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An integrate-and-fire approach to Ca2D signaling.
Part II: Cumulative refractoriness
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ABSTRACT Inositol 1,4,5-trisphosphate-induced Ca2þ signaling is a second messenger system used by almost all eukaryotic
cells. The agonist concentration stimulating Ca2þ signals is encoded in the frequency of a Ca2þ concentration spike sequence.
When a cell is stimulated, the interspike intervals (ISIs) often show a distinct transient during which they gradually increase, a
system property we refer to as cumulative refractoriness. We extend a previously published stochastic model to include the Ca2þ

concentration in the intracellular Ca2þ store as a slow adaptation variable. This model can reproduce both stationary and tran-
sient statistics of experimentally observed ISI sequences. We derive approximate expressions for the mean and coefficient of
variation of the stationary ISIs. We also consider the response to the onset of a constant stimulus and estimate the length of the
transient and the strength of the adaptation of the ISI. We show that the adaptation sets the coefficient of variation in agreement
with current ideas derived from experiments. Moreover, we explain why, despite a pronounced transient behavior, ISI correla-
tions can be weak, as often observed in experiments. Finally, we fit our model to reproduce the transient statistics of experimen-
tally observed ISI sequences in stimulated HEK cells. The fitted model is able to qualitatively reproduce the relationship between
the stationary interval correlations and the number of transient intervals, as well as the strength of the ISI adaptation. We also
find positive correlations in the experimental sequence that cannot be explained by our model.
SIGNIFICANCE Intracellular Ca2þ is a universal second messenger that regulates many processes in different cell types
through stimulus-dependent spiking patterns. The spike sequence exhibits an initial transient during which the interspike
intervals gradually increase. After the transient, when spiking is stationary, the intervals are correlated. We follow the idea
that both can be explained by a cumulative depletion and slow replenishment of the intracellular Ca2þ store—the
endoplasmic reticulum. We propose a stochastic integrate-and-fire model with a slow variable that captures the Ca2þ

concentration in the endoplasmic reticulum and ask what are the consequences of the cumulative depletion for the spiking
statistics? We compare the model predictions with experimental spike sequences in stimulated HEK cells.
INTRODUCTION

The inositol trisphosphate (IP3)-induced Ca2þ signaling
pathway translates extracellular signals in the form of
plasma membrane receptor agonist concentrations into
intracellular responses by increasing the cytosolic Ca2þ

concentration in a stimulus-dependent pattern (1–6). Repet-
itive sequences of Ca2þ spikes are used to regulate many
processes in various cell types (1,4,7,8). The concentration
increase can be caused either by Ca2þ entry from the extra-
cellular medium through plasma membrane channels or by
Ca2þ release from intracellular storage compartments. In
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the following, we will focus on IP3-induced Ca2þ release
from the endoplasmic reticulum (ER), which is the predom-
inant Ca2þ release mechanism in many cell types (9). IP3
sensitizes the IP3 receptor Ca2þ channels (IP3R) on the
ER membrane for Ca2þ binding, such that Ca2þ released
from the ER through one channel increases the open proba-
bility of neighboring channels (10,11). This positive feed-
back of Ca2þ on its own release is called Ca2þ-induced
Ca2þ release. It spreads local release to cell-wide Ca2þ

spikes. The timing of Ca2þ spikes is random. Spike se-
quences exhibit a linear cumulant relation between
mean and standard deviation of interspike intervals (ISIs)
(4,12–21). Ca2þ released during a spike is removed from
the cytosol either by sarcoendoplasmic reticulum Ca2þ

ATPases (SERCAs) into the ER or by plasma membrane
Ca2þ ATPases into extracellular space.
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Ca2þ spiking cumulative refractoriness
Many cell types exhibit an initial transient upon onset of
stimulation, during which the ISI gradually increases and
the spike amplitude gradually decreases until a stationary
state is reached (12,22–25). The transient indicates a process
that is slow compared with typical ISIs and cumulatively re-
duces the spike generation probability over multiple spike
times. We would like to learn by modeling what information
about this slow adaptive process and spike generation we
can gain from the spike time statistics.

Lock and Parker report that partial depletion of the ER
during the Ca2þ spike may contribute to the termination
of Ca2þ release from the ER and thus to termination of
spikes by a dependence of IP3R gating on lumenal Ca2þ

(26,27). Suzuki et al. have shown that in some cells the
Ca2þ concentration in the ER decreases cumulatively over
several spikes (28). This can also be viewed as a slow
decline in total Ca2þ in the cell and is likely the result of
a net loss of Ca2þ during a spike and a slow replenishment
by store-operated Ca2þ entry (SOCE) between spikes. We
follow the idea that this cumulative depletion constitutes a
slow process that may explain the observed transients in
the sequence of ISIs. The importance of membrane fluxes
controlling the total Ca2þ concentration for the regulation
of Ca2þ spikes has been demonstrated experimentally
(29–32) and by several deterministic models (33–35). These
fluxes represent a slow feedback of spiking to the spike gen-
eration probability. Slow feedbacks have been identified as
crucial determinants of ISI statistics and spike train informa-
tion content (4,36–40). Hence, we investigate here the rela-
tion between slow ER dynamics and first- and second-order
ISI statistics and draw conclusions about the corresponding
cell parameters.

We have recently proposed a two-component model that
focuses on Ca2þ spiking as a stochastic point process (41).
The first component describes the activity of clusters of
IP3R channels and the second component describes the dy-
namics of the cytosolic Ca2þ concentration. The cluster dy-
namics are given in terms of a cyclic Markov chain that
captures the stochastic release of Ca2þ from the ER by the
puffs. The cytosolic Ca2þ concentration is described in the
integrate-and-fire framework and driven by the puff current.
This model generates a renewal spike train without any
initial transient. In this study, we extend the integrate-and-
fire part of the model by a second variable that captures
the partial depletion and slow replenishment of the ER.
This system is mathematically very similar to an adaptive
integrate-and-fire model. It generates a nonrenewable spike
train and accounts for the experimentally observed tran-
sients in the ISI sequence.

Our paper is organized as follows. In the first section, we
present the extended model and recall the kinetics of IP3 re-
ceptor clusters. In the second section, we consider how this
additional slow adaptation-like variable affects the first- and
second-order stationary statistics of the ISIs. We derive
analytical expressions for the mean and coefficients of vari-
ation of the ISIs using a mean-adaptation approximation and
discuss the observed correlation between intervals. In the
following sections, we consider transient ISI statistics
such as the length of the transient and strength of the adap-
tation of the ISIs. To estimate the length of the transient,
we derive approximate expressions for the effective time-
scale on which the ER is depleted. We then ask how these
transient statistics relate to the stationary interval correla-
tions. Finally, we fit our model to reproduce experimentally
observed ISI sequences and test whether the observed
interval correlations and the observed relations between
transient and stationary statistics can be reproduced by our
model.
MODEL

Ca2D store depletion and replenishment: An
adaptive integrate-and-fire model

We extend our model from Part I (41) by a second variable
cer, associated with the Ca2þ concentration in the ER, that
takes into account the depletion of the intracellular Ca2þ

store upon firing of a Ca2þ spike. The extended IF part of
the model reads as follows:

_ci ¼ ��ci � c0i cer
�
=t þ jpuffðci; cerÞ;

_cer ¼ �ðcer � 1Þ=ter � εcer
X

idðt � tiÞ;
if ciðtÞ ¼ cT/ti ¼ t and ciðtÞ ¼ cR:

(1)

In this model, which is derived in the Appendix subthreshold
Ca2þ dynamics, ci ¼ ½Ca2þ� =Kact is the nondimensional
i

cytosolic Ca2þ concentration and cer ¼ �
Ca2þ

�
er
=
�
Ca2þ

�0
er

is the nondimensional ER Ca2þ concentration. Here, Kact

is the dissociation constant of the activating binding sites
of the IP3R and ½Ca2þ�0er is the steady-state Ca2þ concentra-
tion in the ER.Whenever a spike is fired at a spike time ti, the
ER is partially depleted (second term of cer-dynamics). In
our model, cerðtÞ is immediately decreased by the net loss
during a spike, εcerðt�i Þ (the minus indicates an instant right
before the spike time ti). The delta kick results from the fact
that a Ca2þ spike in the integrate-and-fire framework is only
a point event in time (the spike shape is not described). The
time right after a spike is denoted by tþi . Although we do not
describe spikes by our model, remarks about what we
consider to be a spike are necessary. A spike consists of a
fast rise of the Ca2þ concentration ci in the whole cell, fol-
lowed by a fast drop after the spike duration has passed.
Spikes entail a global absolute refractory period without
puffs in many cell types (42,43). Both spike and refractory
period are global processes involving all clusters and are
therefore less variable in duration than the spike generation
process that we model. We allow for puff current immedi-
ately after a spike, i.e., at tþi already. This implies that we
consider the end of the absolute refractory period to be the
Biophysical Journal 122, 4710–4729, December 19, 2023 4711
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end of the spike. In between spikes, the ER replenishes, and
cerðtÞ returns exponentially to its steady-state value 1 with
time constant ter (first term). To see a significant adaptation
effect of the variable cerðtÞ, its time constant ter should be
larger than the mean ISI.

The first line in Eq. 1 is similar to the model in our previ-
ous paper and describes the dynamics of the cytosolic Ca2þ

concentration ci with the additional fire-and-reset rule that
whenever ciðtÞ ¼ cT a spike is said to be fired at ti ¼ t
and ciðtÞ is immediately reset to cR. The first term on the
r.h.s. is a deterministic linear current with timescale t, which
determines how fast ciðtÞ returns to the concentration
c0i cerðtÞ. This concentration would correspond to the station-
ary concentration if cerðtÞ was fixed and no puffs would
occur. We set cR ¼ c0i cerðtþi Þ, since we assume no puffs
to occur in the absolute refractory period after the spike
and cerðtÞ to change slowly compared with ciðtÞ. This im-
plies that ciðtÞ is not always reset to the same value.

The second term of the ci-dynamics is the stochastic puff
current, which captures the release of Ca2þ from the ER into
the cytosol through randomly opening and closing clusters
of IP3Rs:

jpuffðci; cerÞ ¼ pcer
XK

k¼ 1
xkðtÞ: (2)

Here, p is a permeability-like parameter and xkðtÞ is the
number of open channels in the k-th cluster. Cluster states

are a Markov chain governed by a master equation

_p ¼ W$p (3)

with the transition rate matrix
and probability vector

p ¼ ð pðNÞ . pð1Þ pð0MÞ . pð01Þ ÞT: (5)

The state labels N.1 indicate open states and 0M.01
closed states (for more details see Part I, Fig. 2, and Eqs.
4–8 in (41)). In addition, the puff current depends linear on
the concentration difference between ER and cytosol; the
latter can be omitted because ½Ca2þ�er[ ½Ca2þ�i (44–46).

For the following discussion, it is important to distinguish
two firing regimes. In the mean-driven regime, the mean
puff current is strong enough to bring ci to the firing
threshold. This implies that, even in a proper deterministic
limit (K/N, p/0 with finite and nonvanishing pK ¼
const:), the model would still generate spikes. In contrast,
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in the fluctuation-driven (excitable) regime the mean puff
current would drive the cytosolic Ca2þ concentration to a
fixed point c�i < cT below the firing threshold. Only by a
random fluctuation in the puff current can the concentration
cross the threshold and a spike be elicited (no spiking in the
deterministic limit).

The transition between the two regimes occurs when the
fixed point c�i falls exactly on the firing threshold while the
ER is still completely filled. Hence, the bifurcation condi-
tion of the extended model, separating the mean- and fluctu-
ation-driven regimes, is the same as in the first part of this
paper (Eq. 35 in (41)):

pt ¼ cT � c0i
KmxðcTÞ

: (6)

RESULTS

We start with an illustration of the stochastic dynamics of
the model obtained from numerical simulations of Eqs. 1,
2, and 3. The response of the two concentrations ciðtÞ and
cerðtÞ to a constant IP3 stimulation applied at time t0¼ 0

are shown in Fig. 1 A. Before the stimulation (t < t0), the
concentrations rest at ci ¼ c0i and cer ¼ 1, all IP3R channels
are closed, the puff current is zero, and there are no spikes
generated in this state. Upon stimulation, the IP3R channels
are activated and ciðtÞ begins to rise toward the threshold
while cerðtÞ remains at 1. When the threshold is first reached,
a spike is fired at time t1, cerðtÞ is decreased by εcerðt�1 Þ, and
ciðtÞ is reset to cR ¼ c0i cerðtþi Þ. The difference between the
first spike time and the stimulation time defines the first in-
terval, T0 ¼ t1 � t0 (not an ISI).

After the reset, ciðtÞ rises toward the threshold again and
cerðtÞ is replenished slowly. During the transient intervals,
the replenishment of cerðtÞ between two spikes is not suffi-
cient to compensate for the depletion during a spike. This
leads to a cumulative decrease of cerðtÞ (Fig. 1 A, lower
panel) and, due to the resulting decrease of the puff current
and of the reset value, also to a cumulative refractoriness in
the sequence of ISIs fTig (blue circles in Fig. 1 B). The gray
circles in Fig. 1 B indicate the sequence of mean ISIs fCTiDg
obtained by averaging over many simulation trials. The
latter sequence can be well-fitted by an exponential function

Ti ¼ TN � ðTN � T0Þe� i=ntr (7)

(black line in Fig. 1 B). The number of transient intervals ntr
and the cumulative refractory period DT ¼ TN � T0 are

the fit parameters. Replenishment and depletion balance on
average after the transient, and the statistics of the ISIs no
longer depend on the absolute time t. All ISIs follow the
same probability density in this stationary state (blue histo-
gram in Fig. 1 C), which can be well described by an inverse
Gaussian (black line). Even in the stationary state, when in-
tervals are identically distributed, they are not independent.
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FIGURE 1 Cumulative refractoriness in a Ca2þ signaling model with

store depletion. (A) The cytosolic and ER Ca2þ concentrations and cerðtÞ
in response to a constant IP3 stimulation applied at t¼ 0. The dotted line

in (A) marks the firing threshold cT . (B) The transient of the sequence of

ISI fTig (blue circles) and sequence of mean ISI fCTiDg (gray circles).

The black line shows a fit TN � ðTN � T0Þexpð� i =ntrÞ to the sequence

of mean intervals from which the number of transient intervals ntr and cu-

mulative refractory period DT ¼ TN � T0 are determined. The lower and

upper dotted lines indicate the fit parameters T0 and TN, respectively. (C)

The stationary ISI density together with an inverse Gaussian distribution

with identical mean CTD and coefficient of variation CV of the ISI. (D)

The serial correlation coefficient rk , Eq. 23, as a function of the lag k. Pa-

rameters: t¼ 5 s, p¼ 0:015, ter ¼ 300 s, ε¼ 0:03. To see this figure in

color, go online.

Ca2þ spiking cumulative refractoriness
The expected value of a certain interval Tiþ1 depends on
cerðtþi Þ at the beginning of that interval. Specifically, the
smaller (larger) cerðtþi Þ the longer (shorter) Tiþ1 on average.
The value cerðtþi Þ in turn depends on the length of the previ-
ous interval Ti in such a way that the longer (shorter) Ti the
larger (smaller) cerðtþi Þ. As a result, the two intervals Ti and
Tiþ1 (as well as the intervals Ti and Tiþk) will in general be
anticorrelated, as illustrated by means of the serial correla-
tion coefficient (SCC) rk in Fig. 1 D.
Stationary interspike interval statistics

The two-component model introduced above is difficult to
treat analytically and numerically expensive. For this reason,
we aim at a simplified description of Eqs. 1, 2, and 3 in terms
of a Langevin equation, similar towhat has been done in Part I
of this paper for the renewal model. As mentioned above and
shown in the first part of this paper, for cer ¼ const: the sto-
chastic puff current jpuffðciÞ can be approximated by a
Gaussianwhite noisewith ci-dependentmeanmðciÞ and inten-
sityDðciÞ. This approximation relies on the rapid change of the
number of open channels in a cluster xkðtÞ (41). In otherwords,
we exploit that the correlation time of xkðtÞ is small compared
with any other timescale in the system. Our model can then be
approximated by the Langevin equation:
_ci ¼ ��ci � c0i cer
�
=t þ mðci; cerÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Dðci; cerÞ

p
xðtÞ

_cer ¼ �ðcer� 1Þ=ter � εcer
X

idðt � tiÞ;
if ciðtÞ ¼ cT/ti ¼ t and ciðtÞ ¼ cR:

(8)

Here, xðtÞ is a Gaussian white noise with correlation func-
tion CxðtÞxðt0ÞD ¼ dðt � t0Þ and we interpret the stochastic
differential in the sense of Stratonovich (47,48). The
mean mðci; cerÞ ¼ pcerKmxðciÞ and the noise intensity
Dðci; cerÞ ¼ ðpcerÞ2KDxðciÞ of the puff current depend on
ciðtÞ and on cerðtÞ. The mean mxðciÞ and noise intensity
DxðciÞ of a single cluster still depend solely on ciðtÞ through
the ci-dependence of the opening rate. Both mxðciÞ and
DxðciÞ are determined by algebraic equations and thus
analytically accessible (see Eqs. 22 and 26–28 in (41)).

The Langevin equations (Eq. 8) possesses a correspond-
ing Fokker-Planck equation that we state here for complete-
ness (for a detailed study of the two-dimensional FPE of IF
models with adaptation, see for instance (49,50)):

vtPðci; cer; tÞ¼ LPðci; cer; tÞ
þ JiðcT; cer = ð1 � εÞ; tÞdðci � cRÞ:

(9)

Here, the Fokker-Planck operator is given by

L ¼ � vci ½f ðci; cerÞþD0ðci; cerÞ
� vciDðci; cerÞ� � vcergðcerÞ:

(10)

The operator contains the two drift functions
f ðci; cerÞ¼ �ðci � c0i cerÞ=t þ mðci; cerÞ and gðcerÞ¼ �
ðcer� 1Þ=ter as well as the Stratonovich driftD0ðci;cerÞ, where
the prime denotes the derivative with respect to ci. The IF
model’s reset rule in Eq. 8 finds its counterpart in the source
term in Eq. 9, which is proportional to the probability current
in the ci-direction across the threshold:

JiðcT; cer; tÞ¼ �vciDðci; cerÞpðci; cer; tÞjci ¼ cT
: (11)

The factor 1=ð1 � εÞ occurring in Eq. 9 reflects that a tra-
jectory that crosses the threshold at ðcT ; cer =ð1 � εÞÞ is reset
to ðcR; cerÞ. In terms of the probability density, this corre-
sponds to a source term at ðcR; cerÞ proportional to the prob-
ability current in the ci-direction at ðcT ;cer =ð1 � εÞÞ. Finally,
Eq. 9 is completed by the absorbing boundary condition

Pðci ¼ cT; cer; tÞ¼ 0; (12)

the natural boundary condition
lim
ci/�N

Pðci; cer; tÞ¼ 0; (13)

and the two reflecting boundary conditions
Jerðci; cer ¼ 0;tÞ ¼ Jerðci; cer ¼ 1;tÞ¼ 0; (14)

where Jer is the probability current in the cer-direction. The
FPE does in principle allow to calculate statistics as the

firing rate rðtÞ by the probability current across the threshold
Biophysical Journal 122, 4710–4729, December 19, 2023 4713
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rðtÞ ¼
Z 1

0

dcer JiðcT ; cer; tÞ: (15)

However, the evaluation of this integral is challenging
because it requires the solution to Eq. 9, a two-dimensional
partial differential equation, which poses a severe problem
even numerically (for a discussion of a related problem in
the neuroscience context, see (50)).
Self-consistent firing rate

Instead of attempting to solve the full two-dimensional FPE,
we derive approximate expressions for the stationary firing
rate r0. To this end we assume a static Ca2þ concentration
in the ER, i.e., we replace cerðtÞ in Eq. 8 by its stationary
mean value limt/NCcerðtÞD ¼ Cc�erD. In this case, the corre-
sponding FPE is one-dimensional

vtPðci; tÞ¼ �vci ½f ðciÞþD0ðciÞ � vciDðciÞ�Pðci; tÞ
þrðtÞdðci � cRÞ; (16)

where in all drift and diffusion functions cer is replaced by
Cc� D (this is omitted for the ease of notation). Solving the
er

stationary one-dimensional FPE is a standard problem in
the theory of stochastic processes (51,52) and allows to infer
the stationary firing rate r0 (see Appendix in Part I):

r0
�
t; p; Cc�erD

� ¼
�Z cT

cR

dc1 e
� hðc1Þ

Z c1

�N

dc2
ehðc2Þ

Dðc2Þ
�� 1

(17)

with Z c
hðcÞ ¼
cR

dc0
f ðc0Þ þ D0ðc0Þ

Dðc0Þ : (18)

Solving Eq. 17 requires the knowledge of the stationary
mean value Cc�erD, which in turn also depends on the firing
rate. Thus, Eq. 17 is not sufficient to determine the firing
rate r0 and we need a second equation that we obtain from
a stationary ensemble average of the second line in Eq. 1:

0 ¼ � �Cc�erD� 1
�
= ter � εCc�er

X
i

dðt � tiÞD: (19)

This equation involves a conditional mean, Cc�er
P

idðt �
tiÞD ¼ Cc�er

		t ¼ t�i Dr0, i.e., the mean ER Ca2þ concentration
right before the spike multiplied by the firing rate. As shown
in the Appendix average of the ER Ca2þ concentration this
conditional mean can be approximately related to the un-
conditional mean by:

Cc�er
		t ¼ t�i DzCc�erD


ð1 � ε=2Þ: (20)

Combining all the relations above, we obtain the desired
second relation between the stationary mean value and the
firing rate
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r0
�
ter; ε; Cc

�
erD
� ¼ 1 � Cc�erDbεterCc�erD ; (21)
where bε ¼ ε=ð1 � ε=2Þ accounts for the biased sampling
problem (53). As illustrated in Fig. 2, the two equations
(Eqs. 17 and 21) permit the self-consistent calculation of
the firing rate by requiring that both equations are satisfied
simultaneously (54). Note that Eq. 17 is a monotonically
increasing function of CcerD—the fuller the ER, the higher
the firing rate—while Eq. 21 is a monotonically decreasing
function of CcerD—the higher the firing rate, the emptier the
ER—so that there is only one intersection point and the
firing rate is uniquely determined.

In Fig. 3, A1 and B1 we compare the mean ISI obtained
from stochastic simulations of the two-component model
(circles) and the Langevin model (solid lines) to the theoret-
ical prediction of the mean ISI (inverse firing rate)
CTD¼ 1 =r0ðCc�erDÞ calculated from Eqs. 17 and 21 (dashed
lines). First of all, we note that the Langevin approximation
provides a good description of the full model in both the
mean-driven (blue circles and lines) and excitable (green
circles and lines) firing regime for all parameters. Moreover,
we find excellent agreement between simulation results and
theory for all values of ter and for small values of ε (solid
and dashed lines are almost indistinguishable). The fact
that ε rather than ter is the limiting factor may be surprising
at first, since the self-consistent method relies on the
assumption that cerðtÞ changes slowly—a property that one
could intuitively ascribe to the parameter ter. However, in
the stationary state, the amplitude of the depletion, deter-
mined by the parameter ε, and the replenishment, deter-
mined by the parameter ter, must balance on average over
an ISI. Therefore, the parameter ε does not only specify
how strongly cerðtÞ is decreased when a spike is fired, but
also how much cerðtÞ increases again over an ISI. Therefore,
ε has to be small so that it can be assumed that cerðtÞ is con-
stant over an ISI.

The mean-adaptation approximation does in principle
also allow to calculate the variance CdT2D of the ISI:

CdT2D¼ 2

Z cT

�N

dx3 e
� hðx3Þ

�Z x3

�N

dx2
ehðx2Þ

Dðx2Þ
�2

�
Z cT

x3

dx1 e
� hðx1ÞQðx1 � cRÞ;

(22)
and thus also the CV CV ¼ CTD= CdT2D. However, the time
dependence of cerðtÞ is often crucial for the variability of the
ffiffiffiffiffiffiffiffiffiffiffip
ISI and cannot be neglected. As a result, the mean-adapta-
tion approximation captures the CV only in special cases
(see Fig. 3, A2 and B2).
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FIGURE 2 Self-consistent firing rate. (A and B) Illustrate the self-consis-

tent calculation of the firing rate in the mean-driven and excitable regime,

respectively. In each panel, the firing rate r0ðCcerDÞ is calculated according to
Eq. 17 (blue and green lines) and Eq. 21 (black lines). The intersection of

the curves determines the self-consistent firing rate r0ðCc�erDÞ and the station-
ary mean Cc�erD, both indicated by dotted lines. Parameters: (A) t¼ 5 s, p¼
0:015, ε¼ 0:03, ter ¼ 300 s; (B) t¼ 1 s, p¼ 0:06, ε¼ 0:03, ter ¼ 300 s.

To see this figure in color, go online.
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Coefficient of variation

A remarkable feature of Ca2þ signaling is the persistence of
the CVacross different cells of the same cell line stimulated
by a certain agonist, despite considerable cell-to-cell vari-
ability (4,12). This experimental finding was difficult to
reproduce with our previous nonadaptive model (cerðtÞ ¼
const:), where the ISI variability stems solely from the fluc-
tuation of the cytosolic Ca2þ concentration, that is caused
by the stochasticity of the puff current jpuffðci;cerÞ, resulting
from the stochastic opening and closing of clusters of IP3 re-
ceptor channels. As a result, the noise acting on the cytosolic
Ca2þ concentration was relatively weak and spiking is either
nearly deterministic in the mean-driven regime or highly
stochastic in the excitable regime. Introducing an adaptation
variable solves this problem to some extent because it intro-
duces a second source of ISI variability by varying the initial
conditions ciðtþi Þ and cerðtþi Þ, potentially increasing the CV,
but it also introduces a relative refractory period, potentially
decreasing the CV. Which of these effects dominates the ISI
statistics depends on the specific choice of parameters.

In Fig. 3, A2 and B2 we plot the CV as a function of
the parameters ter and ε, respectively. For small values of
ter and ε, the model behaves very similarly to the one
without adaptation. In this case, the CV is approximately
CVz0:25 for the specific parameters in the mean-driven
regime (blue circles) and CVz0:75 for the specific
parameters in the excitable regime (green circles). In the
mean-driven regime, we find that the CV depends nonmono-
tonically on the two parameters. As ter is increased, the CV
decreases very slightly at first, before the CV increases as ter
is increased further. Increasing the parameter ε has the oppo-
site effect, the CV first increases very slightly before
decreasing as ε is increased further. In the excitable regime,
we observe a general decrease of the CV with increasing
strength of the adaptation, regardless of whether this is
achieved by varying ter or ε. In any case, the introduction
of an additional adaptive variable results in a less-pro-
nounced difference in the ISI variability between the
mean-driven and excitable regimes compared with the
nonadaptive model.

To explain why this is the case, we show in Fig. 4, A and B
the mean CTD, CV CV, and the relative change of the CV
compared with the nonadaptive case dCV ¼ ðCV � C�

VÞ=
C�
V as functions of ter and ε; here C

�
V denotes the CV without

adaptation (ε¼ 0) but with the remaining parameters
unchanged.

In the mean-driven regime for a significant depletion dur-
ing a single spike (ε> 0:1), the CV decreases compared with
the nonadaptive case irrespective of the choice of ter (see
Fig. 4 A3). This is so because larger values of ε result in a
strong inhibition right after a spike, causing an effective in-
crease in the refractory period and thus a more regular spike
train (55). In Fig. 4 C we compare the ISI density pISIðtÞ and
the spike train autocorrelation function CzðtÞ ¼ Czðt0 þtÞ
zðt0ÞD � Czðt0ÞD2 between the nonadaptive (gray histogram
and line) and the adaptive model (blue histogram and line)
with adaptation parameters as highlighted by the star in
Fig. 4 A. Because the depletion of the ER strongly affects
the mean ISI, we normalize the time axis by CTD in the adap-
tive and nonadaptive cases. Consistent with our reasoning,
the ISI density and the correlation function are more
strongly peaked for the adaptive model.

When the depletion during a single spike is small (ε< 0:1)
and the replenishment is slow, the CV can even be increased
in the mean-driven regime (e.g., for parameters highlighted
by the cross in Fig. 4 A3). The corresponding ISI density and
correlation function are broadened (see Fig. 4 D). Here,
cerðtÞ varies only weakly around its mean value Cc�erD.
Because this mean value is smaller than the initial value
cerðtÞ¼ 1 the system is effectively poised closer to the bifur-
cation than without adaptation, which accounts for the in-
crease of the CV in this parameter regime.

Finally, in the excitable regime we observe a general
reduction of the CV for all combinations of ter and ε,
most likely due to an increase in the effective refractory
period, as mentioned above. The additional refractory
period will always reduce the CV compared with the
nonadaptive case, where spiking is almost Poissonian. The
increase in the temporal precision is illustrated in Fig. 4 E
by means of the ISI density and correlation function of the
adaptive model. Both statistics show characteristics of a
more regular spiking process, often associated with the
mean-driven regime but here mediated by the adaptation
variable.
Second-order stationary statistics

So far, we have mainly considered the mean and CV, two
first-order stationary ISI statistics. When the intervals are
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FIGURE 3 Stationary ISI statistics. (A and B) Stationary statistics as

functions of ter and ε, respectively. (A1 and B1) The mean ISI CTD. (A2

and B2) The coefficient of variation CV . (A3 and B3) The serial correlation

coefficient r1. Blue/green circles and solid lines indicate statistics calcu-

lated from stochastic simulations of the two-component model (Eq. 1)

and the Langevin approximation (Eq. 8), respectively. Blue/green dashed

lines indicate theoretical predictions according to Eqs. 17, 21, and 22. Pa-

rameters: (mean driven) t¼ 5 s, p¼ 0:015; (excitable) t¼ 1 s, p¼ 0:06;

(A) ε¼ 0:03; (B) ter ¼ 300 s. To see this figure in color, go online.
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statistically independent and identically distributed, i.e.,
when we are dealing with a renewal point process, the ISI
sequence is completely characterized by the probability
density (56,57). However, a common feature of models
with spike-frequency adaptation is that the ISIs are not sta-
tistically independent, but correlated (58–62)—the adapta-
tion variable, here cerðtÞ, keeps a memory beyond the
single ISI.

The ISIs in our model are indeed correlated. The full pic-
ture of the interdependence between subsequent intervals is
given by the joint probability density pðTiþ1; TiÞ shown in
Fig. 5 A. However, the anticorrelation between adjacent in-
tervals is more clearly seen by the conditional mean
CTiþ1jTiD (red line). Specifically, the longer (shorter) the in-
terval Ti is, the shorter (longer) is the subsequent interval
Tiþ1 on average.

As we have briefly mentioned in the introduction, interval
correlations over several lags k can be quantified by the SCC

rk ¼ CdTiþkdTiD
CdT2

i D
(23)
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where dTi ¼ Ti � CTD is the deviation of the i-th ISI Ti
from the mean. If the SCC is positive, (rk> 0) intervals
are said to be (positively) correlated. This is the case if,
on average, two intervals Ti, Tiþk deviate similarly from
the mean, i.e., if both intervals are longer (or shorter) than
the mean, so that the sign of the respective deviations dTi,
dTiþk agree. On the contrary, if the SCC is negative
(rk< 0) intervals are said to be anticorrelated and a long in-
terval is usually followed by a short interval (or vice versa).
Finally, if the SCC vanishes (rk ¼ 0) the intervals are uncor-
related; for a discussion of the different cases, see (63). The
first SCC r1 as a function of ter and ε is shown in Fig. 3, A3

and B3, respectively. We note that this coefficient is always
negative, as expected in the presence of a spike-triggered
adaptation (58–61,64,65). Furthermore, r1 decreases mono-
tonically as a function of ter and exhibits a local minimum
as a function of ε. To understand the latter feature, we point
out that correlations must be absent in both limit cases ε¼ 0

(no adaptation) and ε¼ 1 (complete depletion) and we can
expect to find a maximal strength of correlation for interme-
diate values of ε. The fact that intervals are uncorrelated for
ε¼ 1 is because in this case the ER is always completely
depleted, regardless of the length of the intervals. Going
beyond the first SCC, in the inset of Fig. 5 A we show the
sequence of correlation coefficients rk over the lag k (blue
circles) and observe an anticorrelation that decays monoton-
ically over a few lags according to

rkzr1e
�ðk� 1Þ=ncorr (24)
where ncorr is the number of correlated intervals. The fact
that for our model the SCC monotonically approaches

0 as k increases, can be well understood in the mean-driven
regime. Schwalger and Lindner (61) have shown that in this
regime the pattern of interval correlations is related to the
mean drift f ðci; cerÞ at the reset point: for a positive drift
the correlations do not change sign with the lag k. For our
model, the drift at the reset point is given by the mean
puff current f ðcR; cerÞ ¼ mðcR; cerÞ> 0, which is always
positive.

The monotonic decay of rk has consequences for the first
SCC r1 because the sum over all SCCs is bound according
to (see below for an explanation)XN

k¼ 1
rkR � 1=2: (25)

This implies r1> � 1=2 when all SCCs are negative.
Indeed in Fig. 3, A3 and B3 we do not observe an SCC r1
smaller than � 1=2, neither in the mean-driven nor in the
excitable regime. Combining Eqs. 24 and 25, evaluating
the sum and rearranging terms, allows to derive an upper
limit for the number of correlated intervals:

ncorrR� 1

lnð1þ 2r1Þ
; (26)
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FIGURE 4 Coefficient of variation in the presence of an adaptation variable. (A and B) The mean ISI CTD, CV CV, and the relative change of the CV

compared with the nonadaptive case dCV ¼ ðCV � C�
VÞ=C�

V . C
�
V denotes the CVof the nonadaptive model with similar parameters but ε¼ 0. Increasing

ter or ε leads to a prolongation of the mean ISI. The effect on the CV depends on the choice of parameters in the mean-driven regime (A2 and A3). It is

decreased for ter¼ 500 s and ε¼ 0:2 (+) and increased for t¼ 500 s and ε¼ 0:02 (� ). The CV is generally decreased in the excitable regime (B2 and

B3) as illustrated for t¼ 500 s and ε¼ 0:1 ( ). (C–E) The ISI densities pISIðbtÞ and spike train correlation CzðbtÞ for the nonadaptive (gray histograms

and lines) and the adaptive model (blue/green histograms and lines) as functions of the rescaled timebt ¼ t=CTD corresponding to the three cases. Parameters:

(mean-driven) t¼ 5 s, p¼ 0:015; (excitable) t¼ 1 s, p¼ 0:06; and (C) ter ¼ 500 s, ε¼ 0:2; (D) ter ¼ 500 s, ε¼ 0:02; (E) ter ¼ 500 s, ε¼ 0:1. To see this

figure in color, go online.
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given � 1=2%r1% 0. This implies that, if adjacent inter-
vals are strongly anticorrelated, the number of correlated in-
tervals ncorr is small, and leads to the somewhat
counterintuitive conclusion that, because jr1j increases
with ter (Fig. 3 A3), the number of correlated intervals
ncorr decreases asymptotically as ter/N (not shown).

While the SCC is an interesting statistic on its own, it is
also important because it shapes spectral measures and
therefore has consequences for information transmission
and signal detection (63,64,66–70). Specifically, the low-
frequency limit of the spike train power spectrum is given
by (56):

lim
f/0

Sðf Þ ¼ r0C
2
V

 
1þ 2

XN

k¼ 1
rk

!
(27)
with Sðf Þ ¼ limT/NCj~zðf Þj D=T and the Fourier transform
of the spike train ~zðf Þ ¼ R T

dtzðtÞ exp ð2piftÞ. The factor
2

0

in parentheses leads to a reduction if the sum over rk is nega-
tive. Because the power spectrum has to be positive, we can
conclude fromEq. 27 that Eq. 25must hold. A reduced power
at low frequencies due to negative interval correlations can
thus improve the signal/noise ratio in the presence of a slow
signal (67,68). This reduction is demonstrated in Fig. 5 B
where we compare the power spectrum Sðf Þ of the original
spike train (blue) to the power spectrum of the same spike
train with all ISIs randomly shuffled (orange). Shuffling the
sequence of ISIs provides a simple method to decorrelate in-
tervals without changing first-order statistics (see inset Fig. 5
A). As a consequence, the power spectrum of the shuffled
spike train has larger power at low frequencies compared
with the original spike train (see inset Fig. 5 B).
Timescale of the transient: Ca2þ depletion

The process that gives rise to the time dependence of the
spiking statistics is the cumulative depletion of the ER
Ca2þ concentration over several spikes. It is therefore sug-
gestive to consider the timescale on which the variable
cerðtÞ approaches its stationary value to estimate the length
of the transient. This effective timescale teff at which the
ER is depleted is not to be confused with the timescale ter
at which the ER is replenished in the absence of spikes.
Biophysical Journal 122, 4710–4729, December 19, 2023 4717
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FIGURE 5 Second-order stationary ISI statistics. (A) The joint probability

density function pðTiþ1;TiÞ together with the conditional mean CTiþ1jTiD (red
line). They demonstrate an anticorrelation between adjacent intervals as

confirmed by r1< 0 in the inset. The inset shows the serial correlation coeffi-

cient (SCC) rk for the ordered ISI sequence (blue circles) and for the shuffled

ISI sequence (yellow circles). (B) The power spectrum Sðf Þ again for the or-

dered (blue line) and shuffled ISI sequence (yellow line).The inset in (B) shows

a zoom-in on the low-frequency region, where the spectrum of the ordered

sequence has reduced power due to negative interval correlations (Eq. 27). Pa-

rameters as in Fig. 1. To see this figure in color, go online.
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We apply a constant IP3 stimulation for a certain time (top
black line) to the model in Fig. 6. That evokes Ca2þ spikes.
The sequence of spike times is indicated by vertical black
lines. The corresponding time series of the variable cerðtÞ
is shown in the lower panel by a black line. Apparently,
the reduction of cerðtÞ with each spike significantly
lengthens the ISIs.

We estimate teff on the basis of the time-dependent
ensemble average CcerðtÞD obtained from a large number
Nsim of numerical simulations. All of them started at
cer;nð0Þ¼ 1, ci;nð0Þ ¼ cR and with all clusters in the state
01. We estimate CcerðtÞD from the individual time courses
cer;nðtÞ by CcerðtÞDz

PNsim

n¼ 1cer;nðtÞ=Nsim. Similarly, the instan-
taneous firing rate rðtÞ can be estimated by the fraction of
realizations ci;nðtÞ that cross the firing threshold cT in a small
time bin ½t; tþDt� divided by Dt. The firing rate rðtÞ and the
average CcerðtÞD are shown in Fig. 6 by gray lines. While the
rate rðtÞ is subject to a significant ringing, the time-depen-
dent adaptation variable CcerðtÞD is a rather smooth function
of time.

Todefine the effective timescale teff ,weassume that the time
course of CcerðtÞD can be fit by a single exponential function

Cc�erDþ
�
1 � Cc�erD

�
e� t=teff ; (28)
from which we obtain teff as a fit parameter. This estimate of
teff is shown in Fig. 7 (blue circles) versus ter and ε, depen-

dencies which are discussed below. Here, we just point out
that generally, teff differs significantly from ter.

To obtain an analytical estimate of the effective timescale,
we consider the dynamics of the time-dependent mean
CcerðtÞD. To this end, we take the ensemble average of the sec-
ond line in Eq. 1, which leads to the approximate relation:

dCcerD
dt

z�ðCcerD� 1Þ = ter � bεCcerDr0ðCcerDÞ: (29)
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Here, we have made two approximations. First, we have
assumed that the relation between the unconditional and
conditional mean given by Eq. 20 does hold for all times.
Second, we have substituted the time-dependent firing rate
by the stationary rate taken at the instantaneous value of
CcerðtÞD, i.e., we use rðtÞzr0ðCcerðtÞDÞ. Despite these simpli-
fications, Eq. 29 cannot be solved analytically because the
functional dependence of the stationary firing rate on CcerD,
although in principle known from Eq. 17, is complicated.
To find an approximate solution for CcerðtÞD, we expand the
firing rate around Cc�erD in first order, r0ðxÞz
r0ðx�Þ þ r00ðx�Þðx � x�Þ. Since the expressions derived
below become somewhat lengthy, we introduce here the
abbreviation xðtÞ ¼ CcerðtÞD (and x� ¼ Cc�erD). By expanding
the rate up to the first order in xðtÞ, Eq. 29 becomes a
quadratic differential equation:

_x¼ �ðx� 1Þ
 ter � bεx�r0ðx�Þþ r00ðx�Þðx � x�Þ� (30)

that is solved by:
xðtÞ ¼ x�
ðx0 þ x�Þ þ ðx0 � x�Þe� t=ttheo

ðx0 þ x�Þ � ðx0 � x�Þe� t=ttheo
(31)

with the initial condition x0¼ 1 and timescale
ttheo ¼ terffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ bεter½r0ðx�Þ � r00ðx�Þx��Þ2þ4bεterr00ðx�Þq :

(32)

We note that, strictly speaking, one cannot expect that the
two timescales ttheo and teff coincide because the functions
used to calculate and measure them are different. However,
Eq. 31 can be expressed in terms of Dx ¼ x0 � x� and—
similar to the firing rate—expanded up to the first order in
Dx to obtain a single exponential again

xðtÞz x� þ ðx0 � x�Þe� t=ttheo : (33)

In other words if the difference 1 � Cc�erD is small, i.e., if the
cumulative depletion of the ER is not too strong, we can

approximate teff by ttheo.

In Fig. 7 we compare the effective timescale teff with ttheo
as functions of ter and ε. We find good agreement over a
broad range of parameters, except for small values of ter
(gray area in Fig. 7 A). This is not so much a failure of
the theory as it is a failure of the estimation of teff from
the simulation data. When the effective timescale becomes
as short as the first ISI, synchronization-induced ringing ef-
fects in the firing rate become also noticeable in the
response of CcerðtÞD and lead to the observed deviations.
Regarding the shown functional dependence it is remarkable
that the effective timescale drops monotonically with ε and
that this dependence is much stronger than the one on ter.

Finally, we note that in Fig. 7 we have compared teff with
ttheo when the model operates in the mean-driven regime.
Here, we find that ttheo provides a good approximation to



FIGURE 6 Timescales of ER depletion and replenishment. Response of

the firing rate rðtÞ and ER Ca2þ concentration cerðtÞ to a constant IP3 stim-

ulation presented over a period of time. The IP3 stimulation is indicated by

the upper black step function—turned on at t¼ 0 s and turned off at t¼
1000 s. Spike times of a single realization and the corresponding time se-

ries cerðtÞ are indicated by black lines. The firing rate rðtÞ and ensemble

average CcerðtÞD are shown by gray lines. The effective timescale teff at

which CcerðtÞD approaches its stationary value in response to the onset of

the stimulus does not match the timescale ter at which CcerðtÞD approaches
its stationary value in the absence of the stimulus. Dotted red lines show

the theory where CcerðtÞD is calculated according to Eq. 31 and r0ðCcerðtÞDÞ
according to Eq. 17. Parameters as in Fig. 1. To see this figure in color,

go online.
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FIGURE 7 Effective timescale of ER depletion. (A and B) The effective

timescale teff measured from numerical simulations (blue circles)

compared with ter (gray dotted line) the first-order estimate ttheo (dashed

red line). The gray area in (A) indicates the region where the mean initial

ISI CT0D falls below the timescale ter. In this case, the measured timescale

reflects the mean ISI rather than the actual effective timescale. Parameters

as in Fig. 1. To see this figure in color, go online.
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the effective timescale. This has to do with the fact that, in
the mean-driven regime r0ðCcerDÞ can be well approximated
by a linear function (cf. Fig. 2 A). This is not the case in the
excitable regime (cf. Fig. 2 B), so that there the estimate be-
comes worse (not shown).
Transient interspike interval statistic

The previously developed methods for the estimation of the
effective timescale teff are based on the firing rate rðtÞ ob-
tained from a large ensemble. This is not always experimen-
tally feasible. We thus return to a description of the ISI, this
time during the transient. Already in the first section, we
have mentioned that the sequence of mean ISIs fCTiDg can
bewell fit by a single exponential functionEq. 7.Here,wepro-
vide an estimate for the two parameters, the cumulative refrac-
tory periodDT and the number of transient intervals ntr, based
on the stationary firing rate and the effective timescale of ER
depletion.

The calculation of the first ISI T0 ¼ CT0D and the station-
ary ISI TN ¼ CTD is straightforward. Initially, the ER is
completely filled so that we can calculate the initial mean
interval using Eq. 17 with CcerD¼ 1:

T0 ¼ 1 = r0ðCcerD¼ 1Þ: (34)

The stationary interval TN is given by the inverse of the
stationary rate (Eqs. 17 and 21):

TN ¼ 1 = r0
�
CcerD ¼ Cc�erD

�
: (35)
In Fig. 8, A1 and B1 we compare the theoretical prediction
for DT ¼ TN � T0 according to Eqs. 34 and 35 (blue
and green lines) to the cumulative refractory period obtained
by fitting the sequence of mean intervals fCTiDg by Eq. 7
(blue and green circles for mean-driven and excitable
regime, respectively). We find good agreement between
simulation results and theory over a broad range of param-
eter values except for large ε (this deviation was explained
in the context of the stationary mean interval). The cumula-
tive refractory period increases both with ter and ε, reflect-
ing the increase of the stationary interval (T0 is independent
of ter and ε).

We use the approximation of the effective timescale
teffzttheo derived in the previous section to estimate the
number of transient intervals ntr

ntrzteff


T0: (36)
This ratio indicates how many nonadaptive intervals T0
the transient contains, providing an upper bound on ntr
because CT0D% CTiD. In Fig. 8, A2 and B2 we show the
number of transient intervals ntr obtained from the afore-
mentioned fit procedure (blue and green circles) and
compare it with the estimate Eq. 36 (blue and green lines).
We find good agreement if the model operates in the mean-
driven regime (blue circles) but some disagreement in the
excitable regime (green circles). The deviations in the excit-
able case are not too surprising because the approximation
of teffzttheo is based on the linearization of the stationary
firing rate r0ðCcerDÞ, which is convincing in the mean-driven
but not in the excitable regime (see Fig. 2). Note that the
number of transient intervals increases only moderately
with ter. For the chosen parameters, even for large values
of the timescales terz103, only a relatively small number
of transient intervals ntrz3 is observed. Somewhat
Biophysical Journal 122, 4710–4729, December 19, 2023 4719
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FIGURE 8 Transient ISI statistics. (A and B) Transient statistics as func-

tions of ter and ε, respectively. (A1 and B1) The cumulative refractory period

DT. (A2 and B2) The number of transient intervals ntr. Blue and green circles
indicate statistics calculated from stochastic simulations of the two-compo-

nent model (Eq. 1). Blue and green lines indicate theoretical predictions ac-

cording to Eqs. 34, 35, and 36. Parameters: (mean-driven) t¼ 5 s, p¼
0:015; (excitable) t¼ 1 s, p¼ 0:06; (A) ε¼ 0:03; (B) ter ¼ 300 s. To

see this figure in color, go online.
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surprisingly, larger numbers of transient intervals can be
realized when the parameter ε is decreased.

We also examine how the transient statistics are con-
nected to the SCC of the stationary intervals. The relations
between the SCC r1 on the one hand and the cumulative re-
fractory period DT or the number of transient intervals ntr on
the other hand are simple if varied through ter: the more pro-
nounced the transient the stronger the stationary ISI correla-
tions (see Fig. 9, A1 and A2). The relations become more
complicated if ε is varied (see Fig. 9, B1 and B2) because
the SCC exhibits a minimum versus ε (cf. Fig. 3 B3). Conse-
quently, r1 displays a minimum versus DT and ntr, and we
can subdivide the r1 curve into a small ε region (gray
area in Fig. 9, B1 and B2) and a large ε region (white area
in the same panels). Specifically, the gray area in Fig. 9
B2 illustrates that for small ε an increase in the number of
transient intervals comes along with diminished interval
correlations r1. Last but not least, another feature for small
ε is that interval correlations increase with growing cumula-
tive refractory period DT irrespective of whether ε or ter are
varied (see Fig. 9, A1 and B1). We will return to these obser-
vations in the next section.

Finally, we ask what conclusions can be drawn about the
adaptation parameters when the statistics of the transient are
known. In principle, this also depends on the two model pa-
rameters t and p, which determine whether the model is
mean driven or excitable, but we find that the results are
qualitatively similar in the two firing regimes. Generally,
long transients (large ntr) coincide with a small net loss of
Ca2þ (small ε) and a slow replenishment (large ter). Strong
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adaptation of the ISI is most plausibly realized by a large net
loss unless replenishment is assumed to be extremely slow.
We observe that the SCC r1 is maximized when DT is long
except for very short transients. The SCC depends nonmo-
notonically on ntr. This has already been argued above but
is shown in Fig. 10, A3 and B3 to be true over a wide range
of transient statistics and in both firing regimes.
Interspike interval statistics of stimulated HEK
cells

In this section, we study to which extent our model is able to
reproduce experimental sequences of ISIs observed in HEK
cells subject to the onset of a constant stimulation as
described in (4,12). As in the first part of this paper we select
from the available data only the ISI sequences that become
stationary according to visual inspection (29/36 sequences).
In addition, we require that spikes can be well distinguished
also during the transient (24/29 sequences). For the remain-
ing 24 sequences, in a first step, four experimental output
statistics are determined: the first interval T0, the number
of transient intervals ntr, the stationary interval TN, and
the stationary coefficient of variation CV . To determine the
output statistics we fit the experimental ISI sequence fTig
by the exponential function Eq. 7 and obtain T0, ntr, and
TN as fit parameters. We use the curve_fit function of the
SciPy module (71) with the additional condition that all
fitting parameters are positive. It is important to note that
we previously used Eq. 7 to fit sequences of mean intervals
fCTiDg, whereas now we fit single realizations of experi-
mental sequences of intervals fTig. Next, the first 2ntr
(rounded up) intervals are truncated from the sequence of
ISIs, and the remaining intervals are used to calculate the
fourth parameter, the coefficient of variation of the station-
ary ISI, CV . In a second step, we use a minimization
algorithm to determine the four model parameters t, p,
ter, and ε such that the model reproduces the four output sta-
tistics within a certain tolerance (see Appendix fit procedure
for stimulated HEK cells).

Two sequences of ISIs (red circles) and the corresponding
fits (black line) are shown in Fig. 11, A and B. The gray area
indicates the intervals that are associated with the transient
and that we truncate to calculate the CV. It should be noted
that the sequences are subject to considerable cell-to-cell
variability. For example, the sequence in Fig. 11 A has a
small number of transient intervals ntr but a large cumulative
refractory period DT, whereas the opposite is true for the
sequence in Fig. 11 B. The full variability of the fit param-
eters becomes apparent in the histograms of ntr and DT
shown in Fig. 11, C and D. Here, the solid and dotted black

lines indicate mean mðyÞ ¼ Pn
i¼ 1yi=n and standard devia-

tion sðyÞ ¼ ½Pn
i¼ 1ðyi � mðyÞÞ2=ðn� 1Þ�1=2, respectively

(y is a dummy variable). We find that both the number of
transient intervals ntr (mðntrÞ¼ 3:5, sðntrÞ¼ 1:9) and the
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FIGURE 9 Stationary over transient ISI statistics. (A1 and A2) The SCC

r1 as a function of the cumulative refractory period DT and the number of

transient intervals ntr when the parameter ter is varied. In both cases, inter-

val correlations depend monotonically on both ntr and DT. (B1 and B2) r1 as

a function of DT and ntr when ε is varied. Here, r1 is a nonmonotonic func-

tion of ntr and DT due to the nonmonotonic dependence of the transient sta-

tistics on ε. The gray area indicates small values of ε< 0:1. Parameters: t¼
5 s, p¼ 0:015, and (A) ε¼ 0:03, (B) ter ¼ 300 s. To see this figure in color,

go online.
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cumulative refractory period DT (mðDTÞ¼ 200 s, sðDTÞ¼
80 s) vary significantly across different HEK cells.
Our fit procedure yields for every combination of output

statistics a set ofmodel parameters t, p, ter, and ε. The param-
eters t and p determine whether the model operates in the
mean-driven or excitable regime. It turns out that to repro-
duce the output statistics of stimulated HEK cells, our model
is, for all data sets, poised in themean-driven regime. Further-
more, we show in more detail the statistics of the extracted
model parameters ter and ε in Fig. 11,E andF that also exhibit
a strong variability.Regarding the averagevalueswe note that
the mean timescale obtained from the fit procedure
mðterÞ¼ 800 s is rather long while the mean value of the
depletion amplitude mðεÞ¼ 0:07 is small.

For each set of model parameters, we carry out long
simulations and calculate the SCC r1 as a function of (the
likewise measured) DT (Fig. 12 A) and ntr (Fig. 12 B); we
recall that the correlation coefficient of the experimental
data was not part of our fitting routine. Furthermore, we
note that the variability of r1 does not stem from a simula-
tion error but reflects the variability of the model parame-
ters. According to our discussion in the previous section,
for small values of ε (as determined in our fit) we expect
to find a stronger interval correlation r1 for a larger cumula-
tive refractory period DT—a trend confirmed by the (red)
regression line. The observed dependence of r1 on ntr indi-
cates that the latter mainly varies due to changes in the
depletion amplitude ε but not so much due to variations in
ter. This is consistent with our observation in Fig. 9, A2
and B2, i.e., that, in the relevant parameter regime, longer
transients typically concur with weaker interval correlations
in the stationary state.

How do the correlation coefficients simulated in our
model at the parameter sets relate to r1 obtained from the
experimental data directly? First of all, the experimental
data are much more limited in extent (17 intervals on
average) than our simulation data (at least 10,000 intervals
at each parameter set) and therefore the experimental values
of r1 have a large numerical error (see large error bars in
Fig. 12, C and D and (56) for an extensive discussion on
sampling errors). Secondly, r1 from the data is in a sizable
fraction of cases positive, a feature that cannot be explained
in the framework of our model. Similar between model and
experimental data are the general trends of the relations
between the SCC r1 and DT (negative correlation) and be-
tween the SCC r1 and ntr (positive correlation), i.e., we
have similar regression lines in Fig. 12, A and C and in
Fig. 12, B and D. Note that interval correlations have
been shown to vanish when averaged over multiple cells
of the same type (12,38). This result is consistent with the
correlation coefficients from experiments presented here,
which also vanish when averaged over all cells Cr1D¼ �
0:0150:06. Only when the SCCs are plotted against the
correct parameters does a trend emerge.

To explain the observed positive ISI correlations, we
could think of a weak nonstationarity that can cause subse-
quences of intervals to deviate similarly from the mean
interval. Indeed, for our data we calculated the SCC over
the last n� 2ntr intervals, which were assumed to be station-
ary. However, as shown in Fig. 11, A and B, there are still
systematic deviations from the stationary mean value after
the first 2ntr intervals (difference between the black line
and the upper dotted line). This trend is weak but may
play a role if the variance of the intervals is small. From a
biophysical point of view, it could also be that there are
other slow feedback processes in the generation of Ca2þ

spikes that we have not included in our model (Ca2þ cur-
rents between cytosol and mitochondria might be a candi-
date for such a process). When we compare the model and
simulation data in a single plot (Fig. 12, E and F) we observe
a striking bimodality of the experimental SCC: the SCCs
fall into two categories, one for which the SCC is negative
and our model reproduces it well, and one for which the
SCC is positive, which cannot be explained by our model.
This could indicate that, for some cells, the depletion of
the ER is indeed the dominating process that determines
the interval correlations, while for other cells other pro-
cesses that we have not accounted for are more relevant.
SUMMARY AND DISCUSSION

We added a slow variable, i.e., the lumenal Ca2þ concentra-
tion, to our description of Ca2þ spike generation by inte-
grate-and-fire type models in this study. Initially, at the
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FIGURE 10 Summary of the behavior of the slow store Ca2þ dynamics. (A and B) The relations between the system parameters ε varied from 10�3 to 1 and

ter varied from 0 s to 1000 s and the behavioral characteristics ntr, DT, and r1 in the mean-driven (A) and excitable (B) regime. White regions in the plots

show values of (ntr, DT) pairs which cannot be realized with ter% 1000 s. Increasing ter beyond 1000 s has little effect on the boundaries of these regions.

Long transients (large ntr) often indicate a small net loss (small ε) and slow replenishment (large ter). Large cumulative refractory periods DT can be realized

by a large net loss or slow replenishment. Interval correlation coefficients r1 are maximized for an intermediate number of transient intervals and intermediate

cumulative refractory periods. To see this figure in color, go online.
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onset of spiking, the amount of Ca2þ released during a spike
is not completely replenished in between spikes. The ER is
depleted partially over multiple spikes and the ISI is length-
ened until the amount of Ca2þ lost during spiking and the
replenishment between spikes balance each other. This
phenomenon is known as spike-frequency adaptation in
the theory of neural spike generation. While the importance
of ER or total cell Ca2þ has been extensively studied both
experimentally (29–32) and theoretically (33–35), to the
best of our knowledge no stochastic model has addressed
the implications of the slow decline of ER Ca2þ concentra-
tion in terms of transient and stationary spiking statistics.
We have filled this gap.

The duration of the transient toward the stationary state
can be expressed either by the effective time teff (defined
by Eq. 28) or by the number of transient ISIs ntr (defined
by Eq. 7). The longer it takes to replenish the ER, the longer
is the transient (Figs. 7 and 8). Remarkably the duration of
the initial transient is always shorter than the timescale at
which the ER is replenished by SOCE teff¸ ter. The larger
the fraction of ER content lost during a spike ε, the larger
is the adaptation of the ISI DT, and the shorter is the tran-
sient (Figs. 7 and 8). If replenishment is slow, long transients
with little adaptation arise from small fractions of ER con-
tent lost during a spike.

The partial depletion of the ER entails negative correla-
tion between subsequent ISIs. If an ISI is very long,
SOCE refills the ER well. The following spike will release
4722 Biophysical Journal 122, 4710–4729, December 19, 2023
the fraction ε of ER content, but since the ER is well filled
before the spike, the remaining content after the spike is still
high and the spike generation probability is high. Thus, this
ISI is likely to be shorter than the previous one. The effect of
an ISI on its successor is the strongest if the adaptation DT is
large and the number of transient ISIs ntr is small (Fig. 12).
This is the case if ε > 0.1 holds, i.e., if the ER is substan-
tially depleted during a single spike.

Several studies suggested that the stationary coefficient of
variation CV of the ISI sequence is set by the timescale of
recovery from the negative feedback terminating spikes,
but is robust against changes in other cellular parameters.
Since the type of negative feedback is cell-type and agonist
specific, so is the CV (4,37,39,40,72,73). Here, this time-
scale is ter. CV values observed in different cell types range
from 0.17 for hepatocytes stimulated with vasopressin to
0.94 for astrocytes (4,37,39,40,72,73). These CVs are
compatible with our model when operating in the excitable
regime. Our study adds a novel aspect: the relative ampli-
tude of the negative feedback during a single spike, deter-
mined by ε, also affects the CV. This finding is in line
with the above statements, since it is also a property of
the type of feedback and thus cell-type specific.

Finally, we have fit our model to experimentally observed
ISI sequences and used the obtained parameter sets to test
whether the observed interval correlations and the observed
relations between transient and stationary statistics are re-
produced by our model. We note that, to reproduce the
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FIGURE 11 Transient ISIs of stimulated HEK cells. (A and B) An exem-

plary sequence of ISIs fTig (red circles) with small (large) number of tran-

sient intervals ntr and large (small) cumulative refractory time DT. The

sequence is fit by TN � ðTN � T0Þexpð� i =ntrÞ (black line) from which

ntr and DT are determined as fit parameters. (C and D) The histograms of

ntr (with mðntrÞ¼ 3:5 and sðntrÞ¼ 1:9) and DT (with mðDTÞ¼ 200 s and

sðDTÞ¼ 80 s) over all cells that have been analyzed. Vertical solid black

lines indicate the mean, dotted lines indicate the standard deviation. For

each cell, we use a two-step fit procedure as described in the Appendix

to find the model parameters that reproduce the experimental statistics.

(E and F) The histograms of ter (with mðterÞ¼ 800 s and sðterÞ¼ 500 s)

and ε (with mðεÞ¼ 0:07 and sðεÞ¼ 0:02). To see this figure in color, go on-

line.
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rather regular spike trains generated by stimulated HEK
cells, our model is always in the mean-driven regime. This
is due to the fact that the fluctuations of the cytosolic
Ca2þ concentration, caused by the random release of Ca2þ

by the IP3R clusters, are often rather weak. This is a
property that our model shares with other spatial averaging
approaches (74). As a consequence, fluctuation-driven
spiking is observed only in the vicinity of the bifurcation.

Fig. 10 illustrates the range of DT and ntr values compat-
ible with our theory. Almost all experimental values are
within that range. Moreover, we find that the general trends
between the correlation coefficient on the one hand, and the
cumulative refractory periodDT and the number of transient
intervals ntr, on the other hand, are well reproduced by the
model. At the same time, however, we observe a number
of positive interval correlations in the experimental data
that cannot be explained by our model. Fig. 12 seems to
indicate, that the observed correlation coefficients that are
negative are well reproduced, while the coefficients that
are positive are not. It is difficult to conclude whether this
is due to poor statistics computed from short ISI sequences
or to other slow feedback mechanisms in HEK cells that we
have not accounted for in the model.
Limitations of the model

In our simulation we used a reset value for ci, which is deter-
mined by cer and the parameter c0i . This corresponds in the
experiment to the concentration attained at the end of the re-
fractory period after the spike. That entails a minimal ci in
between spikes decreasing on average as the cell adapts to
the spiking state. This is a valid description of the subthresh-
old behavior of some cell types (4,22,36,75), but other cell
types show more variability. The reset value affects the ISI
statistics and thus is worth to be investigated in more detail
in future studies.

Several observations led to the conclusion that spiking
cells operate rather in the excitable regime than in a
mean-driven regime. Theoretical studies showed the lack
of local oscillatory dynamics providing global oscillations
(76) since local concentrations are outside the dynamic
range of the Ca2þ feedback to the channel (77–79). Exper-
iments confirmed the lack of local oscillatory dynamics
(37). The strong sensitivity of the average ISI to the strength
of spatial coupling very much supports the idea of spike
generation by Ca2þ wave nucleation in an excitable regime
rather than a cellular limit cycle oscillation (12). The steep
spatial ci-gradients around releasing channels and clusters
(77–79) preclude local oscillatory dynamics and cause the
sensitivity to spatial coupling. Here, we neglect these gradi-
ents. Instead, we have assumed that Ca2þ is homogeneously
distributed in both the cytosol and the ER. Spatially aver-
aged cytosolic Ca2þ concentrations are in the dynamic
range of the Ca2þ feedback to the channel, but are not the
Ca2þ concentrations experienced by the regulatory binding
sites on the channel molecule (77–79). Voorsluijs et al.
simulate spiking as limit cycle oscillations with spatially
averaged Ca2þ concentrations (80). The spatial average ex-
cludes the wave nucleation mechanism but spikes may arise
from noise in an excitable regime (80,81).

Our model cannot describe Ca2þ concentration gradients
because it is not spatially extended. As a consequence, it is
difficult to decide whether stimulated HEK cells truly oper-
ate in the mean-driven regime, as suggested by our model,
because the parameters that determine the firing regime
were found to be very close to the bifurcation line and
crucially dependent on the details of the model. Therefore,
we propose a simple experimental test using a fast Ca2þ

buffer to determine whether a cell is mean driven or fluctu-
ation driven. In Fig. 13, we show the mean and CVas a func-
tion of the total concentration of a fast Ca2þ buffer, which
can be easily controlled in the experiment. As we have
shown in the Appendix variation of noise intensity by a
fast Ca2þ buffer, adding a fast buffer effectively reduces
Biophysical Journal 122, 4710–4729, December 19, 2023 4723
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FIGURE 12 Stationary over transient statistics for HEK cells and fitted

model. (A and B) The SCC r1 as a function of the cumulative refractory

period DT and number of transient intervals ntr obtained from simulations

with model parameters as obtained from the fit procedure. Red lines indi-

cate the linear regression lines with the Pearson correlation coefficient

given in the legend. (C and D) The same relations and regression lines,

with r1 calculated from the stationary part of the experimental ISI sequence

and with error bars. (E and F) Direct comparison of SCC calculated from

simulated and experimental sequences. Gray areas highlight the region

r1< � 1=2 that is inaccessible if rk decays monotonically. To see this

figure in color, go online.
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the noise intensity according to bDxðciÞ ¼ bDxðciÞ with
bz1 =ð1þbT =K

�Þ< 1. In the mean-driven regime, the ISI
variability decreases monotonically and spike formation be-
comes a deterministic process for large buffer concentra-
tions, limbT/NCV ¼ 0. In the fluctuation-driven regime,
the coefficient of variation exhibits a coherence resonance
minimum (81,82) as a function of the buffer concentration
and becomes a Poisson process in the limit limbT/NCV ¼
1. Moreover, the coherence resonance minimum is rather
flat and the CV does not change much over a wide range
of buffer concentrations (green line in gray area in
Fig. 13 B); in the same range, the mean interval changes
drastically with bT (green line in gray area in Fig. 13 A).
Taken together, this is in line with the experimental observa-
tion of a constant CVover a wide range of mean intervals in
stimulated HEK cells loaded with different levels of BAPTA
(12). This suggests that stimulated HEK cells operate in
the fluctuation-driven regime. A more definite test would
explore the spike statistics in the limit of even larger buffer
concentrations.
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APPENDIX

Subthreshold Ca2D dynamics

To incorporate the ER Ca2þ concentration into our framework, we need to

derive dynamical equations governing the cytosolic Ca2þ concentration

½Ca2þ�i and ER Ca2þ concentration ½Ca2þ�er. As in the first part of this pa-

per, the subthreshold dynamics of ½Ca2þ�i are determined by two Ca2þ

currents:

d

dt

�
Ca2þ

�
i
¼ Jlin þ Jpuff ; (37)

where Jlin is an IP3-independent linearized current, which subsumes all

active and passive currents into the cytosol, and Jpuff is the IP3-dependent
nonlinear puff current, which describes the release of Ca2þ from the ER

into the cytosol through IP3 receptor channels. We regard Jlin as a sum of

currents across the ER membrane and the cell membrane

Jlin ¼ Jer;i þ Jext;i (38)

�
Ca2þ

�
V
�
Ca2þ

�

Jer;i ¼ � i

ts
þ er

Vi

er

tl
(39)

�
2þ� �

2þ�0

Jext;i ¼ � Ca

i
� Ca

i

tpm
: (40)

The first term in Eq. 39 describes the active reuptake of Ca2þ from the

cytosol into the ER by SERCA pumps with timescale ts (here appearing as

a loss term). The second term in Eq. 39 captures the passive leakage from

the ER into the cytosol with timescale tl and volume ratio between ER and

cytosol Ver=Vi. Note that, strictly speaking, this term should depend on the

difference ½Ca2þ�er � ½Ca2þ�i, which we approximate by ½Ca2þ�er because
½Ca2þ�er [ ½Ca2þ�i (44–46). The term in Eq. 40 includes a number of active

and passive Ca2þ currents across the plasma membrane and is characterized

by an effective timescale tpm . For more detailed physiological models, see

(33,74,83,84).

In the steady state, both net currents in Eq. 38 have to vanish, i.e.,

Jext;i¼ 0 and Jer;i ¼ 0. The former condition determines the steady-state

concentration in the cytosol, ½Ca2þ�i ¼ ½Ca2þ�0i ; the latter yields the

steady-state concentration in the ER ½Ca2þ�er ¼ ½Ca2þ�0er, which is related

to ½Ca2þ�0i by �
Ca2þ

�0
er

¼ �
Ca2þ

�0
i

tl
ts

Vi

Ver

: (41)

As in the first part of this paper, the currents in Eq. 38 can be combined

into a single term

Jlin ¼ �
�
Ca2þ

�
i
� �

Ca2þ
��
i

t
(42)

with the timescale

t t

t ¼ s pm

tpm þ ts
(43)

and the ½Ca2þ�er-dependent concentration � � � � !
�
Ca2þ

��
i
¼ Ca2þ

0

i

tpm
þ Vi

Ver

Ca2þ
er

tl
t: (44)

Equation 44 can be recast using Eqs. 41 and 43:
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FIGURE 13 ACV-based test of the dynamic regime. (A and B) The mean

CTD and CV CV of the ISI over the total buffer concentration bT . In the mean-

driven regime (blue lines), CV decreases monotonically with bT and satu-

rates at 0. In the excitable regime (green line), CV exhibits a minimum

before saturating at 1. The asymptotic (bT/N) behavior of the CVallows

to distinguish the firing regimes. Parameters: K¼ 5, t¼ 1 s, ε¼ 0:03,

ter ¼ 300 s, k� ¼ 1s� 1, kþ¼ 1s� 1 and (mean driven) p¼ 1:05pbifz
0:136, (excitable) p¼ 0:95pbifz0:123. To see this figure in color, go on-

line.
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�
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#
: (45)

In agreement with other theoretical studies (74,84,85), we can further

simplify this result. We assume that the leakage across the plasma mem-

brane is much slower than the reuptake by the SERCA pumps, i.e.,

tpm [ ts, implying that the Ca2þ current across the plasma membrane is

neglected. This assumption leads to a linear relation between ½Ca2þ��i and

½Ca2þ�er: �
Ca2þ

��
i
¼ �

Ca2þ
�0
i

�
Ca2þ

�
er�

Ca2þ
�0
er

: (46)

Finally, we insert Eq. 46 into 42 to obtain:

Jlin ¼ �
��

Ca2þ
�
i
� �

Ca2þ
�0
i

�
Ca2þ

�
er

.�
Ca2þ

�0
er

�
t

: (47)

Turning to the puff current we note that, as a diffusive current, Jpuff is
determined by the concentration gradient between cytosol and ER,

½Ca2þ�er � ½Ca2þ�iz½Ca2þ�er, by the total number of open channels,PK
k¼ 1xkðtÞ, and by a permeability-like parameter bp:

Jpuff ¼ bp�Ca2þ�
er

XK
k¼ 1

xkðtÞ: (48)

Using the two currents and introducing nondimensional variables, ci ¼
½Ca2þ�i=Kact and cer ¼ ½Ca2þ�er=½Ca2þ�

0

er, yields the first line of Eq. 1:

_ci ¼ ��ci � c0i cer
�
= t þ pcer

XK
k¼ 1

xkðtÞ (49)

with p ¼ bp½Ca2þ�0er=Kact.

For the dynamics of the ER Ca2þ concentration, we distinguish a replen-
ishment term and a depletion term:

d

dt

�
Ca2þ

�
er

¼ Jrep þ Jdep: (50)

First, in the absence of a spike tsti, we assume that the ER Ca2þ con-

centration is replenished exponentially by SOCE (86). SOCE is a process in

which the depletion of the ER causes the formation of ER-PM junctions
(87–89) and a slow Ca2þ current across the plasma membrane through

Orai1 Ca2þ channels. As an approximation, we assume that these junctions

allow SERCA pumps to relay the slow local Ca2þ influx from the extracel-

lular medium directly into the ER (28). We note that computational studies

have suggested that the cytosolic Ca2þ concentration is not entirely unaf-

fected by SOCE due to the rapid diffusion of Ca2þ (90), an effect we neglect

here. In our model, SOCE directly affects ER Ca2þ concentration:

Jrep ¼ �
��

Ca2þ
�
er
� �

Ca2þ
�0
er

�.
ter: (51)

Second, when a spike is fired at t ¼ ti, the concentration is depleted imme-

diately according to
Jdep ¼ �ε

�
Ca2þ

�
er
dðt � tiÞ: (52)

This term describes the difference between the ER Ca2þ concentration

before and after the spike and, thus, the net loss of Ca2þ from the ER during

the spike. The delta function enters because, in the IF framework, the spike

is a point in time, so that both the release and the reuptake of Ca2þ during

the rising and falling phases of the spike are described as instantaneous. Us-

ing Eq. 51 and Eq. 52 in Eq. 50 and dividing both the left- and right-hand

side by ½Ca2þ�0er yields the second line of Eq. 1, i.e., the dynamics of the

above-introduced nondimensional variable cer:

_cer ¼ ðcer� 1Þ
ter

� εcer
X
i

dðt � tiÞ: (53)

We note that the Ca2þ currents across the ER membrane that contribute

to the subthreshold dynamics of the cytosolic Ca2þ concentration should in

principle also contribute to the dynamics of the ER Ca2þ concentration with

a reversed sign and a prefactor that accounts for the volume ratio. Carrying

out all the steps as before, but taking into account the exact balance of cur-

rents across the ERmembrane, will lead to an additional term on the r.h.s. of

Eq. 53:

� d

 
� �

ci � c0i cer
�
= tþ pcer

XK

k¼ 1
xkðtÞ

!
: (54)

The prefactor d ¼ ðVi =VerÞðKact =½Ca2þ�0erÞ is of the order of

0:001 � 0:01 (using Vi=Verz10 (91), Kactz 100 mm (92), and

½Ca2þ�0erz 100–1000 mm (44,93)). The term in the parentheses is equal

to the r.h.s. of the ci dynamics and its mean value can therefore be estimated

to be ðcT � cRÞ=CTD, which is of the same order of magnitude as the replen-

ishment term in Eq. 53, ðcer � 1Þ=ter. Multiplied by the small prefactor d,

the term can thus be neglected. To demonstrate that this is indeed the case,

we augment Eq. 53 by the additional term Eq. 54. We compare the mean

and CVof the stationary ISIs of the original model (d¼ 0) to the augmented

version for a plausible value of d¼ 0:01. The spiking statistics hardly

differ, irrespective of the value of ε and the firing regime (cf. Fig. 14).
Average of the ER Ca2D concentration

We have mentioned in the main part that averaging the governing differen-

tial equation for the ER Ca2þ concentration cerðtÞ gives rise to an uncondi-

tional and a conditional mean. Here, we relate these two mean values to one

another.

To this end, we first recall the differential equation that governs the dy-

namics of cerðtÞ:

_cer ¼ �ðcer� 1Þ = ter � εcer
X
i

dðt � tiÞ (55)

and take the stationary ensemble average to obtain:� � 
 	

0 ¼ � Cc�erD� 1 ter � εCc�er	t ¼ t�i Dr0: (56)
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This equation contains the conditional mean Cc�er
		t ¼ t�i D, which results

from taking the average of cerðtÞ together with the spike train
P

idðt � tiÞ.
Here, the minus indicates the time just before the spike, i.e., cerðt�i Þ refers to
the value before the instantaneous depletion.

To relate Cc�erD and Cc
�
er

		t ¼ t�i Dwe consider the replenishment and deple-

tion of cerðtÞ separately. Between two spike times ti % t < tiþ1 the governing

differential equation for the ER Ca2þ concentration (Eq. 55) reduces to:

_cer ¼ �ðcer� 1Þ = ter; (57)

and is solved by: � � ��

cerðtÞ¼ 1� 1 � cer tþi e� ðt� tiÞ=ter ; (58)

where cerðtþi Þ is the initial condition over the interval Ti. Note that when

t ¼ t�iþ1 the variable cerðtÞ attains the value cerðt�iþ1Þ. This somewhat trivial
observation allows to find a first relation between the two stationary condi-

tional means

Cc�er
		t ¼ t�i D¼ 1�C

�
1 � cer

�
tþi
��
e�

Ti
terD: (59)

At a spike time t ¼ ti the ER is instantaneously depleted and a second

relation between the stationary conditional mean values is readily obtained:

Cc�er
		t ¼ tþi D ¼ Cc�er

		t ¼ t�i Dð1 � εÞ: (60)

Finally, to make a relation to the unconditional mean we consider the

temporal average:

Cc�erD ¼ lim
T/N

Z T

0

dt cerðtÞ (61)

and split the integral at the spike times to involve the conditional mean

values:
Cc�erD ¼ lim
T/N

1

T

P
Ti ˛ ½0;T�

Z Ti

0

dt1��1 � cer
�
tþi
��
e�ðt� tiÞ=ter

¼ lim
T/N

1

T

P
Ti ˛ ½0;T�

Ti � ter
�
1 � cer

�
tþi
���

1 � e� Ti=ter
�

¼ 1� ter

CTD

��
1 � Cc�er

		t ¼ tþi D
� � C

�
1 � cer

�
tþi
��
e� Ti=terD

�
¼ 1 � ter

CTD

�
Cc�er
		t ¼ t�i D � Cc�er

		t ¼ tþi D
�

¼ 1 � ε

ter

CTD
Cc�er
		t ¼ t�i D:

(62)

To obtain the first line we have inserted the solution of cerðtÞ between two
spikes ti % t < tiþ1 according to Eq. 58. To get from the third line to the fourth

line and from the fourth line to the fifth line, we used equations Eqs. 59 and

60, respectively. This provides an exact relation between the conditional and

unconditional mean values but comes with the disadvantage of containing the

mean of the stationary interval. An approximate relation can derive assuming

that cerðtÞ is replenished slowly and over an ISI evolves according to:

cerðtÞz cer
�
tþi
�þ cer

�
t�iþ1

� � cer
�
tþi
�

Ti

t: (63)

This relation ensures that at the beginning and end of the ISI Ti the
values cerðtþi Þ and cerðt�iþ1Þ are taken. In this case the unconditional mean

and conditional mean are related by
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Cc�erDz
Ccer
		t ¼ t�i Dþ Ccer

		t ¼ tþi D

2
: (64)

Using again Eq. 60 yields:

Cc�erDzCc�er
		t ¼ t�i D

�
1 � e

2

�
(65)

the expression that we have used in the main part.
Variation of noise intensity by a fast Ca2D buffer

It is often difficult to decide whether a cell that generates a stochastic

sequence of spike times is operating in the mean-driven or excitable regime.

An accurate answer would require considering the cell in the deterministic

limit, e.g., by properly increasing the cell size so that the number of IP3R

clusters K is increased while the effect of a single puff on the Ca2þ concen-

tration, determined by the parameter p, is simultaneously decreased so that

pK ¼ const: Of course, this is not experimentally feasible. However, it is

possible to mimic the effect of increasing the cell by adding a fast Ca2þ

buffer, such as BAPTA.

To demonstrate this, we consider a fast Ca2þ buffer B according to the

reaction scheme:

Ca2þþB#
kþ

k�
CaB; (66)

where kþ and k� are rate constants. In this case, the governing differential

equations of our model become:� �


_ci ¼ � ci � c0i cer tþ jpuffðci; cerÞ� kþciðbT � cbÞþk�cb

_cer ¼ �ðcer� 1Þ=ter � εcer
X

idðt � tiÞ;
_cb ¼ kþciðbT � cbÞ � k�cb

ifciðtÞ ¼ cT/ti ¼ t and ciðtÞ ¼ cR; cbðtÞ ¼ c0bðcRÞ;
(67)

where bT ¼ bþ cb is the total buffer concentration given by the sum of

the free and Ca2þ-bound buffer concentration b and cb, respectively.
The total buffer concentration bT is assumed to be constant. In an IF

framework, a fast Ca2þ buffer requires an additional reset rule to ensure

that cb is still in equilibrium with ci after the instantaneous reset. Specif-

ically, cb is reset to the equilibrium value, c0bðciÞ ¼ cibt=ðK� þciÞ with

K� ¼ k�=kþ.
To show that a fast Ca2þ buffer effectively reduces the noise intensity, it

is useful to utilize the Langevin approximation of our model and the fast

buffer approximation (94):

_ci ¼ b
h
� �

ci � c0i cer
�
=t þ pmðci; cerÞ

þp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Dðci; cerÞ

p
xðtÞ
i

_cer ¼ �ðcer� 1Þ=ter � εcer
X

idðt � tiÞ;
ifciðtÞ ¼ cT/ti ¼ tandciðtÞ ¼ cR;

(68)

with b ¼ ð1þ K�bT=ðK� þ ciÞ2Þ� 1. Assuming that K� [ ci allows to

approximate bzð1þ bT=K
�Þ� 1 and to introduce a new time t0 ¼ bt.
Because the white noise in the ci-dynamics and the delta function in the

cer-dynamics are time-dependent functions, they must also be scaled

when the new time t0 is introduced accordingly to xðt0 =bÞ ¼ ffiffiffi
b

p
xðt0Þ

and dðt0 =bÞ ¼ bdðt0Þ. This yields:



A B

FIGURE 14 Effect of subthreshold ER depletion on spiking statistics. (A)

Comparison of the mean ISI of the model used in the main part (Eq. 1) with

the mean of a model variant in which the subthreshold Ca2þ released from

the ER into the cytosol is included in the dynamics not only of ci but also of

cer. This amounts to extending the equation governing the dynamics of cer
by Eq. 54. Similarly, (B) compares the CVs. Parameters: (mean driven) t¼
5 s, p¼ 0:015, ter ¼ 300 s; (excitable) t¼ 1 s, p¼ 0:06, ter ¼ 300 s. To

see this figure in color, go online.

Ca2þ spiking cumulative refractoriness
dci
dt0

¼ ��ci � c0i cer
�
=t þ pmðci; cerÞþ p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2bDðci; cerÞ

q
xðt0Þ

dcer
dt0

¼ �ðcer� 1Þ=bter � εcer
X

id
�
t0 � t0i

�
;

if ciðt0Þ ¼ cT/t0i ¼ t0 and ciðt0Þ ¼ cR;

(69)

with the effective noise intensity bDðci; cerÞ ¼ bDðci; cerÞ and the effective

timescale bter ¼ bter. This means that when the dynamics are observed with

respect to the new time t0, the noise intensity is effectively reduced by a factor
b< 1. Note that at the same time the timescale of the adjustment is reduced.
A B

FIGURE 15 Renewal model system parameters. (A) The two system pa-

rameters t and p obtained from the fit procedure are highly correlated and

follow the relationship p ¼ aþ b=t (dotted line). This is because the

model operates in the vicinity of the bifurcation (black line). (B) The model

still operates in the mean-driven regime when stationary mean value Cc�erD is
taken into account. To see this figure in color, go online.
Fit procedure for stimulated HEK cells

Here, we detail theminimization algorithmbywhich themodel parameters are

determined. We have already explained that, for each experimental ISI

sequence, four output statistics are determined, namely the first interval T0,

the number of transient intervals ntr, the stationary intervalTN, and the station-

ary coefficient of variation CV . These statistics are used to estimate the four

model parameters t,p, ter, and ε.Wenote that the fullmodel comprises a larger

number of parameters, but we keep those affecting the IP3R model fixed.

To determine the four parameters, we use the Nelder-Mead method (95)

to minimize the loss function f ðy1;.; y4Þ ¼ P
ijyi � byij =yi, where yi ˛

½T0; ntr; TN;CV � are the target statistics obtained from the fit procedure

described in the main part and byi ˛ ½CT0D; ntr; CTD;CV � are the output statis-
tics of the model. Because the model is stochastic, the output statistics (ob-

tained from finite simulations) are also subject to a measurement error. To

improve our estimate of the output statistics we use the numerically more

efficient Langevin approximation Eq. 8.

Unfortunately, this is not sufficient to solve the minimization problem in a

reasonable time. Therefore, we split the four-parameter minimization prob-

lem into two two-parameter minimization problems, which are solved itera-

tively until the interval statistics of the experiment and the model match. This

essentially amounts to first determining the parameters of the nonadaptive

model, t and p (Part I, Eq. 2), and then the remaining parameters of the adap-

tive model, ter and ε. We recall that the first interval of the adaptive model is

statistically equivalent to the ISI of the nonadaptive model because the ER

Ca2þ concentration in the nonadaptive model is fixed to cerðtÞ¼ 1 for all t,

which is also the case for the adaptive model before the first spike.
In a first step, we use the nonadaptive model to determine the parameters t

and p such that the mean and CVof the ISI of the nonadaptive model matches

the fit parameter T0 andCV from the experimental sequence. In a second step,

we determine the remaining two model parameters ter and ε of the adaptive

model. To this end, we require that the mean of the stationary sequence

matches the output statistics TN and that the number of transient intervals,

obtained from fitting Eq. 7 to the simulated sequence of mean intervals

CTiD, matches the experimentally observed number of transient intervals ntr.

The condition we used in the first step essentially required the CVof the

first interval in the modelCV;0 to match the CVof the stationary interval in the

experiment CHEK
V;N . Since the CV in the model depends on the adaptation, this

means that the stationary CVof the model CV;N does not agree with the sta-

tionary CV of the experiment. We therefore use an iterative procedure and

change the target CV, denoted C�
V;0 and used in the first step, based on the de-

viation between the stationary CVs of the model and the experiment accord-

ing to C�
V;0/C�

V;0 þ aðCHEK
V;N � CV;NÞ. We find that for a¼ 1 one to three

iterations are sufficient to reproduce the experimental CV.

The resulting parameter pairs t and p are shown in Fig. 15 A and closely

follow the relation p ¼ aþ b=t. This is because, for the renewal model,

experimentally plausible ISIs T0 are observed only in the vicinity of the

bifurcation given by p ¼ b=t (see Eq. 6). The fact that the fit parameter

a does not vanish reflects that the model is always poised in the mean-driven

regime and thus the parameter pairs systematically fall above the bifurca-

tion line. We find that, even when the ER Ca2þ concentration is replaced

by its stationary mean value Cc�erD, the model still operates in the mean-

driven regime, as shown in Fig. 15 B.
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