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Nuclear detection, segmentation and morphometric profiling are essential in helping us further understand the
relationship between histology and patient outcome. To drive innovation in this area, we setup a community-
wide challenge using the largest available dataset of its kind to assess nuclear segmentation and cellular
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Computational pathology
Nuclear recognition
Deep learning

composition. Our challenge, named CoNIC, stimulated the development of reproducible algorithms for cellular
recognition with real-time result inspection on public leaderboards. We conducted an extensive post-challenge
analysis based on the top-performing models using 1,658 whole-slide images of colon tissue. With around
700 million detected nuclei per model, associated features were used for dysplasia grading and survival
analysis, where we demonstrated that the challenge’s improvement over the previous state-of-the-art led to
significant boosts in downstream performance. Our findings also suggest that eosinophils and neutrophils play
an important role in the tumour microevironment. We release challenge models and WSI-level results to foster
the development of further methods for biomarker discovery.
1. Introduction

Analysis of nuclei in a histopathology tissue slide can provide key
information for identifying the presence or state of a disease. For
example, their shape and appearance can be used to determine cancer
grade, whereas the co-occurrence and distribution of different nuclei
can be indicative of diagnosis and patient outcome. In particular, ep-
ithelial nuclear pleomorphism is a major component of the Nottingham
Grading System for breast cancer (Rakha et al., 2008), while increased
amounts of immune cells may be a sign of certain conditions, such
as inflammatory bowel disease (Lennard-Jones, 1989; Magro et al.,
2013) Two particularly well-studied prognostic tissue-based biomarkers
are Tumour-Infiltrating Lymphocytes (TILs) (Ropponen et al., 1997;
Salgado et al., 2015) and Cancer-Associated Fibroblasts (CAFs) (Sahai
et al., 2020; Tommelein et al., 2015) Here, TILs have been linked to
positive patient outcome and immunotherapy response, while CAFs are
generally associated with poor outcome due to their role in promoting
tumour development.

To assist with nuclear analysis, Deep Learning (DL) methods like
HoVer-Net (Graham et al., 2019) and StarDist (Schmidt et al., 2018)
have been used to automate nucleus recognition. However, these mod-
els require a large amount of labelled data to perform accurately.
Obtaining pixel-level annotations is a time-consuming task that re-
quires pathologist input, often leading to small datasets. To overcome
this, recent semi-automatic methods involving pathologists have led to
the collection of large datasets for nuclear segmentation. For exam-
ple, PanNuke (Gamper et al., 2019, 2020) collected point annotations
of over 200,000 different nuclei with collaborating pathologists, and
utilised a semi-automatic method for generating the nuclear bound-
aries (Koohbanani et al., 2020). The Lizard dataset (Graham et al.,
2021) employed an iterative approach to label nearly half a million
nuclei, using a combination of semi-automatic and manual pathologist-
involved refinement steps to ensure accurate annotation. Datasets at
such scales pave the way for the development and reliable evaluation
of advanced DL models for nuclear recognition.

AI competitions have been pivotal in helping to drive forward the
development of innovative DL models in Computational Pathology
(CPath) (Bejnordi et al., 2017; Bulten et al., 2022; Sirinukunwattana
et al., 2017; Da et al., 2022), where carefully curated datasets are made
available to participants around the world. However, even though there
have been several previous competitions for automatic identification of
nuclei in H&E images (Kumar et al., 2019; Vu et al., 2019), all tend
to suffer from a similar set of limitations. For example, the previous
largest competition for nuclear segmentation and classification (Verma
et al., 2020) used a dataset consisting of around 47 thousand nuclei,
where only 15 thousand of these were used for evaluation. Further-
more, the evaluation images were available to participants, meaning
that models could be tuned until a satisfactory visual performance
was observed. Of course, this is not reflective of clinical practice and
may ultimately lead to overfitting. Instead, it is desirable for images
to be hidden from participants during evaluation to ensure reliable
assessment of model performance and to minimise the risk of test
data hacking. Despite competitions being a great way of accelerating
research for AI-based nuclear recognition, the ultimate aim is to enable
the extraction of interpretable biomarkers and use them in downstream
clinical tasks, such as cancer grading (Shaban et al., 2020), finding
2

origins for cancers of unknown primary (CUP) (Lu et al., 2021) or
improved patient stratification (Wulczyn et al., 2020; Zhu et al., 2020;
Kather et al., 2019). However, no previous AI competition for nuclear
identification has performed an analysis on how the performance of
submitted algorithms impacts downstream applications. We consider
this to be particularly important because up until now, there has been
limited understanding into what level of performance is required for
automatic nuclear identification.

To counter the above limitations, we organised the Colon Nuclei
Identification and Counting (CoNIC) Challenge that invited participants
from around the world to develop solutions aimed at solving the
following two tasks: (1) nuclear segmentation and classification and
(2) prediction of cellular composition. The CoNIC Challenge uses an
extension of the current largest available dataset for nuclear instance
segmentation and classification, consisting of over 535,000 unique
nuclei from 16 centres, which is over 11 times the number of nuclei
used in the previous largest challenge (Verma et al., 2020). In addition
to using a large dataset to ensure reliable evaluation, we also required
participants to submit their algorithms, rather than the results, enabling
test images to remain hidden and guaranteeing unbiased evaluation.
Results were announced at the International Symposium for Biomedical
Imaging (ISBI) 2022 in Kolkata.

Furthermore, we performed an extensive assessment of the top al-
gorithms on two clinical tasks: dysplasia grading and survival analysis.
For this, we processed 1,658 WSIs from two independent colorectal
cohorts with the best performing models and assess the impact of
nuclear recognition performance on each downstream application. We
identified that the best methods from the challenge are capable of
achieving superior performance as compared to previous methods.
Nevertheless, our findings also suggest that there exist differences
in the most important features identified using each of the state-of-
the-art model predictions. As a result, subsequent interpretation of
these features should be done with caution. To encourage the devel-
opment of further downstream methods using nuclear features, we also
make these WSI-level results, along with the top-performing algorithms,
publicly available.

Taking all of this into account, we believe that the CoNIC Challenge
will be pivotal in stimulating the development of interpretable cell-
based AI models for CPath. The challenge website can be accessed at
https://conic-challenge.grand-challenge.org/.

2. Methods

2.1. CoNIC challenge

To stimulate the development of automatic models for nuclear
recognition, we organised an AI competition that invited researchers
to develop solutions for two tasks: (1) nuclear segmentation and classi-
fication and (2) cellular composition. For this purpose, we extended
our recent Lizard dataset (Graham et al., 2021) so that it now con-
tains 535,063 labelled nuclei, making this ten times the size of the
previous largest AI competition for automatic nuclear recognition in
CPath (Verma et al., 2020). Specifically, participants were required to
either segment or predict the counts of the following types of nuclei:
epithelial, plasma, lymphocyte, neutrophil, eosinophil and connective
tissue. Here, we use connective tissue as a broader category consisting
of fibroblasts, muscle and endothelial cells.

https://conic-challenge.grand-challenge.org/
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Fig. 1. Overview of the CoNIC Challenge. a, Challenge format and timeline. The format describes the main aims of the challenge, which involves developing AI models for (1)
automatic nuclear segmentation and classification and (2) cellular composition. The challenge timeline describes the major events during the competition. b, Application of the
best performing models from the challenge on downstream tasks. We take the best models from the challenge and assess their performance on the tasks of dysplasia grading and
survival analysis.
In Fig. 1a we give an overview of the CoNIC Challenge, including
the timeline with the following major events: (1) participant onboard-
ing, (2) release of training data, (3) discovery phase, (4) preliminary
submission phase, (5) final submission phase, (6) challenge results, and
(7) challenge legacy. The competition was hosted on Grand Challenge
(https://grand-challenge.org), which enabled seamless participant reg-
istration and provided a platform for algorithm submission. Training
data was released at the beginning of the competition, where we
extracted small image regions (patches) of size 256 × 256 from the
original Lizard training set and made them available to download.

We provided a HoVer-Net model (Graham et al., 2019), which
was optimised on the training dataset, as the baseline for the com-
petition. Aside from this, we did not permit the organisers to make
any submissions to the challenge. There was a two-week preliminary
submission phase to allow participants to familiarise themselves with
the submission system and improve their algorithm generalisation. To
assist with the latter, we utilised a small sample of the full evaluation
dataset, which came from a single TCGA centre with images that
looked noticeably different from the training data. The final submission
phase lasted one week, where participants could only submit once
per task. Here, algorithms had to process all 103,150 nuclei in the
evaluation dataset within 60 min, where images came from the Lizard
test dataset and an additional colon biopsy dataset made purposely for
the competition. The results were kept secret until they were revealed
at the challenge workshop.

In total, we received 373 submissions during the challenge, where
208 were for the segmentation and classification task and 165 for
the cellular composition task. 26 unique teams appeared on the final
segmentation and classification leaderboard, whereas 24 teams ap-
peared on the cellular composition leaderboard. Upon conclusion of the
3

challenge, we have kept the portal open for submissions and release the
top algorithms to facilitate future developments in the field.

2.1.1. Dataset
To ensure reliable evaluation and to foster the development of

generalisable models, it is essential for AI competitions to utilise large
datasets. Therefore, in this competition, we used data from our re-
cently curated Lizard dataset (Graham et al., 2021), consisting of
495,179 nuclei in H&E-stained microscopic image regions from 16
different centres and three countries. To gather such a large dataset,
we employed an iterative approach to annotate the data, which used
a combination of semi-automatic and manual refinement steps with
significant pathologist involvement. Utilising this strategy ensured the
development of an accurate dataset at scale, resulting in the largest
available dataset for nuclear segmentation and classification in CPath.
Nuclei were labelled in accordance with their associated cell type
and categorised as either: epithelial cell, lymphocyte, plasma cell,
neutrophil, eosinophil or connective tissue cell. Here the connective
tissue cell category groups endothelial cells, fibroblasts and muscle cells
into a single class. Therefore, models trained on this data may be used
to help effectively profile the colonic tumour micro-environment. We
choose to focus on nuclei from colon tissue to ensure that our dataset
contains images from a wide variety of different normal, inflammatory,
dysplastic and cancerous conditions in the colon - therefore increasing
the likelihood of generalisation to unseen examples.

In addition to the Lizard dataset (Graham et al., 2021), we labelled
39,884 nuclei from an internal colon biopsy dataset. This was done by
multiple pathologists in the form of point annotations with consensus
review (Wahab et al., 2022). Then, segmentation masks were produced
using a semi-automatic method (Koohbanani et al., 2020) and results

https://grand-challenge.org
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were manually refined. This led to a total challenge dataset of 535,063
accurately labelled nuclei. Since the data was not completely manually
annotated, some noise in the dataset is inevitable. To investigate this
further, we assessed the generated annotation accuracy by comparing
it with annotations performed by multiple pathologists (Graham et al.,
2021). We found that the level of error was acceptable. For the purpose
of the competition, we then extracted patches of size 256 × 256 pixels
at 20× objective magnification (approximately 0.5 microns/pixel) and
provided the counts within the central 224 × 224 pixel region. This
ensured that nuclei were only considered if the majority of pixels were
visible. We provide a detailed summary of the breakdown of the dataset
in Fig. S1. Only the challenge data provided was allowed for model
training. We did not permit the use of any external data.

2.1.2. Evaluation metrics
For each task, we utilised a single metric that was used to rank team

submissions. For the segmentation and classification task, the multi-
class panoptic quality was used, which has recently been justified as a
strong metric by Graham et al. (2019). Here, for each type 𝑡, the 𝑃𝑄 is
defined as:

𝑡 =
|𝑇𝑃𝑡|

|𝑇𝑃𝑡| +
1
2 |𝐹𝑃𝑡| +

1
2 |𝐹𝑁𝑡|

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Detection Quality (DQ)

×

∑

(𝑥𝑡 ,𝑦𝑡)∈𝑇𝑃 𝐼𝑜𝑈 (𝑥𝑡, 𝑦𝑡)

|𝑇𝑃𝑡|
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Segmentation Quality (SQ)

(1)

where 𝑥 denotes a ground truth (GT) instance, 𝑦 denotes a predicted
instance, and 𝐼𝑜𝑈 denotes intersection over union. Setting 𝐼𝑜𝑈 > 0.5
will uniquely match 𝑥 and 𝑦. This unique matching therefore splits all
available instances of type 𝑡 within the dataset into matched pairs (𝑇𝑃 ),
unmatched GT instances (𝐹𝑁) and unmatched predicted instances
(𝐹𝑃 ). Henceforth, we define the multi-class 𝑃𝑄 (𝑚𝑃𝑄) as the task
ranking metric, which takes averages the 𝑃𝑄 over all classes. Note,
or 𝑚𝑃𝑄 we calculate the statistics over all images to ensure there
re no issues when a particular class is not present in a patch. This
s different to 𝑚𝑃𝑄 calculation used in previous publications, such as
anNuke (Gamper et al., 2020), MoNuSAC (Verma et al., 2020) and
n the original Lizard paper (Graham et al., 2021), where the 𝑃𝑄 is

calculated for each image and for each class before the average is
taken. Hence, for the purpose of this challenge, we refer to the metric
as 𝑚𝑃𝑄+. As an added benefit, 𝑃𝑄 can be easily decomposed into
Detection Quality (𝐷𝑄) and Segmentation Quality (𝑆𝑄), enabling a
more detailed analysis of participants’ results. Despite these results not
being utilised in the main challenge, we display a summary of the
obtained 𝑚𝐷𝑄+ and 𝑚𝑆𝑄+ scores obtained for each team in Fig. S4.

For the cellular composition task, we used the multi-class coefficient
f determination to determine the correlation between the predicted
nd true counts. Similar to the previously described metric, the statistic
s calculated for each class independently and then the results are
veraged. In particular, for each nuclear category 𝑡, the correlation of
etermination is defined as follows:

2
𝑡 = 1 −

𝑅𝑆𝑆𝑡
𝑇𝑆𝑆𝑡

(2)

here 𝑅𝑆𝑆 stands for the sum of squares of residuals and 𝑇𝑆𝑆 stands
or the total sum of squares after a regression line is fitted to the
redicted and actual counts. For additional analysis, we also display
dditional regression results, using Mean Absolute Error (𝑀𝐴𝐸) and
ean Arctangent Absolute Percentage Error (𝑀𝐴𝐴𝑃𝐸), in Fig. S4. As

efore, both metrics compute the statistics for each class independently
nd the results are then averaged to give the final score. Unlike other
etrics described throughout this paper, low scores for 𝑀𝐴𝐸 and
4

𝐴𝐴𝑃𝐸 indicate a strong performance.
.1.3. Submission pipeline
The challenge began on the 20th November 2021, when we re-

eased the training data, so that participants could start developing
olutions for the two tasks. We also released evaluation code and a
oVer-Net (Graham et al., 2019) baseline model on our challenge
itHub page to help accelerate model development and prevent par-

icipants needing to build models from scratch (https://github.com/
issueImageAnalytics/CoNIC). During this time, participants were able
o ask questions on the web page forum to further understand the
ntricacies of the tasks and the baseline model.

In the meantime, we implemented an evaluation framework that
nabled participants to submit their algorithms to the competition,
llowing us to keep test images hidden and ensuring unbiased eval-
ation. For this, we utilised the Grand Challenge platform (https:
/grand-challenge.org) developed by the Diagnostic Image Analysis
roup at Radboud University Medical Center. Participants were re-
uired to submit their algorithms to the portal as Docker containers,
hich were then used to process the test images in the cloud using Ama-

on Web Services (AWS). To help with this, we created detailed videos
n the challenge web page (https://conic-challenge.grand-challenge.
rg/), providing step-by-step instructions on how to create, test and
ubmit the containers to the portal. To facilitate this, we provided a
ocker template, along with a specific example using our baseline, that
articipants could easily adapt for their own solutions. Adhering to this
emplate ensured that containers were able to appropriately read image
ata in the backend, process the data using their developed algorithms
nd return outputs easily recognisable in the next step of the evaluation
rotocol.

For evaluation, we developed a container that took the algorithm
utputs and computed the metrics of each submission. These metrics
hen interacted with the Grand Challenge platform, where the overall
esults were then displayed on public leaderboards. This overall sub-
ission procedure could be tested during the preliminary submission
eriod, that took place between 13th–27th February 2022. At this stage,
he organisers were in regular contact with competing teams, advising
hem on potential reasons for failed submissions. Therefore, not only
id this encourage the improvement in the performance of developed
odels due to its competitive nature, but it also prepared participants

or making their final submissions. Teams were allowed one submission
er day for each task, leading to many results being displayed on the
eaderboards. For each task, a separate submission was required, even
f the segmentation output was used to predict cellular composition.
owever, it was not mandatory to complete both tasks and participants
ould focus on just one, such as predicting cellular composition. This
as recently been done by Dawood et al. (2021) where the counts of
ifferent cell types were predicted without explicitly localising each
ucleus. The final stage was between 27th February–6th March 2022,
here only one successful submission was permitted for each team per

ask. We allowed a maximum of 60 min to process the full test set,
o prevent excessive ensembling. Prizes were awarded to the top three
ositions of each task and the winners also received an NVIDIA RTX
070 GPU.

Upon conclusion of the challenge, we invited the top ten teams to
end us two Docker containers: (1) original submission and (2) models
rained on a specified split of the data, without ensembling. Original
lgorithms were requested so that we could make them available to the
ublic (for those that granted us permission), whereas retrained models
n a single split enabled us to perform a fairer head-to-head comparison
etween methods. Gathering models that did not use ensembling also
nlocked the potential to use them for WSI processing and downstream
nalysis, due to reasonable inference times. Docker containers are avail-
ble for download by visiting https://warwick.ac.uk/conic-challenge.
espite the conclusion of the challenge, participants can still submit
lgorithms and visualise their results on post-challenge leaderboards
sing the same Docker-based submission protocol as outlined above.

https://github.com/TissueImageAnalytics/CoNIC
https://github.com/TissueImageAnalytics/CoNIC
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2.2. Post challenge analysis

2.2.1. Clinical datasets
To assess how differences in the results of nuclear detection across

various teams impacts the performance of downstream tasks, we col-
lected data containing Haematoxylin and Eosin (H&E) stained WSIs
of colorectal tissue from The Cancer Genome Atlas (TCGA) and IMP
Diagnostics Laboratory. Here, the TCGA dataset was used to perform
survival analysis, whereas the IMP Diagnostics dataset was used for
dysplasia grading. TCGA slides were digitised at various institutions
and therefore the scan resolution of the original WSIs varies. Slides
from IMP Diagnostics were digitised with a Leica GT450 scanner at a
pixel resolution of 0.263 microns/pixel. In total, we obtained 526 WSIs
of surgical resections from TCGA and 1132 WSIs of endoscopic biopsies
from IMP Diagnostics.

To enable survival analysis on TCGA, we extracted the disease
specific and overall survival times as well as the respective survival
statuses of each patient. Here, overall survival is the time from the
initial diagnosis of the disease (in this case, colorectal cancer) until the
death of the patient from any cause. On the other hand, disease specific
survival is the time to death specifically as a result of colorectal cancer.
Within the IMP Diagnostics dataset, each slide is categorised into one
of the following groups: non-neoplastic, low-grade lesion or high-grade
lesion. Here, non-neoplastic slides contain both normal and inflam-
matory conditions, low-grade lesions contain conventional adenomas
with low-grade dysplasia, and high-grade lesions contain conventional
adenomas with high-grade dysplasia, intra-mucosal carcinomas and
invasive adenocarcinomas. To reliably evaluate the performance of
each downstream task, on both datasets we performed five-fold cross-
validation. Each fold was separated into a training (60%), validation
(20%) and test set (20%). We repeated this procedure five times with
different random seeds, resulting in a total of 25 different splits of the
data.

2.2.2. Evaluation metrics
For dysplasia grading, we measured the 𝐹1 and Average Precision

(𝐴𝑃 ) score per category and then calculated the average result, denoted
by 𝑚𝐹1 and 𝑚𝐴𝑃 . In addition, we computed the Quadratic Weighted
Kappa (𝑄𝑊𝐾), which measures the agreement between the predictions
and true diagnostic categories. For survival analysis, we measured and
reported the concordance index (C-Index) between the predicted risk
scores and actual events.

2.2.3. Digital features
For both cohorts, we processed slides using the top-performing mod-

els from the segmentation and classification task (EPFL | StarDist, MDC
Berlin | IFP Bern and Pathology AI) that were trained on a single split
of the challenge dataset. For each WSI, we then extracted 222 patient-
level features that could be grouped into the following categories:
morphological, colocalisation, and density features. Here, morpholog-
ical features included the best alignment metric (BAM) (Awan et al.,
2017), size, eccentricity, major axis, minor axis and perimeter of each
nucleus based on its predicted contour. Colocalisation features describe
the spatial relationship between different types within several pre-
defined neighbourhoods (200 μm and 400 μm radius (Berry et al., 2021;
Vu et al., 2023) For morphological and colocalisation features, we first
calculated these statistics per nucleus and then computed the mean
and standard deviation across all WSIs belonging to each patient to
give the corresponding patient-level features. Density features describe
the global ratio of different nucleus types across all tissue samples
of a patient. Depending on the settings of subsequent experiments, a
patient-level digital descriptor for a WSI can either contain only mor-
phological, colocalisation, density features, or contain a combination of
them all. For clarity, we respectively denoted these digital feature sets
as 𝐷𝑚, 𝐷𝑐 , 𝐷𝑑 and 𝐷. A comprehensive description of these features is
5

provided in the supplementary material.
2.2.4. Predictors for downstream tasks
In order to identify how the nuclear segmentation results for each

team affect downstream tasks, it is important for us to not only use
a model with a strong predictive power, but also use one that allows
interpretation of which input features are important. With this in
mind, we utilised a tree-based method, named gradient boosted trees
(implemented with XGBoost), for both grading and survival analysis
tasks. Compared to other tree-based implementations, XGBoost is well-
known for being computationally efficient and scalable, while still
ensuring a strong performance (Chen and Guestrin, 2016). Throughout
the paper, we used Random Search on the XGBoost parameter space,
with 2048 sampled points, to obtain the best parameters for each set
of input features that were obtained from each team and for each
of the downstream tasks. The XGBoost parameter sets that have the
best validation results across all folds and repetitions are selected for
subsequent feature interpretation and analyses on their corresponding
testing set.

2.2.5. Feature selection
As commonly described in other works (Kira and Rendell, 1992;

Kursa and Rudnicki, 2010) not all input features will necessarily con-
tribute to the considered downstream tasks. Thus, we perform feature
selection on 𝐷 to find the most predictive feature set 𝐷̄ for the final
models. To identify these features, we first performed the previously de-
scribed random parameter search, but rather than selecting the model
that performs best across all folds and repetitions, we selected the best
model on each fold, resulting in 25 different models. For each of these
25 models, we examined the impact of the input feature set 𝐷 on the
results (𝑄𝑊𝐾 for grading and C-index for survival analysis) using the
Permutation Test (Altmann et al., 2010), which gives an importance
value for each feature. Then, we averaged the feature importance
values across all folds to obtain the overall importance of the features in
𝐷. Finally, we selected features whose importance scores were greater
than the median value across the 222 features. A rough summary of
which features were selected from each team and for each task is
reported in Fig. S7.

2.2.6. Dysplasia grading
For this task, we extracted 𝐷𝑚, 𝐷𝑐 , 𝐷𝑑 , 𝐷 and 𝐷̄ from the IMP Di-

agnostics dataset, denoting the various feature sets, as outlined above.
Then, using the previously described procedure, we fit XGBoost models
on each feature set extracted from the nuclear segmentation results of
each team and performed a comprehensive comparative analysis.

2.2.7. Survival analysis
For this task, as well as comparing the performance of each digital

feature set, we also assess how the final selected set of digital features 𝐷̄
ompares with existing clinical features for predicting disease specific
nd overall survival. In this work, we utilised sex, age and cancer stage,
enoted by 𝐶, as the set of clinical features. Similar to the grading
ipeline, we extracted 𝐷𝑚, 𝐷𝑐 , 𝐷𝑑 , 𝐷 and 𝐷̄ feature sets from the TCGA

dataset for utilisation in the downstream survival analysis pipeline.
To perform survival analysis, we evaluated the predicted risk scores
obtained from fitting XGBoost models on the different feature sets from
each team and reported their C-Index on the validation and testing sets.

3. Results

3.1. Preliminary test phase results

As well as preparing participants for their final submissions, the
preliminary submission phase provided an opportunity to assess and
improve the performance of algorithms developed during the discovery
phase of the competition. In Fig. 2 we show the results over the course

of the preliminary submission phase for both tasks. In Fig. 2a and
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Fig. 2. Results during the preliminary submission phase of the competition for both tasks. a, Average score per day for the segmentation task; b, best score per day for the
segmentation task; c, average score per day for the cellular composition task; d, best score per day for the cellular composition task.
Fig. 2c, we show the average results of all submissions per day over
time, along with the corresponding error bars. In Fig. 2b and Fig. 2d,
we show the best performance per day over time. Generally, we can
see that the preliminary submission phase was successful in helping to
improve the performance of submitted models, due to its competitive
nature.

3.2. Segmentation and classification results

In Fig. 3 we display the final competition standings for the seg-
mentation and classification task. These are shown in the form of a
heat map, where results are sorted by their final 𝑚𝑃𝑄+ score. We
observe that the epithelial cell, lymphocyte and connective tissue cell
classes were the easiest to segment, with average 𝑃𝑄+ scores across
all participants of 0.513, 0.496 and 0.443, respectively. On the other
hand, neutrophil and eosinophil classes were the most difficult nuclei,
with average 𝑃𝑄+ scores of 0.213 and 0.305. We believe that this was
due to the large class imbalance in the dataset, with significantly fewer
neutrophils and eosinophils. EPFL | StarDist, MDC Berlin | IFP Bern and
Pathology AI were the top three submissions on this task, with 𝑚𝑃𝑄+

scores of 0.501, 0.476 and 0.463, respectively. These submissions all
used an encoder–decoder based convolutional neural network, a strong
instance segmentation target and a strategy to deal with the class
imbalance. Dealing with the class imbalance was particularly important
to rank highly. We display visual segmentation and classification results
for the top participants in Fig. 5, where we observe that the models
could successfully delineate the boundaries of different nuclei. It was
especially impressive to see that submissions such as EPFL | StarDist
were able to detect neutrophils within the lumen in the 3rd row of
the figure. It is evident that some models struggled on the external
TCGA dataset. For example, in the 5th row of Fig. 5, Pathology AI
6

misclassified plasma cells as epithelial cells, whereas in the bottom
row some participants failed to detect various epithelial nuclei. As an
alternative form of visualisation, we also show final results as point
plots in Fig. S2.

3.3. Cellular composition results

In Fig. 4, we show the final results of the cellular composition task.
Results are sorted in order of their final position on the leaderboard,
which was determined by the 𝑚𝑅2 score. The standard deviation of
the top 20 submissions for 𝑚𝑅2 was 0.095, as opposed to 0.042 for
𝑚𝑃𝑄+, indicating that there was greater variability in the results for
the cellular composition task. It is evident that participants who were
able to sustain a good performance across all classes secured strong
positions on the final leaderboard. Again, the epithelial, lymphocyte
and connective tissue cell classes were the easiest to predict, with
average 𝑅2 scores over all submissions of 0.713, 0.722 and 0.673,
respectively. The top three submissions for the cellular composition
task were Pathology AI, AI_Medical and EPFL | StarDist with final scores
of 0.7641, 0.7625 0.7550. Each of these submissions obtained good
correlation scores for the minority classes, owing to their strong final
positions. Despite us allowing participants to directly predict the counts
from the image as a regression task, top results used an initial detection
step before counting. However, we received significantly more two-
stage submissions and so cannot make any conclusive remarks. Like
the segmentation task, it was crucial for participants to employ a
technique to deal with the class imbalance to perform well. We show
final results as point plots in Fig. S3 and also compare the performance
with additional metrics for both tasks in Fig. S4.
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Fig. 3. Segmentation and classification challenge results on the final test set as a heat map. 𝑃𝑄+ and 𝑚𝑃𝑄+ refer to the Panoptic Quality per class and averaged over all classes,
respectively.

Fig. 4. Cellular composition challenge results on the final test set as a heat map. 𝑅2 and 𝑚𝑅2 are the coefficient of determination per class and averaged over all classes,
respectively.
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Fig. 5. Visual results from the top participants of the segmentation and classification task. The first 3 rows show results on the internal colon biopsy dataset from UHCW and the
bottom 3 rows show results on the TCGA dataset from different submissions as well as the ground truth.
3.4. Impact of model ensembling and bootstrap analysis

To better understand how models compared, we asked the top teams
to submit their algorithms that were trained on a specific data split and
without ensembling. Here, ensembling involves combining results from
multiple runs of the network with different architectures, checkpoints,
or transformed images. We present the results in Fig. 6, with Fig. 6a
and Fig. 6b showing the results for segmentation and classification,
and Fig. 6c and Fig. 6d for cellular composition. Without ensembling,
the mean score among these participants decreased from 0.4501 to
0.4330 for segmentation and classification and from 0.6823 to 0.6402
for cellular composition, showing that ensembling has a big impact on
the final standing. In Fig. 6a and 6c, we show the heat map of the
results, which are ordered by their original ranking in the competition.
In parts Fig. 6b and Fig. 6d of the figure, we perform bootstrapping
(𝑛=100) of the submissions for each task to get the confidence bounds.
The top three submissions for each task still perform well, even under
8

the conditions we set for this experiment. We show the difference in
performance between the original and single model submissions in Fig.
S5.

3.5. Application of top models to downstream clinical tasks

Accurate recognition of nuclei in histopathology images enables the
extraction of interpretable features for downstream clinical pipelines.
Therefore, as a next step we assessed the impact of features derived
from the top nuclear recognition algorithms on the tasks of dysplasia
grading and survival analysis. To enable this, we processed a total of
1,658 WSIs with the top three ranked algorithms from the segmentation
and classification task (EPFL | StarDist, MDC Berlin | IFP Bern and
Pathology AI) before extracting a series of global cell-level features.
Example visual results on two randomly selected WSIs are shown in
Fig. 7. We only considered models trained on the single split of data
because using models with excessive ensembling, like was done in



Medical Image Analysis 92 (2024) 103047S. Graham et al.
Fig. 6. Challenge results of the top participants trained on a single defined split of the data and without model ensembling. a, c, Model results on a single split as a heat map. b,
d, Results using bootstrapping of the test set (𝑛=100) to visualise the confidence bounds. a, b, Results for segmentation tasks and c, d, results for cellular composition tasks. 𝑃𝑄+

and 𝑚𝑃𝑄+ refer to the Panoptic Quality per class and averaged over all classes, respectively. Similarly, 𝑅2 and 𝑚𝑅2 are the coefficient of determination per class and averaged
over all classes.
many of the original submissions, is not feasible when processing a
large amount of WSIs. For our downstream experiments we used a
total of 222 features that can be broadly categorised into the follow-
ing groups: morphological, density and colocalisation features. These
features were directly used as input to a machine learning model for
automated diagnosis and patient stratification.

3.6. Conic models for cell-based dysplasia grading

To assess the impact of nuclear recognition performance on auto-
mated diagnosis, we utilised a dataset of 1132 colon WSIs from IMP
Diagnostics Laboratory in Portugal (Oliveira et al., 2021) All data was
H&E-stained and labelled as either non-neoplastic, low-grade dysplasia
or high-grade dysplasia. We then used the global nuclear features
obtained from the results of each of the top teams as input to a gradient
boosted random forest, using five-fold cross validation to ensure reli-
able results. In Fig. 8a, we show the 𝐹1 score and Quadratic Weighted
Kappa (𝑄𝑊𝐾) over all experimental runs for each team, where we
observe that MDC Berlin | IFP Bern obtains the best performance with
average 𝑚𝐹1 and 𝑄𝑊𝐾 scores of 0.8739 and 0.8463 on the testing set,
respectively.
9

3.7. Conic models for cell-based survival analysis

To assess impact of the nuclear features on being able to successfully
stratify patients, we predicted overall and disease specific survival
within 526 H&E-stained colorectal WSIs from The Cancer Genome Atlas
(TCGA). For this experiment, we utilised the features as input to gradi-
ent boosted trees (XGBoost) and performed five-fold cross validation to
predict a risk score for each patient. In Fig. 8b we show the concordance
indices (C-indices) obtained when using the features from each of the
top teams for survival tasks. Here, we see that EPFL | StarDist obtains
the best performance with an average C-index of 0.6554 and 0.6456
respectively for predicting disease specific survival and overall survival.
Detailed results for both dysplasia grading and survival analysis can be
found in Section S3 of the supplementary material.

4. Discussion

The CoNIC Challenge, characterised by its competitive nature, has
spurred rapid advancements in deep learning-based nuclear identi-
fication methods. This progress has resulted in numerous final sub-
missions outperforming the prior state-of-the-art techniques (Graham
et al., 2019). A predominant strategy among participants involved the



Medical Image Analysis 92 (2024) 103047S. Graham et al.
Fig. 7. WSI-level visual results from the top submissions on the segmentation and classification task trained on a single pre-defined split of the data. a, Original WSI along with
an example nuclear segmentation overlay. b, Zoomed-in predictions of the top three teams compared to the baseline for the example TCGA WSI. c, Zoomed-in predictions of the
top three teams compared to the baseline for the example IMP Diagnostics WSI. For b and c, each row shows a different region from the same WSI.
utilisation of deep learning models featuring an encoder–decoder archi-
tecture. In particular, successful submissions adopted specific tactics to
address a considerable class imbalance present in the dataset, including
techniques like patch oversampling or by incorporating weighted loss
functions. This appears to have proved pivotal in securing a prominent
position on the leaderboard. A significant observation was that many
of the successful submissions introduced subtle refinements to HoVer-
Net, indicating that the provided baseline served as a strong foundation
10
for participants to build upon. Furthermore, it became evident that
enhancing the baseline HoVer-Net approach could be achieved by con-
sidering a more advanced backbone or the incorporation of alternate
instance segmentation targets, such as additional directional distance
maps. We provide a visual summary of the algorithms submitted by the
participants, along with the training details in Fig. S15. We also provide
a more detailed description of each of the approaches in Section S1 of
the supplementary material.



Medical Image Analysis 92 (2024) 103047

11

S. Graham et al.

Fig. 8. Results when using nucleus features computed based on the predictions of the top three teams in segmentation and classification task for patient-level grading and survival
analysis. a, Results for grading, b, results for disease specific survival analysis and c, results for overall survival analysis. 𝑚𝐹1 and 𝑚𝐴𝑃 denote the mean 𝐹1 and mean Average
Precision scores, respectively. C-Index is the concordance index, which is a commonly used metric for survival analysis. 𝐷𝑑 , 𝐷𝑚 and 𝐷𝑐 refer to density-based, morphological and
colocalization features, respectively. 𝐷 is the entire feature set and 𝐷 is the set after feature selection. 𝐶 is the set of clinical features.



Medical Image Analysis 92 (2024) 103047S. Graham et al.

0
r
d
C
i

Despite us allowing participants to treat each task independently,
nearly all submissions inferred the cellular composition from the seg-
mentation and classification output. However, those teams that pre-
dicted the cellular composition directly from the original image did
not achieve a high ranking on the final leaderboard. Determination
of the cellular composition allows us to effectively model the tumor
microenvironment (TME) of the tissue, which has been shown to be
particularly powerful as a prognostic indicator. With the challenge
acting as a facilitator to improve automatic nuclear profiling, we hope
that it will stimulate the development of advanced methods correlating
the TME to patient outcome.

Overall, we found that participants were able to achieve a strong
performance on both tasks on our developed dataset. However, despite
significant advancements being made within the challenge, additional
work is required to further boost the ability to recognise minority
classes, such as neutrophils and eosinophils. This may be achieved with
the help of additional data and the development of new strategies for
dealing with the class imbalance. A particularly interesting technique
that was used in the challenge (Arontier and Aman) is copy-and-
paste augmentation, which can be used to artificially increase the
number of under-represented nuclei in the dataset. Another strategy
that appears promising is the utilisation of generative methods to cre-
ate synthetic images containing minority classes, while preserving the
expected spatial configuration of nuclei within the tissue (Deshpande
et al., 2022).

The dataset that we introduced as part of the challenge is the largest
existing dataset of nuclear segmentation and classification in CPath.
Despite this, our dataset is currently from a single tissue type and
so we cannot guarantee that models developed during the challenge
will generalise to unseen tissues, despite various inflammatory cells
appearing the same across different organs. In future work, we may
extend the current dataset to other major tissue types, such as breast,
prostate and lung to increase the range of downstream applications that
the models can be applied to. Also, we currently group endothelial cells,
fibroblasts and muscle cells into a single category. Explicit separation of
these classes will enable the consideration of features such as cancer-
associated fibroblasts and endothelial cell morphology, which can be
prognostically informative (Sahai et al., 2020; Tommelein et al., 2015;
Hida et al., 2016). We are also aware of the limitations that exist as a
result of labelling nuclei using only routine H&E slides. In future work,
perhaps it would be advantageous to instead rely on co-registered H&E
and IHC slides to provide more accurate ground truth, especially for
immune cell subtyping.

We ensured that our dataset was sufficiently large to provide a
good indication for how models perform across a range of scanner
types and lab preparation methods. However, this does not guarantee
that developed models will work out-of-the-box when deployed in a
clinical setting. Future work may include a thorough investigation
into the robustness of AI models for nuclear identification (Vu et al.,
2022; Foote et al., 2022), where lessons learned can help reduce the
likelihood of unexpected model behaviour in the wild.

In addition to the main challenge, we utilised the baseline and
three best performing models from the segmentation and classification
task and processed 1,658 WSIs from two datasets, with the intention
of understanding how the performance of automated nuclear iden-
tification affects downstream clinical tasks and identifying whether
state-of-the-art (SoTA) methods can improve upon the baseline. In
particular, we extracted patient-level features from the WSI results and
used them as input to perform automatic dysplasia grading and survival
analysis. From Fig. 8, the digital features based on the SoTA methods
are all significantly more predictive than the baseline features (𝑝 ≪
.001, student-t test). This suggests that accurate models for nuclear
ecognition may in fact be essential when using associated features for
ownstream tasks. Although there is an apparent relationship between
oNIC results and the performance of subsequent tasks, further work
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s required to understand the implications of further significant boosts
in nuclear recognition. We found that despite small differences in the
best results obtained within the challenge, there was notable variation
in the importance of features when applied to downstream tasks. Given
that many studies typically utilise predictions from a single nucleus
segmentation and classification method, our results raise questions on
the validity of identified digital features using just a single approach,
especially for survival analysis problems.

Specifically, when grading dysplasia, while all three SoTA methods
achieved similar performance, MDC Berlin | IFP Bern disproportion-
ately utilised statistics concerning plasma nuclei morphology while
neglecting those from eosinophils ( Fig. S7a and Fig. S8a). On the other
hand, neutrophil morphology was determined to be more important for
EPFL | StarDist than any other method. In spite of these differences,
all three methods considered the morphology of epithelial nuclei as
important features for accurately predicting dysplasia grade (Fig. S9 to
S11). This finding aligns with existing clinical observations (Shia et al.,
2017)

For survival analyses, from Fig. 7b and Fig. 7c, we observe that
SoTA methods have significant variation in performance. Not only that,
but from Fig. S7b and Fig. S7c, we observe that they have a different
set of identified features for a given task. Despite this, we found that
statistics concerning the TME of neutrophils were consistently identi-
fied as important features, as shown in Fig. S8b and Fig. S8c as well
as from Fig. S12 to S14. This observation aligns with existing clinical
studies (Schmitt and Greten, 2021) which perhaps encourages further
investigation into neutrophils and their impact and emphasises the need
to further improve neutrophil detection performance. Also, from those
same figures, while not as informative as neutrophil-based features,
all teams also agree that a higher cellular composition of eosinophils
relate to better patient outcome. This observation confirms a recent
clinical finding (Reichman et al., 2019) which states that eosinophils
have anti-tumourigenic properties in colorectal cancers.

As a result of its competitive nature, the utilisation of the largest
dataset of its kind and the existence of a rigorous evaluation proto-
col, we believe that the CoNIC Challenge has been largely influential
in helping to further push forward the state-of-the-art for automatic
nuclear recognition in CPath. To foster the development of future
approaches for cell-based biomarker exploration, we are releasing the
WSI-level results using the best methods from the challenge. We are
also accepting post-challenge submissions using the same evaluation
framework as the original competition.

4.1. Code availability

Evaluation code used within the challenge, along with example
notebooks can be found at the following repository: https://github.
com/TissueImageAnalytics/CoNIC. A template for making code-based
challenge submissions can be found in a separate branch of the same
repository. Code used for running the baseline can be found in a
separate branch of the original HoVer-Net repository at https://github.
com/vqdang/hover_net/tree/conic.

4.2. Ethics approval

The additional test data collected for this challenge was performed
under Health Research Authority National Research Ethics approval
15/NW/0843; IRAS 189095 and the Pathology image data Lake for
Analytics, Knowledge and Education (PathLAKE) research ethics com-
mittee approval (REC reference 19/SC/0363, IRAS project ID 257932,
South Central—Oxford C Research Ethics Committee). The study was
conducted on retrospective data from histopathology archives relating
to samples taken in the course of clinical care, and for which consent for
research had not been taken. Gathering consent retrospectively was not
feasible and deemed not necessary by the research ethics committee, as

referenced above.

https://github.com/TissueImageAnalytics/CoNIC
https://github.com/TissueImageAnalytics/CoNIC
https://github.com/TissueImageAnalytics/CoNIC
https://github.com/vqdang/hover_net/tree/conic
https://github.com/vqdang/hover_net/tree/conic
https://github.com/vqdang/hover_net/tree/conic
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