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Legends to Supplementary Figures, Nguyen et al.  

Supplementary Figure S1 (related to Figure 1)  

A. Flow cytometric analysis of Cebpafl/fl Cebpbfl/fl B cells (WT-B cells) or Cebpa-/- Cebpb-/- cells 
(dKO-B cells) transdifferentiation at day 6 p.i. Cells were stained with lineage markers CD19 
(B cells), CD11b (myeloid cells), Ly6G (granulocytes) and CD115 (monocytes/macrophages). 
For scRNA-seq, GFP+ populations were sorted as indicated. 

B. Expression of top5 differentially expressed marker genes in GMPBT cells. Common genes of 
Clusters 7 and 8 (Vpreb1/2/3, Ebf1 and Cd79a) indicate them as lagging and myeloid primed 
B cells, respectively.  

C. UMAP and clustering of GMPBT derived from dKO- (left, N=1432 cells) and WT-B cells (right, 
N=3297 cells). All clusters are represented in both samples.  

D. Proportion of cells in each cluster comparing WT- and dKO-GMPBT cells. ScRNA-seq data 
from both WT- and dKO-GMPBT cell pools were integrated and the percentages of cells in 
each cluster are shown.  

E. Expression of the endogenous C/EBP family genes (indicated on top, data derived from 
scRNA-seq) in myeloid clusters 1-6 are shown for WT- and dKO-GMPBT cells. ****P < 
0.0001, ***P < 0.001, **P < 0.01, *P < 0.05, insignificance is not indicated. 
 

Supplementary Figure S2 (related to Figure 2)  
A. Gene Set Variation Analysis (GSVA) was applied to compare GMPBT profiling data to 

published signatures of mouse bone marrow myeloid cells as defined by Giladi et al. (Giladi et 
al., 2018). Neutrophil signature was used to compute GSVA scores for cells in the GMPBT 
scRNA-seq data set. Cells with highest scores are indicated in red.  

B. Similar to A, monocyte signature from Giladi et al. was used for GSVA.  
C. Expression of Vcam1, marking pro-neutrophils, across the myeloid Clusters 1-6.  
D-G. Gene expression analysis of neutrophil Clusters 1, 2, 3. Genes characteristic for neutrophil 
progenitors were extracted from Evrard et al. (Evrard et al., 2018), including myeloid transcription 
factors (D), genes involved in granule production (E), chemotaxis (F, from GO:1903409) and 
phagocytosis (G, from GO: 0006909). 
H. Monocytic gene expression pattern of Clusters 4, 5, 6. Genes identifying monocytes were 
derived from Mildner et al. (Mildner et al., 2017).  
I. GSVA using the signature of DC-like monocytes or Neu-like monocytes, as identified in Weinreb 
et al. (Weinreb et al., 2020), on monocyte Clusters 4-6. Note that similarities between DC-like 
monocytes were enriched in Cluster 6, while the Neu-like monocyte signature could be detected 
preferentially in Cluster 5. 
J. Surface marker analysis of GMPBT cells. GMPBT cells transdifferentiated from WT-B cells 
were subjected to the cell surface marker screening (LegendScreenTM, BioLegend) and 
processed as described in Materials and Methods. Expressing markers in two independent 
experiments overlapped, as shown in the Venn’s diagram (left). Heatmap (right) shows results of 
method-optimized experiment 2. The results are presented as percentage of marker-positive cells 
in each of the GMPBT subsets: Ly6G+, CD115+ and double negative (DN).  
K. Heatmap representing scRNA-seq expression of genes shortlisted in the heatmap shown in 
Supplementary Figure S2J. Genes expressed highly in cluster 1 are indicated between the red 
lines, including Vcam1. 
L. CD106 (encoded by Vcam1) expression in GMPBT subsets as identified in the LegendScreen 
experiments. 
M. Growth curves of isolated CD106 subsets. Two sub-populations of GMPBT cells were sorted: 
Ly6G-CD115-CD106+ (labeled as CD106+) and Ly6G-CD115-CD106- (labeled as CD106-). Sorted 
cells were seeded at 105 cells/mL and cell numbers (N=3) were determined at indicated time 
points.  
N. Differentiation of CD106 subsets. Sorted cells, as shown in Supplementary Figure S2M, were 
cultivated for 4 days and subjected to flow cytometry analysis for Ly6G and CD115 expression. 
N=3, P values of Multiple Mann-Whitney t-tests: Ly6G P=0.0286, CD115 P=0.1143.  

 
Supplementary Figure S3 (related to Figure 4)  

A. Expression of Irf8 in scRNA-seq data of WT-GMPBT cells (as in Figure 1A). Note that Irf8 is 
expressed in Cluster 4 that relates to the transition/bifurcation of neutrophils and 
monocyte/macrophages.  



 

B. Representative Irf8 genotype of Cre-incubated v-Abl transformed Irf8fl/fl B cells (PCR 
analysis). Untreated (-) or Cre-treated cell pool (+Cre) and genotyping of C57BL/6J wild-type 
mouse (WT) served as controls. Bi-allelic Irf8-/- clones (clone 1,2) were subjected to 
transdifferentiation together with corresponding isogenic control (untreated) clones.   

C. Immunoblot analysis of C/EBPβ expression in total protein lysates from C/EBPα,β dKO-B 
cells transdifferentiated with HA-tagged LAP*-FKBP12F36V (CEBP-dKO-LAP*-FKBP12F36V-
GMPBT cells). Cells were treated with 5 μM AP1867, 5 μM FK506, 0.01 μM rapamycin or 5 
μM dTAG-13 for 6 hours or 24 hours. Mono-functional AP1867 and FK506 bind to and 
stabilize FKBP12 while the hetero-bifunctional dTAG-13 selectively degrades the LAP*-
FKBP12F36V chimera. Expression of the fusion protein LAP*-FKBP12F36V was detected by an 
antibody directed against the HA-tag (approx. 55 kDa). Long exposure (top) to demonstrate 
removal of LAP*-FKBP12F36V. Short exposure (underneath) was used for quantification of 
LAP*-FKBP12F36V (arbitrary units) after normalization to Poncaeu S-stained lanes (total 
protein loading/blotting controls; total protein loaded: 25 μg B cells, lane 1, and 100 μg for all 
other lanes 2-10). 

D. Morphology of CEBP-dKO-LAP*-FKBP12F36V-GMPBT cells with or without dTAG-13 
treatment. Phase contrast (cell culture samples at day 5 post-treatment, top row) and May-
Grunwald Giemsa staining (cytospins of samples at day 1 post-treatment, bottom row) images 
are shown. Scale bar: 50 μm. Note larger cell size and macrophage appearance after dTAG-
13 treatment of GMPBT cells. 
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Table S1. (related to Figure 1D) Differentially expressed genes of myeloid clusters C1-
C6. Genes with a corrected p-value <0.05 and FC >2 are shown. 
 
Table S2. (related to Figure 1E) Enriched GO terms of biological processes in clusters 
C1-C6. Clusters marker genes with adjusted p-value <0.05 and FC >1.5 were used for 
this analysis.  



SUPPLEMENTAL EXPERIMENTAL PROCEDURES 
 

Vector constructs  
The retroviral pMSCV-IRES-EGFP (MIEG) vector was used for ectopic C/EBPβ-LAP* expression as 

described previously (Cirovic et al., 2017). The C/EBPβ-LAP*-FKBP12F36V-HA fusion expression 
construct was based on the rat C/EBPβ sequence (Gene ID #24253) and the FKBP12F36V-HA was 
purchased from Addgene (#104371). The rat C/EBPβ-LAP* sequence was generated by PCR primers 
5′-ccgctcgaggccaccatggcccaccgcctgctggcc and 3′-ctggcctcggcgggtcactgcggatccgcg from construct 
pMSCV-IRES-BFP C/EBPβ-LAP* (Cirovic et al., 2017). FKBP12F36V from pAW63.YY1.FKBP.knock-
in.BFP was generated with the primers 5′-cgcggatccagcggtggaagtggtggcggagtgcaggtggaaacc and 3′-
gatgtcccggactatgcataagaattccgg. Conditional STAT5A constructs were obtained from Richard Moriggl 
(University of Veterinary Medicine, Vienna, Austria) and were described previously (Grebien et al., 
2008). Briefly, the STAT5 chimera was fused to the hormone-binding domain of the estrogen receptor 
(ER) variant to allow conditional activation by 4-hydroxytamoxifen (4-OH-T, Sigma-Aldrich). The 
GMPBT STAT5 cell lines were designated pMSCV-STAT5 WT, pMSCV-STAT5Δ749, or pMSCV-cS5. 

Cells and differentiation 
Cells with deletion of endogenous floxed Cebpa and Cebpb with TAT-Cre recombinase generated 

Cebpa-/-Cebpb-/- cells (dKO-B cells). The B cells were cultured with 50 μM β-mercaptoethanol. 
Transdifferentiated GMPBT were selected by β-mercaptoethanol depletion as indicated previously 
(Cirovic et al., 2017); this selection was applied in experiments involving CEBP-dKO-LAP*-FKBP12F36V-
GMPBT cells. After 2–3 weeks, only long-term proliferating transdifferentiated cells survived. Irf8 
knockout (KO) clones were generated from Irf8fl/fl v-Abl transformed B cells by incubation with TAT-Cre 
recombinase as described earlier. The Irf8 KO cell transdifferentiation was the same as that of the WT-
B cells. Imatinib (Thermo Fischer Scientific; final concentration 0.4–0.6 μM), ruxolitinib (1 μM), and 
dTAG-13, FK506 (all, Tocris Bioscience), or AP1867 (ChemScene) (all, 1–5 μM) were added as 
indicated. CSF1, CSF2, and CSF3 were from PeproTech and added as indicated. 

Antibody array 

A pool of 108 GMPBT was harvested at day 32 p.i. (Experiment 1) or day 26 p.i. (Experiment 2). The 
harvested cells were washed and Fc-blocked using anti-mouse CD16/32 (TruStain FcX, BioLegend), 
then stained with a cocktail of fluorophore-conjugated anti-mouse antibodies against CD115 (AFS98, 
eBiosciences), Ly6G (1A8, BioLegend), and/or CD11b (M1/70, BD Pharmingen) for 20 minutes at 4°C. 
Lyophilized antibody plates containing specific phycoerythrin (PE)-conjugated antibodies were 
reconstituted following the manufacturer’s instructions (LEGENDScreen™, BioLegend). The stained 
cells were distributed to individual wells in LEGENDScreen™ plates, washed and fixed according to 
the manufacturer’s instructions before undergoing flow cytometric analysis using a MACSQuant 
analyzer (Miltenyi).  

Two independent experiments were performed, with optimizations in Experiment 2, which included 
cell number reduction and CD11b staining exclusion (as 100% of the cells were CD11b+). The 
measured data were processed with FlowJo following Figure S1A gating strategy. In each subset 
(CD115+, Ly6G+, Ly6G-CD115- double-negative [DN]), the PE signal was overlaid against the PE signal 
of the equivalent isotype control to identify PE-positive percentages, which were used to compose 
surface antigen expression heatmaps. Negative or low-expression markers (sum PE positivity in all 
three subsets < 8% or <15% applied to Experiment 1 and 2, respectively) were excluded. As both 
experiments had similar marker expression patterns, we chose Experiment 2 for subsequent analysis. 

Cytospin and Giemsa-May-Grünwald staining 
Cells (1 × 104) were spun onto glass slides at 500 rpm for 5 minutes using a cytocentrifuge 

(Aerospray slide stainer, Wescor). The slides were air-dried, fixed with methanol for 5 minutes, 
immersed in May-Grünwald (Merck) solution for 5 minutes, washed with water, then immersed in 
Wright-Giemsa (Merck) solution for 45 minutes. After extensive rinsing in water, the slides were dried 
and cover-slipped (Roti-Histokitt II). 

Bioinformatic analysis 
Sequencing reads were demultiplexed and aligned with the mm10 genome using Cell Ranger 2.1.0 

before further analyses using R 4.1.2. For the overview of the C/EBP family expression (Supplementary 
Figure S1E), an updated version of mm10 and CellRanger version 7.1 were used. The data was 



preprocessed by the Cell Ranger pipeline 2.1.0 and analyzed using Seurat 4 (Satija et al., 2015). Raw 
data was filtered by removing cells with <400 features and >4000 features. Additionally, cells containing 
a mitochondrial read percentage of >7 were removed as potentially dead cells. The WT-B and dKO-B 
samples were normalized using the LogNormalize option, integrated, and scaled. Uniform manifold 
approximation and projection (UMAP) dimension reduction (McInnes, Healy and Melville, 2018) and 
clustering was performed by a shared nearest neighbor (SNN) modularity optimization-based clustering 
algorithm with the resolution parameter set to 0.5.  

SingleR was used for automated identification and annotation of the resulting cell clusters (Aran et 
al., 2019). Based on the Immunological Genome Project (ImmGen) database, the clusters were 
assigned to cell types by comparing the expression of the cells of each cluster to the expression data 
deposited in ImmGen. For each cluster, marker genes were determined using MAST (Finak et al., 2015)  
with a corrected p-value of 0.05 and a fold change (FC) of 2. Only genes that were expressed in ≥20% 
in at least one group were considered.  

To determine the specific cluster functions, gProfiler (Reimand et al., 2016) was applied to the 
marker genes of each cluster as indicated previously, except for the use of a 1.5 FC. Gene Ontology 
biological pathways (GO:BP) and Kyoto Encyclopedia of Genes and Genomes (KEGG) terms were 
used as a source and considered relevant if the corrected p-value (false discovery rate [FDR]) was 
<0.001.  

Gene set variation analysis (GSVA) was used for targeted identification of specific functional and 
literature-known gene sets, i.e., their specific expression in subgroups of our cells (Hanzelmann, 
Castelo and Guinney, 2013), to several gene sets. Gene sets for Figure S2A,B are derived from Giladi 
et al. (Giladi et al., 2018) and gene sets for Figure S2I are derived from Weinreb et al. (Weinreb et al., 
2020).  

Developmental trajectories were inferred with Slingshot (Street et al., 2018)  with cluster 1 as the 
starting point, as SingleR determined that it was the most precedent cluster.  

To predict TFs involved in the onset of the granulocytic and monocytic developmental branch, we 
first identified the differentially expressed genes between clusters 1, 2 and 3 and the clusters 4, 5 and 
6 (adjusted p < 0.05, |FC| > 1.2). We then applied LISA (Qin et al., 2020) to the set of up and down 
regulated genes in a comparative mode.  
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