shape orientation, D: Marker nucleus and nucleus
displacement, E: Intensity information, F: Feature of interest (here: area) information, G: Marker ratio method, H: Junction ratio method,
I: Polarity information for organelle(here: golgi), junction and marker channel, J: Cell corners based on the Douglas-Peucker-Algorithm.
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Supplementary Figure S2 cont. Feature visualisations continued. K: Junction features, including channel, interface occupancy,
intensity per interface area, and cluster density, L: Segmentation masks after applying a threshold for cell, nuclei, and organelle size.
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Supplementary Figure S3. Circular statistics data graphics with suggested statistical measures for A directional data and B axial data.

Giese, Albrecht et al. | Polarity-JaM bioRχiv | 17

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 27, 2024. ; https://doi.org/10.1101/2024.01.24.577027doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.24.577027
http://creativecommons.org/licenses/by/4.0/


polarity index (R), nuclei-Golgi polarity

signed polarity index (V), nuclei-Golgi polarity

A

B

polarity index (R), nuclei displacement polarity

signed polarity index (V), nuclei displacement polarity

C

D

2% FBS
N = 30

BSA 0.1%
N = 30

BSA 0.1% + BMP9
N = 30

2% FBS
N = 30

BSA 0.1%
N = 30

BSA 0.1% + BMP9
N = 30

2% FBS 
N = 30

BSA 0.1% 
N = 30

BSA 0.1% + BMP9 
N = 30

0.0

0.2

0.4

0.6

0.8

1.0

R

BSA 0.1%
minus

2% FBS

BSA 0.1% + BMP9
minus

2% FBS

BSA 0.1%
minus
2% FBS

BSA 0.1% + BMP9
minus
2% FBS

BSA 0.1% 
minus

2% FBS 

BSA 0.1% + BMP9 
minus

2% FBS 

0.3

0.2

0.1

0.0

0.1

0.2

0.3

M
e
a
n
 d

if
fe

re
n
ce

2% FBS
N = 30

BSA 0.1%
N = 30

BSA 0.1% + BMP9
N = 30

2% FBS
N = 30

BSA 0.1%
N = 30

BSA 0.1% + BMP9
N = 30

2% FBS 
N = 30

BSA 0.1% 
N = 30

BSA 0.1% + BMP9 
N = 30

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

V

BSA 0.1%
minus

2% FBS

BSA 0.1% + BMP9
minus

2% FBS

BSA 0.1%
minus
2% FBS

BSA 0.1% + BMP9
minus
2% FBS

BSA 0.1% 
minus

2% FBS 

BSA 0.1% + BMP9 
minus

2% FBS 

0.3

0.2

0.1

0.0

0.1

0.2

0.3

M
e
a
n
 d

if
fe

re
n
ce

2% FBS
N = 30

BSA 0.1%
N = 30

BSA 0.1% + BMP9
N = 30

2% FBS
N = 30

BSA 0.1%
N = 30

BSA 0.1% + BMP9
N = 30

2% FBS 
N = 30

BSA 0.1% 
N = 30

BSA 0.1% + BMP9 
N = 30

0.0

0.2

0.4

0.6

0.8

1.0

R

BSA 0.1%
minus

2% FBS

BSA 0.1% + BMP9
minus

2% FBS

BSA 0.1%
minus
2% FBS

BSA 0.1% + BMP9
minus
2% FBS

BSA 0.1% 
minus

2% FBS 

BSA 0.1% + BMP9 
minus

2% FBS 

0.3

0.2

0.1

0.0

0.1

0.2

0.3

M
e
a
n
 d

if
fe

re
n
ce

2% FBS
N = 30

BSA 0.1%
N = 30

BSA 0.1% + BMP9
N = 30

2% FBS
N = 30

BSA 0.1%
N = 30

BSA 0.1% + BMP9
N = 30

2% FBS 
N = 30

BSA 0.1% 
N = 30

BSA 0.1% + BMP9 
N = 30

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

V

BSA 0.1%
minus

2% FBS

BSA 0.1% + BMP9
minus

2% FBS

BSA 0.1%
minus
2% FBS

BSA 0.1% + BMP9
minus
2% FBS

BSA 0.1% 
minus

2% FBS 

BSA 0.1% + BMP9 
minus

2% FBS 

0.3

0.2

0.1

0.0

0.1

0.2

0.3

M
e
a
n
 d

if
fe

re
n
ce

static 6 dyne/cm2 20 dyne/cm2 static 6 dyne/cm2 20 dyne/cm2

static 6 dyne/cm2 20 dyne/cm2static 6 dyne/cm2 20 dyne/cm2

Supplementary Figure S4. Circular statistics data graphics that compare polarity index (R) and signed polarity index (V) for all
conditions shown in Fig. 2. Black bars indicate 95 % confidence intervals of the mean difference.

18 | bioRχiv Giese, Albrecht et al. | Polarity-JaM

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 27, 2024. ; https://doi.org/10.1101/2024.01.24.577027doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.24.577027
http://creativecommons.org/licenses/by/4.0/


−100

0

100

0 100 200 300
nuclei−golgi polarity

nu
cl

eu
s 

di
sp

la
ce

m
en

t o
rie

nt
at

io
n

0

100

200

300

−100 0 100
nuclei−golgi polarity

nu
cl

eu
s 

di
sp

la
ce

m
en

t o
rie

nt
at

io
n

−100

0

100

0 100 200 300
nuclei−golgi polarity

nu
cl

eu
s 

di
sp

la
ce

m
en

t o
rie

nt
at

io
n

−100

0

100

0 100 200 300
nuclei−golgi polarity

nu
cl

eu
s 

di
sp

la
ce

m
en

t o
rie

nt
at

io
n

−100

0

100

0 100 200 300
nuclei−golgi polarity

nu
cl

eu
s 

di
sp

la
ce

m
en

t o
rie

nt
at

io
n

−100

0

100

0 100 200 300
nuclei−golgi polarity

nu
cl

eu
s 

di
sp

la
ce

m
en

t o
rie

nt
at

io
n

−100

0

100

0 100 200 300
nuclei−golgi polarity

nu
cl

eu
s 

di
sp

la
ce

m
en

t o
rie

nt
at

io
n

0

100

200

300

−100 0 100
nuclei−golgi polarity

nu
cl

eu
s 

di
sp

la
ce

m
en

t o
rie

nt
at

io
n

−100

0

100

0 100 200 300
nuclei−golgi polarity

nu
cl

eu
s 

di
sp

la
ce

m
en

t o
rie

nt
at

io
n

static 6 dyne/cm2 20 dyne/cm2

N=3365, r=0.194 N=3503, r=0.663 N=2935, r=0.603

2
%

 F
B

S
B

S
A

 0
.1

%
B

S
A

 0
.1

%
 +

 B
M

P
9

N=2625, r=0.179 N=3205, r=0.0618 N=2215, r=0.527

N=2464, r=0.58N=2975, r=0.615N=2491, r=0.212

Supplementary Figure S5. Circular correlations of nuclei-Golgi polarity and nuclei displacement for different flow and media conditions
corresponding to Fig. 2.
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Supplementary Figure S6. Visual depiction of the python API. After loading the image, the user would first define parameters de-
scribing the details of the analysis. Next step would be the instance segmentation. Currently three algorithms, Cellpose, DeepCell,
and microSam are supported. After the feature extraction process the visualization functionality of Polarity-JaM could be used to asses
data quality.
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Supplementary Note 2: Data input and structure
Often, analysts are challenged not only with the problem of actually performing the analysis, but also how and where to store
the data. Iterative acquisition of images as well as various experimental settings sometimes require complex folder structures
and naming scheme to organise data. Frequently, researchers face the problem of data being distributed over several physical
devices, leaving them with the problem of how to execute a certain tool on a dedicated subset of images. Often a large amount
of time is spent organizing data before the analysis can finally be conducted. Moreover, performing analysis steps on several
experimental conditions often requires repeating the entire analysis pipeline several times to get the desired output. Another
problem researchers often face is keeping track of the configuration that was used for a particular execution of software at a
certain time. Sometimes this even requires some form of manual work by writing down the configuration. Polarity-JaM avoids
these unnecessary chores and manual processes for the user and minimizes the time spent for reorganizing data by providing a)
three run cases to cover most usage scenarios, b) a parameters yml file containing all options used for the analysis, and c) a log
file fully capturing the output of the analysis.

Parameters. The parameters file is the most important argument that needs to be passed to an execution call as it specifies what
analysis steps are performed and hence what output will be created. The file additionally is copied to the output folder and
hence allows the user to fully reproduce and comprehend the analysis at a later time-point. An overview of all possible key-
words is given in Table S2. This includes configuration parameters describing the image (image parameter), analysis (runtime
parameter), and visualisation (plot parameter). Please note that the parameters necessary for the segmentation algorithm are
listed separately in Table S3.

Run Options. To tackle the problem of various examples of use, Polarity-JaM offers three run options. The mode run can be
used for a single image and only requires an input image, and an output path. run-stack should be chosen if a set of images
in a folder needs to be processed. Instead of a single image, a folder can be specified. Lastly, the run-key option needs a csv
file describing the storage structures and experimental conditions and must be passed as an argument. The structure of the csv
is deliberately kept simple and is shown in table S4. Paths are relative to an input path that can be passed separately as an
argument to the execution call. Hence, the data can be copied to a different physical device and the analysis can be repeated
without altering the csv file as long as the underlying data structure remains untouched.

Supplementary Note 3: Features
The feature extraction pipeline is the process of extracting all relevant features from an input image. This is a complex process
that can be separated in three major parts. First, the image is segmented, segregating each cell such that in the second step
its features can be extracted. In the third and last step, a graph structure is build and a neighborhood analysis performed. To
the time writing the manuscript, the user can choose between three segmentation algorithms: Cellpose(8), microSAM(7) a
fine-tuned model based on sam(6), and DeepCell(5).
The pipeline produces various outputs, depending on the parameter configuration and input provided. In general, generated
output can be differentiated in the two categories a) features, and b) visualization. Features are gathered in a csv file containing
the individual cells as rows and their corresponding feature values as columns. Visualizations for the extracte features can be
optionally created and written to disk. These plots should be used for quality control before continuing downstream analysis of
the extracted features. An example of all available visualizations is shown in figure S2.

Categories. The features can be structured in several categories which will be explained shortly. Depending on the configura-
tion, the categories will be included or excluded in the extraction process. The categories are shown in table S5. Each cell has
various pieces of general information such as area, perimeter and elongation, which are summarised in the single cell features
that are shown in table S6. The category neighborhood features contains all properties that can be addressed to the surrounding
of a cell. An overview is found in table S7. Given a feature of interest (e.g. cell size) the Morans I correlation analysis can be
performed. group_features are depicted in table S8. Please note that their values address an entire image and not a single cell
and should be interpreted accordingly. Optionally, nucleus features, organelle features, marker features, and junction features
can be gathered and are explained in tables S9, S10, S11 and S12 respectively. Nucleus features mainly comprise morpho-
logical features, such as their size, position, orientation. Organelle features contain positional, but also distance information
to the nucleus, whereas marker features include besides positional, also mean expression values of several cell regions. (e.g.
membrane, nucleus and cytosol). Junction features mainly comprise ratio values between different areas of the junction region
of the cell membrane (20), but also mean intensity information and polarity.
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Supplementary Note 4: Visualizations
Beside features, several visualizations are created during the analysis. They mainly serve as quality control. To the point of
manuscript writing Polarity-JaM provides 18 different visualizations:

• image channel intensity information

• segmentation masks

• threshold segmentation masks

• single cell closeup

• cell corners

• feature of interest

• cell and nuclei elongation

• cell and nuclei circularity

• cell and nuclei shape orientation

• nucleus displacement orientation

• organelle polarity

• nucleus marker orientation

• marker polarity

• marker expression

• marker cue intensity ratio

• junction features

• junction polarity

• junction cue intensity ratio

Quality control of the segmentation output is a crucial step for downstream analysis. For this purpose, the feature extraction
pipeline creates for every input image a plot showing the given channel configuration used for segmentation together with the
segmentation outcome. (Figure S1 A,B)). Optionally, a closeup view for each cell can be plotted as shown in figure S1 C.
Feature visualizations are shown in figure S2 and highly depend on the quality of the segmentation. We highly recommend to
perform a quality control of the segmentation result before continuing downstream analysis for example with the Polarity-JaM
web app.
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Supplementary Note 5: API Usage
Polarity-JaM offers the possibility to completely run an anaylsis within a Jupyter Notebook (74). Several example notebooks
can be found in the GitHub repository https://github.com/polarityjam/polarityjam/tree/main/docs/notebooks focusing on vari-
ous aspects of an analysis. This includes the basic usage of Polarity-JaM to perform a feature extraction to using Polarity-JaM
as a python library for enhanced image analysis. We now shortly describe a basic analysis in chronological order. First, the
user loads the image. Second, the user sets up the parameters for i) the image(s), ii) the runtime (analysis procedure), including
the choice of the segmentation algorithm, and optionally iii) the visualizations. Additionally, parameters will be saved on disk
in yml format to support replicability. Third, the previously set segmentation algorithm is loaded, initially with its default pa-
rameters. At this point the user has the option to alter these before performing the segmentation. Any segmentation algorithm
that is currently supported in Polarity-JaM requires two steps for the user to perform: i) preparing the image for segmentation,
and ii) using the prepared image to perform the segmentation. The division in two steps is specifically designed to facilitate
visual quality inspection by using the visualization functionality of Polarity-JaM. Additional segmentation algorithms (other
than Cellpose) are implemented with the help of Album (69), a decentralized distribution platform where solutions (in this case
implementations of segmentation algorithms) are distributed with their execution environment. This allows to easily switch
to a different segmentation algorithm when performance is poor. The overhead of installing the algorithm in its correct envi-
ronment is taken from the user. Regardless of the used algorithm the analysis steps follow the same semantic (e.g. the same
function call) such that usage of an unknown algorithm is facilitated. Output of a segmentation procedure is always an instance
segmentation mask in numpy (75) format. We provide detailed information in a Jupyter Notebook that can be found under
the following link: https://github.com/polarityjam/polarityjam/blob/main/docs/notebooks/polarityjam-notebook_seg.ipynb To
improve downstream analysis, instance masks for nuclei and organelle should additionally be calculated whenever the corre-
sponding information is present in the image. To facilitate the process for the user, every segmentation algorithm supported in
Polarity-JaM has a mode that can be specified in the segmentation step. Currently, there are three modes available: "nucleus",
"cell", and "organelle". Please note that not every algorithm supports all modes. The user is however free to entirely skip any
segmentation step and provide instance segmentation masks elsewhere produced. As a fourth step, the user performs the actual
feature extraction by first setting up an initially empty collection that can be then passed to the routine performing the extrac-
tion, together with the instance mask(s), the original image, and the parameter describing the image. Gathering features in a
collection allows the user to potentially collect features of various images for example by looping over images in a given folder.
Last step should always be to use the visualization functionality of Polarity-JaM to assess quality and get a first impression of
selected features before moving on to the downstream analysis of the features in the Polarity-JaM Web-App. The entire API is
depicted in Figure S6 and shows the workflow the user performs when working in a Jupyter Notebook.

Supplementary Note 6: Circular statistics
A broad range of scientific studies involve taking measurements on a circular, rather than a linear scale (often variables related to
orientations or circadian times). However, their analysis is not straightforward and requires special statistical tools. All features
in our study were classified into periodic and linear features. Among periodic features, we further distinguish directional
features with values in a full circular scale, meaning that the data repeat after 360 degrees (or 2 π in radians) and axial features
that repeat after 180 degrees (or π in radians). Axial data refer to an axis, in our case the long axis of the cell or nucleus shape,
rather than to a direction.
Circular data presents some unique challenges for statistical analysis because traditional statistical methods may not be appro-
priate for this type of data. For example, computing the average or mean of circular data by summing the values and dividing
by the number of observations can produce incorrect results. Therefore, specialised statistical methods have been developed to
analyse circular data, such as circular statistics and directional statistics. These methods take into account the periodic nature of
the data and can provide a more accurate result. All the different features such as nuclei-Golgi polarity, cell shape orientation,
cell elongation, or junction properties can be correlated amongst each other compared and correlated to linear read-outs such
as cell size or cell elongation on a single cell level.
Several of the extracted polarity features are periodic and require different means of statistical comparison. The polarity index
is defined as follows

~ri =
(

cosαi
sinαi

)
(13)

and the average resultant vector

~r = 1
N

N∑
i=1

~ri (14)

.
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Although the polarity index describes the concentration of the distribution with respect to the mean direction, we may also be
interested in a measure that quantifies the degree of orientation towards a given direction µ0, which is referred to as the polar
direction (31). This is described by the V-score, which is computed from

V = cR, (15)
with c= cos(ᾱ−µ0). (16)

Therefore, V is equal to the polarity index, V = R if aligned with the given direction and takes the negative value if aligned
with the given direction V =−R.
These statistical measures can also be applied to axial data, converting these data to directional data by doubling all values
θi = 2αi. The mean direction was calculated from ᾱ = θ

2 , where θ̄ is the common circular mean of the directional data θi.
Similarly, the polarity index (PI) was calculated as the length of the mean resulting vector of directional values θi. Again, a PI
value varies between 0 and 1 and indicates how much the distribution is concentrated around the mean. A value of PI close to
1 implies that the data are concentrated around the mean direction, while a value close to 0 suggests that the data are evenly
distributed or random. The axial V-score is computed from

V = cR, (17)

with c= cos(θ̄−2µ0). (18)

Note, that in this case, the V-score is not the projection of the mean resultant ~r. However, we can compute the following
relationship. We assume

µ̃0 = µ0 mod π (19)

and compute

cp = cos(ᾱ− µ̃0). (20)

With the commonly known trigonometric identity cos(2α) = 2cos2(α)−1, we obtain:

c= cos(θ̄−2µ0) (21)
= cos(2ᾱ−2µ0) (22)

= cos2(ᾱ−µ0)−1 (23)

= cos2(ᾱ− µ̃0)−1 (24)

= c2
p−1. (25)

The projection cp takes values between 0 and 1, with 1 in the case of perfect alignment with the given polar direction and zero
for random or perpendicular alignment with the polar direction.
Our web application provides the most common statistical tests for different scenarios, including the Rayleigh test, the V-test,
the Rao spacing test and the Watson test applied to directional and axial data (transformed as above). For further discussion
of statistical analysis of circular data and extension to comparative statistical analysis of circular data, we refer to (31, 76) and
also consider more recent studies (33, 77).
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Supplementary Note 7: Experimental methods and materials

Antibody name Host species Dilution Product number/manufacturer
Anti-KLF4 antibody rabbit 1:500 HPA002926 Sigma Aldrich

Human VE-Cadherin antibody goat 1:1000 AF938 R&D Systems
Anti-GM130 mouse 1:500 610822 BD Biosciences

Notch1 (D1E11) XP® rabbit 1:250 3608 Cell Signaling
Anti-Rabbit-Alexa-647 donkey 1:400 A31573 Invitrogen
Anti-Goat-Alexa-568 donkey 1:400 A11057 Invitrogen

Anti-Mouse-Alexa-488 donkey 1:400 A21202 Invitrogen
Anti-Rabbit-Alexa-488 donkey 1:400 A21206 Invitrogen

Supplementary Table S1. Table of primary and secondary antibodies.
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Category Parameter Options Description

image

channel_junction -1,0,1,2,3,... Specifies which channel in the input image(s) holds informa-
tion about the junction signals. -1 to indicate there is no chan-
nel.

channel_nucleus -1,0,1,2,3,... Specifies which channel in the input image(s) holds informa-
tion about the nucleus. -1 to indicate there is no channel.

channel_organelle -1,0,1,2,3,... Specifies which channel in the input image(s) holds informa-
tion about the organelle (e.g golgi apparatus). -1 to indicate
there is no channel.

channel_expression_marker -1,0,1,2,3,... Specifies which channel in the input image(s) holds informa-
tion about the expression marker. -1 to indicate there is no
channel.

pixel_to_micron_ratio float Specifies the resolution of the image.

runtime

min_cell_size integer Minimal expected cell size in pixel. Threshold value for the
analysis. Cells with a smaller value will be excluded from the
analysis.

min_organelle_size integer The minimal diameter of the organelle. Threshold value for
the analysis. Cells with an organelle with a smaller value will
be excluded from the analysis.

min_nucleus_size integer The minimal diameter of the nucleus size. Threshold value
for the analysis. Cells with a nucleus with a smaller value
will be excluded from the analysis.

membrane_thickness integer Expected membrane thickness in pixel.
junction_threshold float Threshold for junction intensity mask. If not set, automati-

cally calculated via otsu thresholding.
feature_of_interest area Name of the feature for which a neighborhood statistics

should be calculated. Any feature can be used here. Look
at [the output section](#fep_out) to see all available options.

dp_epsilon integer Epsilon value for the Douglas-Peucker corner detection al-
gorithm. Determines the maximal perpendicular distance be-
tween two points to be considered a corner.

cue_direction integer The cue direction along which singaling gradients are calcu-
lated. Defined in degree. Default is 0 meaning cue direction
is from left to right along the x-axis.

connection_graph true,false Whether to use a connection graph or not.
segmentation_algorithm string Which segmentation algorithm to use. Default is Cellpos-

eSegmenter. For a list of available segmentation parameters
see documentation.

remove_small_objects_size integer Threshold for removing small objects from the instance seg-
mentation mask.

clear_border true, false If true, removes any segmentation that is not complete be-
cause the cell protrude beyond the edge of the image.

keyfile_condition_cols string Only necessary for the run_key. Defines the column that
holds the experiment condition information.

save_sc_image true,false Whether to additionally plot the single cell images.
extract_group_features true,false Whether to extract group features.

plot

plot_junctions true, false Indicates whether to create the junction polarity plot.
plot_polarity true, false Indicates whether to create the polarity plot.
plot_elongation true, false Indicates whether to create the elongation plot.
plot_circularity true, false Indicates whether to create the circularity plot.
plot_marker true, false Indicates whether to create the marker polarity plot.
plot_ratio_method true, false Indicates whether to create the ratio plot.
plot_shape_orientation true, false Indicates whether to create the shape orientation plot.
plot_foi true, false Indicates whether to create the feature of interest plot.
plot_sc_image true, false Indicates whether to create the single cell plots.
plot_threshold_masks true, false Indicates whether to create a plot showing threshold masks.
plot_sc_partitions true, false Indicates whether to plot individual partitioned cells in

closeup.
show_statistics true, false Add circular statistics to plot title.
show_polarity_angles true, false Indicates whether to additionally add the polarity angles to

the polarity plots.
show_graphics_axis true, false Indicates whether to additionally add the axis to the plots.
show_scalebar true, false Indicates whether to show a scalebar in visualizations or not.
outline_width integer Outline width of a cell. Only affects visualization, not fea-

tures. Default 2.
length_scalebar_microns float Length of the scalebar in microns.
graphics_output_format png, pdf,

svg, tif
The output format of the plot figures. Several can be speci-
fied. Default is png .

dpi integer Resolution of the plots. Specifies the dots per inch. Default
is 300.

graphics_width integer The width of the output plot figures. Default 5.
graphics_height integer The width of the output plot figures. Default 5.
fontsize_text_annotations integer Size of text annotations in the plot.
font_color string Font color. matplotlib font abbreviation.
marker_size true, false Specify the marker size of all plots.
alpha true, false Specify the alpha value of overlay masks.
alpha_cell_outline true, false Specify cell outline alpha values.

Supplementary Table S2. All options and their input specification that can be specified in the parameters file sorted by category.
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Algorithm Parameter Options Description

Cellpose

manually_annotated_mask string Naming suffix for (manually) annotated masks. Combine
with use_given_mask.

store_segmentation true, false Flag to allow storage of segmentation in the results folder.
use_given_mask true, false Flag to load a segmentation mask or not. Segmentation mask

should be in the same folder as the image to segment.
model_type string Allowed Cellpose model types. ("cyto", "cyto2", "custom").
model_type_nucleus string Allowed Cellpose model types for nucleus segmentation.

("nuclei", custom").
model_path string Path to a custom model. Needs to be paired with model_type

"custom".
estimated_cell_diameter int Estimated cell diameter in pixels. Default 100.
estimated_nucleus_diameter int Estimated nuclei diameter in pixels. Default 30.
flow_threshold float Cellpose flow threshold value. Default 0.4.
cellprob_threshold float Cellpose cell probability threshold value. Default 0.0.
use_gpu true, false Indicates whether to use GPU or not.
channel_cell_segmentation string Specify a concrete channel that is used for segmentation. De-

fault is "channel_junction".
channel_nuclei_segmentation string Specify a concrete channel that is used for nuclei segmenta-

tion. Default is "channel_nuclei".

DeepCell

segmentation_mode string Determines the segmentation mode. Either "whole-cell" or
"nuclear".

save_mask true, false Stores masks on disk in numpy format.
maxima_threshold float To finetune specific and consistent errors in your data, this

argument can be used during postprocessing. Lower values
will result in more cells being detected. Higher values will
result in fewer cells being detected.

maxima_smooth float Controls what the model considers a unique cell. Lower val-
ues will result in more separate cells being predicted, whereas
higher values will result in fewer cells.

interior_threshold float Controls how conservative the model is in estimating what
is a cell vs what is background. Lower values will result
in larger cells, whereas higher values will result in smaller
smalls.

small_objects_threshold integer Minimal volume size in pixel before an object is detected as
such.

fill_holes_threshold integer Filling any holes that are contained in the predicted object up
to a certain size.

pixel_expansion integer Apply a manual pixel expansion after segmentation.
channel_cell_segmentation string Specify a concrete channel that is used for segmentation. De-

fault is "channel_junction".
channel_nuclei_segmentation string Specify a concrete channel that is used for nuclei segmenta-

tion. Default is "channel_nuclei".

SAM

model_url string URL to a specific model.
model_name string Name of the model. See

https://github.com/facebookresearch/segment-anything
for information.

channel_cell_segmentation string Specify a concrete channel that is used for segmentation. De-
fault is "channel_junction".

channel_nuclei_segmentation string Specify a concrete channel that is used for nuclei segmenta-
tion. Default is "channel_nuclei".

channel_organelle_segmentation string Specify a concrete channel that is used for organelle segmen-
tation. Default is "channel_organelle".

microSAM

model_name string Model name to use. See https://computational-cell-
analytics.github.io/micro-sam/micro_sam.html for informa-
tion.

checkpoint_path string Path to a checkpoint file that should be used.
embedding_path string Path to the embedding file that should be used.
pred_iou_thresh float Custom IO threshold.
channel_cell_segmentation string Specify a concrete channel that is used for segmentation. De-

fault is "channel_junction".
channel_nuclei_segmentation string Specify a concrete channel that is used for nuclei segmenta-

tion. Default is "channel_nuclei".
channel_organelle_segmentation string Specify a concrete channel that is used for organelle segmen-

tation. Default is "channel_organelle".

Supplementary Table S3. Segmentation parameters for the supported segmentation algorithms. Most parameters are taken from the
corresponding publication and/or github repository.

folder_name condition_name
folder_1 condition_1
folder_2 condition_2

Supplementary Table S4. Structure of the key_file that can be used to specify experimental conditions and data structure. Note that
given folder_names are relative to a root folder passed with the argument named in_path.
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Category Configuration Explanation
single cell features always The general features extracted from

the image.
neighborhood features optional Statistical properties of a feature of

interest (FOI) specified. Includes
neighborhood statistics. FOI must
be specified. Default is "area".

group features optional Group properties. Image wise. In-
cludes Morans I correlation analy-
sis. Feature of interest (FOI) must
be specified. Default is "area".

nucleus features nucleus channel All features belonging to the nu-
cleus of the cell.

organelle features organelle channel All features belonging to the or-
ganelle of a cell.

junction features junction channel All features belonging to the junc-
tions of a cell.

marker features expression marker
channel

All features belonging to the ex-
pression marker. If a nucleus chan-
nel is given, marker nucleus fea-
tures and marker cytosol features
are automatically appended.

Supplementary Table S5. Categories of features that can be extracted from the image together with their corresponding configuration
and explanation.

Feature Explanation
filename The filename where the cell was found.
img_hash The sha1 hexadecimal hash of the image content.
label The Cellpose segmentation label of the particular cell.
cell_x The X coordinate (horizontal axis) of the center of the

cell.
cell_y The Y coordinate (vertical axis) of the center of the cell.
cell_shape_orientation Long axis of ellipsoid fit of the cell.
cell_major_axis_length Length of the major axis of the cell.
cell_minor_axis_length Length of the minor axis of the cell.
cell_eccentricity Value for the elongation of the cell. Between 0 and 1,

where 0 correspond to a perfect circular cell and
1 for a strongly elongated cell.

cell_major_to_minor_ratio Ratio between the major and the minor axis of the cell.
cell_area The area of the cell.
cell_perimeter The perimeter of the cell.

Supplementary Table S6. Single cell features features that are extracted from a given image.

28 | bioRχiv Giese, Albrecht et al. | Polarity-JaM

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 27, 2024. ; https://doi.org/10.1101/2024.01.24.577027doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.24.577027
http://creativecommons.org/licenses/by/4.0/


Feature Explanation
neighbors_cell The absolute number of neighbors of the cell.
neighbors_mean_dif_1st Mean difference of the feature of interest to all first neigh-

bors.
neighbors_median_dif_1st Median difference of the feature of interest to all first

neighbors.
neighbors_stddev_dif_1st Standard derivation of the difference of the feature of in-

terest to all first neighbors.
neighbors_range_dif_1st Maximal range of difference of the feature of interest to

all first neighbors.
neighbors_mean_dif_2nd Mean difference of the feature of interest to all second

neighbors.
neighbors_median_dif_2nd Median difference of the feature of interest to all second

neighbors.
neighbors_stddev_dif_2nd Standard derivation of the difference of the feature of in-

terest to all second neighbors.
neighbors_range_dif_2nd Maximal range of difference of the feature of interest to

all second neighbors.

Supplementary Table S7. Neighborhood features for each cell.

Feature Explanation
morans_i Statistical correlation analysis
morans_p_norm P-norm of the correlation analysis.

Supplementary Table S8. Morans I group statistic performed on a feature of interest (FOI). This is an image wise statistic and is not
reported cell wise.

Feature Explanation
nuc_x X position (horizontal axis) of the cell nucleus.
nuc_y Y position (vertical axis) of the cell nucleus.
nuc_disp_orientation_rad The displacement orientation of the nucleus

from the center of the cell in rad
nuc_disp_orientation_deg The displacement orientation of the nucleus

from the center of the cell in deg
nuc_shape_orientation Long axis of ellipsoid fit of the nucleus.
nuc_major_axis_length The length of the major axis of the nucleus.
nuc_minor_axis_length The length of the minor axis of the nucleus.
nuc_area The area of the nucleus.
nuc_perimeter_nuc The perimeter of the nucleus.
nuc_eccentricity Value for the elongation of the nucleus. Between 0 and

1, where 0 corresponds to a perfect circular nucleus and
1 to a strongly elongated nucleus.

nuc_major_to_minor_ratio Ratio between the major and the minor axis of the nu-
cleus.

Supplementary Table S9. All nucleus features that can be extracted. Note that a nucleus channel must be configured in the parameters
file.

Feature Explanation
organelle_x The X coordinate (horizontal axis) of the center of the

cell organelle.
organelle_y The Y coordinate (vertical axis) of the center of the cell

organelle.
organelle_distance Distance from cell organelle to the nucleus.
organelle_orientation_rad The orientation in rad of the organelle to the nucleus
organelle_orientation_deg The orientation in deg of the organelle to the nucleus

Supplementary Table S10. Organelle features that can be extracted from a given image. Note that an organelle channel must be
specified.
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Feature Explanation
marker_mean_expr Mean expression of the channel with the marker.
marker_sum_expr The absolute sum of the expression of the marker.
marker_centroid_x The X coordinate (horizontal axis) of the center of

the marker expression.
marker_centroid_y The Y coordinate (vertical axis) of the center of

the marker expression.
marker_polarity_rad Intrinsic asymmetry of the cell, reported in radian.
marker_polarity_deg Intrinsic asymmetry of the cell, reported in degree.
marker_mean_expression_mem Mean membrane expression.
marker_sum_expression_mem The absolute sum of the membrane expression.
marker_mean_expression_nuc The mean expression of the nucleus.
marker_sum_expression_nuc The absolute sum of the nucleus expression.
marker_mean_expression_cyt The mean expression of the cell cytosol.
marker_sum_expression_cyt The absolute sum of the cell cytosol expression.
marker_nucleus_orientation_rad The orientation in rad of the marker centroid to the

nucleus.
marker_nucleus_orientation_deg The orientation in rad of the marker centroid to the

nucleus.
marker_cue_intensity_ratio The ratio of the left vs. right cell membrane inten-

sity in cue direction.
marker_axial_cue_intensity_ratio The ratio of the sum of cell membrane quarters in

cue direction and the total membrane intensity.

Supplementary Table S11. Features that can be gathered if a marker channel is configured.

Feature Explanation
junction_centroid_x The X coordinate (horizontal axis) of the

centre of the junction expression.
junction_centroid_y The Y coordinate (vertical axis) of the cen-

tre of the junction expression.
junction_perimeter The perimeter of the junction area.
junction_protein_area The area with junction protein expression.
junction_mean_intensity The mean junction intensity value.
junction_protein_intensity The mean protein intensity by area.
junction_interface_linearity_index The linearity index of the junction.
junction_interface_occupancy The ratio between junction area and junc-

tion protein area.
junction_intensity_per_interface_area The ratio between the junction protein in-

tensity and the junction area.
junction_cluster_density The ratio of junction protein intensity and

junction protein area
junction_centroid_orientation_rad The orientation in rad of the junction inten-

sity area centroid to the centre of the cell.
junction_centroid_orientation_deg The orientation in deg of the junction in-

tensity area centroid to the centre of the
cell.

junction_cue_intensity_ratio The ratio of the left vs. right cell mem-
brane intensity in cue direction.

junction_axial_cue_intensity_ratio The ratio of the sum of cell membrane
quarters in cue direction and the total mem-
brane intensity.

Supplementary Table S12. Features that can be gathered if a junction channel is configured.
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Polarity-JaM Quantify-
Polarity

Junction-
Mapper

Chesnais et al.
2020

segmentation flexible, Cell-
pose (Deep
Learning
model) native

specific water-
shed algorithm
(78)

Filter-based Cell Profiler
workflow

organelle
asymmetries

nuclei-Golgi
orientation,
polarity index

no no no

shape asym-
metry

size, shape,
eccentricity,
orientation,
topology

size, shape, ec-
centricity, orien-
tation, topology

no area, perimeter,
shape descrip-
tors and cell
neighbours

signaling
gradients
& marker
expression

mean intensity
in the cytosol,
nuclei, and on
the cell mem-
brane as well as
their ratios

no no Notch intensity

junction mor-
phology

intensity of
junctional
markers

intensity of
junctional
markers

morphology
and intensi-
tyfeatures

unsupervised
classification
of junctional
morphology
of arterial,
venous, and
microvascular
endothelial cell
populations

polarity mea-
sures

2-axial po-
larity based
on intensity
of junctional
markers

nuclei-Golgi;
polarity of
cytosolic and
junctional mark-
ers, 2-axial cell
and nuclei shape
orientation

no no

Supplementary Table S13. Comparison of available tools QuantifyPolarity (19), JunctionMapper (20) and Chesnais et al. (14) and our
tool.
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Deep learning A family of machine-learning
methods, based on deep neural
networks (DNN), which are ca-
pable of learning representations
from data with increasing levels of
abstraction (79).

Deep Neural Network (DNN) Computing system inspired by the
biological neural networks consist-
ing of multiple (deep) layers be-
tween the input and output layers.

Instance segmentation Instance segmentation is a com-
puter vision task that involves iden-
tifying and separating individual
objects (e.g. biological cells or or-
ganelles) within an image, includ-
ing detecting the boundaries of each
object and assigning a unique la-
bels. The result is a pixel-wise map
of the image, where each pixel is
associated with a specific object in-
stance.

Polarity index Length of the mean resultant vector
computed by summing up all single
orientation vectors and dividing by
the number of measurements. The
direction of the mean resultant vec-
tor mean angle of the circular distri-
bution and its length the spread.

V-score Similar to the polarity index, but
also takes a pre-defined direction
into account.

Application Programming Interface
(API)

Generally, an API describes the
connection between different com-
puter programs or tools. It can also
refer to everything an application
programmer (e.g. python user of
Polarity-JaM) needs to know about
a piece of code and how to use it.

YAML, yaml or yml A human-readable data serialisa-
tion language. Mainly used for con-
figuration files and whenever data
need to be stored or transmitted.

Supplementary Table S14. Glossary
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