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SUMMARY
Spatial proteomics combining microscopy-based cell phenotyping with ultrasensitive mass-spectrometry-
based proteomics is an emerging and powerful concept to study cell function and heterogeneity in (patho)
physiology. However, optimizedworkflows that preservemorphological information for phenotype discovery
and maximize proteome coverage of few or even single cells from laser microdissected tissue are currently
lacking. Here, we report a robust and scalable workflow for the proteomic analysis of ultra-low-input archival
material. Benchmarking inmurine liver resulted in up to 2,000 quantified proteins from single hepatocyte con-
tours and nearly 5,000 proteins from 50-cell regions. Applied to human tonsil, we profiled 146 microregions
including T and B lymphocyte niches and quantified cell-type-specific markers, cytokines, and transcription
factors. These data also highlighted proteome dynamics within activated germinal centers, illuminating sites
undergoing B cell proliferation and somatic hypermutation. This approach has broad implications in biomed-
icine, including early disease profiling and drug target and biomarker discovery. A record of this paper’s
transparent peer review process is included in the supplemental information.
INTRODUCTION

Cells are the functional units of organs, which fulfill essential

physiological tasks in a spatially defined manner to maintain tis-

sue integrity.1 To analyze cell dynamics in space and time,

powerful spatial genomics,2 epigenomics,3 transcriptomics,4–6

and imaging-based proteomics7,8 methods have been devel-

oped to better understand cellular and molecular drivers of

health and disease states. As proteins are the biomolecules

closest to the cellular phenotype determining cell identity and

function,9,10 spatial proteomics (SP) methods are particularly

promising for the study of human (patho)physiology. SP

methods with the single-cell resolution are dominated by tar-

geted antibody-based methods such as imaging mass cytome-

try11 (IMC) or multiplex immunofluorescence (mIF) imaging,8,12

where several dozen proteins can be analyzed at (sub)cellular

resolution. However, although such methods are well suited

for the large-scale screening of cellular phenotypes, they fall

far short of capturing the actual complexity of the cellular

proteome. It is estimated that single-cell types express more

than 10,000 unique proteins,9 which is complemented by

millions of potential proteoforms, including splice variants,

post-translational modifications (PTMs), and protein sequence

variants.10,13,14 Liquid chromatography mass spectrometry

(LC-MS)-based proteomics in contrast enables the study of pro-

teomes at an unbiased (i.e., untargeted), quantitative, and sys-

tem-wide level.9 The combination of both of these complemen-

tary proteomic approaches is therefore highly desirable but
1002 Cell Systems 14, 1002–1014, November 15, 2023 ª 2024 The A
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requires integrated and multimodal pipelines. We recently intro-

duced deep visual proteomics (DVP),15 a new concept

combining imaging-based (fluorescence or bright field) single-

cell phenotyping with unbiased MS-based proteomics for global

proteome profiling with cell type and spatial resolution. To

realize DVP, we developed an automated laser microdissection

(LMD) workflow for the streamlined collection of nuclei, cells, or

larger regions of interest (ROIs) directly into 96- or 384-well

plates, thereby connecting whole-slide imaging and deep-

learning-based image analysis16 with ultrasensitive MS-based

proteomics.17 This allowed the profiling of as little as 100 pheno-

type-matched cells from archival tissue material while also pre-

serving detailed cell type and spatial information. Further ad-

vances in sample preparation and MS acquisition recently

pioneered the profiling of single-cell proteome heterogeneity in

cryosections of murine liver tissue,18 emphasizing the strong

spatial influence on the hepatocyte-specific proteome. Despite

these promising proof-of-concept studies, a systematic evalua-

tion and optimization of all experimental steps of IF microscopy-

guided spatial tissue proteomics is still missing. In particular, the

analysis of few or even single cells of formalin-fixed and

paraffin-embedded (FFPE) tissue collected by LMD has re-

mained elusive and relies on optimized and robust ‘‘end-to-

end’’ protocols. The successful development of such integrated

workflows could pave the way for a plethora of biomedical ap-

plications, including early disease proteome profiling studies

directly from archived patient material, where only a few cells

can be present.
uthors. Published by Elsevier Inc.
commons.org/licenses/by/4.0/).
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Here, we describe a scalable, robust, and easy-to-use proto-

col optimized for the profiling of ultra-low-input archival tissue

guided bywhole-slide (IF) imaging. After benchmarking inmurine

liver tissue, we applied our workflow to study the cell-type-

resolved proteome of B and T lymphocytes in different spatially

defined niches, guided by four-marker whole-slide IF imaging.

We finally provide detailed guidelines covering all aspects of

our workflow (Methods S1), from antigen retrieval (AR) and stain-

ing on LMDmembrane slides, over manual or automated sample

processing, to MS data acquisition and analysis.

RESULTS

Optimizing LMD-based low-input FFPE tissue
proteomics
Light microscopy is an integral part of SP workflows that

combine LMD with MS-based proteomics19–21 (Figure 1A).

Although hematoxylin and eosin (H&E) staining protocols are

well established for tissue sections mounted on specialized

LMD membrane slides23 (Figure S1A), IF-based protocols,

which allow the sensitive detection of a higher number of

cell type and functional markers (typically 3–5 per imaging cy-

cle), require additional AR steps for epitope unmasking. The

choice of the AR method can not only influence staining and

image quality but also impacts LMD membrane integrity, tis-

sue collection efficiency, and potentially proteome coverage

of trace sample amounts. The evaluation and optimization of

AR and staining prior to MS is therefore important for ultra-

low input or even single-cell applications that strictly depend

on highly efficient tissue collection and protein extraction, as

well as near-lossless sample preparation protocols. In other

words, the most sensitive mass spectrometer can only be as

good as the upstream sample preparation workflow that de-

livers these trace peptide amounts to the instrument. We

therefore first evaluated different AR methods for their general

compatibility with whole-slide imaging on LMD slides, efficient

LMD, and ultrasensitive MS-based proteomics. We tested two

common protocols based on heat-induced epitope retrieval

(HIER) or proteolytic (i.e., pepsin-induced epitope retrieval

[PIER]) epitope retrieval and immunofluorescently stained mu-

rine liver FFPE tissue with an antibody against a ubiquitously

expressed plasma membrane marker (Na/K-ATPase). We

chose murine liver as benchmarking tissue as hepatocytes

make up 60%–80% of the liver cell mass,24 which allowed

us to obtain consistent results from serial, homogeneous tis-

sue slices, and repeated sample collections over the course

of our experiments. 5-mm-thick liver sections were mounted

on glass membrane (polyethylene naphthalate [PEN] or poly-

phenylene sulfide [PPS]) or metal frame (PPS) slides, de-paraf-

finized, and subjected to two common AR protocols (STAR

Methods) prior to antibody staining, IF microscopy, LMD,

and proteomics (Figure 1B). We included H&E stains for com-

parison, which do not rely on additional AR after de-paraffini-

zation, allowing us to directly investigate the impact of PIER

and HIER on our proteomic results. PIER was fully compatible

with both LMD slide types (glass or metal frame), facilitating

efficient LMD, but generally came at the cost of higher back-

ground staining for the tested antibody, compared with HIER

(Figure S1A). HIER occasionally resulted in membrane distor-
tion of the glass-type slides toward the label end of the slide

(Figure S1B), which can impede efficient LMD collection in

this area if not prevented by the addition of glycerol.25 We

alternatively recommend tissue mounting on the side of the

slide, which is distant from the label. Frame slides on the con-

trary are more suitable for diverse biological sample types (i.e.,

tissue or cell culture) but are suboptimal for the collection of

directly connected contours, for example, for gridded sam-

pling schemes as used for the nanoPOTS approach,20 as

this can ultimately lead to loss of overall membrane integrity.

Irrespective of the choice of AR (HIER or PIER), staining tech-

nique (H&E or IF), or LMD slide type (PEN or PPS), proteomics

results from three different liver tissue amounts were highly

consistent (Figures 1C–1E). Tissue samples were processed

in 384-well low-binding plates using an MS-compatible,

organic solvent-based protocol, which included 60-min heat-

ing at 95�C for efficient formalin decrosslinking,26 sequential

Lys-C and trypsin digestion and miniaturized solid-phase

extraction. Compared with our previous DVP protocol, we

optimized our workflow for lower microliter volumes (1–2 mL)

to minimize peptide loss from surface adsorption while still be-

ing pipette-able with standard laboratory equipment. At the

same time, this also allowed the integration of robotic sample

preparation workflows (STAR Methods). In addition, we used

an optimized 15-min active nano-LC gradient (Figures S1C–

S1E) in combination with an optimal window design dia-PA-

SEF27 method on a trapped-ion mobility spectrometry (TIMS)

mass spectrometer (Bruker timsTOF SCP) for improved sensi-

tivity and sample throughput. Using DIA-NN,28 we quantified

more than 9,000 precursors and 1,700 unique proteins from

small tissue regions of approximately one to two hepatocytes

(�7,500 mm3, Figures 1C, S1F, and S1G). From 50-cell sam-

ples (50,000 mm2, 5 mm thick) of H&E, HIER, and PIER-derived

samples, 4,000 proteins were consistently quantified with

excellent quantitative reproducibility (Pearson r = 0.98, Fig-

ure 1D). Furthermore, we found a 95% overlap of protein iden-

tifications across AR methods (Figure 1F), as well as nearly

identical cellular compartment proportions of the underlying

proteomes (Figure 1G), and consistent with a deep liver prote-

ome study of primary cells.22 We conclude that common FFPE

tissue preparation methods for fluorescence microscopy are

fully compatible with ultra-low input MS-based proteomics.

However, depending on the concrete application, glass mem-

brane or metal frame slides offer unique advantages and dis-

advantages, which we summarized in Figure 1H to provide

general guidelines for LMD proteomics beginners. These

data also include input from two additional LMD expert labs

and together with our detailed protocol description (Methods

S1; supplemental information), they are intended to support

the selection of the right tissue preparation and sample collec-

tion strategy for diverse SP applications.

A scalable FFPE tissue proteomics workflow allowing
single-cell analysis
Having established that common AR and staining methods are

fully compatible with LMD and ultra-low-input tissue proteomics,

we next assessed the scalability, robustness, and minimally

required sample amount of our workflow. Homogeneous areas

of murine liver tissue were collected by LMD into 384-well
Cell Systems 14, 1002–1014, November 15, 2023 1003



Figure 1. Optimizing laser microdissection-based low-input FFPE tissue proteomics

(A) Overview of the spatial tissue proteomics workflow.

(B) Tissue preparation strategy for laser microdissection-based proteomics benchmarking experiments using specialized LMD slides (metal frame or glass).

(C) Precursor and protein identifications from tissue samples processed with different staining and antigen retrieval methods. Areas of 1,562, 12,500, and

50,000 mm2 of a 5-mm thick section were laser microdissected. Averages are shown from quadruplicate measurements.

(D) Proteome correlations (Pearson’s r) of HIER, PIER, and H&E-based tissue samples.

(E) Boxplots showing coefficients of variations (CVs) of triplicate proteome measurements from the three antigen retrieval methods. Related to (D).

(F) Upset plot showing common and exclusive proteins for different antigen retrieval strategies based on 50,000 mm2 tissue samples.

(G) Protein identifications from major cellular compartments (‘‘cytosol,’’ ‘‘nucleus,’’ ‘‘plasma membrane,’’ and ‘‘extracellular region,’’ Gene Ontology Cellular

Component [GOCC]) from H&E, PIER, and HIER-treated mouse liver tissues. Percentages are the number of quantified proteins per compartment over all

quantified proteins in the corresponding sample. For comparison, a deep mouse liver proteome dataset was included22 based on non-fixed, primary cells.

(H) Summary of the laser-microdissection optimizations for low-input proteomics. Three labs assessed the applicability of glass and frame slides and rated each

category with moderate (+), good (++), and excellent (+++). The average score is shown from all three ratings. 1HIER can causemembrane distortion of glass-type

slides. 2Frame slides are more problematic for grid-based sampling schemes, the collection of many closely connected contours can lead to loss of overall

membrane integrity. 3Tested autostainers: Ventana (Roche) supported frame and glass slides, DAKO (Agilent) system supported glass slides. (A) and (B) created

with Biorender.
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low-binding plates, ranging from single hepatocytes (600 mm2,

5 mm thick) to approximately 100 cells (100,000 mm2,

Figures 2A, 2B, S1F, and S1G). Proteomic results showed a

linear increase in MS2 intensity, precursor, and protein identifi-

cations from ‘‘low’’ to ‘‘high’’ tissue amounts, which, as ex-

pected, was inversely correlated with the median coefficient of

variations (CV) of protein quantifications calculated from tripli-

cate measurements of adjacent regions (Figures 2C–2E). How-
1004 Cell Systems 14, 1002–1014, November 15, 2023
ever, even single hepatocyte contours featured low median

CVs of 20% for the 1,500–2,000 quantified proteins per contour

(Figures 2E and S2A–S2C), which we and others previously only

achieved from many thousands of cells collected from FFPE tis-

sue.30,31 It is noteworthy that CVs also included true biological

variation from known spatially defined hepatocyte heterogene-

ity,18,32 letting us conclude that reproducible single-cell prote-

ome analysis from FFPE tissue is achievable based on our



Figure 2. A scalable FFPE tissue proteomics workflow allowing single-cell analysis

(A) H&E-stained mouse liver tissue section (5 mm). Collected LMD tissue samples are shown from 600 up to 100,000 mm2. Single hepatocyte contour isolation

(average size 600 mm2) was guided by the immunofluorescence signal of the plasma membrane marker Na/K-ATPase and the DAPI signal. Larger regions of

interest (ROIs) were isolated based on circular contours of pre-defined sizes ranging from 1,562 to 10,000 mm2 (2–100 cells), respectively. Hepatocyte volumes of

4,000–6,000 mm329 were used for cell count estimations of circular ROIs. Scale bars, 400 mm.

(B) Tissue inspection after collection into a 384-well low-binding plate. Scale bars, 400 mm.

(C and D) Average MS2 quantities (C), number of identified precursors (D, left), and proteins (D, right) of the collected tissue samples are shown. For all amounts,

three replicates were collected and measured. The tissue optimum is highlighted in purple and single-cell contours in orange.

(E) Boxplots showing the CVs of protein quantification across different tissue areas. CVs were calculated from triplicates of non-log-transformed data. The

boxplots define the range of the data (whiskers), 25th and 75th percentiles (box), and medians (solid line).

(F and G) Impact of different lysis buffers on proteome coverage. Tissues of 7,500, 62,500, and 250,000 mm3 of a 5-mm thick mouse liver section were profiled

using three different methods based on organic solvent only (ACN), DDM only (no ACN), or combined (DDM and ACN) protocol. For all amounts, three replicates

were collected and measured.

(legend continued on next page)

ll
OPEN ACCESSMethods

Cell Systems 14, 1002–1014, November 15, 2023 1005



ll
OPEN ACCESS Methods
workflow. We attribute the excellent quantitative reproducibility

to the combination of optimized tissue preparation, low-volume

sample processing, and highest-sensitivity MS acquisition and

analysis using an optimal window dia-PASEF scheme (STAR

Methods). Precursor and protein identifications peaked for 50–

100 cell regions (25,000–50,000 mm2), where we quantified close

to 50,000 precursors and 5,000 proteins (Table S1). Interestingly,

further increasing sample amounts resulted in lower precursor

identifications and highermedian CVs, indicative of sample over-

loading (Figures 2D and 2E). Although this phenomenon could

possibly be balanced out using longer LC gradients and adjusted

trypsin amounts, thereby further improving proteome coverage,

we note that our optimized 15-min active nanoflow gradient pro-

vides an excellent compromise between single-cell sensitivity,

high proteome coverage for 50–100 cell samples, and reason-

able sample throughput of around 30–40 samples per day. Addi-

tionally, we tested the applicability of our protocol in combination

with the Bruker timsTOFPro2, which shows a roughly 4- to 5-fold

lower total ion current (TIC) compared with the SCP instru-

ment.17 For the lowest tissue amounts measured (7,500 mm3

samples, 1–2 hepatocytes29,33), close to 1,000 proteins could

still be quantified with high quantitative reproducibility and a

somewhat similar proteome coverage was observed for the

50-cell samples (Figures S2D–S2F). We next tested if we could

further increase proteome coverage of single FFPE tissue con-

tours through the use of MS-compatible detergents. We as-

sessed the integration of n-Dodecyl-b-D-maltoside (DDM),

which was previously shown to improve proteome coverage of

low-input FFPE tissue, in particular when applied at high temper-

atures.34 Combining our acetonitrile (ACN) based protocol (10%

final concentration) with DDM (0.1% final concentration), which

likewise included 60-min controlled heating at 95�C for efficient

formalin de-crosslinking, proteome coverage of the single-cell

samples improved by 104% and 50% for precursor and protein

identifications, respectively (Figures 2F and 2G). For 62,500 (�12

cells) or 250,000 mm3 (�50 cells) samples, proteome coverage

was more similar between protocols. As DDM is not removed

during peptide clean-up steps, its accumulation on the analytical

column can compromise chromatographic performance over

time, which can be prevented by additional high organic solvent

washing. Our organic-solvent-based protocol performed equally

well for 50-cell contours, thus offering an excellent and cleaner

alternative to the DDM/ACN combination for ‘‘higher’’ tissue

amounts.

The unprecedented depth of our single FFPE hepatocyte con-

tours, reproducibly quantifying up to 2,000 proteins depending

on tissue thickness (Figure S2C) and with high data complete-

ness (89% complete; Figure S2G), encouraged us to further

explore these single-cell tissue proteome data. Protein levels

generally showed a high degree of concordance with higher

loading amounts (Figure S2H) and includedmany known hepato-
(H) Dynamic range of protein abundance for 50-cell (250,000 mm3) contours. Pro

patocyte-specific markers.22 A minimum of two quantified values per quadruplic

(I) Histogram of log10 protein intensities obtained from 600 and 50,000 mm2 sample

abundant fraction of the liver proteome.

(J) Reactome and KEGG pathway coverage for single-cell and 50-cell samples. V

deep (>10,000 proteins) mouse liver dataset22 was included. A minimum of two qu

and three values from triplicates for the 50-cell samples.
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cyte-specific markers distributed over a dynamic range of

approximately three orders of magnitude (Figures 2H and 2I).

Proteins involved in ‘‘housekeeping’’ cell functions were quanti-

fied at a similar depth of analysis as the 50-cell samples, despite

the approximately 33-fold lower total MS2 signal, and, remark-

ably, compared with the deep mouse liver study covering more

than 10,000 proteins22 (Figure 2J). For example, we quantified

70 of 81 ribosomal proteins, 29 of 44 involved in fatty acid meta-

bolism and 22 of 30 tricarboxylic acid (TCA) cycle-related pro-

teins (Table S2). Interestingly, although housekeeping functions

such as ribosomal proteins were more stably expressed, cell-

metabolism-related proteins showed higher variation in the sin-

gle-cell contours compared with the 50-cell contours, likely due

to proteome averaging (Figure S2I). This is in line with a recent

liver study revealing strong metabolic differences in single hepa-

tocytes along the liver zonation axis.18 For lower abundant path-

ways, for example, insulin signaling or major histocompatibility

complex (MHC)-2 antigen presentation (12 vs. 107 and 25 vs.

92 detected proteins, respectively) (Figure 2J), a higher discor-

dance in detected proteins was observed between the low and

high tissue amounts, making the comprehensive single-cell anal-

ysis of these pathways only achievable with further improved

workflow sensitivity, or alternatively, by pooling phenotype-

matched cells, as we conceptualized recently.15 We conclude

that reproducible single-cell-based FFPE tissue profiling is

achievable using optimized sample processing and ultrasensi-

tive LC-MS workflows revealing important insights into cell

identity and function. The scalability of ourworkflow also enabled

the spatially resolved quantification of �5,000 proteins from

50-cell regions, capturing a substantial fraction of the cell-type-

specific proteome, thereby complementing single-cell-based

analyses.

Optimizing sample input across tissue and cell types
Based on our tissue dilution experiment in the murine liver, we

empirically determined the optimal tissue amount for the highest

proteome coverage of small tissue areas using a 15-min active

nanoflow gradient combined with dia-PASEF on the Bruker tim-

sTOF SCP.We next addressed how this liver optimum translated

to other tissue and cell types and how the recorded MS readout

could be exploited to normalize sample loading from tissue to

tissue or cell type to cell type. Such adjustments are of particular

importance for ultra-low sample amounts, which are not

amenable to peptide concentration measurements routinely

used prior to MS bulk analysis. In addition, various factors can

affect the TIC derived from different tissue specimens, including

sample-related sources of variability such as tissue archival

time, which can affect the retrieval of lower abundant proteins,35

or biologically due to protein abundance differences across tis-

sue and cell types.36 In any case, normalizing and adjusting sam-

ple amounts is hence particularly important for low input tissue
teins identified in single-cell contour samples are highlighted, as well as he-

ate measurement was required for the single-contour samples.

s. Proteins identified in single cells cover 2–3 orders of magnitude from the top

alues show the number of proteins quantified per pathway. For comparison, a

antified values from quadruplicate measurements was required for single cells



Figure 3. Optimizing sample input across tissue and cell types

(A) Immunofluorescence whole-slide image of a 5-mm-thick tonsil tissue section stained for CD3 (T cells), CD19 (B cells), and DNA (DAPI). Scale bars, 500 mm.

(B) Magnifications of exemplary B and T cell enriched regions used for laser microdissection and proteomics profiling. Scale bars, 25 mm.

(legend continued on next page)
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proteomics and should be carefully assessed. We hypothesized

that a simple normalization strategy using the total excised tis-

sue volume (microdissected area 3 section thickness) across

specimens should be a poor estimator of the optimal sample

amount. To test this, we analyzed a second tissue type, the hu-

man FFPE tonsil, which as a secondary lymphoid organ is impor-

tant for the development of immune tolerance and adaptive im-

mune functions and comprises B and T cell subsets, as well as

other immune and non-immune-related cell types.37 In murine

liver, 50–100 cell contours (125,000–250,000 mm3) yielded the

highest proteome depth and lowest median protein CVs

(Figures 2C–2E and S3A–S3C). Analyzing the same tissue

amounts obtained from tonsil, focusing on T and B cell enriched

microregions after IF imaging (Figures 3A and 3B), revealed

clearly different sampling optima (Figure 3C), despite a similar to-

tal number of quantified proteins per experiment (5,000–5,500

proteins; Table S3). Based on theMS2 signal (sum of MS2 quan-

tities of all peaks) and total quantity (sum of MS2 quantities of

identified precursors) retrieved from the DIA-NN output, we esti-

mated that murine liver on average resulted in roughly 3-fold

(2.83) higher MS2 signal compared with tonsil (Figure 3D), likely

due to different protein abundances in these two organs (Fig-

ure 3E). Notably, the MS2 signal derived from the liver reference

sample was consistent over the tested time frame of 6 months

and independent of section thickness (Figure S3D). In other

words, a 5-mm-thick contour of 25,000 mm2 resulted in an almost

identical MS2 signal as a 10-mm-thick contour of 12,500 mm2.

The optimal tissue amount for tonsil was 350,000–700,000 mm3

instead, allowing us to quantify �35,000 precursors and

�5,000 proteins in the 15-min dia-PASEF measurement (Fig-

ure 3C), and beyondwhich no further increase in proteome depth

was apparent. In fact, we observed lower identification rates

beyond this saturation point, similar to our findings in liver

(Figures 2C–2E), which we mostly attribute to increased tryptic

miscleavage (Figure S3E), as there was no sign of TIMS satura-

tion for the tested tissue amounts. However, further increased

peptide amounts could result in precursor-intensity-dependent

TIMS cell fragmentation, emphasizing the need to carefully

assess and normalize sample loading. This prompted us to

test whether these tissue saturation points obtained from the

liver and tonsil data could be exploited to predict the best tissue

sampling amount from ‘‘single-shot’’ measurements alone. This

simulates a scenario at the beginning of a spatial tissue prote-

omics study, where a priori proteomics information for a new tis-

sue type is lacking. The accurate prediction of the optimal tissue

amount could hence save time and resources and maximize
(C) Bar plots of MS2 intensities (left), precursors (middle) and proteins quantified

replicates were collected and measured. Note, the tissue-specific sampling op

dropped again.

(D) Comparison of liver and tonsil tissue dilution data. MS2 quantities are plotted a

the empirically determinedMS2 intensity optimum (MS2 quantity = 6–8E11 for live

MS2 quantity. For tonsil and liver tissue samples, data show averages from mini

(E) Cumulative protein intensities of liver and tonsil tissue proteomes ranked from

distributions for both tissues. Top 20 proteins of each tissue are shown on the ri

(F) Dynamic range of protein abundance from different amounts of tonsil tissue.

(G) Histogram of protein intensities of the of 8,750 mm2 tonsil tissue sample (43,7

signature of tonsil germinal centers (GSE12845), including known immune and c

(H) Unsupervised hierarchical clustering of small (6,000 mm2 3 10 mm) B cell, T c

upregulated (red) or downregulated (blue) proteins.
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data output. To this end, we laser microdissected replicates of

small 60,000 mm3 samples (6,000 mm2 of a 10 mm slice) of a

consecutive tonsil tissue section, such that the obtained inten-

sity was in the linear range of the mass spectrometric signal

(>50,000 mm3 tissue; Figure 3D) and compared the recorded

MS2 precursor quantity with our pre-determined optimum (MS

signal = 6–8 3 1011). To minimize variability from different extra-

cellular matrix compositions, we focused on homogeneous tis-

sue regions of high cellularity (Figure 3B), similar to the liver titra-

tion experiment (Figure S1G). This way, we extrapolated that

450,000–753,000 mm3 would be the optimal sampling amount

for this tonsil tissue, in excellent agreement with our measure-

ments (Figure 3C). We note that this simple normalization strat-

egy is strictly dependent on the employed LC-MS setup and

therefore requires empirical data to begin with but generally

recommend to perform such ‘‘survey’’ experiments to pinpoint

the optimal tissue amount needed for a specific SP research

question. In our example, murine liver served as highly consis-

tent reference tissue to predict the ideal tonsil amount; however,

other tissue types should be equally suited for such normaliza-

tion. Moreover, this strategy can prevent TIMS overloading,

which can negatively affect proteome coverage and quantifica-

tion. As a positive byproduct, the acquired raw files of the titra-

tion data can also be used to create project-specific refined

spectral libraries (STAR Methods), thereby drastically speeding

up subsequent DIA-NN searches.

As the size of the total dissected tissue area (or the number of

collected single-cell contours per sample), which determines the

obtained spatial resolution, is inversely correlated with proteome

coverage (Figures 2C and 2D), such survey measurements can

also help to find a good balance between these two parameters

in the context of the specific research question. To demonstrate

this exemplarily, we further analyzed our tonsil proteome data,

which in total covered more than 5,000 proteins distributed

over four orders of magnitude (Figure 3F). Projecting the different

tissue dilution measurements onto the measured dynamic range

of protein abundance showed that B or T cell-specific regions of

only 8,750 mm2 (5-mm-thick section) were already sufficient to

quantify many key players of immune cell signaling, cell-type-

specific markers, cytokines, and even transcription factors

(e.g., STAT1, IRF3, IFNGR1, CD8A, CD19, Ki-67, LAG3, inter-

leukin [IL]-16, and IL-18; Figures 3B, 3G, 3H, S3F, and S3G) at

a spatial resolution of�70–100 mm (center-to-center; Figure 3A).

Consequently, our pipeline should allow the analysis of spatially

resolved proteomes of various B and T cell niches from regions

of as little as �4,000 mm2 (10-mm-thick section).
(right) obtained from increasing amounts of tonsil tissue. For all amounts, six

timum was reached at 350,000–700,000 mm3, beyond which identifications

gainst increasing (log2 transformed) tissue amounts (volume in mm3). Based on

r and tonsil tissues), 2.8-fold more tonsil tissue was sampled to reach the same

mum six and five replicates per group, respectively.

the highest to the lowest abundant protein. Density plot shows protein intensity

ght.

50 mm3 in volume). Proteins highlighted in pink belong to an RNA-seq-based

ell-type-specific markers.

ell, and mixed B/T cell regions, related to (B). Z scored protein levels indicate
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Spatially and cell-type-resolved proteomics of human
tonsil tissue
Encouragedby our tonsil titration data, which revealed that known

immune cell regulators, cytokines, and transcription factors were

quantified from tissue regions of as little as 8,750 mm2

(43,750 mm3 in volume), we systematically investigated the impact

of the spatial location on the B and T cell specific proteomes. Hu-

man tonsil represents a prime example of tissues that are orga-

nized into distinct microanatomical compartments to fulfill diverse

biological functions critical for adaptive immunity. Following anti-

gen encounter of naive B cells within the follicle, secondary (acti-

vated) follicles are rapidly formed as production centers of anti-

gen-specific B cells. Following activation, B cells undergo cycles

of maturation and selection within newly formed germinal centers

(GCs), ultimately giving rise to highly antigen-specific antibody-

secreting plasma cells and memory B cells, the key players of hu-

moral immune response.38

We first mounted a 10-mm-thick tonsil section obtained from a

patient who underwent bilateral tonsillectomy on a metal frame

LMD slide and performed four-color IF whole-slide imaging to

detect B cells (CD19), T cells (CD3), epithelium (EP) (pan-CK),

andDNA (DAPI) (Figures4Aand4B).Using theopen-source image

analysis software QuPATH,39 we selected a total of 146 microre-

gions for automated LMD (STARMethods) and quantitative prote-

omics (Table S4). Based on the well-defined tissue architecture of

the human tonsil (Figure 4A), we included small circular regions of

4,000 mm2 isolated from primary and secondary B cell follicles,

includingsubregionsofdark, light,andgrayGCBcell niches, naive

mantel-zone-derived B cells, various interfollicular T cell zones,

and squamous cell EP (Figures 4A–4C). On average,wequantified

1,952 proteins per sample (Figure S4C) and 3,334 proteins in total.

After data filtering and missing value imputation (STARMethods),

proteomes clearly separated by microanatomical regions domi-

nated by the distinct cell types (Figure 4D). Known cell type

markers such as CD3D (T cell marker), CD19 (B cell marker), and

CDH1 (E-Cadherin, epithelialmarker)werehighest in the expected

sample groups (Figure 4E), confirming the high specificity of our
Figure 4. Spatially and cell-type-resolved proteomics of human tonsil

(A) Immunofluorescence whole-slide image of a 10-mm thick tonsil tissue section

Scale bars, 250 mm.

(B) Magnifications of the exemplary epithelium (EP), germinal center (GC), mant

proteomic profiling. Scale bars, 20 mm.

(C) Sample collection strategy and the total number of samples for each tissue r

(D) 3D principal-component analysis (PCA) of 146 samples based on 2,235 prote

(E and F) Log2-protein levels of cell-type-specific and functional markers quantifie

Asterisks indicate ANOVA p values of <0.001 after data imputation.

(G) Volcano plot of the pairwise proteomic comparison between the B cell zone (m

and turquoise (two-sided t test, false discovery rate [FDR] < 0.05).

(H) Volcano plot of the pairwise proteomic comparison betweenmantle zone and g

blue (two-sided t test, FDR < 0.05).

(I) Pathway enrichment analysis (Reactome and KEGG) based on t test difference

Benjamin-Hochberg FDR < 0.05 are shown.

(J) ROIs used for proteomic profiling of a secondary follicle region. Dark (red), gray

profiling. Mantel zone regions (light gray) are shown additionally. Scale bars, 50

(K) PCA of dark, gray, and light zone proteomes. Point concentration ellipses are

(L) Boxplots of relative protein levels (Z score) for selected markers. The boxplot

medians (solid line). Asterisks indicate two-sided t test p values (dark vs. light zo

(M) Unsupervised hierarchical clustering of ANOVA significant proteins (permuta

(J) and (K). Heatmap shows relative protein levels (Z score) of upregulated (y

contaminant.

1010 Cell Systems 14, 1002–1014, November 15, 2023
proteome data. GCs showed clear signs of increased proliferation

(e.g., Ki-67, PCNA) and DNA repair (e.g., TOP2A), indicative of

active sites of B cell expansion and somatic hypermutation.40

T cell zones instead featured high levels of the STAT1 transcription

factor as well as T cell modulating cytokines such as IL-16 (Fig-

ure 4F). Moreover, the global comparison of all T cells (n = 34) vs.

B cell-specific proteomes (mantle zone [MZ], n = 36) revealed

manybona fideB andT cellmarkers among the top regulated pro-

teins (e.g., CD22, CD3E, CD72, and CD5) and potentially many

other less-characterized ones (Figure 4G). We next focused on

different B cell niches to assess if our spatially resolved data

captured known functional differences of spatially defined B cell

zones.Naive (MZ) andactivated (GC)Bcells showedstrongprote-

ome differences (Figure 4H), indicative of their unique biological

functions. Although MZ B cells were characterized by higher

metabolic activity (e.g., TCA cycle and fructose and mannose

metabolism), senescence signatures, and phosphatidylinositol

signaling, activated GC B cells showed strong replication and

DNA repair signatures (Figures 4H and 4I; Table S4), in line with

their known biological function. Encouraged by this, we next as-

sessed whether our quantitative data even separated spatially

defined GC sub-compartments of dark (sites undergoing active

B cell proliferation and somatic hypermutation) vs. light (site of B

cell selection) zones (Figures 4J and 4K). Clearly, dark-zone-

derived B cells featured higher replication and DNA damage

response profiles compared with the light zone (Figures 4L and

4M). The higher expression of the T cell receptor subunit CD3D

in light zones on the contrary illuminated the presence of T helper

cells, important for B cell selection.40We confirmed this finding by

assessing our imaging data, which indeed revealed significantly

higher CD3 signals in the light GC regions, which was not the

case for the B cell marker CD19 (Figure S4D).

In summary, our data delineated how the robust microscopy-

guided ultra-low-input tissue proteomics workflow introduced

here can be applied to study cell type and spatially resolved pro-

teomes in health and disease based on readily accessible

archival FFPE specimens.
tissue

stained for CD3 (T cells), CD19 (B cells), pan-CK (epithelium), and DNA (DAPI).

le zone (MZ), and T cell enriched regions used for laser microdissection and

egion.

in groups after data filtering and imputation.

d in different tissue regions. Black dots indicate average values for each group.

antle zone) and T cell zone. Cell type-specific markers are highlighted in green

erminal center samples. Cell type-specificmarkers are highlighted in green and

between mantel zone and germinal center samples. Selected pathways with a

(orange), and light (yellow) germinal center zones were selected for proteomic

mm.

shown for each group with a 95% confidence.

s define the range of the data (whiskers), 25th and 75th percentiles (box), and

ne) of p < 0.001.

tion-based FDR < 0.05) from dark, gray, and light zone samples. Related to

ellow) and downregulated proteins (black). *KRT78 is marked as potential
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DISCUSSION

Spatial tissue proteomics connecting microscopy-based cell

phenotyping with LMD guided MS-based proteomics is an

emerging discovery concept for the study of cell function and

heterogeneity in health and disease. Our group recently co-

developed deep visual proteomics, an approach that combines

high-parametric imaging and machine-learning-based single-

cell phenotyping to guide precise tissue sampling for ultrasensi-

tive LC-MS analysis. This enabled the profiling of as little as 100

tissue cells per sample to a depth of 3,000–5,000 proteins,

dependent on the tissue and cell type of interest. However, the

flexible and highly modular design of the DVP pipeline, enabling

the profiling of single or few cells on one hand, or hundreds of

phenotype-matched cells for deeper proteome interrogation

(i.e., 5,000 proteins or more) on the other hand, also necessitates

carefully designed tissue benchmarking experiments and

detailed guidelines to extract most information for diverse

biomedical applications. With this in mind, we here introduce,

benchmark, and apply an optimized end-to-end workflow, start-

ing from AR comparisons for immunostaining and microscopy,

over guidelines for best-practice tissue collection by LMD, to-

ward an optimal nanoflow dia-PASEF LC-MS scheme for high-

est-sensitivity MS-based proteomics. For the first time, we pro-

vide evidence that robust ultra-low-input proteomics (few- or

even single-excised cells) from FFPE tissue slices is achievable

and fully compatible with conventional AR and four-marker IF im-

aging protocols, paving the way for higher-plex IF combinations

in the near future. At the same time, our flexible 384-well design

makes the protocol easily adaptable to robotic workflows for

further protocol automation. We find that low microliter volumes

(�2 mL) for sample preparation are sufficient to achieve true sin-

gle-cell sensitivity, which makes this workflow principally acces-

sible to any laboratory. On the Bruker timsTOF SCP, this allowed

us to quantify up to 2,000 proteins from single hepatocyte con-

tours and around 5,000 proteins from 50-cell regions, demon-

strating excellent workflow scalability. On the timsTOF Pro2 in-

strument, this translated to nearly 1,000 high-confidence

proteins from 1 to 2 hepatocytes (�1,500 mm2 regions) and a

somewhat similar proteome depth for the 50-cell samples,

further emphasizing the broad applicability of our protocol. The

data from single-excised hepatocytes also revealed that a

�25-mm spatial resolution is principally achievable for tissue

types such as liver, on par with the spatial resolution of state-

of-the-art spatial transcriptomics.41,42 These data also show

that highly abundant housekeeping proteins, such as ribosomal

proteins, are quantifiable at a depth and precision similar to

much higher sampling amounts, for example, from large-scale

bulk measurements. Our data also show that many metabolic

pathways (e.g., TCA cycle or fatty acid metabolism) are likewise

amenable to single-cell-based proteomic analysis, as also

shown recently.18 Notably, housekeeping related proteins are

often poorly correlated to mRNA abundances,10,43 making these

pathways particularly attractive for early applications of single-

cell-based tissue proteomics.

We also provide guidance on how to empirically determine the

optimal tissue amount to achieve the highest proteome coverage

while avoiding instrument overloading, which is particularly perti-

nent for single-cell sensitivity MS setups. We introduce a simple
normalization strategy using the extracted MS2 signal directly

from the search results to find the optimal tissue amount for liter-

ally any low-input spatial tissue proteomics experiment. This

strategy can also be applied to normalize qualitative sample dif-

ferences, which are often observed for archival specimens due

to, for example, varying archival times.31 The importance of

this can be illustrated through the eyes of a pathologist. For

the histomolecular analysis of cancer progression states, sam-

ples are typically distributed over several FFPE tissue blocks

(for example pre-cancer, primary tumor, and metastasis), poten-

tially collected over many years. Survey experiments, as outlined

here using the example of human tonsil tissue, could guide the

best sampling strategy for deep and reproducible LMD-assisted

proteomics.

However, although the latest generation MS instruments

feature excellent sensitivity when combined with optimized sam-

ple preparation workflows, such as the one introduced here, MS

throughput is still a major bottleneck for tissue sections that are

often larger than 1 cm2. Isobaric or non-isobaric multiplexing

strategies generally offer good alternatives to label-free based

methods further increasing sample throughput,44–46 but they

are still not sufficient to deal with this tremendous analytical

bottleneck. One can estimate that for the profiling of one 1 3

1 cm tissue section, sampled by non-overlapping 50 3 50 mm

squares, amounts, which we here show in liver and tonsil tissues

to be amenable to the reproducible quantification of 2,000–3,000

proteins, 40,000 measurements would be required for gridded

whole-slide sampling schemes. This is far beyond the reach of

current LC-MS setups, which typically analyze 20–50 tissue pro-

teomes per day. Instead, the integration of whole-slide IF imag-

ing for detailed cell and cellular neighborhood phenotyping al-

lows us to prioritize cells and ROIs subjected to global

proteome analysis, thereby offering a powerful, cost-effective,

and accessible spatial profiling strategy. We illustrate this in

tonsil tissue, where we use four-marker whole-slide IF imaging

to guide the sampling of over 140 microregions per single batch,

covering naive and activated B cell niches, interfollicular T cell

zones and squamous cell EP. From only �63 3 63 mm regions

(4,000 mm2 regions), we quantified spatially resolved proteomes

of activated GC niches, illuminating sites of clonal B cell expan-

sion and somatic hypermutation. Intriguingly, based on these

1,500–3,000 protein measurements per microregion, we quanti-

fied key players of immune cell function including cytokines and

transcriptional regulators, emphasizing the power of our ‘‘biolog-

ical fractionation’’ strategy to dig deep into the cell type and

spatially resolved tissue proteome.

In conclusion, we here provide a scalable and optimized

framework for MS-based spatial tissue proteomics of ultra-

low-input archival specimens combining high-content imaging,

LMD, and ultrasensitive MS.
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REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Recombinant Anti-Sodium Potassium

ATPase antibody [EP1845Y]

Abcam Cat#ab76020;

RRID: AB_1310695

Recombinant Alexa Fluor� 647 Anti-CD3D

antibody [EP4426]

Abcam Cat#ab198937; RRID: AB_2889190

CD20 Monoclonal Antibody (L26), Alexa

Fluor� 488, eBioscience

Thermo Fisher Scientific Cat# 53-0202-80, RRID: AB_10734357

Pan Cytokeratin Monoclonal Antibody

(AE1/AE3), eFluor� 570, eBioscience

Thermo Fisher Scientific Cat# 41-9003-80, RRID: AB_11217482

Biological samples

Murine liver FFPE tissue fromC57BL/6mice The Jackson Laboratory https://www.jax.org/strain/000664

Human tonsil FFPE tissue Institute of Pathology at Charite

University Hospital

https://pathologie-ccm.charite.de/

Chemicals, peptides, and recombinant proteins

n-Dodecyl-beta-Maltoside (DDM) Sigma-Aldrich Cat# D4641-500MG

Endoproteinase Lys-C Promega Cat# VA1170

Proteomics grade modified trypsin Promega Cat# V5117

Tris(2-carboxyethyl)phosphine

hydrochloride

Sigma-Aldrich Cat# C4706-2G

Acetonitrile (ACN) HPLC-grade VWR Cat# 83640.290

Isopropanol (ISO) Sigma-Aldrich Cat# 1070222511

Triethylammonium bicarbonate pH

8.5 (TEAB)

Merck T7408-100ML

Formic acid Merck Millipore Cat# 1.00264.1000

Trifluoroacetic acid Sigma-Aldrich Cat# 96924-250ML-F

2-chloroacetamide Sigma-Aldrich Cat# C0267-100G

EnVision FLEX Target Retrieval Solution

High pH (50X)

Agilent Dako Cat# K8004

Microscopy Neo-Clear Sigma-Aldrich Cat# 1.09843.5000

Odyssey Blocking Buffer LI-COR Biosciences Cat# 927-70001

Prolong Diamond antifade mounting

medium

Invitrogen Cat# P36961

Aqua Poly Mount Polysciences Europe GmbH Cat# 18606-20

Pepsin solution for antigen retrieval Agilent Dako Cat# S3002

Deposited data

Mass spectrometric raw files This paper ProteomeXchange: PXD042367

List of hepatocyte specific markers

(Azimifar et al.22)

10.1016/j.cmet.2014.11.002 1-s2.0-S1550413114004999-mmc5.xlsx

Software and algorithms

DIA-NN version 1.8.1 Demichev et al.28 https://github.com/vdemichev/DiaNN

R version 4.2.2 The R Project for Statistical

Computing

https://www.r-project.org/

Perseus version 1.6.15.0 Tyanova et al.50 https://maxquant.net/perseus/

Leica Laser Microdissection software

version 8.3.0.08259

Leica Microsystems https://www.leica-microsystems.com/

products/microscope-software/p/leica-

lmd-software/
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Zeiss ZEN version 3.7 Carl Zeiss AG https://www.zeiss.com/microscopy/de/

produkte/software/zeiss-zen.html

LAS X software version 3.7.524914 Leica Microsystems https://www.leica-microsystems.com/

products/microscope-software/p/leica-

las-x-ls/

Qupath version 0.4.3 Bankhead et al.39 https://qupath.github.io/

Biological Image Analysis

Software (BIAS)

Single Cell Technologies https://single-cell-technologies.com/bias-

2/BioStudies Archive accession number S-

BSST820

Bruker Compass Data Analysis

Software version 6.0

Bruker Daltonik GmbH https://www.bruker.com/en/products-and-

solutions/mass-spectrometry/ms-

software.html

Qupath_to_LMD function: Contour

export from Qupath to the Leica LMD7

This paper https://doi.org/10.5281/zenodo.8414787

Other

C18 Evotips (EV2013, Evotip

Pure, Evosep)

Evosep Biosystems https://www.evosep.com/evotip/

96-well plate Thermo Fisher Scientific https://www.thermofisher.com/order/

catalog/product/de/en/AB1300

384-well low-binding plate Eppendorf Cat# 0030129547

Super PAP-pen liquid

blocker mini

Science Services Cat# N71312-N

Cover glass Corning Cat# CLS2980223, #1.5

PPS frame slides Leica Cat# 11600294

PEN glass slides Carl Zeiss Cat# 15350731
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Fabian

Coscia (fabian.coscia@mdc-berlin.de).

Materials availability
This study did not generate new materials.

Data and code availability
d The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium (http://proteomecentral.

proteomexchange.org) via the PRIDE partner47 with the dataset identifier PXD042367. All data reported in this paper will be

shared by the lead contact upon request.

d The source code for processing the shapes used for laser microdissection has been deposited and is freely available at github.

com/CosciaLab/Qupath_to_LMD. The DOI is listed in the key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mouse experiments and organ harvesting
For themouse liver proteome experiments, 6- 8 weeks old female C57BL/6 mice from Jackson Laboratory were used. C57BL/6mice

were housed in individually ventilated cages in a specific pathogen-free mouse facility at the Max-Delbr€uck Center for Molecular

Medicine (Berlin, Germany).

For liver excision, anesthetized mice were sacrificed by cervical dislocation, and the livers were removed, rinsed twice in ice-cold

PBS, and transferred to 4% formaldehyde solution for fixation (fixation for at least 24h to 48h). Thereafter, livers were paraffin-

embedded for further histological analyses. The animal experiments were performed in accordance with the United Kingdom Coor-

dinated Committee on Cancer Research (UKCCR) guidelines and were approved by local governmental authorities (Landesamt f€ur

Gesundheit und Soziales Berlin, Germany).
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Human tissue samples
Tonsil tissues were obtained from two female patients aged 34 and 36. Both presented with recurrent chronic tonsillitis and under-

went bilateral tonsillectomy. The pathological examination revealed hypertrophy and hyperplasia of the lymphoid follicles as well as

enlarged germinal centers. Furthermore, an abundance of collagen fibers within the stroma could be observed. There were no signs

of active inflammation or malignancy.

Resected tonsils were fixed in 10%buffered formalin before gross processing. After overnight fixation, the specimens were weighed,

measured, and macroscopically evaluated. Afterward, the specimens were cut into 5-mm-thick slices. Two representative slices were

embedded in paraffin. The embedded tissue blocks were cut into 2-mm-thick sections, and stained with hematoxylin and eosin for his-

tological examination. The tissue blockswere then stored at room temperature at the archive of the Institute of Pathology at Charité Uni-

versity Hospital, Campus Mitte. The study was performed according to the ethical principles for medical research of the Declaration of

Helsinki and approval was obtained from the Ethics Committee of the Charité University Medical Department in Berlin (EA1/222/21).

METHOD DETAILS

Hematoxylin-eosin staining
Briefly, PEN glass slides (Carl Zeiss, 15350731) were treated with UV light for 1 hour. PPS frame slides (Leica, 11600294) were used

directly for the next steps. FFPE tissue sections were cut with a microtome (5 mm or 10 mm-thick), air dried at 37 �C overnight and

heated at 60�C for 10 minutes to facilitate better tissue adhesion. Next, tissue sections were deparaffinized by washing

2x5 minutes in Neo Clear (Sigma Aldrich, 1.09483.5000), followed by a series of 99%, 80% and 70% ethanol for 2 minutes, respec-

tively, and rehydrated by immersing in milliQ water three times. Then, slides were stained in Mayer’s hematoxylin for three minutes

and immersed in tap water for another ten minutes, rinsed in milliQ water and stained with eosin for 30 seconds. Subsequently, the

slides were dehydrated by submerging in 70%, 80%, and 99% ethanol serially. Samples were finally air-dried and stored at RT until

imaging. Before imaging, a cover glass (Corning, CLS2980223, #1.5) was mounted with Aqua Poly Mount medium (Polysciences Eu-

rope GmbH, 18606-20).

Immunofluorescence staining
Following tissue sectioning, mounting on LMD slides and de-paraffinization (described above), two epitope retrieval methods were

compared: heat-induced (HIER) and protease (pepsin)-induced (PIER, 10 min) epitope retrieval. HIER was done by submerging in

EnVision FLEX Target Retrieval Solution High pH solution (diluted to 1X) (Agilent Dako, cat.no. K8004) and heating in a steamer at

95�C for 20min, and subsequently cooled down in a pre-heated PBS buffer at room temperature for 30min. Odyssey Blocking Buffer

(LI-COR BioScience, 927-70001) was used for blocking in a humidified chamber for 30 min at room temperature. PIER was done by

applying pepsin (Agilent Dako, cat.no. S3002) on the tissue slide for 5 minutes at 37�C, and immersed in PBS solution to stop the

reaction. The slides were washed two times with PBS and air dried before antibody staining.

For murine liver tissue stains, the primary antibody targeting Na/K-ATPase (stock concentration 0.563 mg/ml, dilution 1:100, Ab-

cam, ab76020) was diluted in Odyssey Blocking Buffer and incubated overnight at 4 �C in a humidified chamber. Next, tissue spec-

imens were washed 3x in PBS and secondary antibodies for the visualization of Na/K-ATPase (Alexa Fluor 488 donkey anti-rabbit,

stock concentration 2 mg/ml, dilution 1:250, A32790, Invitrogen) were diluted in Odyssey Blocking Buffer and applied for 1 hour at

room temperature in the dark. After staining, slides were washed 3x in PBS, counterstained by Hoechst (dilution 1:1000 in PBS,

Thermo Fisher Scientific, #62249) for 10 minutes and followed by three washes in PBS and two washes in milliQ. Before imaging,

a cover glass (#1.5) was mounted using ProLong� Diamond anti-fade mounting medium (Thermo Fisher Scientific, P36961).

For tonsil tissue stains following tissue sectioning, mounting on LMD slides and de-paraffinization, the tissues were subjected to

heat-induced epitope retrieval as described above. Odyssey Blocking Buffer was used for blocking in a humidified chamber for

30min at room temperature. Next, conjugated primary antibodies targeting CD20 (stock concentration 0.5mg/ml, dilution 1:50, Ther-

mofisher, 53-0202-80, Alexa Fluor 488), CD3 (stock concentration 0.5mg/ml, dilution 1:100, Abcam, ab198937, Alexa Fluor 647), and

pan-cytokeratin (stock concentration 0.2 mg/ml, dilution 1:100, Thermofisher, 41-9003-80, eFluor 570) were diluted in Odyssey

Blocking Buffer (and incubated overnight at 4 �C in a humidified chamber. Tissue specimens were washed 4x in PBS, counterstained

by Hoechst (dilution 1:1000 in PBS, Thermo Fisher Scientific, 62249) for 10 minutes, washed 4x in PBS and 2x in milliQ water. Sub-

sequently, the slides were dehydrated by submerging them in 70%, 80%, and 99% ethanol serially. Before imaging, a cover glass

was mounted with ProLong� Diamond anti-fade mounting medium.

High-resolution microscopy
Images of immunofluorescence-labeled tonsil tissue sections were acquired using an Axioscan 7 system (Zeiss), equipped with

wide-field optics, a Plan-A photochromat 10x/0.45 M27 objective and a quadruple-band filter set for Alexa fluorescent dyes. The

wide-field acquisition was performed using the Colibri 7 LED light source and anAxioCam 712mcamera. Imageswere obtained auto-

matically with Zeiss ZEN 3.7 (blue edition) at non-saturating conditions (16-bit dynamic range).

Images of immunofluorescently-labeled and hematoxylin-eosin stained murine liver tissue sections were acquired on the Leica

LMD7 system using the LAS X software (version 3.7.524914, Leica Microsystems), an HC PL FLUOTAR 10x/0.32 DRY objective

and the DF7000T camera. The microscope was equipped with the following filter sets: LMD-Dapi, LMD-Cy3, LMD - Alexa594,
Cell Systems 14, 1002–1014.e1–e5, November 15, 2023 e3
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LMD-YFP, LMD-CY5, LMD-BGR,GFP. After imaging, the cover glasswas finally removed through gentle agitation of the slide in PBS.

After one dip in milliQ water for salt removal, the slide was air-dried and stored at 4�C until laser microdissection.

Image analysis and contour export for laser microdissection
Image analysis was performed in QuPath (version 0.4.3) and BIAS (BioStudies Archive accession number S-BSST820). Annotations

of different regions of interest were manually created in QuPath after image analysis. The assignment of three reference points (x-y

coordinates) is required for precise contour transfer between the screening and laser microdissection microscopes. Contours and

reference points were exported in a geojson format and translated into the .XML format compatible with the Leica LMD7 software.

The code for processing the shapes is available at github.com/CosciaLab/Qupath_to_LMD, it uses geopandas (Version 0.12.2) and

py-lmd48 (Version 1.0.0).

Laser microdissection
We used the Leica LMD 7 system and Leica Laser Microdissection V 8.3.0.08259 software for the collection of tissue contours. De-

pending on the contour size, tissue was cut with a 20x or 63x objective in fluorescence or brightfield mode. The following laser set-

tings were used for the 20x objective (HC PL FL L 20x/0.40 CORR): power 56, aperture 1, speed 15, middle pulse count 1, final pulse

-1, head current 37 – 45% (depending on tissue type and section thickness), pulse frequency 801 and offset 101. For the 63x objec-

tive (HC PL FLUOTAR L 63x/0.70 CORR XT), the settings were: power 59, aperture 1, speed 50, middle pulse count 1, final pulse -1,

head current 45-50%, pulse frequency 3000, offset 101.

Contours were cut and sorted into a low-binding 384-well plate (Eppendorf 0030129547) configured over the ‘universal holder’

function with one empty well between samples.

Sample preparation for LC-MS analysis
A detailed sample preparation protocol is provided in the supplemental information (Methods S1). Tissue samples were collected by

manual cutting or by automated cutting after contour import into low-binding 384-well plates. For mouse liver tissue samples (5- or

10-mm-thick sections cut with a microtome), regions of 600 mm2 - 100,000 mm2 were collected. To concentrate tissue pieces at the

bottom of each well after LMD collection, 15 ml of acetonitrile was added to each well, briefly vortexed and vacuum dried (15min at

60�C). Another well inspection is recommended before proteomics sample preparation to ensure high collection efficiency.

We tested three different protocols, DDM-based, ACN-based and a combination of DDM and ACN. The lysis buffer for the DDM-

based protocol consisted of 0.1%DDM, 5mMTCEP, 20mMCAA and 0.1M TEAB in water. 2ml of lysis buffer was added to each sam-

ple well using the MANTIS Liquid Dispenser (Formulatrix, V3.3 ACC RFID, software version 4.7.5) and the high-volume diaphragm

chips (Formulatrix, cat.no. 233128). The plate was closed with a PCR ComfortLid (Hamilton), and heated at 95�C for 60 minutes.

Then, samples were shortly cooled down, and 1ml of LysC was added (prediluted in water to 2 ng/ml) and digested for minimum 2

hours at 37�C in the thermal cycler (50�C lid temperature). Subsequently, 1ml of trypsin was added (prediluted in water to 2 ng/ml)

and incubated overnight at 37 �C in the thermal cycler. The next day, digestion was stopped by adding trifluoroacetic acid (TFA, final

concentration 1% v/v), and samples were vacuum dried before peptide clean-up.

For the ACN-based protocol, the lysis buffer consisted of 5mM TCEP, 20mM CAA, 0.1M TEAB diluted in water. 2 ml of lysis buffer

was added to each sample well, the plate was closed with PCR ComfortLid, and heated at 95�C for 60 minutes in a thermal cycler

(Bio-Rad S1000 with 384-well reaction module) at a constant lid temperature of 110�C. Next, 1 ul of 100% ACN was added to each

well, and the plate was incubated for an additional 60 min in a thermal cycler at 75�C at a constant lid temperature of 110�C. Then,
samples were shortly cooled down, and 1 ml of LysCwas added (prediluted with 0.1M TEAB, 30%ACNwater to 2 ng/ml) and digested

for 2 hours at 37�C in the thermal cycler (50�C lid temperature). Subsequently, 1 ml of trypsin was added (prediluted with 0.1M TEAB,

10% ACN water to 2 ng/ml) and incubated overnight at 37 �C in the thermal cycler. The next day, digestion was stopped by adding

trifluoroacetic acid (TFA, final concentration 1% v/v), and samples were vacuum dried before peptide clean-up.

For the combined DDM/ACN-based protocol, the lysis buffer for the DDM-based protocol consisted of 0.1% DDM, 5mM TCEP,

20mM CAA and 0.1M TEAB in water. 2ml of lysis buffer was added to each sample well using the MANTIS Liquid Dispenser and the

high-volume diaphragm chips. The plate was closed with a PCRComfortLid, and heated at 95�C for 60minutes. Then, samples were

shortly cooled down, and 1 ml of LysC was added (2 ng/ml in 0.1M TEAB [pH 8.5] and 30% ACN in milliQ water) and digested for min-

imum 2 hours at 37�C in the thermal cycler (50�C lid temperature). Subsequently, 1 ml of trypsin was added (2 ng/ml containing 10%

ACN and 0.1M TEAB [pH 8.5] in milliQ water.) and incubated overnight at 37 �C in the thermal cycler. The next day, digestion was

stopped by adding trifluoroacetic acid (TFA, final concentration 1% v/v), and samples were vacuum dried before peptide clean-up.

Peptide clean-up with C-18 tips
Evotip (Evosep, Odense, Denmark) based peptide clean-up was performed as recommended by the manufacturer. Briefly, 20 ul of

buffer B (99.9% ACN, 0.1% FA) was added to each C-18 tip (EV2013, Evotip Pure, Evosep) and centrifuged at 700 rpm for 1 minute.

Then, 20 ul of buffer A (99.9%water, 0.1% FA) was added from the top of each C-18 tip, activated in isopropanol for 20 seconds and

centrifuged again at 700 rpm for 1 minute. Digested tissue samples were then loaded onto Evotips, washed once with 20 ul buffer A

and finally eluted with 20 ul buffer B to a 96-well plate (Thermo Fisher Scientific, AB1300), and vacuum dried (15 min at 60�C).
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Samples were stored at�20 �C until liquid chromatography–mass spectrometry (LC–MS) analysis. For LC-MS analysis, 4.2 ml of MS

loading buffer (3% acetonitrile, 0.1% TFA in water) was added, the plate was vortexed for 10 seconds and centrifuged for 1 minute at

700g. 4 ml were finally injected into the mass spectrometer.

Liquid chromatography–mass spectrometry (LC – MS) analysis
LC-MS analysis was performed with an EASYnLC-1200 system (Thermo Fisher Scientific) connected to a trapped ion mobility spec-

trometry quadruple time-of-flight mass spectrometer (timsTOF SCP and timsTOF Pro2, Bruker Daltonik) with a nano-electrospray ion

source (CaptiveSpray, Bruker Daltonik). The autosampler was configured to pick samples from 384- and 96-well plates.

Peptides were loaded on a 20-cm home-packed HPLC column (75-mm inner diameter packed with 1.9-mm ReproSil-Pur C18-AQ

silica beads, Dr. Maisch).

Peptides were separated using a linear gradient from 7-30% buffer B (0.1% formic acid and 90% ACN in LC-MS grade water) in

14 minutes, followed by an increase to 60% for 1 minute and a 1.5-minute wash in 90% buffer B at 250 nl min-1. Buffer A consisted of

0.1% formic acid in LC-MS grade water. The total gradient length was 21minutes. A column oven was used to keep the column tem-

perature constant at 40�C.
For dia-PASEF analysis, we used a dia-PASEF method with 8 dia-PASEF scans separated into 3 ion mobility windows per scan

covering a 400-1000 m/z range by 25 Th windows and an ion mobility range from 0.64 to 1.37 Vs cm-2. The mass spectrometer

was operated in high sensitivity mode, with an accumulation and ramp time at 100ms, capillary voltage set to 1750V and the collision

energy as a linear ramp from 20 eV at 1/K0 = 0.6 Vs cm-2 to 59 eV at 1/K0 = 1.6 Vs cm-2. The collision energy was ramped linearly as a

function of ion mobility from 59 eV at 1/K0 = 1.6 V s cm-2 to 20 eV at 1/K0 = 0.6 V s cm-2.

Proteomics raw data analysis
We used DIA-NN28 (version 1.8.1) for dia-PASEF raw file analysis and spectral library generation.

Spectral library generation

For spectral library generation to analyze dia-PASEF data, human and mouse FASTA files were downloaded from Uniprot (2022

release, UP000000589_10090 Mus Musculus, UP000005640_9606, downloaded on April 10th and April 8th 2022 respectively).

DIA-NN in silico predicted libraries were generated by providing the human ormouse FASTA file and frequently found contaminants49

(mouse + mouse tissue contaminants, or human + universal contaminants). Deep learning-based spectra, RTs and IMs prediction

were enabled for the appropriate mass range of 300-1200 m/z. N-terminal M excision was enabled and cysteine carbamidomethy-

lation was enabled as a fixedmodification. Amaximum of 2missed cleavages was allowed, and the precursor charge set to 2 - 4. For

the generation of project-specific refined libraries, in-silico-generatedmouse and human libraries were used to search 20-50 raw files

of high-sample amounts, such that the optimal total ion current was reached (see Figures 2 and 3). The refined murine liver library

consisted of 68,006 precursors, 61,554 elution groups and 8,225 protein groups. The refined human tonsil library consisted of

47,999 precursors, 44,675 elution groups and 8,137 protein groups.

Search of dia-PASEF raw files with refined libraries

DIA-NNwas operated in the default mode with minor adjustments. Briefly, MS1 andMS2 accuracies were set to 15.0, scan windows

to 0 (assignment by DIA-NN), isotopologues were enabled, no MBR for project-specific DIA-NN-refined libraries, heuristic protein

inference and no shared spectra. Enabling MBR for refined libraries improved data completeness of single-cell samples (Figure

S2G). No difference was observed for higher input samples. Proteins were inferred from genes, neural network classifier was set

to single-pass mode, quantification strategy as ‘Robust LC (high precision)’. Cross-run normalization was set to ‘RT-dependent’, li-

brary generation as ‘smart profiling’, speed and Ram usage as ‘optimal results’.

QUANTIFICATION AND STATISTICAL ANALYSIS

Proteomics data analysis was performed with Perseus50 (version 1.6.15.0) and within the R environment (https://www.r-project.org/,

version 4.2.2) with the following packages: ggplot2 (v3.4.2), FactoMineR (v2.8), factoextra (v 1.0.7.999), plotly (v4.10.1), reshape2

(v1.4.4), viridis (v0.6.3), UpSetR (v1.4.0). For differential expression analysis (t-test or ANOVA, Figures 3 and 4), data were filtered

to keep only proteins with 70% non-missing data in at least one group. Missing values were imputed based on a normal distribution

(width = 0.3, downshift = 1.8) before statistical testing. For multi-sample (ANOVA) or pairwise proteomic comparisons (two-sided un-

paired t-test), a permutation-based FDR of 5% was applied to correct for multiple hypothesis testing. Principal component analysis

was performed in R (see packages above). 1D pathway enrichment analysis51 (Figure 4I) was done in Perseus based on the KEGG

(https://www.genome.jp/kegg/) and Reactome Pathway Database (reactome.org), using a Benjamini-Hochberg FDR cut-off of 0.05.

The minimum category size was set to 5.
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