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Abstract 
The growing number of spatial omic technologies have created a demand for computational tools capable 
of managing, storing, and analyzing spatial datasets with multiple modalities and spatial resolutions. 
Meanwhile, computer vision is becoming an integral part of processing spatial data readouts where image 
registration and spatial data alignment of tissue sections are essential prior to data integration. Hence, there 
is a need for computational platforms that analyze data across spatial datasets with diverse resolutions as 
well as those that manipulate and process images of microanatomical tissue structures. To this end, we 
have developed VoltRon, a novel R package for spatial omics analysis with a unique data structure that 
accommodates data readouts with many levels of spatial resolutions (i.e., multi-resolution) including regions 
of interest (ROIs), spots, single cells, and even subcellular entities such as molecules. To connect and 
integrate these spatially diverse omic profiles, VoltRon accounts for spatial organization of tissue blocks 
(samples), layers (sections) and assays given a multi-resolution collection of spatial data readouts. An easy-
to-use computer vision toolbox, OpenCV, is fully embedded in VoltRon that allows users to both 
automatically and manually register spatial coordinates across adjacent layers for data transfer without the 
need for external software tools. VoltRon is implemented in the R programming language and is freely 
available at https://github.com/BIMSBbioinfo/VoltRon. 
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Background 

The introduction of “Spatial Transcriptomics'' (ST)1 and the large-scale utilization of fluorescence in situ 
hybridization (FISH) techniques that allow locating mRNAs over tissue sections2,3 have motivated many to 
analyze omics data more in a spatially resolved manner. This has been followed by a rapid increase in the 
number of both commercially available and customized spatial omics instruments that introduced fine-tuned 
workflows capturing omics profiles in diverse levels of spatial resolutions4. The size of the area that is 
profiled as well as the number of genes (or features) captured by each omic profile determine the spatial 
resolution. Technologies that are considered to be the least spatial resolved incorporate in situ arrays, i.e. 
spots5, or user-defined segments are referred to as regions of interest (ROIs6). These methods often 
capture features across multiple cells. Whereas others with much higher spatial resolution5,7 may even go 
beyond the spatial localization of single cells, and detect the coordinates of individual mRNA molecules (i.e. 
subcellular resolution).  

 
While some notable single cell analysis tools have already been adapted to store spatial localization of 
omic profiles and subcellular entities, a set of novel software tools and packages capable of loading, 
analyzing and visualizing spatial data sets are also proposed3,8. Seurat9 is one of the fundamental packages 
that analyze data at single cell resolution, and perhaps considered to be a gold standard for single cell 
analysis within the R programming community8. The latest version (5.0) of Seurat package introduces some 
number of built-in routines to load and visualize spatial data readouts, and provides a few functions to 
analyze data in a spatially aware manner10. The Giotto Suite11,12 has recently been developed to serve as 
an alternative R package where a larger set of spatially aware analysis methods are available, including 
neighborhood enrichment analysis and ligand-receptor pairing analysis. Unlike Seurat, Giotto suite allows 
storing a few different spatial units (or spatial data types) associated with each stacked layer of a single 
Giotto object which can be then aggregated into a single spatial unit for further downstream analysis.  
Squidpy13 is a Python based data analysis platform that extends over the already existing utilities provided 
by Scanpy14 for spatially aware analysis. SpatialData15 was also recently proposed to store data on spatial 
omics technologies using different combinations of “spatial elements'', e.g., image, points, labels, and 
shapes. Squidpy and SpatialData are both currently part of the scverse ecosystem16. Although all these 
platforms are geared towards analyzing only up to supracellular (spot level) data modalities, some other 
software platforms to analyze regions of interest (ROIs) specifically were also introduced (SpatialDecon17, 
SpatialOmicsOverlay18, and StandR19).  
 
Despite the existence of multiple spatially aware software platforms, image analysis is emerging as an 
indispensable part of spatial multimodal integration workflows 5,20. Spatial data sets are often accompanied 
by tissue images of reference that come in different flavors, e.g., H&E or DAPI5. In cases where adjacent 
or serial sections from tissue blocks are used to generate data with distinct spatial resolutions (i.e., multi-
resolution) or modalities, image registration is necessary for both the alignment of morphological context 
across images and for synchronizing coordinate spaces of spatial data types. Currently, only a handful of 
omic analysis packages provide support for image-level data registration and integration. Novel tools such 
STUtility21, SpatialData and Giotto Suite allow aligning data over adjacent tissue sections by either (i) 
manually manipulating images, (ii) interactively picking landmark points for rigid image transformations or 
(iii) automatically align images but limited to H&E images only (STUtility). However, it may be time 
consuming and thus not ideal for users to manually align images, especially when dissimilar tissue staining 
methods such as DAPI and H&E were incorporated on each individual adjacent section. In fact, automated 
image registration workflows may perform better than manual approaches in these cases, specifically due 
to the latter being prone to human error22.  
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There remains a need for tools that analyze omic datasets with multiple spatial resolutions as well as those 
that incorporate more sophisticated image analysis workflows. To this end, we developed VoltRon, an R 
package for spatial omic analysis and data integration across serial tissue sections (Figure 1). VoltRon 
provides built-in functions to accommodate multi-resolution spatial datasets in a single R object, hence 
stores, analyzes and visualizes ROIs, spots, cells, and molecules, simultaneously. To accommodate such 
heterogeneous data, a VoltRon object is composed of multiple hierarchical data objects that are associated 
with tissue blocks, layers, and assays. We use this data infrastructure to seamlessly transfer and integrate 
data across layers of tissue blocks where assays across multiple adjacent layers are allowed to have 
independent sets of omic features and observations with different spatial resolutions. To integrate these 
features and observations across tissue layers, VoltRon utilizes multiple image alignment workflows to 
synchronize coordinate spaces of serial sections. We use open source computer vision libraries that include 
a large collection of algorithms for processing images and videos, including multiple methods for both 
automated and manual image registration tasks. VoltRon also acts as an end-to-end spatial analysis tool. 
It is possible to use a single application programming interface (API), and hence minimal number of 
functions, to analyze and visualize datasets with any of four spatial resolution types. In addition, VoltRon 
interfaces with single cell analysis tools and objects such as Seurat9 and SingleCellExperiment23 to 
integrate single cell and spatial datasets for spot based transcriptomics analysis. Conversion of VoltRon 
objects into other classes of objects used within R (Seurat) and Python (e.g., Anndata14) based omic 
analysis ecosystems are also supported.  
 
Further information on the VoltRon package, including tutorials and workflows, can be accessed on 
https://bioinformatics.mdc-berlin.de/VoltRon. These tutorials include (i) integration workflows across 
serial/adjacent tissue sections, (ii) integration between spatial transcriptomics and scRNA datasets as well 
as (iii) multiple end-to-end analysis workflows for all spatial data modalities using the same API.  
 

 
Figure 1: An Overview of the VoltRon package. (A) VoltRon can manage datasets with distinct levels of spatial resolutions: regions of interest, or ROIs 
(e.g., GeoMx), spots (e.g., Visium, DBIT-seq, Slide-seq63), cells (e.g., MELC, IMC), molecules (e.g., Xenium, CosMx). (B) The data structure captures 
the spatial organization of samples via hierarchically defined blocks, layers, and assay. (C) The OpenCV library is fully embedded into VoltRon for 
automated and manual image registration for synchronization of spatial coordinates which allows transferring data across adjacent tissue sections. (D) 
VoltRon incorporates a unified API across all four spatial data resolutions. (E) Integration with Seurat9 and SingleCellExperiment23 data objects provides 
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ROI/Spot deconvolution where estimated cell type abundances could be used for niche clustering of spots. (F) VoltRon objects are convertible to both 
Seurat and Squidpy (Anndata) objects, and provide an ecosystem friendly computing environment.  

Results 

VoltRon implementation and data structure 
At its core, VoltRon supports downstream analysis and integration of datasets with diverse levels of spatial 
resolutions. One can categorize these levels as spatial data modalities with observations (spatial points or 
spatial entities) ranging from subcellular entities, such as molecules or transcripts, to areas over the tissue 
that represent large spatial segments, i.e., regions of interest (ROIs). 
 
To accommodate different modalities and resolutions in a spatial context, VoltRon provides a hierarchical 
S4 data structure in R for tissue blocks, layers (sections) and assays. Thus, each block (or samples, 
vrSample) may include a number of adjacent or non-adjacent sections (or layers, vrLayer) where each of 
these layers may also contain multiple assays (vrAssay) that are associated to both experimentally 
generated (e.g. ATAC-RNA-Seq 24) or computationally derived (spot deconvolution results) data (Figure 
2). Here, assays may have independent sets of features and observations which could be subcellular 
entities (or molecules), cells, spots (supracellular points), and regions of interest (ROIs). VoltRon also 
allows defining independent sets of embeddings (for principal components and UMAP dimensions), spatial 
coordinates, segments, and images for each individual vrAssay object. Hence, VoltRon is capable of storing 
complex spatially-aware datasets; for example, (i) multiple assays within a single section such as spatial 
CITE-Seq25 and spatial ATAC-RNA-Seq24 that allow joint profiling of surface proteins or chromatin 
accessibility of spots along with gene expression, (ii) multiple assays with identical modalities to construct 
3D spatial tissue datasets (iii) as well as unimodal omic data across adjacent tissue sections for more 
complex settings of data integration where sections were separately profiled using 10X Genomics’ Visium 
and Xenium instruments5. 
 

 
Figure 2: The Data Structure of VoltRon objects supports diverse spatial data modalities and spatial resolutions. A VoltRon object is composed of a set 
of hierarchical R S4 objects to accommodate the spatial structure of tissue sections. Each VoltRon object includes a set of vrSample objects 
representative of tissue blocks with multiple tissue sections which are themselves stored as vrLayer objects with each having one or more assays. Here, 
vrAssay objects store data with independent sets of feature matrices, feature metadata, images, coordinates, and other high-level information such as 
segments. The vrMetadata object stores metadata tables of each spatial resolution type.  
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One advantage of VoltRon is also its capability of managing multiple numbers of embeddings, images, 
coordinate, and segment sets in a single vrAssay object. Although most single cell and spatial analysis 
platforms store multiple lower dimensional embeddings, one may need to keep multiple coordinate (and 
shape data, i.e., segments) sets of the same batch of observations to account for, e.g., both unregistered 
and registered coordinates/images as well as points associated with different spatial resolutions of the same 
image.  
 
VoltRon’s infrastructure depends on the state-of-the-art image manipulation, processing, and computer 
vision toolboxes. Magick26 and EBImage27 are used as the main image manipulation tools which incorporate 
utilities such as rotation, alteration, negation and modulation of images (Figure 1B). VoltRon interfaces 
with the open-source computer vision toolbox OpenCV (v4.7)28 to convert magick images into n-
dimensional dense arrays which are then used to automatically capture keypoints and descriptors. OpenCV 
derived image registration workflows then allow matching these descriptors across images for alignment 
and data integration.  

 
VoltRon provides built-in functions for importing datasets from multiple spatial omic technologies, including 
(i) imaging-based FISH assays, e.g. 10x Genomics Xenium5 and Nanostring CosMx7, (ii) spot-based 
transcriptomics assays, e.g. 10x Genomics Visium Spatial Gene Expression Platform, (iii) Region-specific 
spatial profiling technologies, e.g. Nanostring GeoMx6. However, one can utilize the formVoltRon function 
to build a VoltRon object from readouts of custom spatial omic technologies, e.g. DBIT-seq29, Slide-seq63, 
Multi Epitope Ligand Cartography (MELC)30 and Imaging Mass Cytometry (IMC)31.  
 
VoltRon also offers end-to-end spatial omic analysis workflows for filtering, processing, clustering, and 
spatial association tests of spatial points or spatial entities. Although these functionalities are available in a 
large set of software platforms such as Seurat, Giotto Suite, Scanpy and Squidpy that are mainly geared 
towards single cell level data, VoltRon provides a simple programming interface that allows users to use 
the same set of built-in functions that react differently for each assay type (Figure 1D). In addition, users 
can convert VoltRon objects into other publicly available data types of Seurat and Squidpy (Anndata) 
packages to apply additional downstream analysis workflows not available in VoltRon. 

Spatial data alignment and data transfer across layers 
The most essential functionality of VoltRon is to organize spatial data readouts of distinct modalities 
according to the spatial context of their tissue of origin, and thus performing integration and data transfer 
across adjacent tissue sections. We accomplish this by incorporating a built-in mini Shiny58 application to 
align images, coordinates, segments of spatial entities of assays (Figure 3A). Here, coordinates and 
segments are transformed and aligned using the default images of their assays. Given a pair of assays and 
their respective images, one image is taken as a reference (destination) image and another as a query 
(source) image where we would like to compute a transformation matrix to achieve a perspective 
(homography) transformation60 between pixels of one image as opposed to the other (see Methods). The 
same transformation matrix is then used to align spatial coordinates and segments. The Shiny interface 
accepts a list of VoltRon objects as inputs where one image is designated as the reference (usually the 
central image) and the remaining images as queries. For each pair of alignment there are separate panels. 
Once a panel is active, all other panels associated with the same alignment task are also activated. After 
utilizing either the automated or manual alignment method, the app will produce additional images and 
slideshows that demonstrates the quality and accuracy of the alignment in the bottom-right panel.  
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Figure 3: Label and data transfer across VoltRon layers (or assays) using either automated or manual image registration. (A) The mini Shiny application 
triggered by the registerSpatialData function. FLANN-based automated alignment is selected to align Xenium and Visium images, and the VoltRon 
objects with registered coordinates are returned by the application. (B) Image registration workflows embedded in registerSpatialData function using a 
Shiny app. Automated alignment incorporates SIFT (or ORB) for keypoint detection, matches descriptors using the FLANN (or Brute-force) method and 
constructs a perspective transformation matrix using RANSAC. Manual alignment also computes a perspective transformation across images using a 
set of interactively selected landmark points and calculates the matrix with thin plate spline (TPS) method. (C) An illustration of Visium spots aligning to 
Xenium cells after image registration. Labels and data are transferred from cells to each associated spot. (D) ERBB2 expression across (i) Xenium cells 
with registered coordinates, (ii) Visium spots and (iii) transferred and aggregated Xenium cells. (E) Transferred and aggregated DCIS sub cell types 
from the Xenium assay, indicating DCIS rich niches.  
 
VoltRon streamlines the process of automatic image registration by leveraging the capabilities of OpenCV28 
(Figure 3B) through a Shiny app (see Methods). OpenCV includes methods that are used to register and 
align multiple images by automatically detecting and matching descriptive features within each image32,33. 
The automated registration workflow of VoltRon begins by utilizing either the Scale-invariant feature 
transform (SIFT)32 or Oriented FAST and Rotated BRIEF (ORB)33 algorithm for keypoint detection and 
descriptor extraction in both the reference and query images. Subsequently, these sets of descriptors are 
matched using either the Fast Library for Approximate Nearest Neighbors (FLANN64) or a brute-force 
approach. The most robust matches are then selected to compute the homography transformation matrix, 
utilizing a Random Sample Consensus (RANSAC)34 iterative method. To enhance the effectiveness of the 
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automatic registration, users are encouraged to pre-adjust the images of VoltRon objects (e.g., DAPI 
images) interactively — by flipping, rotating, or pixel value negating — to ensure smooth alignment. We 
often observe that this preliminary processing aids reducing the likelihood of failure during registration.  
 
We demonstrate the capabilities of automated alignment between diverse spatial data modalities by 
registering two Xenium in situ replicates to a single Visium CytAssist assay5. Here, we use DAPI images 
from readouts of the Xenium Analyzer as query images, and the H&E images generated by the Visium 
protocol as the reference image. We selected the “FLANN” option (see Methods) for this registration task 
where SIFT is used to detect descriptors and FLANN is used to match these descriptors. We had seen 
great performance in the FLANN-based automated alignment when the DAPI images were negated and 
rotated (Supp. Figure 1A). A similar negation of the DAPI image was performed in tutorials provided at 
10x Genomics webpage35. Within this supplementary guide, the authors have aligned the IF image to the 
associated H&E image of the same section, yet we have aligned the negated IF image to the H&E image 
of consecutive sections. 
 
For cases where the automated registration approach fails, we can utilize the manual alignment method 
where users interactively pick locations on images of VoltRon objects. These keypoints or landmarks are 
expected to be pointing to similar tissue structures across both reference and query images (Figure 3B, 
see Methods). One can utilize rotation/flipping/negation operations on the images to determine the best 
landmarks to be used for the registration. Once landmarks are selected the Thin Plate Spline (TPS) 
interpolation method36 is incorporated to find the perspective transformation matrix which is then used to 
align coordinates and images of the query spatial data to the reference similar to the automated approach. 
It is also possible to save the selected keypoints after the alignment to reproduce the same results. We 
demonstrate this manual registration task by picking seven landmark points across both images where 
keypoints are selected from visibly clear ductal carcinoma in situ (DCIS) and invasive carcinoma niches 
(Supp. Figure 1B).  
 
VoltRon is designed to store assays from multiple spatial data modalities within a single R object. Once 
aligned either using the automated and manual approach, all Xenium and Visium assays are combined in 
a single vrSample of the VoltRon object, represented as a list of distinct adjacent sections of a single block. 
Thus, we can transfer metadata and data features across sections. Continuous data features (gene or 
protein expression) can be transferred from cells to spots by aggregating cell level feature measurements 
to spots by detecting Xenium cells overlaid with Visium spots (Figure 3C). Here, we aggregate all 313 
features in the Xenium assay into a new assay within the same layer of the Visium assay, thus a fourth 
assay is created within this tissue block where one section includes two spot level spatial assay: (i) one 
with the original Visium assay, and (ii) the other with aggregated Xenium cells into Visium spot level. The 
comparison between the original Xenium (registered) and Visium counts along with the aggregated Xenium 
ERBB2 counts, and aggregated DCIS cells indicate the successful alignment of two layers5 (Figure 3D). 
Metadata features or categorical (i.e., labels or annotations) data could also be transferred across adjacent 
sections. Upon label transfer, a new assay is again defined within the same layer of the Visium assay where 
each category of the metadata column is a feature, and the abundance of these categories are stored as 
raw counts. This new assay can be used to estimate the cell type abundance of the Visium spots (Figure 
3E). 
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Downstream analysis utilities for spatial omic datasets of single cell and 
supracellular resolution  
VoltRon includes a variety of built-in functions ranging from simple image manipulations to processing, 
analyzing, and visualizing each of four spatial data modalities: subcellular, single cell, spot, and ROI, using 
the same programming interface (Figure 1D). Functions such as normalization, data integration and 
visualization react differently given each of four modalities. To illustrate some of these utilities, we first 
subsetted the VoltRon object interactively (similar to in Supp Figure 3B) for zooming on a DCIS niche in 
the first Xenium replicate before visualizing the localization of transcripts act as markers of myoepithelial 
and carcinoma cell subtypes5 (Figure 4A). VoltRon subsets assays using the background images, e.g., 
DAPI (or any default image within vrAssay), to zoom in and select specific niches. Here, Figure 4A shows 
this preselect niche along with the locations of two mRNA molecules serving as markers of myoepithelial 
cell subtypes, KRT15 and ACTA2, and two ductal carcinoma markers, TACSTD2 and CEACAM6.  
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Figure 4: Downstream analysis utilities of VoltRon, including workflows geared towards datasets with cellular, subcellular and supracellular (spot) 
resolutions. (A) Subcellular level data visualization of Xenium transcripts for selected regions which are subsetted interactively using VoltRon (Supp. 
Figure 2B). The Xenium cells are analyzed by an end-to-end workflow ranging from filtering to clustering. (B) Built-in image management tools that 
include resizing images and modulating images for adjusting the brightness. (C) The Delaunay tessellation of a prolonged case 4 section (or field of view, 
FOV) whose edges used as a spatial neighborhood graph. (D) The adjusted p values of neighborhood enrichment analysis for each cell type pair, 
indicating a significant association of multiple cell types. (E) VoltRon interfaces with RCTD method37 for spot deconvolution of sagittal mouse brain 
sections (see Supp Figure 2A). (F) Cell type proportions are then used to cluster spots, i.e., niche clustering (see Supp Figure 2B).  
 
Users can filter (or subset) VoltRon objects using (i) assays, assay types or samples, (ii) metadata columns, 
(iii) features, (iv) spatial points/entities and even (v) images which allows analyzing subsetting and 
investigating small niches. Subsetting objects are also possible using interactive Shiny apps where user-
selected locations over the image are used to create new VoltRon objects (Supp. Figure 2B). It is possible 
to modulate/process the images of all VoltRon assays, and even resize, at any stage (Figure 4B). 
 
VoltRon supports (i) depth normalization followed by log normalization, (ii) centered-log ratio 
transformation38  which is suitable for compositional data (see Niche Clustering within this section), (iii) 
quantile normalization for ROIs (specifically for GeoMx DSP experiments), and (iv) hyperbolic arcsine 
transformation for imaging intensity measures39. We analyzed a previously reported set of Multi Epitope 
Ligand Cartography (MELC) images40 derived from lung samples of a cohort of both control and COVID-
19 cases stratified as acute (1-15 days, n=3), chronic (more than 15 days) and prolonged (7–15 weeks, 
n=3). Here, each 43 protein targets depicted by MELC were normalized using Hyperbolic arcsine 
transformation (with scale parameter theta=0.2) before dimensionality reduction (PCA and UMAP) and 
clustering. Users may incorporate internal R functions for embedding assays into lower dimensional spaces 
and cluster cells, or execute these capabilities in other currently existing packages by converting VoltRon 
objects into, e.g., Seurat or Anndata objects. 
 
VoltRon incorporates functions to build neighborhood graphs that represent the similarity between omic 
profiles, in particular for clustering spots and cells. The getProfileNeighbor function allows building both k-
nearest neighbor (kNN) and shared nearest neighbor (SNN) graphs for clustering omic profiles using the 
Leiden’s graph clustering algorithm62. VoltRon uses the igraph41 package to maintain both profile and spatial 
neighborhood graphs. For all spatial data modalities, both data and metadata features (gene expression, 
protein intensity, cell types etc.) can be visualized with the same set of samples; for example, gene 
expression and labels are visualized using vrSpatialFeaturePlot and vrSpatialPlot functions for both cellular 
level imaging and spot transcriptomics datasets. 
 
Neighborhood enrichment analysis of spatial points is conducted using a permutation test42. VoltRon tests 
the association between cell type pairs (members of cell types are found near each other) and segregation 
(members of cell types are distant from each other) separately. For all tests, the package reports the number 
of each cell type and the associated p values (unadjusted and adjusted). We use the Delaunay tessellation43 
to construct spatial graphs for each assay using getSpatialNeighbor function where you can also overlay 
these Delaunay graphs with spatial plots for each section/FOV (Figure 4C). Heatmap of the adjusted p 
values generated by the neighborhood analysis shows an association across two myoepithelial cell 
subtypes and DCIS cell types (Figure 4D). 
 
Spot-based RNA deconvolution methods are fundamental to computational workflows for analyzing spatial 
assays such as the Visium44,45. VoltRon interfaces with Seurat and SingleCellExperiment objects to 
deconvolute spot assays in VoltRon objects using the RCTD algorithm37 (Figure 4E, Supp. Figure 2A). 
Here, we use four Visium datasets generated from two serial sagittal mouse brain sections, each divided 
into anterior and a matched posterior section later61. Spots across all these four Visium assays are 
deconvolved separately and the estimated cell type abundances are stored as new assays within the 
VoltRon layers of each original Visium assay for further downstream analysis. In these new assays, count 
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data are now realized as compositional data matrices38 (column sums of data matrix add up to 1) with 
features being cell type (or cluster) labels which are provided by the single cell reference object used for 
deconvolution. Users can switch between multiple assay types of a VoltRon at any time during analysis.   

 
Using these new assays that measure the cell type proportions per spot, one might apply a workflow to 
detect clusters of spots similar cell type mixtures46, also referred to as niche clustering. Considering that 
cell type proportions are categorized as compositional data, we point the readers to the existing discussions 
on mathematical spaces of compositional data sets38,47. It is important to map such compositional data 
measures to the Euclidean space, prior to calculating distances between data points. Thus, by normalizing 
the cell type abundances with centered log ratio (CLR) transformation, we can build SNN graphs using the 
Euclidean distances across normalized cell type proportions of spots and partition these graphs into distinct 
clusters showing similar patterns of cell type abundances. We can train UMAP embeddings directly from 
the normalized cell type abundances to visualize niche clusters, map niche clusters on spatial plots and 
project these abundances per cluster on heatmaps (Figure 4F, Supp. Figure 2B). 

Analysis of regions of interest 
The real strength of VoltRon is to analyze readouts from almost all spatial technologies including 
segmentation (ROI)-based transcriptomics assays that capture features from large regions on tissue 
sections. VoltRon recognizes such readouts including ones from commercially available tools and allows 
users to implement a workflow similar to the ones conducted on bulk RNA-Seq datasets. To showcase 
VoltRon’s capabilities of analyzing spatial data modalities other than cellular and supracellular data types, 
we analyze morphological images and gene expression profiles provided by the readouts of the 
Nanostring’s GeoMx Digital Spatial Profiler (DSP) platform6, a high-plex spatial profiling technology which 
produces segmentation-based protein and RNA assays. We use user-selected segments (i.e., regions of 
interest, ROI) from eight tissue sections which have been collected from the same cohort investigated by 
MELC in the previous section40. These consisted of sections from control (n=2) as well as acute and 
prolonged COVID-19 lung (n=6) samples (Methods, Supp Figure 3A). We generated a total of 87 ROIs 
from these sections using the GeoMx DSP instrument where ROIs were categorized into distinct types 
during segmentation, guided by the initial staining of the tissue sections. Some of these types are fibrotic 
(high expression of ACTA2), immune (CD45+), epithelium (PanCK+), vessels etc. (Supp Figure 3A)  
 
The library size of ROIs may depend on the type or size of the segment where some considerable number 
of small (filled) vessels have low counts. Hence, additional quality control measures (other than default 
measures generated by GeoMx DSP) could be generated by calculating the number of unique reads 
acquired per cell to give a glimpse of the depth of each ROI (Figure 5A). By visualizing the 
“CountPerNuclei”, we can see that most of these small filled vessels have in fact considerably high transcript 
count per cells, but five ROIs have extremely low counts. Correlating the per cell counts with the sequencing 
saturation, we can see that the percentage of copies is considerably low (~25%) for these five ROIs (Figure 
5A). Hence, we may filter out ROIs whose count per nucleus/cells are less than 500. VoltRon includes 
multiple preprocessing options where (i) ROIs could be filtered for given metadata features (e.g. 
CountPerNuclei > 500), (ii)  genes with low maximum count could be removed and/or (iii) The 3rd quartile 
normalization can be applied to these reads according to the manufacturer’s specifications48. 
 
Interactive subsetting utilities of VoltRon could be used for multiple purposes beyond selecting niches within 
individual tissue sections. The collection of eight lung tissue sections is initially put into a single GeoMX 
slide (see Methods) and could be imported into VoltRon as one object, which then are separated into 
several VoltRon objects using the built-in mini Shiny app (Supp. Figure 3B). We derive multiple subsets 
from the GeoMx slide image and divide the GeoMx readouts into multiple ROI-based readouts.  
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Figure 5: Downstream analysis of GeoMx DSP datasets: visualization, filtering, normalization, differential expression analysis and ROI deconvolution. 
(A) Bar plots of GeoMx ROIs visualize the sequencing saturation (SS) and the count per nuclei (CPN) measures for quality control. Five ROIs show low 
SS and CPN, thus filtered out and removed. (B) PCA embedding of conditions and ROI types showing heterogeneity across ROIs, specifically across 
prolonged COVID-19 cases. (C) Zoomed in microscopic images (available in GeoMx DSP instrument) of two prolonged cases, highlighting (yellow border) 
three of the fibrotic regions from each prolonged case. DAPI (grey), PanCK (yellow), CD45 (blue) and ACTA2 (red) (D) Visualization of the ROI segments 
of two prolonged lung sections with ROI names and normalized expression of fibrosis markers COL1A1 and C1S. (E) ROI deconvolution of fibrotic ROIs 
showing differentially abundant cell types. The fibrotic regions of prolonged case 5 show increased abundance of smooth muscle cells and macrophages.  
 
To investigate the heterogeneity of ROIs across these eight lung sections, we first dimensionally reduced 
the transcriptomic profiles of all ROIs (Figure 5B). We selected the 3000 genes with highest variability 
whose rank were calculated using the variance stabilizing transformation49,50 and then reduced the 
dimensionality of these genes using PCA. Embedding plots of the first two principal components show a 
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great heterogeneity across ROIs of two prolonged tissue sections (case 4 and 5) where we also see a clear 
clustering of fibrotic and immune regions. This might indicate a considerable difference across fibrotic 
regions of prolonged lung sections (Figure 5C). To this end, we visualized and compared the spatial 
expression patterns of fibrosis markers such as COL1A1 and C1S for ROIs (Figure 5D). There seems to 
be an increase in the expression of both markers where the increase in COL1A1 expression is more 
pronounced. Visualizing the features on spatial images indicate that the among three fibrotic regions of the 
prolonged case 5, third and the remote region with ID “fibrotic 7'' show higher expression of COL1A1.  
 
Building on our observations in the embedding plots of ROIs, we can detect differentially expressed genes 
across ROI types (fibrotic, immune, epithelium etc.). VoltRon interfaces with DESeq251 to provide support 
for identifying ROI types that have distinct transcriptional profiles. Correlating with the PCA embedding plot, 
we see two sets of fibrotic regions with distinct gene expression patterns (Supp Figure 3C). Subsetting the 
VoltRon object for these seven fibrotic regions, and testing for the differential expression between two 
prolonged samples (case 4 and 5), we see that an increased expression of COL1A1 and C1S along with 
CD68, a marker of macrophages and FN1, a profibrotic marker expressed by macrophages. We then asked 
if the increase in these markers could be validated by estimating the abundance of macrophages in fibrotic 
ROIs of prolonged case 5. By interfacing with the MuSiC deconvolution method52, we observed an increase 
in the macrophages of these fibrotic regions (Figure 5E, Supp Figure 3D). VoltRon requires scRNA 
datasets as reference, either as Seurat or SingleCellExperiment objects, for ROI or Spot deconvolution. 
We observed an increase in the abundance of cells that are scRNA clusters labeled as macrophages and 
stromal40 (associated with both vascular and airway smooth muscle cells). VoltRon incorporates a single 
function for deconvoluting both spot and ROI assays where the function runs either RCTD or MuSiC 
methods depending on the detected assay type. 

Discussion and Conclusion 
Here we describe VoltRon as a computational platform for analyzing and integrating spatial omic readouts 
with diverse modalities and spatial resolutions. VoltRon provides support for defining multiple chunks (i.e., 
blocks/samples) of adjacent and serial tissue sections (and their associated spatial data readouts) to 
transfer data or metadata features across layers upon image registration. Both automated and manual 
alignment of tissue images are available with easy-to-use interactive Shiny interfaces where users can 
manipulate images or choose landmark points prior to the alignment. We also utilize a powerful open-
source computer vision toolbox, OpenCV, to embed automated image registration routines, and to align 
images and coordinates in a quick manner. These registration workflows generate homography 
transformations across images which are then used to synchronize coordinates of spatial points across 
multiple sections into a single coordinate system. We showcased this utility by aligning and transferring 
data across CytAssist Visium and Xenium in situ assays whose readouts provide diverse microscopy 
images (DAPI vs H&E) that a manual image registration approach may be prone to human error. VoltRon 
does not require any additional step for configuring and compiling OpenCV, C++ or other external 
software/dependencies. VoltRon can easily be installed on multiple operating systems. 
 
To achieve a more feasible integration of spatial entities across tissue layers, VoltRon offers a novel data 
structure to hierarchically define tissue blocks, layers, and assays which preserves the spatial organization 
of the data of origin. A VoltRon object can store multiple layers within a single tissue block as well as multiple 
assays within a single layer, allowing to identify both uni-modal and multi-modal data of tissue sections 
across and within distinct samples/blocks. Moreover, all assays within a VoltRon object can accommodate 
independent sets of observations with any spatial resolution (ROIs, spots, cells, and molecules) and diverse 
feature types (RNA, ATAC, protein or custom features, e.g., cell type proportions for niche clustering, see 
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Figure 4F). This includes multiple images, spatial coordinate matrices and segments per assay, hence both 
original and unregistered coordinates of ROIs, cell segmentations and centroids could be stored within a 
single assay. Thus, this spatial data structure allows managing datasets of multiple data types within a 
single R object and simplifies the programming experience such as in the use case where cellular Xenium 
assays were integrated to the supracellular Visium assay. We further demonstrated the flexibility of VoltRon 
by analyzing datasets from other spatial omic technologies like MELC and GeoMx. Unlike currently 
available software platforms, VoltRon is capable of accommodating and analyzing a larger selection of 
spatially resolved datasets, including those with ROI resolution. In Table 1, we compare some of the 
fundamental utilities of VoltRon with the ones from other software platforms that analyze spatial omic 
datasets. 
 
Table 1: The comparison between essential utilities of VoltRon and similar functionalities available across other spatial omic analysis platforms. (*) Data 
transfer is achieved by aggregating layers. (**) Multiple resolutions cannot be stored within a single SpatialData object, but it is available in Giotto Suite 
(only up to supracellular/spot assays). (***) only for H&E images, by detecting tissue borders. (****) This includes a large collection of computational tools, 
GeoMxTools53, SpatialDecon17, SpatialOmicsOverlay18, provided by Nanostring Technologies Inc. (*****) Tiles or pixels are not spatial elements but 
instead are used to train Deep learning models54. (*,**) SpatialData and Giotto Suite are both currently under development, and these utilities are subject 
to change in the future. 

 
As for potential improvements to the VoltRon platform, we will offer more comprehensive data integration 
workflows across adjacent/serial tissue sections, including 3D spatial data reconstruction. We will also 
define additional spatial resolution types such as pixels (or tiles). Consequently, convolutional autoencoder 
(CAE) based embeddings could be trained on pixels or tiles of images along with single cell gene expression 
profiles, across assays of either the same or adjacent sections, for multi-modal clustering or inference. 
Pixels/tiles could also be used to analyze the spatial context of multiplex tissue imaging datasets as 
previously reported55.  
 
Interactive visualization of spatial omics data, and more importantly, co-visualizing embedding and spatial 
coordinates of spatial entities is crucial for the interpretation of downstream analysis results. Currently, 
VoltRon provides support for interactive spatial data visualization of only the centroids of cells and spots 
via Vitessce56, a novel integrative data visualization framework that could be used in R packages and 
Python environments. Future versions of VoltRon will offer more routines derived from currently available 
packages such as the vitessceR, an R package wrapper for the Vitessce platform. Although it is currently 
possible to convert VoltRon objects into Seurat and Anndata objects, more built-in conversion functions will 
be implemented to convert VoltRon object into Giotto objects, and save as other formats (Zarr15 and 
tileDB57) currently popular within the spatial and single cell analysis ecosystems. 

 
Package 

Spatial Data 
Alignment Spatial 

Blocks 
Spatial 
Layers 

Data 
Transfer 
Across 
Layers 

Multi 
Resolution 

Support 

Multi-omic 
Support 

ROI  
Analysis 
Support 

Interactive 
Visualization 

Support 

Pixel 
Analysis 
Support 

Interactive 
Annotation 

Automated Manual 

VoltRon (R) Yes Yes Yes Yes Yes Yes Yes Yes Yes No Yes 

Giotto Suite (R) No Yes No Yes Yes* Yes** Yes No Yes No Yes 

Seurat (R) No No No No No No Yes No Yes No No 

STUtility (R) Yes*** Yes No No No No No No No No Yes 

Nanostring**** (R) No No No No No No No Yes No No No 

Squidpy (Python) No No No No No No No No Yes No Yes 

SpatialData 
(Python) No Yes No No Yes Yes** No No Yes Yes***** Yes 
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Methods 

GeoMX™ Digital Spatial Profiling of Lung Tissue Sections 

Control and COVID-19 lung biopsy samples were collected postmortem (within 3 to 82 hours), fixated, and 
embedded in paraffin as previously described40. The FFPE samples were stored at room temperature for 3 
years after collection. Cores of 2mm diameter were punched out of FFPE samples and incorporated into 
one tissue multi array (TMA), and then sliced into 5 µm sections. Deparaffinization, antigen retrieval and 
post-fixation were performed for GeoMx DSP workflow according to the manufacturer’s instructions. Slides 
were incubated overnight with the Whole Transcriptome Atlas RNA Hs probe set, followed by stringent 
washes. Slides were stained with fluorescently labeled antibodies against CYTO 13 (GMX-MORPH-NUC-
12, NanoString) for DNA staining, PanCK (NBP2-33200, Novus), CD45 (NBP2-34528, Novus) as well as 
alpha smooth muscle actin (ACTA2, ab202296, abcam). Following image registration and barcode 
collection on the GeoMx instrument, collected barcodes were amplified with 18 PCR cycles and sequenced 
on a NovaSeq 6000 instrument to a depth of 100 reads per µm2. GeoMx NGS Pipeline was used to process 
the FASTQ files and generate DCC files. 

Spatial Data Alignment 
We use the registerSpatialData function in the VoltRon package to execute a mini Shiny58 application for 
image registration. This interface allows rotating, flipping and negating images which are available using 
the magick26 package in R. OpenCV28 implementation in VoltRon is fully embedded using Rcpp59. Upon 
installation of the package, OpenCV (v4.7) is automatically imported and all C++ source functions are 
compiled in Mac, Windows, and Linux-based operating systems.  

Automated Image Registration  
There are two available automated registration workflows in the Shiny application (registerSpatialData 
function) that incorporate either the SIFT or ORB methods for detecting keypoints: (i) For SIFT32, we 
performed keypoint detection and feature descriptor extraction on both reference (destination) and query 
(source) images, using default arguments. The descriptor matching was accomplished using the Fast 
Library for Approximate Nearest Neighbors (FLANN64, cv::FlannBasedMatcher) with 5 parallel KD-Trees 
(trees=5) and set to perform 50 recursive checks (checks = 50). Key points were then filtered using Lowe's 
ratio test with a threshold of 0.8. (ii) In the ORB33 method, after keypoint detection and descriptor extraction, 
a BruteForce-Hamming matcher (cv::DescriptorMatcher with type BruteForce-Hamming) was used to 
determine the distances between feature descriptors, selecting the best P% (GOOD_MATCH_PERCENT) 
from a number of keypoint descriptor pairs (MAX_FEATURES). For both SIFT and ORB approaches, these 
selected pairs were used to compute the homography matrix for transforming from the source to the 
destination image space, employing an iterative RANSAC34 process with a threshold of 5 to ensure 
robustness against outliers. An example of this brute force approach between two Visium assays can be 
found at https://bioinformatics.mdc-berlin.de/VoltRon/registration.html#Alignment_of_DLPFC_Visium. 

Manual Image Registration  
Manual registration option in the Shiny application (registerSpatialData function) allows selecting landmark 
points (or keypoints) across the reference and query images by interactively selecting locations over 
images. At least three landmark points should be chosen from both images of each pair. Users can deselect 
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points by clicking on “Remove Points” buttons below each image. Thin plate spline interpolation method is 
used to calculate the perspective transformation matrix36. 

Data Availability 
Xenium replicates and the associated Visium CytAssist data can be accessed at 
https://www.10xgenomics.com/products/xenium-in-situ/preview-dataset-human-breast. Visium dataset of 
mouse brain serial sections from Sagittal-anterior and-posterior regions can also be found at 
https://www.10xgenomics.com/resources/datasets. MELC feature matrices and spatial coordinates as well 
as microscopy images are publicly available in the Zenodo repository under DOI: 10.5281/zenodo.744749. 
Processed GeoMx DSP data can be accessed from the ROI analysis tutorial of VoltRon website 
(https://bioinformatics.mdc-berlin.de/VoltRon/roianalysis.html).  

Code Availability 
The VoltRon package (R) is freely available at https://github.com/BIMSBbioinfo/VoltRon. The scripts for 
generating results in this manuscript are largely available under “Explore” section of the VoltRon website:  
https://bioinformatics.mdc-berlin.de/VoltRon/tutorials.html 
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Supp. Figure 1: The Shiny app based interactive image alignment and registration interface. The registerSpatialData 
function accepts a list of VoltRon objects and returns (upon pushing the “Done” button) the same list with each VoltRon 
object with registered coordinates and, if exists, segments. The interface is divided into four panels where the first two 
on top visualizes each pair of adjacent sections for keypoints selection and detection for pairwise descriptor matching 
and alignment. The last two on bottom panels show the matched keypoints and the registered image overlayed on the 
reference image per each selected pair. All images can be rotated, flipped (both horizontally and vertically) and negated. 
(A) The automated alignment mode is triggered by clicking on the “Automated Registration” tick box. There are two 
automated alignment workflows, named FLANN and BRUTE-FORCE (see Methods). An additional set of parameters 
are requested upon selecting the BRUTE-FORCE option. (B) For manual registration, keypoints (or landmark points) 
are selected manually in order where numeric indices indicate matching keypoints across two images. Selected 
keypoints can be removed using the “Remove Point” button.  
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Supp. Figure 2: Niche Clustering of sagittal mouse brain sections via Spot Deconvolution (A) VoltRon interfaces with 
RCTD method37 and Seurat objects to deconvolute Visium spots, and to build new cell type abundance assays. (B) 
Cell type proportions are used to cluster spots into groups with similar cell type mixtures (i.e., niche clustering) and 
calculate UMAP directly from normalized cell type abundance data. Heatmap shows distinct cell type mixture patterns 
across niche clusters. 
 
 
 
 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 15, 2023. ; https://doi.org/10.1101/2023.12.15.571667doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.15.571667
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 
 
 
 
 
 
 
 

 
Supp. Figure 3: Downstream analysis utilities for GeoMx and region of interest (ROI) based spatial assays. (A) Spatial 
visualization of 87 ROIs with respect to ROI types: epithelium, fibrotic, immune, (small/small-filled) vessel, vessel 
surrounding. Here, there are eight adult human lung tissue sections that are categorized as the control case as well as 
acute and prolonged COVID-19 cases. (B) Built-in support for subsetting spatial datasets is used to subset tissue 
sections from a single GeoMx scan area. A mini shiny app is triggered using the generic R subset function with the 
“interactive=TRUE” option. Multiple subsets can be defined at a time. (C) A heatmap of differentially expressed genes 
(|logFC| > 1 and p.adj < 0.05) across ROI types (one vs all per each ROI type), indicating two distinct groups of fibrotic 
regions. DE genes are found by interfacing with the DESeq251 package through VoltRon. (D) Proportion plot of ROI 
deconvolution results using a single cell reference dataset. There are increased abundances of stromal (ACTA2+) cells 
in some fibrotic regions and increased NK and T cells abundance in immune regions.  
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