Toward accurate and fast velocity quantification with 3D ultrashort TE phase-contrast imaging

Katja Degenhardt¹,² | Simon Schmidt³,⁴ | Christoph S. Aigner¹ | Fabian J. Kratzer⁴ | Daniel P. Seiter⁵ | Max Mueller⁶ | Christoph Kolbitsch¹ | Armin M. Nagel⁴,⁶ | Oliver Wieben⁵,⁷ | Tobias Schaeffter¹,⁸,⁹ | Jeanette Schulz-Menger¹⁰,¹¹,¹²,¹³ | Sebastian Schmitter¹,³,⁴

Abstract

Purpose: Traditional phase-contrast MRI is affected by displacement artifacts caused by non-synchronized spatial- and velocity-encoding time points. The resulting inaccurate velocity maps can affect the accuracy of derived hemodynamic parameters. This study proposes and characterizes a 3D radial phase-contrast UTE (PC-UTE) sequence to reduce displacement artifacts. Furthermore, it investigates the displacement of a standard Cartesian flow sequence by utilizing a displacement-free synchronized-single-point-imaging MR sequence (SYNC-SPI) that requires clinically prohibitively long acquisition times.

Methods: 3D flow data was acquired at 3T at three different constant flow rates and varying spatial resolutions in a stenotic aorta phantom using the proposed PC-UTE, a Cartesian flow sequence, and a SYNC-SPI sequence as reference. Expected displacement artifacts were calculated from gradient timing waveforms and compared to displacement values measured in the in vitro flow experiments.

Results: The PC-UTE sequence reduces displacement and intravoxel dephasing, leading to decreased geometric distortions and signal cancellations in magnitude images, and more spatially accurate velocity quantification compared to the Cartesian flow acquisitions; errors increase with velocity and higher spatial resolution.

Conclusion: PC-UTE MRI can measure velocity vector fields with greater accuracy than Cartesian acquisitions (although pulsatile fields were not studied) and shorter scan times than SYNC-SPI. As such, this approach is superior to traditional Cartesian 3D and 4D flow MRI when spatial misrepresentations cannot be tolerated, for example, when computational fluid dynamics simulations are compared to or combined with in vitro or in vivo measurements, or regional parameters such as wall shear stress are of interest.

KEYWORDS
4D flow MRI, displacement artifact, flow artifact, GIRF, gradient imperfections, PC-UTE
1 | INTRODUCTION

Phase-contrast (PC) MRI has found widespread clinical use for the quantitative assessment of blood velocities and flow in the diagnosis of various cardiovascular diseases. With the introduction of 4D flow MRI, the velocity vector field in an entire imaging volume can be captured throughout the cardiac cycle. These velocity measures provide the basis for comprehensive flow analysis and also enable the assessment of additional hemodynamic parameters such as pressure gradients, wall shear stress (WSS), kinetic energy, pulse wave velocity, vortex formation, and intracardiac flow component analysis. Such parameters can provide additional information for studying disease mechanisms, diagnosis, and treatment monitoring and planning.

4D flow MRI is also increasingly used for in vitro imaging of synthetic and biological flow phantoms, for example, to study underlying hemodynamic effects, assess accuracy and precision of PC MRI hemodynamic measures, predict surgical outcomes with rapid prototyping models, and evaluate computational fluid dynamics modeling results. Such in vitro scans offer advantages over in vivo scans, including prolonged scan times to support higher spatial/temporal resolutions and/or higher precision, controlled and repeatable acquisitions without motion artifacts, and comparisons with other velocity measures such as particle image velocimetry. Whereas several correction methods are routinely applied to PC MRI during image reconstruction and postprocessing to reduce errors due to eddy currents or concomitant fields, some other errors remain unaccounted for in traditional PC MRI. Notably, the non-zero TE causes intravoxel dephasing and associated signal voids; time differences between the spatial-encoding time points of different axes yield geometric distortions or spatial displacements; and time differences between spatial- and velocity-encoding time points lead to errors in the velocity maps when acceleration is present, sometimes denoted as velocity displacements. These artifacts have already been reported in the early development stages of PC MRI but have received limited attention since the introduction of 4D flow MRI. However, they become of concern if spatial accuracy is of importance, for example, when (1) comparing MRI velocity fields with other spatially resolved measures such as particle image velocimetry, (2) merging data sets such as computational fluid dynamics and PC MRI for improved velocity fields data or segmentations obtained from MR angiography or cardiac anatomy datasets with PC MRI for improved vessel boundary detections, or (3) calculating streamlines along tortuous vessel paths. In addition, spatially sensitive measures such as WSS have been shown to be affected.

Different solutions have been proposed to counteract the displacements and geometric distortions in PC MRI. First, displacements can be partially corrected by estimating the actual location of affected voxels by reversing the displacement with a single step or iterative solver retrospectively during data processing. Second, geometric distortions caused by the non-synchronized position-encoding time points and the displacement because of prolonged TEs. Third, the spatial shift as well as the geometric distortions are directly impacted by the choice of imaging parameters that affect the sequence timing parameters, including the chosen velocity-encoding sensitivity (VENC), sequence timing parameters, receiver bandwidth, and spatial resolution. Minimizing TE is not only beneficial for reducing intravoxel dephasing but also for reducing the time interval between position- and velocity-encoding ΔT^0_i along axis i, and thus the velocity displacement.

Another prospective solution for reducing geometric distortions, spatial and velocity displacements, is to change the type of sequence trajectory. Bruschevski et al. presented a SYNC-SPI (synchronized-single-point-imaging) sequence that eliminates geometric distortions and displacements by simultaneously encoding the velocity and position on all axes. However, whereas the SYNC-SPI sequence provides highly accurate velocity vector fields, it acquires a single k-space point per repetition time, yielding extraordinarily long scan times of several hours up to several days that are often highly demanding concerning the stability of the flow setup and MRI system or even unfeasible. In practice, a faster method than the SYNC-SPI is often needed, but at the same time it should provide more accurate results than conventional Cartesian acquisitions and independence of the chosen orientation.

Using asymmetric Cartesian readout sampling schemes can reduce ΔT^0_i, but still the artifacts are non-isotropic. Further shortening of ΔT^0_i can be achieved by readouts that start in the center of acquisition k-space, for example stack-of-stars or stack-of-spirals. It was shown that these sequences are beneficial for investigating complex flow in stenotic jets with high velocities.
since short TE values reduce intravoxel dephasing and signal loss.

For magnitude-based applications, UTE sequences combined with nonselective RF pulses have been proposed that use isotropic center-out acquisitions, for example, “kooshball”-like radial trajectories. Such radial UTE trajectories have also been used in combination with bipolar gradients for PC imaging, which has been termed PC-UTE. We adopt the term PC-UTE in this work, although an ultrashort TE value cannot be realized due to the flow-encoding gradient duration prior to the readout. In other works, 3D radial PC-UTE has been investigated in animal studies: improved velocity mapping and intravoxel dephasing artifacts.

In this work, we investigate a 3D PC-UTE sequence and quantify its displacement artifact in an in vitro flow experiment. Comparison with a Cartesian PC sequence is performed, and SYNC-SPI data is acquired to serve as the ground truth. ΔTV-values are calculated from the sequence timings for different spatial resolutions and image orientations, and displacement predictions from these calculated ΔTV-values are compared to the measured values. Results obtained by the 3D PC-UTE sequence are compared to a Cartesian acquisition post-processed with the method proposed by Thunberg et al. to correct the displacement artifacts.

2 | METHODS

2.1 Calculation of encoding time points and displacement values

Although the position- and velocity-encoding process in PC MRI occurs within a finite duration, both processes are often considered to happen at single time points. For accurate flow encoding, the placement of these time points, that is, (t_{x0}, t_{y0}, t_{z0}) for encoding the position along the x-, y-, and z-axis, as well as (t_{x1}, t_{y1}, t_{z1}) for encoding the velocity along the axes, are essential. They depend on various factors, including the sequence trajectory, image orientation, different (velocity) encoding schemes, gradient performance, and various sequence parameters such as receiver bandwidth, spatial resolution, and TE.

Along the readout (RO) direction of a Cartesian sequence, for example, t_{x1} is considered to be located at the center of the echo and coincides with the center of the readout gradient for a symmetric readout (Figure 1). In contrast, if the fastest velocity encoding is implemented according to Bernstein et al., along the phase encoding (PE) directions are located at the “gravity time point” of the applied PE gradients. Thus, the time points t_{i0} are not synchronized between the axes, not only in the Cartesian case but also for other acquisitions such as stack-of-stars. As a result of this non-zero time interval ΔTi = t_{i1} - t_{i0} between position-encoding and axes ij = xy, xz, yz, the position of moving spins appears spatially dislocated and can lead to geometric distortions.

In PC MRI, the time points for encoding the velocity are at the “gravity time point” of the bipolar gradient difference function. In most sequences, the bipolar gradients are switched simultaneously (although potentially with different zeroth moments m0 and first moments m1) along the three axes; thus, the time points t_{x1}, t_{y1}, t_{z1} are typically close in time (Figure 1). However, there are time differences ΔTi between t_{i1} and t_{i0} that can vary between the axes, with the readout axis typically showing the largest ΔTR. Since the velocity is encoded prior to the spatial positioning, the peak velocity in a stenotic region is shifted downstream. This velocity displacement Δdi of moving spins with velocity component vi and time interval ΔTi along axis i is given by Δdi = vi · ΔTi.

To investigate the dependency of the displacement artifacts on the spatial resolution and associated encoding time points, the Cartesian sequence is simulated with the vendor’s integrated development environment for applications (Siemens Healthineers, Erlangen, Germany, IDEA, version VB17) for isotropic resolutions ranging between 0.6 and 5.3 mm (TE = 5.4–2.8 ms), with otherwise identical settings (VENC: 2.5 m/s, receiver bandwidth: 450 Hz/Px, maximal gradient amplitude: 19.2 mT/m, and maximal gradient slew rate: 96 mT/m/ms). In the PC-UTE sequence, the time points t_{i0} and t_{i1}, as well as ΔTi and ΔTR, are not affected by changing the resolution or receiver bandwidth because the “center-out” sampling requires no m0 for prewinding (Figure 1). Therefore, the radial sequence is simulated only once for an applied VENC of 2.5 m/s. From the obtained gradient waveforms, the encoding timepoints (t_{i0}, t_{i1}) and ΔTi are derived and the expected velocity displacement values Δdi calculated (Table 1).
2.2 Phase-contrast MRI sequences

In this work, three sequences as outlined in the following are used to investigate the displacement artifacts quantitatively.

2.2.1 3D Cartesian PC sequence

A Cartesian 3D PC MRI sequence is investigated, including different imaging orientations. The velocity-encoding gradients are implemented according to the established

Table 1 Calculated and measured displacement values Δd_z with corresponding time intervals ΔT_z of encoding directions played out along stenosis for flow experiments with constant flow rates $Q_1/Q_2/Q_3 = 40/30/20$ mL/s (corresponding to maximal expected velocities $v_z = 2.0/1.5/1.0$ m/s), VENC = 2.5 m/s, bandwidth = 450 Hz/Px, 1 mm isotropic resolution.

<table>
<thead>
<tr>
<th>PC sequences</th>
<th>SYNC-SPI</th>
<th>Cart RO\textsubscript{∥}</th>
<th>Cart RO\textsubscript{⊥}</th>
<th>PC-UTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔT_z (ms)</td>
<td>0.0</td>
<td>3.3</td>
<td>0.7</td>
<td>0.5</td>
</tr>
<tr>
<td>Constant flow rate</td>
<td>Q_1</td>
<td>Q_2</td>
<td>Q_3</td>
<td>Q_1</td>
</tr>
<tr>
<td>Δd_z (calculated) (mm)</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>6.6</td>
</tr>
<tr>
<td>Δd_z (measured) (mm)</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>6.0</td>
</tr>
</tbody>
</table>

Abbreviations: PC, phase-contrast; RO, readout; SYNC-SPI, synchronized-single-point-imaging; VENC, velocity-encoding sensitivity.
method proposed by Bernstein et al.31 providing the fastest encoding scheme and a minimal TE.31 Here, the m_0 of the pre-/rewinding gradients are included in the bipolar gradients for velocity encoding, yielding non-synchronized position- and velocity-encoding time points for the three individual axes (Figure 1). Consequently, ΔT^0_{ij} and ΔT^1_{ij} vary between axes resulting in both velocity displacements and geometrical distortions.

2.2.2 3D PC-UTE sequence

3D velocity-encoding gradients with the shortest possible duration31 are integrated into a 3D UTE radial readout sequence40 in which the readout starts in k-space center and subsequently moves radially outwards. A rectangular-shaped 500\,μs-long RF pulse is followed by bipolar gradients (total duration = 940\,μs for $\text{VENC} = 2.5$ m/s, TE = 1.2 ms), trapezoidal readout, and spoiling gradients (Figure 1). The first readout-spoke ends at the south pole (z-axis) and the ends of subsequent spokes spiral up to the north pole, while each TR is repeated four times with different velocity encodings. While the readout gradient changes direction, the four velocity-encoding gradients remain constant along the axes throughout the sequence.

Due to “center-out” acquisitions, the m_0 of the bipolar-encoding gradients vanishes. A two-sided velocity-encoding scheme31 is implemented with a constant absolute m_1 across all four flow encodes (FE) and all three directions (x, y, z) but with swapping signs: $m_1^{\text{FE} 1} = \left(-\frac{\Delta m_1}{2}, -\frac{\Delta m_1}{2}, -\frac{\Delta m_1}{2}\right)$, $m_1^{\text{FE} 2} = \left(-\frac{\Delta m_1}{2}, -\frac{\Delta m_1}{2}, \frac{\Delta m_1}{2}\right)$, $m_1^{\text{FE} 3} = \left(-\frac{\Delta m_1}{2}, \frac{\Delta m_1}{2}, -\frac{\Delta m_1}{2}\right)$, $m_1^{\text{FE} 4} = \left(-\frac{\Delta m_1}{2}, \frac{\Delta m_1}{2}, \frac{\Delta m_1}{2}\right)$. As a result, the velocity-encoding timepoints t^0_i are synchronized for all three axes $i = x, y, z$. Additionally, the position-encoding timepoints t^0_i are likewise synchronized, which eliminates geometric distortions, and are located at the beginning of the readout. Thus, this sequence shows a minimal time interval ΔT^0_i along all axes, resulting in an isotropic sensitivity to spatial displacements.

2.2.3 SYNC-SPI

A SYNC-SPI sequence35 is applied in addition to the other two acquisitions, which is regarded as a ground truth here. The SYNC-SPI achieves $\Delta T^0_{xy,yz,zx} = \Delta T^1_{xy,yz,zx} = 0$ for all three axes by synchronizing t^1_i and t^0_i, resulting in a single time point, that is, $t^0_i = t^0_1 = t^0_2 = t^0_3 = t^1_1 = t^1_2 = t^1_3$. Preventing velocity displacements and geometric distortions. This is feasible because only a single point in k-space is acquired per TR, and the k-space position does not change during readout but it comes at the expense of approximately two orders of magnitude longer acquisition time, that is, multiple hours instead of a few minutes.

2.3 Setup and flow measurements

In vitro flow experiments are performed on a 3T MR system (Siemens Verio, Erlangen, Germany) with a flow pump (CardioFlow 5000 MR, Shelley Medical Imaging Technologies, London, Canada) using three different constant flow rates $Q_1/Q_2/Q_3$ of 40/30/20 mL/s leading to maximal expected velocities of 2.0/1.5/1.0 m/s within the stenotic region of the flow phantom. Distilled water is pumped through the phantom consisting of a Venturi nozzle followed by a U-bend of 150 mm diameter (Figure 2) embedded in static 1.5% agarose gel, representing a stenotic aorta.28 The flow phantom has an aortic diameter of 9.5 and 15.0 mm proximal and distal to the stenosis (Figure 2). Reynold numbers of approximately 2700/2000/1300 and 5100/3800/2500 are expected in the pipe inflow and the stenosis for $Q_1/Q_2/Q_3$, respectively.

All 3D flow sequences are acquired with non-time-resolved three-directional velocity encoding (3D PC MRI) using a 15-channel knee coil (QED, Maybefield Village, OH USA). For characterization of the MR gradient system and subsequent correction of the data due to deviations from the nominal radial readout trajectory, the gradient impulse response function (GIRF)44 is measured using 12 triangular gradients (durations of 50–160\,μs) with a magnetic field camera (Skope Magnetic Resonance Technologies, Zurich, Switzerland) according to Vannesjo et al.44

![Figure 2](image)
The flow phantom experiments are performed with the Cartesian, PC-UTE, and SYNC-SPI sequences for \(Q_1 \), \(Q_2 \), and \(Q_3 \). While \(\Delta T^0_{ij} \) and \(\Delta T^0_i \) are independent of the image orientation for the PC-UTE and SYNC-SPI, this is not the case for the Cartesian sequence. Hence, the Cartesian acquisitions were performed twice, first with readout-direction parallel (Cart \(\text{RO}_i \)) and second with readout-direction perpendicular (Cart \(\text{RO}_1 \)) to the stenosis. Figures 1 and 2 display all sequences for a single TR, with corresponding encoding time points and the phantom setup/geometry.

All flow sequences are acquired with a nominal 1 mm isotropic resolution and 12° flip angle. Imaging parameters for the PC-UTE scan are: FOV = 256 × 256 × 256 [mm]\(^3\), 50000 spokes, TE/TR = 1.2/7.6 ms, nonselective excitation; for Cartesian scans: FOV = 256 × 128 × 60/256 × 160 × 60 [mm]\(^3\) (Cart \(\text{RO}_0 \)/Cart \(\text{RO}_1 \)), TE/TR = 4.3/7.1 ms, slab-selective excitation; and for SYNC-SPI scan: FOV = 256 × 128 × 26 [mm]\(^3\), TE/TR = 2.2/7.1 ms, slab-selective excitation. All detailed measurement parameters are summarized in Table S1.

Additional Cartesian 3D flow acquisitions are performed with constant flow rate \(Q_1 \) and different isotropic resolutions (0.6/1.6/1.8/2.3/2.7 mm, TE = 5.6/3.8/3.6/3.5/3.5 ms) for Cart \(\text{RO}_i \) and Cart \(\text{RO}_1 \) to validate the displacement dependence on the resolution. All detailed measurement parameters are summarized in Table S2.

2.4 | Reconstruction and post-processing of velocity data

All datasets are reconstructed using custom-written reconstruction software in Python (version 3.7). To correct for gradient imperfections in the radial acquisitions, a GIRF\(^{45} \) is applied to both the nominal bipolar and radial readout gradients. The radial datasets are then reconstructed with density compensation, and a nonuniform fast Fourier operator is applied to the GIRF-predicted k-space trajectory.

No Maxwell correction is applied throughout this work. Background phase correction using a third-order polynomial fit on static material (see Figure 2 for surrounding tissue) is applied for each velocity dataset, and the resulting fit is subtracted from the velocity maps.

2.5 | Data evaluation

2.5.1 | Velocity displacements

The highest velocity shifts within the phantom are expected in the stenotic region. To quantify the shift and its dependence on the image orientation, the velocity component \(v_z \) along the stenosis is evaluated for \(Q_1 - Q_3 \) and all three acquisitions. For this, the \(v_z \)-component of the SYNC-SPI data is shifted by \(v_z \cdot \Delta T^0_z \) for different \(\Delta T^0_z \)-values. Since the expected displacement values are smaller than the acquired voxel size, the velocity data is first interpolated to a finer grid, shifted by amount \(\Delta T^0_z \), and then interpolated to the original voxel grid again. Subsequently, the correlation between the shifted SYNC-SPI and the other acquisitions is obtained. The \(\Delta T^0_z \) with the best correlation to the measured \(v_z \) of Cart \(\text{RO}_i \), Cart \(\text{RO}_1 \), and PC-UTE is determined, and the measured velocity shift \(\Delta d_z \) for the velocities of 2.0/1.5/1.0 m/s is derived.

2.5.2 | Geometric distortions

Geometric distortions are present in both the magnitude and velocity maps due to non-zero and non-synchronized \(\Delta T^0_{ij} \)-values, which may result in the signal of moving spins being shifted into the walls of the vessel pipes. To visualize the geometric distortions in the velocity data, masks of the vessel boundaries are overlaid with the velocity maps for the different PC MRI acquisitions. Masks are obtained with the software ITK-SNAP (version 4.0.0) by applying seed points in the magnitude images for each acquisition. The shift of the fluid within the pipe is determined by comparing the masks to the SYNC-SPI-mask and the maximum shift distance is reported.

2.5.3 | Sensitivity to intravoxel dephasing

For acquisitions with high TE, intravoxel dephasing can lead to signal cancellations and dropouts, which may affect velocity quantification and derived parameters. To investigate the performance of the Cartesian, PC-UTE, and SYNC-SPI sequences regarding signal attenuations, signal intensities in the magnitude data are analyzed in a region of interest (ROI) of 16 voxels downstream of the stenosis, which present the largest decrease of signal intensities due to complex flow for \(Q_1 - Q_3 \). For all acquisitions, the signal intensities are normalized to the mean inflow signal prior to the stenosis. The largest signal dropouts downstream of the stenosis are compared to those of the SYNC-SPI data.

2.5.4 | Flow and velocity value evaluation

To investigate the performance of all flow sequences, both flow rate and velocity component values are investigated.
First, the mean velocities with SDs are determined within ROIs of 36/122/11 voxels at different cross-sectional areas (pipe inflow/outflow/stenosis) of the flow phantom and Q_1. Volumetric flow rates are then derived by multiplying these areas with the mean velocities. The mean velocity component v_z with SD is determined in a ROI of 43 voxels for all acquisitions in the arc of the pipe. Since the radial data is more strongly affected by system imperfections compared to the Cartesian sequence, the velocity values of v_z along a velocity line are investigated for the PC-UTE sequence regarding the performance of GIRF and background phase corrections.

2.5.5 Retrospective displacement correction method

A retrospective correction method proposed by Thunberg et al.29 is implemented and applied to both the velocity and magnitude data obtained with Cart RO\textsubscript{∥} and flow rate Q_1, for which the displacement is most prominent along the z-axis. As described by Thunberg et al., the velocity values in the acquired data are set back by the displaced distance given by the velocity values multiplied by the time interval ΔT^v_{RO}. From this corrected velocity field, streamlines are calculated and tracked over ΔT^v_{RO}. The displaced velocities are then shifted backward from the end to the starting position of the streamlines, resulting in a further corrected velocity field. This process is repeated iteratively several times, including streamline calculation based on the new corrected velocity fields.

3 RESULTS

3.1 Calculation of encoding time points and displacement values

In Figure 3A–C, bipolar gradients with corresponding encoding time points and time intervals (shaded region) are displayed for one flow encode for the Cartesian and PC-UTE sequence as used in the measurements for a 1 mm isotropic resolution. The Cartesian encoding resulted in predicted values ΔT^v_{RO} of 3.3 ms for the readout and 0.7 ms for the first PE direction. For the PC-UTE sequence, an isotropic value of $\Delta T^v_{\text{RO}} = 0.5$ ms was calculated for all three spatial axes. With these time intervals, displacement values Δd_z of 6.6/5.0/3.3 mm for Cart RO\textsubscript{∥}, 1.4/1.0/0.7 mm for Cart RO\textsubscript{⊥}, and 1.0/0.8/0.5 mm for PC-UTE were calculated for the three maximum velocities of $Q_1/Q_2/Q_3$, respectively. Calculated displacement values and corresponding time intervals are listed in Table 1.

Figure 3D–F illustrates the absolute displacement in mm as a function of the resolution, which was calculated for the three different sequences with VENC = 2.5 m/s. The SYNC-SPI shows no displacement independently of the resolution and for all axes. For the Cartesian sequence, the displacement depends on the spatial resolution, encoding axis, and velocity direction. The displacement along Cartesian readout dominates for a velocity of 2.0 m/s, increasing from 5.5 to 8.1 mm for isotropic resolutions of 2.0 and 0.6 mm, respectively. This effect becomes even more apparent when calculating the shift relative to the voxel size, as shown in Figure 3G–I. Here, the displacement increases from 2.7 to 13.4 voxels. For the PC-UTE, the calculated displacement is independent of both the direction and resolution but shows a non-zero value of 1.0 mm for a velocity of 2.0 m/s.

3.2 Flow measurements

For the four flow acquisitions, the magnitude maps for Q_1 (Figure 4A) and velocity maps for the z-component of all three flowrates $Q_1 − Q_3$ (Figure 4B–D) are displayed in Figure 4. For each flow rate, all three velocity components and magnitude maps are displayed in Figures S1–S4 for the same slices. The displacement shifts and geometric distortions are less prominent with smaller flow rates and correspondingly smaller velocity values.

3.2.1 Velocity displacements

The largest displacement occurs in Cart RO\textsubscript{∥} since the readout axis is aligned along the highest velocity component v_z (marked by gray arrow in Figure 4). For $Q_1 − Q_3$, the velocities along the dashed white line (Figure 5B) are displayed in Figure 6 to investigate the velocity shifts. Measured velocity displacement Δd_z resulted in 6.0/5.0/3.0 mm for Cart RO\textsubscript{∥}, 1.0/1.0/1.0 mm for Cart RO\textsubscript{⊥}, and in 1.0/1.0/1.0 mm for PC-UTE compared to the SYNC-SPI acquisition for $Q_1/Q_2/Q_3$, respectively. Cart RO\textsubscript{∥} and PC-UTE show similar results for $Q_1 − Q_3$ (Figure 6).

In Figure 5B, slices with sagittal orientations show similar results compared to slices with coronal orientations (Figure 4), depicting the dependence of the artifact in 3D volume. The dependence of the displacement on the acquired resolution of Cart RO\textsubscript{∥} and Cart RO\textsubscript{⊥} is illustrated in Figures S6 and S7. Velocity shifts of Cart RO\textsubscript{∥} compared to Cart RO\textsubscript{⊥} resulted in 9/2/1/1 voxels corresponding to 5.4/3.2/3.6/2.3/2.7 mm for the isotropic resolutions 0.6/1.6/1.8/2.3/2.7 mm.
3.2.2 Geometric distortions

In Figure 4, the SYNC-SPI and PC-UTE data show no geometric distortions. However, in both Cartesian acquisitions, geometric distortions are observed. White arrows pointing to the pipe bending indicate the dependency of the distortions on the imaging axes in Figure 4. For Cart ROₙ, with the readout direction applied along the bottom–top direction, the signal of the moving fluid within the pipe is shifted 2–3 mm upward such that the wall appears to be thinner. Since the velocity component \(v_z \) shows a range of different values, moving spins are shifted by varying amounts. If the readout direction is oriented along the left–right direction (Cart RO₂), the moving fluid is shifted toward the right within the arch, and the pipe wall appears 2–3 mm broader compared to the SYNC-SPI.
3.2.3 | Sensitivity to intravoxel dephasing

Intravoxel dephasing can lead to signal cancellations in both velocity and magnitude maps. Whereas the SYNC-SPI shows the fewest signal fluctuations, both Cartesian acquisitions show a substantial signal loss in the magnitude images (black regions in Figure 5A), which correspond to complex flow regions and can be reduced by shortening TE. Signal intensities evaluated along the dashed white line in Figure 5A are displayed in Figure 7 for \(Q_1 \) – \(Q_3 \). The signal intensity decreased maximally by 92%/64%/23% (\(Q_1 \)), 78%/42%/19% (\(Q_2 \)), and 51%/25%/20% (\(Q_3 \)) for Cart RO\(_{\parallel}\)/Cart RO\(_{\bot}\)/PC-UTE compared to the SYNC-SPI.

Signal dropouts do not only become apparent in the coronal view shown in Figure S4 but also in magnitude maps with sagittal orientations as depicted in Figure S5. Additionally, the dependence of signal cancellations for different resolutions, and thus TE values, is illustrated in Figure S6. For the highest resolution (0.6 mm\(^3\)), signal cancellations are mostly prominent and decrease for lower resolutions (>1.0 mm\(^3\)).

3.2.4 | Flow and velocity value evaluation

Mean velocity and volumetric flow rates are obtained for different cross-sections of the flow phantom for \(Q_1 \) (Figure S8). In the region of the stenosis, volumetric flow rates are underestimated by 47%/5%/10% for Cart RO\(_{\parallel}\)/Cart RO\(_{\bot}\)/PC-UTE compared to the SYNC-SPI. The high underestimation in Cart RO\(_{\parallel}\) demonstrates the velocity displacement of high velocities shifted downstream of the stenosis. The velocity component \(v_x \)
was evaluated for all four acquisitions in the bending of the pipe and resulted in -0.20 ± 0.01/-0.26 ± 0.01/-0.23 ± 0.01/-0.22 ± 0.01 m/s (Q_1), in -0.21 ± 0.01/-0.20 ± 0.01/-0.15 ± 0.01/-0.17 ± 0.01 m/s (Q_2), and in -0.13 ± 0.01/-0.11 ± 0.01/-0.12 ± 0.01/-0.14 ± 0.01 m/s (Q_3) for SYNC-SPI/Cart RO$\|$/Cart RO\perp/PC-UTE, respectively. The velocity component v_y of PC-UTE shows an overall similar velocity pattern to the SYNC-SPI data (Figures S1–S3), whereas Cart RO$\|$ and Cart RO\perp show deviations in the pipe-bending region, which may result from nonsynchronized position-encoding time points in 3D volume. The velocity component v_z of the PC-UTE acquisition is displayed for the nominal and the GIRF-corrected trajectories as well as after background phase correction in Figure S9.

3.2.5 Retrospective displacement correction method

The velocity and magnitude maps obtained after applying the correction method29 on data acquired with Cart RO$\|$
are displayed in Figure 8. Displaced velocities \(v_z \) are successfully shifted backward (Figure 8C). The resulting shift with Cart RO\(_j\) obtained after correction deviates less than 1 mm to Cart RO\(_j\), PC-UTE, as well as SYNC-SPI. However, the corrected velocity values do not completely match with the SYNC-SPI data. The signal of displaced spins is successfully shifted backward. Nevertheless, this correction method does not remove signal cancellations due to intravoxel dephasing.

4 DISCUSSION

In this work, a 3D PC-UTE flow sequence was developed and investigated in in vitro flow experiments with a focus on displacement artifacts and intravoxel dephasing. To the best of our knowledge, it is the first report in the literature that quantitatively analyzes the displacement artifact with a PC-UTE sequence and compares it to both the displacement of a Cartesian and ground truth SYNC-SPI sequence.

Over the past decade, the increasing availability of 4D flow sequences, post-processing packages, and 3D printers has led to a rising number of in vitro PC flow imaging studies investigating flow patterns and hemodynamic parameters in replicas of healthy and diseased vessels in detail. This approach enables analyzing the impact of specific anatomic features on the underlying flow pattern. It enables prolonged scan times not feasible in in vivo studies, thus supporting higher spatial resolutions.

However, applying Cartesian-based, PC flow sequences or PC sequences with long TE values for high-resolution applications yields strong spatial and/or velocity displacement artifacts, which can vary between the readout and PE axes. These effects impact spatial accuracy as well as measured velocity amplitudes, velocity vector fields, and derived hemodynamic parameters such as the WSS and kinetic energy.

For the proposed PC-UTE sequence, \(\Delta T\) only depends on the VENC value and gradient performance. Thus, newer MR systems with higher gradient performance are favorable for achieving shorter \(\Delta T\) durations. In addition, the resolution and the receiver bandwidth impact the displacement for Cartesian sequences. For many flow applications, particularly for WSS estimation, high resolutions are required for obtaining accurate values. Relative to the voxel size, the displacement increases disproportionally high, as shown in Figure 3E–I, demonstrating the importance of sequences that minimize these effects when high spatial resolutions are indispensable. As shown by Schmidt et al., varying WSS values are obtained from velocity fields acquired with either "Bernstein encoding scheme" \((t_i \neq t_j, t_k \) or a scheme that synchronizes \(t_i \) for all axes at TE \((t_i = t_j = t_k \). Since the velocity-encoding scheme in our PC-UTE sequence eliminates \(\Delta T\) and minimizes \(\Delta T\), WSS values derived from this acquisition are expected to be closer to the ground truth due to smaller and isotropic velocity shifts.

Synchronized encoding and vanishing \(\Delta T\) and \(\Delta T\) values are achievable by the SPRITE or SYNC-SPI sequence.
method, but they come at the cost of extensively long scan times. Different types of multi-slice 2D PC-UTE acquisitions have been investigated for flow imaging and can serve as a tradeoff between reduced scan time over point-based methods and greater accuracy over Cartesian acquisitions.

The PC-UTE scan time is substantially shorter than the SYNC-SPI counterpart but still requires around 25 min in the present implementation, which is 38% longer than the Cartesian scan time. Extending the technique toward 4D flow, including temporal dimensions, is straightforward but further prolongs the scan time. Nevertheless, radial acquisition schemes are well suitable for subsampling and iterative reconstructions, which have not been applied here.

Importantly, UTE sequences also reduce intravoxel dephasing, which was particularly beneficial in complex flow. In this regard, center-out sampling strategies such as a center-out radial “kooshball” or cones are preferred for 3D PC imaging. Magnitude and velocity maps show fewer signal cancellations in stenotic regions due to shorter TE, which can be beneficial for quantification of turbulences.

Non-Cartesian UTE acquisitions, however, are susceptible to system imperfections. Gradient delays and trajectory deviations must be carefully considered and corrected during reconstruction. We chose the GIRF prediction model to correct for gradient deviations. Correcting for both bipolar and readout gradients included the different polarities of the flow-encoding gradients in front of the radial readout for each flow encode. Eddy currents from the flow-encoding gradients that influence the readout could be mitigated, for example, by delaying the readout; but this would come at the expense of a prolonged
 Further investigations need to be carried out on the performance of the applied GIRF model, for example, by measuring the gradients directly with a field camera. Measurements with varying flow rates demonstrated the linear dependency of the displacement on the velocity values. Consequently, a lower flow rate results only in moderate displacements. Thus, for pulsatile flow, which was not investigated in this work, only minor differences in the velocity displacements between the proposed PC-UTE and Cart ROI are expected for the diastolic phase, whereas larger differences are expected in the systolic phase. Moreover, applying a smaller VENC value for better velocity-to-noise ratio typically increases TE and the length of the bipolar velocity-encoding gradients, thus the risk for geometric distortions and velocity displacements. Moreover, the artifact depends on the underlying geometry; for example, velocity shifts are visible in regions with acceleration and the shift occurs in the 3D volume. Note that geometric distortions also exist in non-PC MRI sequences, which can become important if images from different sequences are merged, for example, if a vessel segmentation for PC MRI is performed on a sequence different from the PC MRI sequence.

Applying the correction method on the Cartesian data successfully shifted high velocities backward. However, signal dropouts that occur in regions downstream of the stenosis could not be retrieved. For the future, further improvements might be achieved by applying a mask of static tissue, preventing the signal from being shifted into the velocity fields.

5 | CONCLUSION

Due to the shortened and directionally independent time interval between spatial- and velocity-encoding, PC-UTE sequences are highly suitable for measuring the underlying velocity vector field more accurately compared to the Cartesian counterpart and in shorter scan times compared to sequences without displacement artifacts. This benefit becomes especially important when high resolution is desired or when imaging high flow velocities. The proposed 3D PC-UTE sequence may be used for detailed investigations of biomedical flows, for example, when studying flow patterns in a 3D-printed replica of vessels, aneurysms, or artificial heart valves.

AFFILIATIONS

1 Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Berlin, Germany
2 Department of Radiology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
3 Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
4 Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
5 Department of Medical Physics, University of Wisconsin, Madison, Wisconsin, USA
6 Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
7 Department of Radiology, University of Wisconsin Madison, Madison, Wisconsin, USA
8 School of Imaging Science and Biomedical Engineering, King's College London, London, United Kingdom
9 Department of Medical Engineering, Technical University of Berlin, Berlin, Germany
10 Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
11 Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrueck Center for Molecular Medicine, Berlin, Germany
12 DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
13 Department of Cardiology and Nephrology, HELIOS Hospital Berlin-Buch, Berlin, Germany

ACKNOWLEDGEMENT

Open Access funding enabled and organized by Projekt DEAL.

FUNDING INFORMATION

Funding was provided from the German Research Foundation DFG (Deutsche Forschungsgemeinschaft) through grant/award numbers SCHM 2677/4-1 and GRK2260-BIOQIC.

ORCID

Katja Degenhardt https://orcid.org/0000-0002-0482-9698
Simon Schmidt https://orcid.org/0000-0003-1835-4002
Christoph S. Aigner https://orcid.org/0000-0003-3618-9610
Fabian J. Kratzer https://orcid.org/0000-0001-7454-1641
Max Mueller https://orcid.org/0000-0001-6731-9583
Christoph Kolbitsch https://orcid.org/0000-0002-4355-8368
Armin M. Nagel https://orcid.org/0000-0003-0948-1421
Oliver Wieben https://orcid.org/0000-0002-7931-1930
Tobias Schaeffter https://orcid.org/0000-0003-1310-2631
Jeanette Schulz-Menger https://orcid.org/0000-0003-3100-1092
Sebastian Schmitter https://orcid.org/0000-0003-4410-6790
REFERENCES

33. Stähler P, Søndergaard L, Thomsen C, Henriksen O. Quantification of complex flow using MR phase imaging—a study of...

SUPPORTING INFORMATION

Additional supporting information may be found in the online version of the article at the publisher’s website.

Figure S1. 3D flow measurements in a stenotic flow phantom with VENC = 2.5 m/s and flow rate Q1. (A) displays the magnitude images, (B–D) the velocity maps v_x, v_y, and v_z. Slices 9, 20, 38, 120 are displayed for SYNC-SPI, Cart RO∥, Cart RO⊥, and PC-UTE, respectively.

Figure S2. 3D flow measurements in a stenotic flow phantom with VENC = 2.5 m/s and flow rate Q2. (A) displays the magnitude images, (B–D) the velocity maps v_x, v_y, and v_z. Slices 9, 20, 38, 120 are displayed for SYNC-SPI, Cart RO∥, Cart RO⊥, and PC-UTE, respectively.

Figure S3. 3D flow measurements in a stenotic flow phantom with VENC = 2.5 m/s and flow rate Q3. (A) displays the magnitude images, (B–D) the velocity maps v_x, v_y, and v_z. Slices 9, 20, 38, 120 are displayed for SYNC-SPI, Cart RO∥, Cart RO⊥, and PC-UTE, respectively.

Figure S4. Magnitude images of 3D flow measurements in a stenotic flow phantom with VENC = 2.5 m/s and flow rates Q1 - Q3 displayed in (A–C). Slices 9, 20, 38, 120 are displayed for SYNC-SPI, Cart RO∥, Cart RO⊥, and PC-UTE, respectively.

Figure S5. Slices with sagittal orientations of flow measurement with VENC = 2.5 m/s and flow rate Q1. (A) magnitude maps, (B) velocity maps v_x and velocity line plots (C) along stenosis averaged over two neighboring lines. Slices 38, 38, 102, 102 are displayed for SYNC-SPI, Cart RO∥, Cart RO⊥, and PC-UTE, respectively.

Figure S6. 3D flow measurements in a stenotic flow phantom with VENC = 2.5 m/s and flow rate Q1 for Cart RO∥ and Cart RO⊥ with varying isotropic resolutions (0.6/1.6/2.3/2.7 mm), slices 20/6/5/4 are shown for Cart RO∥ and slices 19/8/7/6/5 for Cart RO⊥.

Figure S7. Velocity component v_z of 3D flow measurements with Cart RO∥ and Cart RO⊥ (Figure S6) in a stenotic flow phantom with VENC = 2.5 m/s and flow rate Q1 for isotropic resolutions: 0.6/1.6/2.3/2.7 mm.

Figure S8. Mean velocity (A) and volumetric flow rate (B) of 3D flow measurement in a stenotic flow phantom with VENC = 2.5 m/s and flow rate Q1 obtained from cross-sectional areas at different positions in flow phantom: pipe inflow, outflow 1, stenosis, outflow 2.
Figure S9. (A) Magnitude maps of PC-UTE acquisition from flow measurement with VENC = 2.5 m/s and flow rate Q_1. (B) Velocities v_z along dashed white line in (A) for PC-UTE data reconstructed with: (i) nominal, (ii) GIRF-corrected trajectory and (iii) after background (b.g.) phase correction applied on (ii).

Table S1. Acquisition parameters of 3D flow measurements with constant flow rates $Q_1 – Q_3$. Number of slices correspond to PE2-steps in Cartesian and SYNC-SPI and to base resolution in PC-UTE acquisition: 26, 60, 60, 256 slices for SYNC-SPI, Cart R_O, Cart R_O and PC-UTE, respectively.

Table S2. Acquisition parameters of 3D flow measurements with constant flow rate Q_1 for Cart R_O and Cart R_O with varying isotropic resolutions (0.6/1.6/1.8/2.3/2.7 mm). Number of slices in Cartesian acquisitions: (40/14/14/12/10) for Cart R_O and (40/16/14/12/10) for Cart R_O, respectively to the resolution.