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Abstract 

Overweight and obesity can worsen disease activity in multiple sclerosis (MS). Although 

psychobiological stress processing is increasingly recognized as important obesity factor that 

is tightly connected to proinflammatory metabolic hormones and cytokines, its role for MS 

obesity remains unexplored.  

Consequently, we investigated the interplay between body mass index (BMI), neural stress 

processing (functional connectivity, FC), and immuno-hormonal stress parameters (salivary 

cortisol and T cell glucocorticoid [GC] sensitivity) in 57 people with MS (6 obese, 19 over-, 28 

normal-, and 4 underweight; 37 females, 46.4 ± 10.6 years) using an Arterial-Spin-Labeling 

MRI task comprising a rest and stress stage, along with quantitative PCR.  

Our findings revealed significant positive connections between BMI and MS disease activity 

(i.e., higher BMI was accompanied by higher relapse rate). BMI was positively linked to right 

supramarginal gyrus and anterior insula FC during rest and negatively to right superior 

parietal lobule and cerebellum FC during stress. BMI showed associations with GC 

functioning, with higher BMI associated with lower CD8+ FKBP4 expression and higher CD8+ 

FKBP5 expression on T cells. Finally, the expression of CD8+ FKBP4 positively correlated with 

the FC of right supramarginal gyrus and left superior parietal lobule during rest. 

Overall, our study provides evidence that body mass is tied to neuro-hormonal stress 

processing in people with MS. The observed pattern of associations between BMI, neural 

networks, and GC functioning suggests partial overlap between neuro-hormonal and neural-

body mass networks. Ultimately, the study underscores the clinical importance of 

understanding multi-system crosstalk in MS obesity.   
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1 Introduction 

Overweight and obesity (subsequently summarized as “obesity”) are linked to multiple 

sclerosis (MS) in several significant ways, as risk factors for developing MS during childhood 

and adolescence, particularly among women [1], and as modulatory factors aggravating 

clinical disability, neuroinflammation [2], and relapse rate [3] in people with MS (PwMS).  

Research on obesity in established MS has focused on metabolic hormones and 

proinflammatory cytokines, which play crucial roles in the pathophysiology of both diseases 

[e.g., 4 – 6]. Specifically, endocrinological work highlights proinflammatory effects of 

adipocyte-released metabolic hormones such as leptin, a major regulator of energy 

homeostasis signaling satiety [5]. Leptin correlates positively with the body mass index (BMI; 

kg/m2; [7]), upregulates proinflammatory cytokines, reduces regulatory T cells [7, 8] and 

increases with MS disability [9]. Immunological studies show that fat cells secrete high 

amounts of IL-6 and TNF-α [10]. Moreover, in PwMS, the counts of blood cell producing IL-2, 

IL-6, IL-15, IL-17, IFN-γ, and TNF-α increase as BMI increases [7], and obesity induces a shift 

towards proinflammatory T helper cells [11]. Together, these findings argue that a low-grade 

inflammation mediated by obesity is a key factor linking it to MS [3]. 

Neurocognitive food-intake mechanisms, such as incentive salience, goal-directed 

decision-making, and stress-processing, highly important contributors to obesity according 

to neuroscientific and endocrinological research (see e.g., [12] or our recent review [13]) that 

are able to overwrite hormonal (e.g., leptinergic) food-intake signals [14], were not yet  

studied in MS. Incentive salience, a process in the motivational mesolimbic reward system, 

can trigger food intake upon exposure to context stimuli of food consumption as these stimuli 

acquire reward-like properties through repeated coupling [12, 15]. The brain’s goal-directed 

decision-making system can model action consequences and inhibit choices (e.g., eating 

palatable foods) predicted to yield unfavorable consequences [16, 17].  

Stress will normally rapidly reduce hunger via corticotropin releasing hormone, but 

later increase appetite via cortisol release, which subsequently promotes a redistribution of 

white adipose tissue to the abdominal area [18]. By weakening the functional connectivity 
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(FC) between control areas and reward-prone regions (favoring unhealthy tasty foods) 

within the goal-directed decision-making system, stress reduces dietary control [19]. In the 

long run, individuals with obesity can learn that palatable food-intake reduces stress via 

reinforcement learning and thus establish stress-induced eating as a maladaptive coping 

mechanism [20]. Research has consistently found that people with obesity have a higher 

chance of gaining weight under stress [21] and are more likely to sustain weight reduction 

longer if they possess high stress tolerance [22]. Relatedly, obesity is associated with elevated 

glucocorticoid (GC) levels [23]. Abdominal obesity, in particular, has been linked to GC 

receptor (GR)-coding genes [24], and FK506-binding protein 5 (FKBP5, a co-chaperone 

regulating intracellular GR activity; [18]) is expressed differently in obesity [25]). Ultimately, 

stress is linked to abovementioned metabolic hormones and immunological parameters. For 

example, acute stress is accompanied by a decrease in serum leptin [26] and can heighten 

IFN-γ secretion in humans [27] and the number of IL-17 producing CD4+ cells in mice [28].  

Hence, there is substantial evidence emphasizing the importance of obesity for MS and 

the role of stress processing for obesity but these processes have not yet been investigated 

in MS. Thus, in this study, we conducted four main analyses in a cohort of 57 adults with MS 

featuring a wide range of different body mass indices. Firstly, inferred from previous 

research [e.g., 2, 3], we hypothesized that BMI is related to MS activity and severity measures 

and thus tested its associations with relapse rate, clinical disability, grey matter (GM) fraction 

and T2-weighted lesion load. Secondly, we used a widely established Arterial-Spin-Labeling 

(ASL) functional MRI (fMRI) stress task [e.g., 29 – 34] to test associations between BMI and 

FC among stress-reactive brain regions. Following [19], we hypothesized that FC during 

stress would correlate with BMI. Thirdly, we tested links between BMI and measures of GC 

functioning (i.e., salivary cortisol and T cell GC sensitivity) which were available for patient 

subsamples. Finally, we tested whether FC of BMI-related stress-reactive regions correlates 

with parameters of BMI-related T cell GC sensitivity to evaluate the overlap between neural-

body mass and neuro-hormonal networks. 

4



ACCEPTED MANUSCRIPT

5 

2 Methods 

2.1 Participants 

The study combines data from two study projects carried out by the Experimental and 

Clinical Research Center and the NeuroCure Clinical Research Center at Charité - 

Universitätsmedizin Berlin, which included a clinical and an MRI visit maximally two weeks 

apart. In particular, we pooled stress fMRI data collected in the first study project and 

evaluated in Weygandt et al. [33] and stress fMRI data collected in the second study project 

and analyzed in Brasanac et al. [29]. Please note, that stress fMRI data acquired in the first 

project were analyzed for non-body mass related purposes also in [31, 32, 35], those acquired 

in the second were additionally evaluated for non-body mass related purposes in [35]. Again, 

not related to body mass, data on GC functioning were also analyzed in [29]. Comparable 

inclusion criteria were applied across projects: Patients had to meet the 2010 McDonald 

criteria [36] for relapsing-remitting or secondary-progressive MS in the first project and 

criteria for relapsing-remitting in the second. Patients were required to receive a disease-

modifying treatment (DMT) continuously for at least the last six (first project) or three 

(second project) months prior to study participation or no DMT in this period. They were 

only included if they were 18 years or older and when able to operate the task devices in an 

unrestricted fashion. Exclusion criteria comprised MRI contraindications, an additional 

neurologic disorder or acute MS relapse, steroid treatment in the four weeks prior to 

participation, and an insufficient anatomical image quality assessed visually by M.W. in both 

projects. Additionally, individuals were excluded in the first project if they confirmed the 

presence of a mental health diagnosis after being asked for such diagnoses (which included 

diagnoses of a depressive and an anxiety disorder) in a basic medical anamnesis conducted 

by a neurologist during the clinical visit appointment. In the second, individuals were 

excluded if a psychotherapist identified a mental health illness other than a depressive or 

anxiety disorder using the Mini-International Neuropsychiatric Interview [37]. Further, we 

excluded the data acquired in the first study project of those 16 patients who took part in 

both projects to guarantee that only one data set per individual was included. Specifically, in 

this step, the data acquired in the first project were excluded due to the slightly lower image 
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resolution of the T1-weighted scans acquired in the first compared to the second study 

project (see section 2.6 MRI acquisition below and the Supplement for information on MRI 

sequence parameters including their spatial resolution). From the pooled sample of 60 

patients (20 first, 40 second project), we finally removed data from three patients with 

pronounced head motion during functional scans indicated by the Framewise Displacement 

metric as further quality assurance step (see Supplement for details). Consequently, data of 

57 PwMS were analyzed. Please refer to Fig. 1 for an illustration of the patient selection 

procedure in terms of a flowchart. The projects were conducted in accordance with the 

Helsinki Declaration of 1975 and approved by the ethics committee of Charité – 

Universitätsmedizin Berlin (first project: EA1/182/10, amendment V; second: EA1/208/16). 

Written informed consent was obtained from all participants. 

2.2 Clinical assessments 

Neurological impairment was assessed at the clinical visit using the Expanded Disability 

Status Scale (EDSS; [38]). BMI was assessed directly after arrival in the imaging center with 

a calibrated scale (Kern, Balingen-Frommern, Baden-Württemberg, Germany) and a 

stadiometer (Seca, Hamburg, Hamburg, Germany). The Beck Depression Inventory (BDI)-II 

[39] was used in the first project for measuring depressive symptom severity, BDI-I [40] in

the second. We combined the results from both measurements into a common metric using 

the algorithm of [41]. For more clinical measures assessed, refer to Weygandt et al. [42]. 

2.3 Diurnal salivary cortisol 

During the clinical visit in study project two, the patients received instructions for collecting 

saliva at home. These instructions guided participants to measure their salivary cortisol 

levels both upon waking and after 9 p.m. on the two days preceding the MRI scan (i.e. four 

samples were acquired per patient in total). The samples were returned at the MRI visit and 

then centrifuged for 5 minutes at 1000 × g, aliquoted, and stored at -20 °C until analysis. 

Following the manufacturer's instructions, an ELISA (IBL, Germany) was used to determine 

the cortisol level. Salivary cortisol data for 34 PwMS were available. Based on the raw data, 
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we computed the average diurnal cortisol level and the hourly decline with linear regression 

and entered these parameters in main analysis 3. 

2.4 Gene expression within the glucocorticoid pathway of T cells 

In study project two, we measured the gene expression of four key components of GC 

signaling, FK506-binding protein 4 (FKBP4) and FKBP5, glucocorticoid-induced leucine 

zipper (GILZ), and the glucocorticoid receptor (GR), for CD4+ and CD8+ T cells. Acting as a co-

chaperon, FKBP5 modifies the activity of the GR, the essential receptor for 

immunomodulation, and thereby modulates the stress response in the immune system [43]. 

FKBP5 is replaced by FKBP4 when GC binds to the GR, which initiates nuclear translocation 

and subsequent transcriptional activity. Lastly, GILZ is transcriptionally activated by GR and 

initiates the main anti-inflammatory GC effects, especially in T cells [44]. Using a real-time 

PCR system, complementary DNA was amplified to measure the expression of these four 

markers in the T cell subpopulations. The gene expression was then normalized to that of 

housekeeping genes by computing delta cycle threshold (∆CT) values via subtracting the 

geometric mean of the CT values of the housekeeping genes from the mean CT values of the 

genes of interest. These markers were available for 37 PwMS. The Supplement provides 

further information, including specifics on the isolation of peripheral blood mononuclear 

cells, the sorting of CD4+ and CD8+ T cells, RNA isolation, cDNA synthesis, and real-time 

reverse transcription PCR. 

2.5 fMRI stress paradigm 

The paradigm included seven stages in the first project (1. Rating I, 2. Rest, 3. Rating II, 4. 

Stress, 5. Rating III, 6. Rest II, 7. Rating IV), while in project two, it comprised stages 1 to 5. In 

stage 4, the patients had to complete a series of mental mathematic tasks. Specifically, in 

substage 4a (“Evaluation”), we tested the participants’ mental arithmetic performance level 

and accordingly provided feedback in substage 4b (“Feedback”). A nine-point Likert scale (1 

- "not at all" to 9 - "strongly") was used to measure perceived stress in the rating stages (2

min each).  The second (8 min) and fourth (12 min) stages were used to collect ASL and heart 
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rate data (Supplement). In the present study, we used the data from stages 1 to 5. These 

stages are described in Fig. 2.  

 

2.6 MRI acquisition 

MRI acquisition took place between 3 and 7 p.m. to control for circadian variations. All MR 

images were acquired with the same 3 Tesla whole-body tomograph (Magnetom Trio, 

Siemens, Erlangen, Germany) and standard 12-channel head coil. A pseudo-continuous ASL 

sequence [30] was used to acquire fMRI scans during the stress paradigm. Field maps were 

acquired for distortion correction of ASL scans. Anatomical images were acquired with T1-

weighted and T2-weighted sequences. See also Supplement. 

 

2.7 MRI preprocessing 

2.7.1 Anatomical scans 

A lesion mapping was carried out by raters from the group of F.P. based on T2-weighted 

images. The standard preprocessing conducted with SPM12 (Wellcome Trust Centre for 

Neuroimaging, Institute of Neurology, University College London, London, UK, 

http://www.fil.ion.ucl.ac.uk/spm) included a spatial mapping of participants' T2-weighted 

to T1-weighted scans and a combined spatial normalization and segmentation of T1-

weighted scans. During normalization, the T1-weighted images were co-registered to the 

Montreal Neurological Institute (MNI; [45]) standard space. Moreover, a computation of 

tissue-specific (i.e., GM, white matter [WM], and cerebrospinal fluid [CSF]) group masks and 

of the patients’ whole-brain GM fraction and lesion volume was performed based on tissue 

voxel maps resulting from the segmentation (Supplement). 

 

2.7.2 Functional scans 

Preprocessing of ASL scans was performed with (toolboxes for) SPM12 (Supplement). It 

included head motion correction, B0 distortion correction, co-registration to the raw T1-
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weighted images and, subsequently, co-registration to the MNI standard space (voxel 

resolution 3 · 3 · 3 mm3). Mapping to MNI space was performed by applying the co-

registration parameters computed for the T1-weighted anatomical scans described in the 

above section. Finally, the ASL scans were smoothed in the spatial domain using a three-

dimensional gaussian kernel (8 mm full width at half maximum). Afterwards, we extracted 

regional Cerebral Blood Flow (rCBF; ml/100g/min) timeseries voxel-by-voxel for all 

participants and conditions separately. Data from the (final) eight minutes of both conditions 

were used for all subsequent procedures. We concentrated on the last eight minutes of the 

stress condition as this period was consistently included in the "Feedback" stress substage 

4b across all participants.  

2.8 Regional neural stress reactivity and functional connectivity within patients 

To provide the source data for main analysis 2, we computed parameters of (i) regional 

neural stress reactivity (indicated by stress vs. rest activity differences of regions included in 

the Neuromorphometrics brain atlas; http://Neuromorphometrics.com) and of (ii) pair-of-

region-wise FC within patients. For (i), we first generated an rCBF timeseries for each 

individual, condition, and GM region in the atlas. These timeseries were calculated by 

averaging the timeseries of individual voxels located in a single atlas region that had non-

zero rCBF and were covered by the GM group mask. The individual voxels’ timeseries were 

corrected for the participant’s head motion and global WM and CSF timeseries signals 

beforehand. A region was excluded from all analyses if it did not contain a single voxel in one 

or more participants meeting these requirements. 119 out of 122 atlas regions were included. 

By contrasting the regions' averaged stress vs. rest activity timeseries, regional activity 

differences were calculated as stress-reactivity markers with linear regression for each 

PwMS. The resulting regression coefficients were used to evaluate regional stress reactivity 

on the group-level in main analysis 2. For (ii), we computed the (Fisher Z-transformed) 

correlation coefficient for the averaged regional rCBF timeseries of all pairs of areas as FC 

parameter per patient and condition. FC between regions showing significant stress 

reactivity was used for testing group-level BMI-FC relations in analysis 2. See the Supplement 

for details. It’s worth noting that just like resting-state FC, task-based FC (in this case, during 
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stress) can be computed as the correlation between the timeseries of pairs of brain regions 

[e.g., 13, 46). FC was chosen as neural parameter due to the pivotal role of regional interplay 

for obesity [e.g., 13, 19, 47]. ASL was selected because it is a quantitative MRI method for 

measuring rCBF that is increasingly used in neuroscientific FC studies (see e.g., the review of 

Chen et al. [48]) due to its higher robustness to slow signal noise relative to that of the 

alternative blood-oxygenation-level-dependent (BOLD) fMRI technique [30].  

2.9 Statistical analysis 

2.9.1 Main analysis 1: BMI and MS activity and severity 

To test associations between BMI and disease activity as well as severity in MS, we conducted 

four robust regression analyses in which we regressed the four dependent variables (DVs) 

annualized relapse rate (for disease activity), clinical disability, whole-brain T2-weighted 

lesion load, and GM fraction (for disease severity) individually on BMI (the covariate of 

interest; CI). Sex, age, study project, depressive symptom severity, disease duration, presence 

of progressive MS and disease modifying treatment were modeled as covariates of no interest 

(CNI). Additionally, the three DV not tested for in each DV-specific analysis were also 

modeled as CNI (e.g., when annualized relapse rate served as DV, clinical disability, whole-

brain T2-weighted lesion load, and GM fraction also served as CNI). Significance was 

evaluated with permutation testing in undirected tests. Here, as well as in all other 

permutation analyses, 10,000 permutations of the CI vector were conducted. A family-wise-

error (FWE)-corrected significance threshold of αFWE = 0.05 corresponding to 0.05 / 4 = 

0.0125 on a single test-level was applied. We report Cohen’s [49] effect size measure f2 (f2 ≥ 

0.02 weak, f2 ≥ 0.15 medium, and f2 ≥ 0.25 strong effect).  

2.9.2 Main analysis 2: BMI and functional connectivity of stress-reactive brain regions 

For testing associations between BMI and FC, we determined stress-reactive regions on the 

group-level in a first step and then related the stress stage and resting stage FC between 

stress-reactive regions to BMI across patients in a second. Specifically, using the regression 

coefficients described in section 2.8 as dependent variables, we employed robust linear 

regression to determine if there were differences in the regions’ activity during stress vs. rest 
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across patients. CNI were all DV and CNI evaluated in main analysis 1. Additionally, cognitive 

task load (i.e., the average inter-trial period in the final eight minutes of the stress stage) and 

time-to-feedback (i.e., the duration of substage 4b) were modeled as stress task-specific CNI. 

Modeling cognitive task load is essential to control for putative effects of task demands and 

mental arithmetic performance. Significance was evaluated with permutation testing. An 

FWE-corrected significance threshold of αFWE = 0.05 was applied in undirected tests 

corresponding to 0.05 divided by 119 (number of brain regions in the analysis) or 4.2 · 10-4 

respectively on a single test level. An analysis of stress reactivity in terms of psychological 

stress (i.e., stress ratings) and of peripheral stress reactivity (i.e., heart rate) can be found in 

the Supplement (supplementary analysis 1). After stress-reactive regions were identified, we 

regressed the FC of each pair of stress-reactive regions on BMI using robust linear regression. 

This was done separately for resting and stress stage FC. CNI were identical to those used for 

the identification of stress-reactivity. Permutation testing was employed to test for 

significance in undirected pair-of-region-wise tests. Given that 17 regions turned out to be 

stress-reactive (see Results, main analysis 2) and thus 17 · [17 - 1] / 2 = 136 tests were 

conducted per condition, we applied an αFWE of 0.05 equal to 0.05 / (17 · [17 - 1] / 2) = 3.68 · 

10-4 on a single test level. Notably, we conducted an analysis in the Supplement that regressed 

the neural stress-reactivity parameters (i.e., the abovementioned coefficients) of stress-

reactive regions on participants’ BMI (supplementary analysis 2) to help evaluate the relative 

suitability of FC for BMI prediction performed in main analysis 2. 

 

2.9.3 Main analysis 3: BMI and glucocorticoid functioning 

We tested associations between BMI and the average diurnal cortisol level and its hourly 

decline (αFWE = 0.05 equal to 0.05 / 2 on a single test level). Moreover, we tested potential 

links between BMI and the gene expression of FKBP4, FKBP5, GILZ and GR in CD4+ and CD8+ 

T cells (αFWE = 0.05 equal to 0.05 / 8 on a single test level). For cortisol and T cell GC sensitivity 

analyses, CNI included all DV and CNI of main analysis 1. 

 

2.9.4 Main analysis 4: BMI-related glucocorticoid and neural processing markers  
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To investigate whether stress and BMI-related brain regions are also related to BMI-related 

measures of T cell GC functioning, we tested associations between resting stage FC of stress-

reactive brain regions whose resting stage FC was associated with BMI (see Results, main 

analysis 2) on one hand and BMI-related GC sensitivity T cell markers (see Results, main 

analysis 3) on the other. The same was done for FC of the respective regions involved during 

stress. The regression and inference methods (including the CNI) were identical to Analysis 

2. GC parameters served as CI, FC as DV. Given that the number of tests in each of the two

families of tests (as in main analysis 2 one for FC during rest, one for FC during stress) was 2 

⋅ (2 ⋅ 16 - 1) = 62, αFWE = 0.05 equaled to α = 0.05 / 62 = 8.1 ⋅ 10-4 on a single test level. For an 

exact explanation of this number, see Supplement. At this point, we would like to mention 

that we report the impact of patients’ sex on all DV tested across main analyses 1 - 4 in terms 

of the test statistics determined by the robust regression models in these analyses for the CNI 

sex. Moreover, we conduct complementary categorial analyses (i.e., Analyses of Covariance; 

ANCOVA) in supplementary analysis 4 testing differences between body mass groups (i.e., 

obesity [BMI ≥ 30], overweight [25 ≥ BMI > 30], etc.) in the DV tested in the main analyses 

with linear regression based on the continuous BMI variable. 
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3 Results 

3.1 Clinical and demographic participant characteristics 

Six of the 57 PwMS were obese (BMI ≥ 30), 19 overweight (25 ≥ BMI > 30), 28 normal weight 

(18.5 ≥ BMI > 25), and four underweight (BMI < 18.5). Five patients were treated with 

teriflunomide, ten with dimethyl fumarate, nine with fingolimod, eight with glatiramer 

acetate, and ten with β-interferons (see Tab. 1 for further details).  

3.2 Main analysis 1: BMI and multiple sclerosis severity 

Out of the four activity/severity parameters tested, the association between BMI and 

annualized relapse rate was significant (t = 3.23, p = 0.003 = pFWE = 0.012, f2 = 0.22). The links 

to the other parameters were not (EDSS: t = -0.88, p = 0.378 = pFWE > 0.999, f2 = 0.01; lesion 

load: t = 0.26, p = 0.792, = pFWE > 0.999, f2 = -0.00; GM fraction: t = 0.24, p = 0.812 = pFWE > 

0.999, f2 = -0.01; see Fig. 3). Please note that the latter small negative f2 values result from 

specifics of f2 and the use of robust coefficients of determination R2full and R2base for its 

computation. For further details, refer to the Supplement. 

3.3 Main analysis 2: BMI and functional connectivity 

Seventeen widely distributed brain regions showed significant stress–rest activity 

differences and were thus considered as stress-reactive (Fig. 4a). BMI was significantly linked 

to resting stage FC between right anterior insula and right supramarginal gyrus (t = 4.02, p = 

2.5 · 10-4, pFWE = 0.034, f2 = 0.51). For stress stage FC, we found a significant association 

between right cerebellum exterior and right superior parietal lobule (t = -3.67, p = 3.3 · 10-4, 

pFWE = 0.045, f2 = 0.30). See Fig. 4b – d. 
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3.4 Main analysis 3: BMI and glucocorticoid functioning 

The associations between BMI and salivary cortisol failed to reach significance (diurnal 

average: t = 1.48, p = 0.139 = pFWE = 0.278, f2 = 0.01; hourly decline: t = -2.28, p = 0.031 = pFWE 

= 0.062, f2 = 0.01). Out of the four GC sensitivity markers assessed per T cell subpopulation, 

a significant link to BMI was obtained for FKBP4 (t = -2.96, p = 0.003 = pFWE = 0.024, f2 = 0.13) 

and FKBP5 (t = 1.83, p = 0.003 = pFWE = 0.024, f2 = 0.38) expression of CD8+ cells. Please note 

that the comparably small t of 1.83 given p = 0.003 in this association was caused by a single 

data point whose effect on p was, however, well mitigated by the combined application of 

robust regression and permutation testing. See Fig. 5. 

3.5 Main analysis 4: BMI-related glucocorticoid and neural processing markers 

Testing associations between gene expression of the BMI-correlated T cell GC sensitivity 

markers (see Results, main analysis 3) on one hand and FC of stress-reactive brain regions 

whose mutual FC was associated with BMI (see Results, main analysis 2) on the other showed 

a significant positive link between FKBP4 expression in CD8+ T cells and resting stage FC 

between left superior parietal lobule and right supramarginal gyrus (t = 5.30, p = 7.0 ⋅ 10-5 = 

pFWE = 4.5 ⋅ 10-3, f2 = 1.47; Fig. 6).  
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4 Discussion  

Even though obesity is linked to MS in several important ways, essential neurocognitive 

obesity mechanisms, including psychobiological stress, have never been investigated in 

people with MS. We employed an fMRI stress task to study whether neural stress processing 

is related to body mass in 57 underweight to obese PwMS. Additionally, we tested whether 

BMI is related to salivary cortisol and T cell GC sensitivity in patient subsamples and whether 

BMI-related GC sensitivity and neural processing parameters are linked.  

 Four main analyses were conducted. The first tested basic associations between BMI 

and MS activity and severity parameters. This showed a significant association with relapse 

rate which is consistent with Escobar et al. [3]. A related supplementary analysis (i.e., 

supplementary analysis 3) focusing on the link between sex and the DV tested in main 

analyses 1 – 4 revealed a significant relationship between sex and GM fraction (however, at 

a liberal αFWE = 0.1 level only). Male patients tended to have a lower GM fraction than females. 

This result is consistent with a study by Voskuhl and colleagues [50], which reported higher 

regional GM atrophy in male patients, suggesting that male sex may be a risk factor for more 

severe MS progression. 

We next tested associations between BMI and FC of stress-reactive regions in main 

analysis 2. The first part of the analysis, which evaluated regional stress reactivity, identified 

17 regions (Fig. 4a) typically involved in stress processing (e.g., compare [30]), which 

(together with findings of supplementary analysis 1 on psychophysiological stress 

responses) underlines the ability of this task to induce stress. The second part showed that, 

among all pairs of these 17 areas, BMI was linked to FC of right anterior insula and right 

supramarginal gyrus during rest, which is highly compatible with findings reported in the 

literature. In particular, insula is a key region in a network underlying incentive salience [51], 

a comparably simple mechanism initiating food seeking and consumption after exposure to 

food cues (such as visual food percepts) as these cues were coupled to reward (i.e., food 

intake) in the learning history of an individual via Pavlovian conditioning. Consequently, the 
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cues become predictive of reward and acquire similar motivational properties as food itself 

after they were coupled repeatedly to the food [12, 15]. Consistent with this function, insula 

shows enhanced activity to food cues [52] and its responses to food cues correlate positively 

with BMI [53]. Furthermore, insula and supramarginal gyrus are both parts of the salience 

resting-state network [47], whose function is to identify the most relevant stimuli for guiding 

subsequent behavior [54]. Consistently, heightened activity of this network was also 

reported for obese vs. non-obese people [47]. Thus, consistent with the fact that heightened 

incentive salience was found to be one of if not the most important driver(s) of BMI in non-

MS studies [13] and the involvement of anterior insula and supramarginal gyrus in (neural 

networks underlying) incentive salience of food stimuli, the link between BMI and these 

regions’ FC found here is compatible with a positive link of incentive salience of food stimuli 

and BMI also in PwMS. 

During the stress stage, we observed a significant negative relationship between BMI 

and FC of right superior parietal lobule and cerebellum exterior. This finding can be explained 

by integrating findings on neural processes of dietary self-control and stress. In detail, van 

der Laan et al. [55] found that superior parietal cortex is an area involved in dietary self-

control by showing that when healthy persons choose low-caloric, non-tasty but healthy 

foods in a food-choice task (i.e., when exerting self-control) activity in this area increases 

when compared to choosing unhealthy but tasty foods (i.e., when exerting no self-control). 

Furthermore, cerebellum is a key region underlying the generation of stressful and 

affectively negative states (also showing neural emotion processing alterations in obese 

persons [56]) with a high stress hormone receptor density and strongly connected to other 

stress regions [57]. Thus, when considering that stress (e.g., induced by cerebellar activity) 

promotes unhealthy food choices by reducing FC between control and reward-prone regions 

in the brain’s decision-making system (favoring unhealthy tasty foods; see [19]), one can 

inversely assume that self-control increases and BMI thus decrease if a stress-generating 

region (here: cerebellum) adapts its activity to that of a control region (here: superior 

parietal lobule) with higher adaptation being reflected by higher FC between these areas.  

With other words, the observed negative relation between BMI and FC between right 

superior parietal lobule and cerebellum exterior during stress presumably indicates an 

inverse relationship between neural self-control and BMI. 
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Furthermore, the presence of BMI–FC relationships in main analysis 2 but the absence 

of such relationships between BMI and the activity of individual stress-reactive brain regions 

in supplementary analysis 2, suggests that employing FC to study associations between BMI 

and neural processes was an appropriate choice. 

In main analysis 3, we first tested associations between BMI and the average and 

hourly decline in diurnal salivary cortisol, which, however, failed to reveal significant results 

on an FWE-corrected level. This was different for T cell GC sensitivity: Among the eight 

markers tested (expression of FKBP4 and 5, GILZ and GR on CD4+ and CD8+ T cells), 

associations between BMI and FKBP4 as well as FKBP5 on CD8+ T cells were significant. This 

finding is consistent with results showing altered GC sensitivity in obese people without MS 

in [24] and [25] and underlines the relation of GC functioning and body weight in MS. 

Finally, in main analysis 4, we aimed at evaluating whether FC of stress-reactive brain 

regions whose FC correlates with BMI also correlates with BMI-related parameters of GC 

functioning in order to determine the overlap between neural-body mass and neural-

immuno-hormonal networks. We demonstrated a significant link of CD8+ FKBP4 gene 

expression and resting state FC between left superior parietal lobule and right supramarginal 

gyrus. Although evaluating patients with a different disease, our findings are in line with a 

study of Koh and colleagues [58], who investigated associations between resting state brain 

activity and immune functioning in somatoform disorder and found a hypoperfusion in 

inferior parietal lobule and supramarginal gyrus in patients with strong (i.e., lower 

lymphocyte proliferative responses to phytohemagglutinin) vs. weak immune suppression. 

Compatible with our interpretation of the association between resting state FC of superior 

parietal lobule and right supramarginal gyrus and CD8+ FKBP4 gene expression, the authors 

concluded that the parietal regions they identified are involved in modulation of immune 

functions. In both cases, this interpretation is supported by the fact that parietal cortex is 

strongly connected to insular cortex [59], which is not only a key region for mediation of 

incentive salience [51] but again critical for measuring and modulating immune functions 

[60]. Thus, although BMI-related GC functioning was not related to resting state FC of the 

same pair of stress-reactive seed-target regions that was linked to BMI (i.e., FC between right 

anterior insula and right supramarginal gyrus), the pair related to GC functioning again 
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comprised right supramarginal gyrus, which at least indicates a partial overlap among brain-

BMI and brain-immuno-hormonal networks. 

 An aspect worth mentioning is that although the patterning of results obtained for 

testing effects of interest via categorial variables/the body mass groups in supplementary 

analysis 4 and via the continuous variables in the main analyses was quite comparable, not a 

single ANCOVA evaluating categorial variables was significant for αFWE = 0.05. This may 

initially appear surprising, but it becomes understandable when considering how categorial 

body mass groups are defined: by thresholding the existing continuous BMI measure (i.e., 

BMI ≥ 30: obesity; 25 ≥ BMI > 30: overweight, etc.). This procedure, however, is intentionally 

discarding meaningful information as 54 different BMI values (two persons had a BMI of 19.9 

and three of 23.2) are mapped to only four different body mass classes and it creates 

somewhat arbitrary distinctions (e.g., a person having a BMI of 29.9 is treated identical to 

one with a BMI of 25 but different to one of BMI 30). Consequently, such categorial analyses 

have lower statistical power compared to those based on the original continuous BMI 

variable [61]. Finally, in the context of our study with its small to moderate group size, this 

disadvantageous feature by far outweighs the increased modeling flexibility provided by 

categorial analyses (potentially indicated by the strongest, though still non-significant, 

association between body mass and FC during stress, showing an inverse U-shape for right 

frontal operculum and right supplementary cortex; Figure S4b).  

Another aspect worth discussing is the use of ASL for analyzing FC as BOLD fMRI is 

still considered the most widely used FC technique [48]. However, two factors indicate that 

ASL is highly suitable for studying FC. First, the number of clinical ASL FC studies has been 

rising recently (e.g., [62 – 65]) and already the review of Chen and colleagues from 2015 [48] 

summarizes six ASL FC studies. This shows that the technique is used in a substantial body 

of FC research. Second, studies evaluating signal detection properties of ASL FC found that it 

reliably identifies established resting-state networks such as the salience and default-mode 

networks [66]. Maybe more important, however, is the fact that ASL is much less affected by 

slow signal artifacts than BOLD [30]. Thus, a slow signal, if observed, can be retained due to 

its attribution to the underlying experimental condition, in this case stress, which is known 

to be a slow phenomenon [67]. For BOLD, in contrast, slow signal variations can not only be 
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induced by the experimental condition, but also by noise. Thus, removing such signals 

becomes a necessity but it may not only remove artifacts but simultaneously the 

experimentally induced signal (co)variation. 

Additionally, it is important that, while the sample size was not predefined based on 

a sample size calculation, the present work evaluates a large number of patients compared 

to similar MS fMRI studies (i.e., according to the review by Rocca et al. [68], it evaluates a 

larger number of patients than 88% of all MS fMRI studies employing cognitive tasks).  

A limitation of the study is that anxiety was only measured in a 

categorial/dichotomous fashion (i.e., whether an anxiety disorder was present or not). 

Future studies should additionally characterize and model this parameter in terms of 

continuous questionnaire measures reflecting anxiety severity. Furthermore, although we 

accounted for a variety of nuisance factors through statistical modeling (e.g., sex, age, study 

project, depressive symptom severity, disease duration, presence of progressive MS, DMT 

application, annualized relapse rate, clinical disability, T2-weighted lesion load, GM fraction, 

cognitive task load, and time-to-feedback served as CNI in the key main analysis 2), it should 

be noted that the patients included exhibited comparable heterogeneity in terms of clinical 

and demographic variables. Finally, another limitation is that we did not standardize eating 

behavior on the day before the MRI scan which should be considered in future studies. 

5 Conclusions 

Our study shows that stress-related neural as well as immune-hormonal markers are linked 

to BMI in PwMS across the body mass spectrum. Further, associations observed between 

stress-reactive neural networks linked to BMI and those linked to GC functioning suggest that 

neural-body mass and neuro-hormonal networks partially overlap. 
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Table 

Table 1. Demographic and clinical patient characteristics across all 57 patients and 

stratified by body mass groups. Please note that the parameters for the individual body mass 

classes are only depicted for illustrative purposes; the analyses conducted in the main 

analyses of this work were not conducted in a categorial fashion/by determining differences 

between body mass groups but rather by evaluating associations between continuous CI 

scores (e.g., the individuals’ BMI) and DVs across all participants with linear regression. 

Please see the Discussion for an explanation of why the latter is a better choice in the context 

of this work. Abbreviations: ARR, annualized relapse rate; BDI, Beck Depression Inventory; 

DD, disease duration since first signs; DMT, disease modifying treatment; EDSS, Expanded 

Disability Status Scale; f., female; GMF, whole-brain grey matter fraction; m., male; MN, mean; 

PROG, presence of progressive MS; pts., points; rel., relapses; SD, standard deviation; T2LL, 

whole-brain T2-weighted lesion load; yr., year; yrs., years. 

All Under-
weight 

Normal 
weight 

Over-weight Obese 

BMI 
(m/kg2) 

MN 
SD 

24.7 
4.3 

17.8 
0.4 

22.4 
1.8 

27.0 
1.5 

33.0 
4.0 

Sex 
(f./m.) 

# 37 / 
20 

3 / 
1 

20 / 
 8 

11 / 
 8 

3 / 
3 

Age 
(yrs.) 

MN 
SD 

46.4 
10.6 

42.5 
10.5 

44.4 
10.6 

48.9 
10.6 

50.5 
9.8 

BDI 
(pts.) 

MN 
SD 

8.2 
7.3 

9.0 
10.0 

7.0 
6.3 

9.2 
8.7 

9.8 
6.3 

EDSS 
(pts.) 

MD 
RG 

2.5 
0 - 6 

2.5 
2 – 5.5 

2.5 
0 - 6 

3 
0 – 5.5 

3.25 
1.5 - 6 

DD 
(yrs.) 

MN 
SD 

12.8 
8.8 

15.0 
7.3 

12.1 
7.2 

14.2 
11.6 

10.2 
6.6 

ARR 
(rel./ 

yr) 

MN 
SD 

0.62 
0.44 

0.43 
0.07 

0.48 
0.27 

0.69 
0.51 

1.13 
0.57 

PROG 
(y/n) 

# 7 / 
50 

1 / 
3 

2 / 
26 

3 / 
16 

1 / 
5 

T2LL 
(cm3) 

MN 
SD 

13.9 
19.9 

24.3 
36.9 

15.7 
22.7 

11.2  
12.6 

7.3  
9.8 

GMF MN 
SD 

0.38 
0.05 

0.39 
0.03 

0.38 
0.05 

0.39 
0.06 

0.37 
0.04 

DMT 
(y/n) 

# 42 / 
15 

3 / 
1 

19 / 
9 

15 / 
4 

5 / 
1 
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DMT 
(type) 

# 8 glatiramer 
acetate, 9 

fingolimod, 
10 dimethyl 
fumarate, 10 
interferon β, 
5 terifluno-

mide, 15 none 

2 dimethyl 
fumarate, 

1 
interferon 
β, 1 none 

2 glatiramer 
acetate, 2 

fingolimod, 5 
dimethyl 

fumarate, 7 
interferon β, 
3 terifluno-

mide, 9 none 

5 glatiramer 
acetate, 4 

fingolimod, 3 
dimethyl 

fumarate, 2 
interferon β, 
1 terifluno-

mide, 4 none 

1 glatiramer 
acetate, 3 

fingolimod, 
1 terifluno-

mide, 1 none 
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Figure captions 

Figure 1. Participant selection procedure. For details, see text. 

Figure 2. fMRI Stress paradigm. The paradigm was divided into five stages. There were two parts 

to the stress stage: 4a ("Evaluation") and 4b ("Feedback"). Participants completed subtraction tasks 

across a number of trials in the Evaluation substage (4a). Within each task, the patients had to choose 

the correct solution for equations of the form “operand X minus operand Y” from a list of four possible 

solutions displayed on a screen with an MRI-compatible response box as quickly as they could. The 

start value of X was 43521 across all participants. In each of the trials in 4a (and 4b), operand Y was 

chosen at random (range: 1 – 99). In study project one, the duration of 4a was 4 minutes or shorter if 

a participant solved ten tasks correctly earlier. 4a had a fixed duration of 4 min in study project two. 

To account for this difference, we modelled the duration of 4a as CNI "time-to-feedback" in all 

regression analyses modeling stress fMRI data and evaluated only the rCBF data (and heart rate, 

cognitive task load or mental arithmetic performance data respectively) collected in the last 8 

minutes of stage 4b. The time allotted in 4a to complete a task was 8 seconds. When the participant 

selected the correct response for a task, X was set to this correct response score in the following task. 

If the response was inaccurate or too slow, X stayed unchanged. 4a was followed immediately by 4b. 

4b was different from 4a in three ways. First, each task included feedback (i.e., German school grades 

ranging from "1 - very good" to "5 - insufficient"). The difference between the participant's fastest 

accurate response in 4a and the response time of a specific trial in 4b was used to select the feedback 

or school grade respectively. Feedback for incorrect or tardy responses was always "5 - insufficient." 

In this instance, second, X was reset to 43521. Thirdly, according to the participant's performance, 

the time for response selection was adjusted. Beginning with at 8 seconds at the start of 4b, this time 

was decreased by 10% for correct responses and increased by 10% for incorrect or very sluggish 

answers. This flexible procedure was used to make sure that every participant continuously 

performed at their highest level possible and that performance was therefore comparable to other 

participants in terms of an individual performance norm. 

Figure 3. Associations between BMI and multiple sclerosis activity and severity. The scatter 

graphs illustrate the associations found in analysis 1 for BMI and the four MS severity markers. To 

facilitate a more comfortable interpretation of body mass in these and all other scatter graphs, the 

dot colors highlight BMI-based body mass classes, with red dots corresponding to obese PwMS 
(kg/m2 ≥ 30), pink to overweight PwMS (25 ≥ kg/m2 > 30), light blue to normal weight PwMS (18.5 ≥ 

kg/m2 > 25) and darker blue dots finally represent underweight patients (kg/m2 < 18.5). Again, we 

would like to mention, however, that these body mass classes (i.e., categorial representations of body 

mass) are only depicted for illustrative purposes. The regression models evaluated in this and all 

other main analyses included continuous CI (here: BMI scores) for reasons delineated in the 

Discussion; complementary categorial analyses are presented in the Supplement (due to their 

disadvantages also delineated in the Discussion). 
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Figure 4. BMI and functional connectivity of stress-reactive brain regions. 4a shows the 17 

stress- reactive brain areas (i.e., with significant activity differences between the rest and stress stage) 

identified. The bar graph on the left depicts the t-statistics obtained for the stress – rest contrast for 

significant regions sorted by their coarse anatomical location. The two graphs in the middle/right of 

4a correspond to surface renderings of regional stress reactivity. The heatmaps in 4b depict 

associations between BMI and FC of pairs of stress-sensitive regions separately for FC during the rest 

and the stress stage. The left scatter graph in 4c illustrates the association between the pair of regions 

with resting-stage BMI associations significant according to a threshold corrected for multiple 

comparison (αFWE = 0.05; right anterior insula to right supramarginal gyrus). The scatter graph on the 

right does so for the pair with a significant BMI to stress-stage FC association (right cerebellum 

exterior to right superior parietal lobule). Finally, 4d depicts the median coordinates of and 

illustrative connections between these regions. 

Figure 5. Associations between BMI and parameters of glucocorticoid functioning. The graphs 

in 5a show associations between BMI and the average diurnal salivary cortisol level on the left and 

between BMI and hourly decline in diurnal cortisol on the right. 5b depicts the associations between 

BMI and the gene expression of four GC signaling-related markers in CD4+ and CD8+ T cells. In all 

graphs, the DV depicted on the y-axis is corrected for the respective CNI. Abbreviations: ∆CT: delta 
cycle threshold gene expression values; FKBP4, FK506-binding protein 4; FKBP5, FK506-binding 

protein 5, GILZ, glucocorticoid-induced leucine zipper; GR, glucocorticoid receptor. 

Figure 6. Links between BMI-related glucocorticoid and neural processing markers. The upper 

heatmap in 6a shows associations between BMI-related T cell GC sensitivity markers (i.e., expression 

of FKBP4 and FKBP5 in CD8+ T cells) and resting-state FC of the two brain regions whose mutual FC 

during rest was linked to BMI in analysis 2. The lower heatmap depicts the same for stress-stage FC. 

Across individual analyses (62 for rest, 62 for stress), the association between resting-state FC of left 

superior parietal lobule and right supramarginal gyrus with expression of FKBP4 in CD8+ T cells was 

significant on an FWE-corrected significance level which is thus depicted in 6b. Finally, 6c illustrates 

the median coordinates of these two brain regions and their spatial connection. 
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Methods 

Heart rate computation 

The standard pulse oxymeter of the Physiological Monitoring Unit that came with the MRI 

scanner was used to determine the heart rate during the rest and stress fMRI measurements. 

The photoplethysmograph detector was mounted to the participants' toes as the 

experimental paradigm required them to manually operate button boxes. The quality of heart 

rate signals obtained from participants’ toes is comparable to signals obtained from their 

fingertips (Hinkelbein et al. 2005). One heart rate parameter was calculated for each 

participant and each of the two conditions. In particular, in the first study project one (e.g., 

Weygandt et al., 2016), we removed pulse oximeter raw signal artifacts that would have 

resulted in a heart rate acceleration of ≥ 133% or a deceleration of ≤ 75% in a first step. The 

remaining data from the (final) 8 min of both conditions were then utilized to compute the 

average heart rate for a given participant and condition as indicator of heart rate of a given 

condition and participant in a second. In the second study project (e.g., Brasanac et al., 2022), 

we first computed a Fourier analysis to calculate the amplitude spectrum of heart rate time 

series based on the raw pulse signals of the (final) 8 min of both conditions separately for 

each condition and participant. To limit the fit to the physiologically meaningful frequency 

spectrum, frequencies below 30 Hz and above 150 Hz were eliminated. Amplitudes in two 

frequency windows (47.6 to 48.4 Hz, and 95.6 to 96.4 Hz) were also eliminated due to a 

technical artifact produced in these frequency ranges by the pulse oximeter. In a second step, 

we fitted a unimodal gaussian to the calculated amplitude spectrum for both periods. We then 

used the frequency with the largest fitted amplitude as the indicator of heart rate of a given 

condition and participant. 

MRI acquisition 

All brain scans were performed with a 3 Tesla whole-body tomograph (Magnetom Trio, 

Siemens, Erlangen, Germany) using a standard head coil with twelve channels. 



3 

Anatomical scans 

In the first study project, two anatomical MR sequences were acquired. In particular, a T1-

weighted sagittal 3-D-magnetization prepared rapid gradient echo (MP-RAGE) sequence 

(176 slices; slice thickness 1.3 mm; in-plane voxel resolution 1.5 · 1.5 mm2; TR = 1720ms; TE 

= 2.34ms; FA = 9°; FOV = 192 · 192 mm2; matrix size = 128 × 128; duration 1 min and 43 sec) 

and a sagittal T2-weighted (T2w) sequence to facilitate manual lesion mapping (176 slices; 

1 mm isotropic voxels; TR = 5000 ms; TE = 502 ms; FA = 120°; FOV = 256 · 256 mm2; matrix 

size = 256 · 256; 5 min and 52 sec duration) was used. In the second project, we used a T1-

weighted sagittal 3D MP-RAGE echo sequence (176 slices; 1 mm isotropic voxels; TR = 1900 

ms; TE = 3.03 ms; FA = 9°; FOV = 256 · 256 mm2; matrix size = 256 × 256; 4 min 26 sec 

duration) as well as a sagittal T2-weighted FLAIR sequence (176 slices; 1 mm isotropic 

voxels; TR = 6000 ms; TE = 388 ms; TI = 2100 ms; FA = 120°; FOV = 256 · 256 mm2; matrix 

size = 256 · 256; 7 min 44 sec duration). 

Functional scans 

In both study projects, perfusion brain images were acquired using a pseudo-continuous ASL 

Echo-Planar Imaging (EPI) sequence (Wang et al., 2005). This sequence comprised 22 

ascending transversal slices and covered the whole brain (slice thickness 5.75 mm [including 

15% inter-slice gap]; in-plane voxel resolution 3 · 3 mm2; TR = 4000 ms; TE = 19ms; FA = 90°; 

FOV = 192 · 192 mm2; matrix size = 64 · 64; label duration 1.5 sec, post-label delay 1.2 s; 

phase-encoding direction anterior to posterior). Moreover, we acquired two spin-echo EPI 

reference volumes with opposing phase encoding directions (anterior to posterior, posterior 

to anterior) in advance to the rest and the stress ASL measurements with matching readout 

and geometry in order to facilitate a distortion correction of ASL images. 
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MRI preprocessing 

Anatomical scans 

First, experienced raters conducted a manual mapping of localized lesions based on the T2 

or FLAIR scans. A neuroradiologist oversaw these procedures. Next, the T2 or FLAIR scan of 

a given participant was co-registered to this participant’s T1-weighted MP-RAGE scan. 

Afterwards, we determined voxel-wise tissue probability maps for GM, white matter (WM) 

and cerebro-spinal fluid (CSF) by applying the combined spatial normalization and 

segmentation algorithm of SPM12 to the T1-weighted MP-RAGE scans. Voxel locations 

included in the co-registered lesion masks were discarded in this combined normalization 

and segmentation procedure, which finally generated tissue probability maps for each of the 

three tissues. These (‘modulated’) tissue probability maps were adjusted for impacts of local 

deformations applied during spatial normalization and created in the anatomical standard 

space defined by the MNI. The transformation parameters determined in this procedure for 

mapping the T1-weighted images to the MNI space were also used to map the lesion masks 

coregistered to the space of the raw T1-weighted scans to the MNI space. 

Afterwards, we used the modulated tissue probability maps to compute the whole-

brain GM fraction for each patient. In particular, for each voxel, we identified the tissue with 

the largest modulated tissue probability in the given participant. We then assigned this voxel 

to the tissue identified except if its localization was within lesioned tissue as indicated by the 

MNI-space lesion mask. The GM tissue fraction was then calculated as the total number of GM 

voxels divided by the total number of intracranial voxels. Similarly, the lesion volume for each 

patient was computed by counting the number of lesion voxels within the lesion masks 

mapped to MNI space and then multiplying this count by the volume of voxels within this 

space, which corresponded to 3 ∙ 3 ∙ 3 mm3. 

Similarly, group-masks for the three tissues (required in the analyses of functional 

MRI scans) were determined by determining the tissue with the largest modulated tissue 

probability across all participants per voxel and assigning this voxel to this tissue. In order to 

account for partial voluming effects, we deleted voxel coordinates from GM, WM, and CSF 

group masks that were directly located in lesioned tissue in at least one participant or in the 
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six neighboring voxels (i.e., those six voxels that had a Euclidean distance of exactly one voxel 

to a lesion voxel of a participant; cf.  Weygandt et al., 2011). 

Functional scans 

Preprocessing of ASL scans was performed with the SPM12 ACID (Ruthotto et al., 2008) and 

ASLtbx (Wang et al., 2008) toolboxes. 

Quality assurance step for functional scans using the Framewise Displacement metric 

The framewise displacement (FWD) measure, a well-known technique proposed by Power 

et al. (2014) that assesses participants' fMRI head motion parameters (here determined 

during preprocessing of functional ASL scans), was used to perform an fMRI image data 

quality assurance step. Specifically, for each condition (i.e., rest and stress) and each of the 

60 participants available (20 from Weygandt et al., 2016, 40 from Brasanac et al., 2022), first 

one average motion-based image quality marker ("FWD score") was calculated based on the 

head motion parameters determined during preprocessing of ASL scans. In the next step, we 

looked for outliers among the FWD scores across the pooled sample of 60 patients for each 

condition separately. In particular, an FWD score was deemed an outlier if more extreme than 

the first (third) quartile minus (plus) 1.5 times the inter-quartile range of the FWD scores 

computed for this condition. Only participants who had non-outlier FWD scores in both 

conditions passed the procedure. This was the case for all 20 participants taken from 

Weygandt et al. (2016), and for 37 from Brasanac et al. (2022). 

Regional neural stress reactivity within patients 

In order to determine the regional neural stress reactivity, we first corrected the rCBF time 

series of each voxel, condition, and participant for head motion (Wang et al., 2012; Wang et 

al., 2008) and global WM and CSF signals (Arnemann et al., 2015; Wang et al., 2012). Head 

motion parameters were computed by ASLtbx, the average signal across all voxels contained 



6 

in the group-specific WM and CSF masks were computed for each participant as global WM 

and CSF signals. 

Next, we determined an rCBF timeseries for each condition, participant, and region 

included in the Neuromorphometrics brain atlas (http://Neuromorphometrics.com) 

averaged across timeseries of all voxels in that region if the given voxel was included in the 

GM group mask and contained non-zero rCBF. An atlas region was excluded from all fMRI 

analyses if not containing at least a single voxel meeting these criteria across all participants. 

From the 122 regions in the atlas, only three, i.e., left and right pallidum as well as cerebellar 

vermal lobules VIII-X, were not included. Exclusion of these regions followed from the facts 

that (i) the GM contrast in the pallidum is relatively weak in MP-RAGE scans (Droby et al., 

2021), (ii) MS lesions occur frequently close to pallidum, (iii) the location of cerebellar vermal 

lobules VIII-X was close to the inferior boundary of the ASL measurement region (i.e., its Field 

of View), (iv) we excluded regions already if they did not fulfill the abovementioned criteria 

in a single participant.  

To finally compute measures of regional stress reactivity, we concatenated both 

conditions’ regional time series in each participant and region and used linear regression to 

determine regional activity differences between the stress and the rest condition. The 

concatenated time series served as dependent variable and a boxcar regressor coding zeros 

for the 60 rCBF data points of the rest condition and ones for the 60 rCBF data points of the 

last 8 min of the stress condition served as predictor (e.g., Wang et al., 2012; Wang et al., 

2008). This procedure was carried out for each person and region included in the analysis. 

The region-by-region regression coefficients obtained were entered into main analysis 2 (as 

well as in supplementary analysis 2) as regional stress reactivity indicators. 

Gene expression in T cellular glucocorticoid pathway 

Isolation of Peripheral Blood Mononuclear Cells 

A venous blood sample (about 70ml) was taken from participants at the morning of the 

clinical examination and processed within two hours. Particularly, in accordance with 

standard operating procedures (Hasselmann et al., 2018), peripheral blood mononuclear 
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cells (PBMCs) were isolated with density gradient centrifugation. Specifically, blood was 

diluted first in phosphate-buffered saline (PBS) (1:1). Afterwards, 35ml of the diluted blood 

were layered carefully in a 50ml conical tube on top of 15ml of Biocoll medium (Biochrom, 

Berlin, Germany). The tubes were centrifuged at 870 × g (brakes off) for 30 min. After the 

mononuclear cell layer was harvested from the interphase, cells were washed twice in cold 

PBS for 10 min each. In order to prepare the PBMCs for cryopreservation, they were pelleted 

and then resuspended in RPMI-1640 (Gibco, ThermoFisher Scientific, Berlin, Germany), 

which was supplemented with 25% heat-inactivated fetal bovine serum (FBS; Biochrom, 

Berlin, Germany) and 10% dimethylsulfoxide (Applichem GmbH, Darmstadt, Germany).  

Next, cells were counted and then diluted to a concentration of 10 million cells per milliliter 

in 1.5ml tubes (Eppendorf, Hamburg, Germany), and placed in a freezing container (Sigma-

Aldrich, St. Louis, USA) for overnight cooling at -80 °C. Frozen tubes were moved to a long-

term liquid nitrogen storage tank (-196 °C) the following day where they remained until 

further examination. 

Cell sorting, RNA isolation, cDNA synthesis, and real-time PCR 

Magnetic-activated cell sorting (MACS), which divides cells based on surface antigens, was 

used to separate CD4+ and CD8+ T cell subsets. After thawing in a warm water bath (37 °C) 

for one to 2 min, tubes containing PBMCs were washed for 6 min at 250 × g in warmed RPMI-

1640 medium containing 10% FBS. Following the manufacturer's recommendations, cell 

sorting was then carried out using CD4 and CD8 MicroBeads (Miltenyi Biotec, Bergisch 

Gladbach, Germany). 20µl of CD4 MicroBeads (Miltenyi Biotec, Bergisch Gladbach, Germany) 

and 80ml of MACS buffer (phosphate-buffered saline, 0.5% BSA, 2 mM EDTA) per 10 million 

cells were added, and the mixture was incubated for 15 min at 4°C in the dark. After washing 

with MACS buffer for 5 min at 350 × g (4 °C) cells were resuspended in 500µl MACS buffer. 

Next, MACS LS columns (Miltenyi Biotec, Bergisch Gladbach, Germany) were used to isolate 

CD4+ T cells. The CD4- negative percentage was then used for sorting CD8+ T cells in the 

following phase, adhering to a similar protocol: CD8 MicroBeads (Miltenyi Biotec, Bergisch 

Gladbach, Germany) were used to label the cells. The cells were then incubated on the MACS 

MS columns, separated, and ultimately resuspended in 500µl of MACS buffer. Using flow 
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cytometry (FACSCanto II, BD Biosciences, New Jersey, USA), cell fraction purity was checked. 

The purity coefficients were 91.67% + 6.74 SD (0.89 SEM) for CD4+ T cells and 95.15% + 5.73 

SD (0.76 SEM) for CD8+ T cells. Following the recommendations of the manufacturer, total 

RNA was extracted from CD4+ and CD8+ T cell fractions with the Qiagen RNeasy Plus Mini Kit 

(Qiagen, Hilden, Germany). A NanoDrop spectrophotometer (NanoDrop 2000c, Thermo 

Fisher Scientific, Berlin, Germany) was used to evaluate their purity and concentration. 

Complementary DNA (cDNA) was transcribed from RNA in the next step in accordance with 

the manufacturer's instructions using Thermo Fisher Scientific's RevertAid H Minus First 

Strand cDNA Synthesis Kit and kept at -20 °C. TaqMan Gene Expression Assays (Thermo 

Fisher Scientific, Berlin, Germany) were employed to amplify cDNA with a StepOne real-time 

PCR System for GR (Hs00353740 m1), FKBP5 (Hs01561006 m1), FKBP4 (Hs00427038 g1), 

and GILZ (Hs00608272 m1). Triplicates were used to run real-time PCR experiments. Two 

housekeeping genes, TATA Box Binding Protein (TBP; Hs00427620 m1) and Importin 8 

(IPO8; Hs00183533 m1), were used to standardize gene expression. These housekeeping 

genes were chosen as reliable gene references for gene expression analyses in human T cells 

(Ledderose et al., 2011). By subtracting the geometric mean of housekeeping genes from the 

mean CT values of a given gene of interest, delta cycle threshold (∆CT) values were computed 

as markers of gene expression within the glucocorticoid pathway. These ∆CT values were 

entered in the third and fourth main analyses for evaluation. 

Statistical analysis 

Analysis 4: BMI-related glucocorticoid and neural processing markers 

Explanation of the number of tests conducted  

Sixty-two (i.e., 2 ⋅ [2 ⋅ 16 – 1] = 62) tests were conducted in main analysis 4. Specifically, 2 T 

cell GC sensitivity markers were significantly related to BMI and thus evaluated per family of 

tests, 2 regions showed a FC significantly linked to BMI during rest or stress respectively and 

thus served as FC seed region, and each of these 2 seed regions had 16 (i.e., 17 – 1) FC target 

regions. However, as one pair among the 2 ⋅ 16 pairs of stress-reactive seed-target regions 
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was redundant, it did not contribute to the number of tests and was thus subtracted (→ 2 ⋅ 

16 - 1; see Fig. 6a). 

Supplementary analysis 1: Psychological and peripheral stress responses 

We used linear mixed models to test perceived stress (based on self-report data acquired in 

both rating stages included in the analyses and available for all 57 PwMS) and peripheral 

stress responses (i.e., differences in the heart rate between the rest stage and the final 8 min 

of the stress stage; available for 51 PwMS). The CNI were the same as in main analysis 2. 

Again, we applied permutation testing for inference.  

Supplementary Analysis 2: BMI and brain activity of stress-responsive regions 

Here, we repeated main analysis 2 but instead of regressing the participants FC on their BMI, 

we modeled the regional stress response activity parameters (i.e., the coefficients described 

in section ‘Regional neural stress reactivity within patients’ above) based on their BMI. CNI 

were the same as in main analysis 2. Again, we applied a significance threshold corrected for 

multiple testing of αFWE = 0.05. However, other than in main analysis 2, the equivalent of this 

FWE-corrected threshold on the single test level was 0.05/17 = 0.0029 as the number of tests 

equaled to the number of significant stress responsive regions (i.e., 17) and not the number 

of pairs of significant stress responsive regions (i.e., 136). 

Supplementary analysis 3: Impact of patients’ sex on DVs tested in main analyses 1 – 4 

Given the well-established sex differences in autoimmune disorders, including MS (Gold et 

al., 2019), we investigated whether patients’ sex was related to the DVs tested across main 

analyses 1 – 4. Importantly, because patients’ sex was included in all regression analyses 

computed throughout these analyses as CNI (and a putative impact of sex on the associations 

primarily tested in these analyses was thus statistically controlled), this potential relation 

was automatically determined by the regression models computed for the primary aims of 

main analyses 1 - 4 as byproduct. Consequently, the statistical parameters reported for sex 
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and the methodology employed to assess the relationship between sex and the DVs were 

identical to those reported for the CI in main analyses 1 – 4. 

Supplementary analysis 4: Differences between BMI-derived body mass groups 

In main analyses 1 – 4, we tested associations between the continuous BMI variable and DVs 

using linear robust regression analyses applied to the data of all patients. Although this 

approach has serious advantages over analyzing the impact of body mass on variables of 

interest by contrasting groups characterizing individuals’ body mass in a categorial fashion 

(i.e., as obese, underweight, etc.) in case of the present study (see the Discussion in the main 

text), it might be unable to discover non-linear associations between a variable and body 

mass. For example, it might miss if underweight and obese individuals have high values in a 

variable and normal-weight and overweight persons have low ones. Other than the linear 

regression analyses in the main text, however, ANCOVA is able to detect such non-linear 

associations. For this reason, and due to the popularity of the categorial body mass labels, we 

conduct complementary ANCOVA testing differences between body mass groups (i.e., obesity 

[BMI ≥ 30], overweight [25 ≥ BMI > 30], etc.) in the DV tested in the main analyses in this 

supplementary analysis.  

Methodologically, this was achieved by generating a regression model including 

dummy variables coding for group membership in a binary fashion (instead of the single 

continuous BMI regressor) and the same CNI as in the corresponding main analyses. 

Determined by ANCOVA, F-values are reported as test statistic. Again, robust regression was 

used to determine the model parameters and permutation testing (10,000 permutations of 

the group vector [coding 1 for underweight, 2 for normal weight, 3 for overweight, and 4 for 

obesity] used for setting up the dummy variables) for inference. Also, the significance 

thresholds employed were the same as in the main analyses. Partial Eta2 (ηp2) is reported as 

measure of effect size. According to Cohen (1988), ηp2 ≥ 0.01 corresponds to a small, ηp2 ≥ 

0.06 to a medium, and ηp2 ≥ 0.14 to a large effect. 
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Results 

Main analysis 1: BMI and MS activity and severity 

Properties of f2 based on robust coefficients of determination 

In this analysis, small negative values for f2 were obtained for two MS severity parameters 

(i.e., lesion load: t = 0.26, p = 0.792, = pFWE > 0.999, f2 = -0.00 and GM fraction: t = 0.24, p = 

0.812 = pFWE > 0.999, f2 = -0.01). These small negative f2 values can result from specifics of f2 

and the use of robust coefficients of determination R2full and R2base for its computation (f2 = 

[R2full -R2base] / [1 - R2full]; cf. Renaud et al., 2010), which is a necessary step when employing 

robust regression methods because standard (i.e., non-robust) coefficients of determination 

do not reflect the impact of the robust algorithms on the regression model.  In particular, the 

difference in the variance explained in the dependent variable between the base model and 

the full model (i.e., between R2full and R2base) must only rely on the presence of the variable 

for which the effect size should be determined in the full model and the absence of this 

variable in the base model when estimating f2.  As no parameters have to be optimized in 

ordinary (i.e., non-robust) regression besides the regression coefficients, this prerequisite 

holds within this regression method. In robust regression, however, this is different as it 

additionally scales individual observations by computing observation weights to achieve a 

more robust regression solution in case of outliers. Consequently, the difference in the 

variance explained in the dependent variable between R2full and R2base could not only depend 

on the presence/absence of the variable in question but also in differences between the 

observation weights when these weights would be computed individually for the base and 

the full model. To address this issue, one can (and we did) use the observation weights 

computed for the full model for calculating not only R2full but also R2base. Under these 

circumstances, small negative values for f2 can result. 

 

Supplementary analysis 1: Psychological and peripheral stress responses 

The task induced a pronounced psychological (t = 9.31, p < 10-4, f2 = 0.99) and peripheral (t 

= 6.05, p < 10-4, f2 = 0.71) stress response.  Fig. S1 provides further details. 
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Figure S1 depicts the stress response induced by the task in terms of psychological stress (ratings of 
perceived stress) on the left and in terms of heart rate accelerations on the right. The lower, center, 
and upper edges of the black boxes depict the first, second (i.e., median), and third quartile of the 
distribution of parameters. 

Supplementary Analysis 2: BMI and brain activity of stress-responsive regions 

We found for none of the 17 regions a significant association between BMI and stress-

response activity. Specifically, for the most extreme t-statistic obtained in this analysis (i.e., 

for the association between BMI and right anterior insula activity differences), the type I 

error rate was p = 0.01, which is much larger than the required p-value of 0.0029. Fig. S2 

provides an illustration. 
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Figure S2 illustrates the associations between the BMI and the regional stress response activity of 
stress-reactive regions.  

Supplementary analysis 3: Impact of patients’ sex on DVs tested in main analyses 1 – 4 

The impact of patients’ sex on the DVs tested across main analyses 1 – 4 was very small. In 

particular, among all the variables tested, sex was related to a single variable (and only at an 

αFWE = 0.1 level, which would not have been reported for the CI in main analyses 1 – 4): 

patients’ GM fraction. Specifically, men tended to have a lower GM fraction than women. 

Figure S3 illustrates these results. 
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Figure S3 reports the t-statistic for sex obtained by the same linear regression models as used for 
determining the effects tested in main analyses 1 - 4. In particular, Figure S3a / b / c /d show the t-
statistics for sex obtained from the models computed for main analysis 1 / 2 / 3 / 4. In the only case 
where a significant result was obtained (however, at an αFWE = 0.1 level only), for the association 
between patients’ sex and the whole-brain GM fraction, we additionally report pFWE. 
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Supplementary analysis 4: Differences between BMI-derived body mass groups 
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Figure S4 shows the results obtained for testing the effects evaluated in main analyses 1 to 3 by 
applying one-factorial ANCOVA of body mass categories instead of regression analyses evaluating the 
continuous BMI measure. In particular, Figure S4a / b / c shows the results obtained for repeating 
tests in a categorial fashion that were addressed in in a continuous fashion in main analysis 1 / 2 / 3. 
Please note, that tests conducted in main analysis 4 were not repeated using ANCOVA since main 
analysis 4 was a post-hoc analysis relying on the significance of results obtained in main analyses 2 
and 3 and their ANCOVA counterparts failed to reveal significant results. Across all boxplot graphs 
depicted in S4a / b / c, the DVs plotted on the y-axis were corrected for CNI. 

Although a visual comparison of Figures 2 – 4 in the main text with Figure S4 shows that the 

overall pattern of results obtained for body mass groups is comparable to that obtained for 

continuous BMI values (when considering that the F-distribution is asymmetric and ranges 

from 0 to +∞ whereas the t-distribution is symmetric and ranges from -∞ to +∞), it is 

noteworthy that the p-values obtained through ANCOVA are systematically higher than those 

obtained for continuous BMI values. More specifically, not a single ANCOVA obtained 

significant results on an αFWE = 0.05 level. 
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