
1

Supplementary information

Streamlined Structure Determination by Cryo-Electron Tomography and Subtomogram
Averaging using TomoBEAR

Nikita Balyschew1,2,$, Artsemi Yushkevich3,4,$, Vasilii Mikirtumov1,3, Ricardo M. Sanchez1,2,8,
Thiemo Sprink5,7, Misha Kudryashev1,2,3,6*

1. Max Planck Institute of Biophysics, Frankfurt on Main, Germany.
2. Buchmann Institute for Molecular Life Sciences, Goethe University of Frankfurt on Main,
Germany.
3. In Situ Structural Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz
Association, Berlin, Germany.
4. Department of Physics, Humboldt University of Berlin, Germany
5. Core Facility for Cryo-Electron Microscopy, Charité-Universitätsmedizin Berlin, Germany.
6. Institute of Medical Physics and Biophysics, Charité-Universitätsmedizin Berlin, Germany.
7. Cryo-EM Facility, Max Delbrück Center for Molecular Medicine in the Helmholtz Association,
Berlin, Germany.
8. Present address: EMBL Heidelberg, Germany.
$ indicates equal contribution
*Email: mikhail.kudryashev@mdc-berlin.de

2

Supplementary Fig. 1. TomoBEAR functionality for fiducial-less alignment and post-processing
of tomograms. All panels represent the same XY (top row) and XZ (bottom row) slices of the same
example tomogram reconstructed by the weighted back projection algorithm from IMOD from
the EMPIAR-11306 benchmarking data set (in situ pFIB-milled lamellae): A. Reconstructed from
tilt stack aligned by patch-tracking in IMOD. B. Reconstructed from tilt stack locally aligned by
AreTomo. C. Reconstructed from the same aligned tilt stack as in A, but with additional CTF
deconvolution, denoising and missing wedge restoration performed by IsoNet. D. Reconstructed
from the same aligned tilt stack as in A, and post-processed as in C, but with the additional non-
anisotropic diffusion (NAD) filter applied by IMOD. The scale bar on all images is 100 nm. The
yellow dashed rectangles on A represent the location of a section in the XZ and XY slices, which
were summed and presented as the corresponding images A-D.

3

Supplementary Fig. 2. Benchmarking TomoBEAR performance for tomographic reconstruction.
A. Processing times of the HIV-1 data set (EMPIAR-10164) for offline (conventional) and live data
processing modes. B. Processing times for tomographic reconstruction of the four processed data
sets in the conventional data processing mode. The provided time is per-tomogram and
calculated by averaging processing time was measured for four tomograms. Time format on both
panels: hh:mm:ss.SS, where hh - hours, mm - minutes, ss - seconds.

The processing stages in Supplementary Fig. 2 included the following operations and TomoBEAR
modules:

● Pre-process TS - harvesting metadata (MetaData), sorting of tilt movies (SortFiles), motion
correction (MotionCor2), create raw stacks (CreateStacks);

● Align TS - pre-aligned stack generation (BatchRunTomo), fiducials tracking and fiducials-
based alignment (BatchRunTomo, DynamoTiltSeriesAlignment, DynamoCleanStacks) or
patched (fiducial-less) alignment (AreTomo, BatchRunTomo);

● CTF (estimate and correct) - CTF estimation and correction
(GCTFCtfphaseflipCTFCorrection, BatchRunTomo);

● Bin and Reconstruct - stacks binning (BinStacks) and tomographic reconstruction
(Reconstruct).

4

Supplementary Fig. 3. TomoBEAR functionality for particle picking of 80S ribosomes. All panels
represent the same XY slice based on the same example tomogram reconstructed by the
weighted back projection algorithm from IMOD from the EMPIAR-11306 benchmarking data set
(pFIB-milled lamellae). A. Slice of the tomogram reconstructed from the tilt stack aligned by
patch-tracking in IMOD. Image contrast was enhanced for representation purposes by CTF
deconvolution, denoising and missing wedge restoration using IsoNet. B. Slice of the cross-
correlation (CC) map as the result of the Dynamo-based template matching, performed on the
tomogram aligned as in A. C. The same image as in B, but annotated (green circles) with
corresponding particle positions identified by template matching post-processing routines of
TomoBEAR. D. Reconstructed from tilt stack locally aligned by AreTomo, with additional
denoising and missing wedge restoration performed by IsoNet as well as band-pass filtering as
pre-processing step of crYOLO. C. The same image as in D, but annotated (green circles) with
corresponding particle positions identified by crYOLO training and prediction functionality. The
scale bar on all images is 100 nm.

5

Supplementary Text 1: Description of TomoBEAR modules and their dependencies
Generally, all the modules can be subdivided into the following categories:

● Global parameters configuration: general;
● Pipeline control: StopPipeline;
● Tilt-series and cryo-ET data processing: MetaData, SortFiles, MotionCor2,

GridEdgeEraser, CreateStacks, DynamoTiltSeriesAlignment, DynamoCleanStacks,
AreTomo, BatchRunTomo, GCTFCtfphaseflipCTFCorrection, BinStacks, Reconstruct,
IsoNet;

● Particles picking-associated modules: DynamoImportTomograms,
EMDTemplateGeneration, TemplateGenerationFromFile, DynamoTemplateMatching,
TemplateMatchingPostProcessing, crYOLO, GenerateParticles;

● subtomogram averaging modules: DynamoAlignmentProject.

The modules functional is described below, followed by the dependencies table and tested
dependencies versions.
The continuously updated version of the information presented in this supplementary material
can be found on the following TomoBEAR documentation page:
https://github.com/KudryashevLab/TomoBEAR/wiki/Modules

General
The general section is not a module, but a section where all the general parameters regarding
the processing and the environment can be found. Parameters which are input in this section are
visible to all modules during the execution. If parameters with the same key are found in a
module block, then they override parameters from the general section.

MetaData
The MetaData module collects descriptive statistics such as min, max, mean, std from the raw
data.

SortFiles
The SortFiles module sorts the raw files into tilt-series corresponding to tomograms and links
them to their corresponding folders for further processing.

MotionCor2
The MotionCor2 module uses MotionCor21 to correct for the sample movement in a given
projection recorded as a dose-fractionated movie or EER sequence. For the options it is advised
to look also into the manual of MotionCor2 provided along with the source code as there are
some more detailed descriptions.

6

GridEdgeEraser
The GridEdgeEraser module contains an original algorithm that performs grid edge identification
in the raw tilt stacks and erases it for Au grids data. The algorithm is based on the cross-
correlation iterative roto-translational alignment and image intensity statistics.

CreateStacks
The CreateStacks module creates the stacks and normalizes them. There are two options for
normalization, the default scheme is to divide the projections by their frame count. TomoBEAR
detects automatically if you are using high-dose images from hybrid StA2 and divides them by
their corresponding frame count in contrast to low-dose images where the frame-count is
different.

DynamoTiltSeriesAlignment
The DynamoTiltSeriesAlignment module uses the tilt stacks alignment algorithm from Dynamo3
which is the state of the art available algorithm for fiducial-based alignment. As default,
reasonable parameters for many cryo-ET projects are set. Some of them are dynamically derived.
The option to override non-dynamically derived parameters is available via the JSON
configuration file. For troubleshooting and optimization of parameters it is possible to go to the
processing folder and use the Dynamo tools as in the tutorial
(https://wiki.dynamo.biozentrum.unibas.ch/w/index.php/Walkthrough_on_GUI_based_tilt_ser
ies_alignment).
DynamoCleanStacks
The DynamoCleanStacks module can be run after the DynamoTiltSeriesAlignment to
automatically clean up the tilt stacks and to remove the projections where
DynamoTiltSeriesAlignment has not found gold beads. For that DynamoCleanStacks uses the
output from Dynamo tilt stacks alignment which states on which projections the fiducials could
be fit. The others are then removed from the tilt stacks for further processing.

AreTomo
The AreTomo module uses AreTomo4 to perform global or local fiducial-free alignment of the tilt
stack. In order to optimize alignment parameters, please consult with the corresponding
AreTomo documentation.

StopPipeline
The StopPipeline module allows to stop TomoBEAR after some processing step to inspect the
output and not waste computational resources if parameters need to be optimized.

BatchRunTomo
The BatchRunTomo is a versatile module performing IMOD operations5. The detailed description
can be found here: Tomography Guide for IMOD Version 4.11. TomoBEAR can runs steps of
batchruntomo:
0: Setup
1: Preprocessing
2: Cross-correlation alignment

7

3: Pre Aligned stack
4: Patch tracking, auto seeding, or RAPTOR
5: Bead tracking
6: Alignment
7: Positioning
8: Aligned stack generation
9: CTF plotting
10: 3D gold detection
11: CTF correction
12: Gold erasing after transforming fiducial model or projecting 3D model
13: 2D filtering
14: Reconstruction
14.5: Postprocessing on a/b axis reconstruction
15: Combine setup
16: Solvematch
17: Initial matchvol;
18: Autopatchfit
19: Volcombine
20: Post Processing with Trimvol
21: NAD (Nonlinear anisotropic diffusion)

GCTFCtfphaseflipCTFCorrection
The GCTFCtfphaseflipCTFCorrection module is detecting the defocus using GCTF6 or CTFFIND47
on the tilt series which will be further CTF-corrected and used to reconstruct tomograms for
template matching or particle generation. The results can be examined in the processing folders.
As well, the module can be used for CTF-correction using Ctfphaseflip from IMOD.

BinStacks
The BinStacks module is used to bin tilt series stacks to be able to reconstruct them with the
Reconstruct module. Stacks with selected binning levels will be produced.

Reconstruct
The Reconstruct module is used for tomogram reconstruction from aligned tilt stacks . The
module is set up by default to reconstruct CTF-corrected binned stacks. If you otherwise want to
reconstruct unbinned stacks or non-CTF-corrected stacks (for example, for further 3D CTF-
deconvolution by IsoNet) you need to set up the Reconstruct module properly. Besides, there are
several post-filtering options available in the module such as exact filtering and NAD filtering by
IMOD.

IsoNet
The IsoNet module provides functionality of the deep learning framework IsoNet8 used for
reconstruction of the missing wedge region in tomograms. Besides, IsoNet provides an interface
for 3D CTF-deconvolution and denoising. TomoBEAR interface includes such IsoNet routines as
pre-processing (STAR file preparation, mask creation, CTF-deconvolution), training (refinement)

8

and prediction. To optimize parameters of the software please use the corresponding IsoNet
documentation (https://isonetcryoet.com/).

DynamoImportTomograms
The DynamoImportTomograms module generates a Dynamo Catalogue for the user and inputs
the tomograms to that catalogue. After that you can call the Dynamo Catalogue Manager (dcm)
to generate the models for the tomograms or pick particles in them using the functionality of
Dynamo Catalogue9.

EMDTemplateGeneration
The EMDTemplateGeneration module is used to automatically download a EMDB
(https://www.ebi.ac.uk/emdb/) template map which is further down-scaled to match the
requested template matching binning level. Besides that, an automated routine to generate the
mask is also implemented. Either this module or the module TemplateGenerationFromFile needs
to be run before template matching is executed by the DynamoTemplateMatching module.

TemplateGenerationFromFile
The TemplateGenerationFromFile module imports a map into the TomoBEAR workflow given by
a path and scales it properly if the map header contains the correct pixel size; else the pixel size
can be input as a parameter through the JSON-based configuration file. Either this module or the
module EMDTemplateGeneration needs to be run before template matching is executed by the
DynamoTemplateMatching module.

DynamoTemplateMatching
The DynamoTemplateMatching module re-implements the template matching functionality
from the Dynamo package, but distributes calculations on the GPU. The GPU-distributed version
executes is up to 12-15 times faster than the conventional CPU-distributed template matching
implementation available in Dynamo3.

TemplateMatchingPostProcessing
The TemplateMatchingPostProcessing module takes the cross-correlation volumes generated by
the DynamoTemplateMatching module and extracts the coordinates from the peaks found in
them until a given threshold is reached. This threshold is set by default to a value of 2.5 standard
deviations. Furthermore, this module could extract the corresponding subtomograms by
cropping them from the reconstructed tomograms using Dynamo or reconstruct them directly
from the aligned stacks using SUSAN.
crYOLO
The crYOLO module provides functionality of the deep learning framework crYOLO10 used for
particle coordinate prediction. TomoBEAR interface includes the crYOLO routines: pre-processing
(configuration file preparation, low-pass or neural network-based filtering), training and
prediction. To optimize parameters of the training and prediction please use the corresponding
crYOLO documentation (https://cryolo.readthedocs.io/en/stable/index.html).

GenerateParticles

9

The GenerateParticles module uses Dynamo-like particles tables to extract particles in one of the
following ways:

● crop sub-tomograms from the reconstructed tomograms using Dynamo;
● reconstruct sub-tomograms from sub-stacks cropped directly from aligned tilt stacks

using SUSAN.

DynamoAlignmentProject
The DynamoAlignmentProject module can be set up to generate the two common Dynamo3
subtomogram averaging projects: multiple reference alignment (MRA) project and an
independent half-set based refinement project. For classification we find it useful to have one or
two classes with the correct reference that was used e.g. for template matching and some classes
containing only noise (“noise traps”) which will attract suboptimal particles into classes for
removal.

Modules dependencies
The only mandatory dependency of any TomoBEAR module is the MATLAB or its pre-compiled
libraries. The three other essential dependencies of the TomoBEAR code base are:

● CUDA, which is utilized by many interfaced software packages used by TomoBEAR;
● IMOD and Dynamo, with both of them met in approximately half of the modules being

used there as main module functionality or as auxiliary tool sets.

All the dependencies, except for mandatory one, corresponding to the modules which depend
on them are listed in the table below (optional dependencies are provided in the brackets):

Module Dependencies

MetaData no additional dependencies

SortFiles no additional dependencies

MotionCor2 IMOD, MotionCor2, CUDA

GridEdgeEraser Dynamo

CreateStacks IMOD, Dynamo

DynamoTiltSeriesAlignment Dynamo

DynamoCleanStacks IMOD, Dynamo

AreTomo IMOD, AreTomo, CUDA

BatchRunTomo IMOD

GCTFCtfphaseflipCTFCorrection IMOD, Gctf/CTFFIND4, CUDA

BinStacks IMOD

10

Module Dependencies

Reconstruct IMOD

IsoNet (IMOD), IsoNet, (Anaconda), CUDA

DynamoImportTomograms Dynamo

EMDTemplateGeneration Dynamo

TemplateGenerationFromFile Dynamo

DynamoTemplateMatching Dynamo, (CUDA)

TemplateMatchingPostProcessing Dynamo, (SUSAN), (CUDA)

crYOLO (Dynamo), crYOLO, (Anaconda), CUDA

GenerateParticles Dynamo, (SUSAN), (CUDA)

DynamoAlignmentProject Dynamo, (SUSAN), (CUDA)

Further we provide a list of the dependency’s versions, which were used for TomoBEAR testing:

● MATLAB: 2021a/b;
● CUDA: 10.1 or/and 11.5 (depends on the certain software requirement);
● IMOD: 4.11.24 (compiled by its authors on RHEL7 with CUDA-10.0 and Qt5 and used by

us with CUDA-10.1), 4.9.12 (compiled by its authors on RHEL7 with CUDA-8.0 and Qt4 and
used by us with CUDA-10.1);

● Dynamo: 1.1.532 with MRC-9.9.0 for GLNXA64 system (with GPU-based functionality
compiled by us locally using CUDA-11.5);

● MotionCor2: 1.4.4 (pre-compiled by its authors for CUDA-11.3 which was executed by us
using CUDA-11.5);

● AreTomo: 1.3.3 (pre-compiled by its authors and used by us with CUDA-11.5);
● Gctf: v1.18 (pre-compiled by its authors and used by us with CUDA-10.1);
● CTFFIND4: 4.1.14 (released on May 8, 2020);
● IsoNet: 0.2 (using CUDA-11.5);
● crYOLO: 1.9.3 (using CUDA-11.5);
● SUSAN: v0.1-RC1-TomoBEAR (compiled by us using CUDA-11.5).

Specifically, for IsoNet and crYOLO we provide as well information on the core used libraries
versions, we tested for the corresponding Anaconda environments:

● IsoNet libraries: python=3.9, cudatoolkit=11.5, cudnn=8.3, tensorflow-gpu=2.11;
● crYOLO libraries: python=3.8, nvidia-cudnn-cu115=8.3, nvidia-tensorflow=1.15.

11

Supplementary Text 2: Development of new TomoBEAR modules

Development of new TomoBEAR modules to support external cryoET packages requires a
continuous effort for testing, updating and maintaining them and is hard to perform by a small
academic team. However, the open-source status of the TomoBEAR project enables the
academic cryo-ET community to overcome limits of a single team by contributing to the software
accumulated broad community’s experience and expertise. In the end, software is made for
users' needs and the best way to deliver the requested functionality is to let users themselves
participate in the development process. That is possible by means of open-source code
distribution, open public communication channels and contribution guidelines, all of which are
accessible for the TomoBEAR project via its GitHub repository page:
https://github.com/KudryashevLab/TomoBEAR.
Here we provide a brief guide on how to write new TomoBEAR modules to further assist and
encourage TomoBEAR users on independent development of functionality for their specialized
needs. Depending on the certain computational tool characteristics as well as its role in the
TomoBEAR workflow, there are many ways to develop a new module. Available cryo-ET software
represents a variety of kinds of computational tools which:

● have different kind of interfaces like command line (CLI), graphical (GUI) or programmatic
(API);

● are based on different languages (Python, C++, CUDA, MATLAB, Java, etc.);
● are distributed as standalone executables and/or open-source code;
● utilize sequential and/or parallel processing with CPU and/or GPU parallelization;
● etc.

However, in order to help the users to overcome the entry development barrier, we prepared
two module design templates, which are available on the GitHub repository:

● “modules/GeneralModuleTemplate.m” - for a general-purpose module (wrapping
original algorithm or CLI tool);

● “modules/DLToolModuleTemplate.m” - for a (Python-based) deep-learning tool-oriented
module;

as well as

● “configurations/defaults_template.json” - a configuration file, containing templates of
sections for the two module templates above.

General-purpose module template

In order to create a new TomoBEAR module to wrap your original algorithm or any external CLI
tool we suggest to use our general-purpose module template which is located in the TomoBEAR
source code folder by the following relative path: modules/GeneralModuleTemplate.m. As well,

12

in the source code folder you may find the configuration file template by the following relative
path: configurations/defaults_template.json.
Please, copy the module template file in the same “modules/” folder and rename it using the
wished title for the new module. Please, add at the end of the default’s configuration JSON file
“configurations/defaults.json” as well the corresponding section from the template
configurations file:
 "GeneralModuleTemplate": {
 "execution_method": "once",
 "new_module_param_number": default_value,
 "new_module_param_string": "default_value",
 "new_module_params_list": [default_value1,...,default_valueN],
 "new_module_params_section": {
 ... // put here module params and their defaults
 }
 }

The configuration parameters template above contains examples of new custom module-specific
parameters introduced of different nature as numerical (float or integer) value, string, list of
numerical/string values or structure section which may contain all the previous parameter types.
Note the mandatory “execution_method” parameter, which can be set by default to one of the
following values according to the module execution (parallelisation) scheme:

● “once” - a one-time execution of the module functional (e.g. used by metadata-collecting
modules like MetaData, by data importing/exporting modules like
EMDTemplateGeneration). However, be aware that this execution method is also used to
execute modules with internal (in-module) parallelisation (e.g. when a wrapped algorithm
uses its own parallelisation scheme like modules GenerateParticles, crYOLO and IsoNet
do).

● “sequential” - a sequential multi-time independent execution of the module functional
on the different data chunks like tilt series or tomograms, when parallelization is not
desired. As well, this method is useful and the only possibility for debugging modules
which by default use parallel execution methods like “parallel” or “in_order” described
below.

● “parallel” - a simultaneous multi-time independent execution of the module functional
on the different data chunks like tilt series or tomograms, serves for functional
parallelized on CPU's (e.g. modules SortFiles, DynamoCleanStacks, BinStacks);

● “in_order” - a simultaneous multi-time independent execution of the module functional
on the different data chunks like tilt series or tomograms, serves for functional
parallelized on GPU's (e.g. modules MotionCor2, AreTomo, Reconstruct,
DynamoTemplateMatching);

13

● “control” - the special execution method reserved only for operation of the StopPipeline
control module, which you should not normally use for a new module development.

The general-purpose module is inherited from the abstract class Module (source code is located
at “modules/Module.m”), includes a license note (with license copyright holders and years,
license type and version) and has the high-level structure as in the following template:

%%%
% LICENSE NOTE
%%%
classdef GeneralModuleTemplate < Module
 methods
 %% 0. Module instance constructor
 function obj = GeneralModuleTemplate(configuration)
 obj@Module(configuration);
 end

 %% 1. Pre-execution module setup
 function obj = setUp(obj) … end

 %% 2. Module execution (main method)
 function obj = process(obj) … end

 %% N. Custom processing method
 function [outputs] = customMethod(obj, inputs) … end

 %% 3. Post-execution routines
 function obj = cleanUp(obj) … end
 end
end
Please, change the module (class) name GeneralModuleTemplate to the wished one (which
should be the same as the module filename!).

Section zero contains the module constructor definition. Please, change the method name
GeneralModuleTemplate() to the chosen module name. The single code line in this section will
inherit the abstract module Module functionality and should be left as it is.

Section one contains pre-execution module routines, including universal for all modules setUp()
method call from the abstract module Module. Implementation of this method in this particular

14

module could be filled in with the additional instructions, for example - folders creation for the
output data and metadata as in the following code example:

 function obj = setUp(obj)
 obj = setUp@Module(obj);

 % Create data_folder or metadata_folder in project folder
 createStandardFolder(obj.configuration, "data_folder", false);
 createStandardFolder(obj.configuration, "metadata_folder", false);
end
Section two is the main method process() for the module execution, which is called externally by
the pipeline right after the setUp() method of the section one. The recommended structure of
the method process() consists of three steps:
function obj = process(obj)
 %% Step 1. Get/set input data
 %% Step 2. Execute target module code
 %% Step 3. Link output data and metadata to standard locations
end
Step 1. Get/set input data. Put here code to get paths to the files and directories as well as
configuration parameter values from the global configuration structure obj.configuration or
calculate/set the necessary intermediate data as the fields of the temporal configuration
structure obj.dynamic_configuration. The example code lines for this step are given below (more
examples are available in the corresponding template file on GitHub):

% Get global configuration parameter PARAM
 config_param = obj.configuration.PARAM;

% Set dynamic configuration parameter PARAM with VALUE
 obj.dynamic_configuration.PARAM = VALUE;
Step 2. Execute target module code. Put here code to execute your data processing code. You
might want to add a custom method(s) call(s):
 [OUTPUTS] = obj.customMethod(INPUTS);

which is defined in the optional section “N. Custom processing method” as the following:
function [outputs] = customMethod(obj, inputs)

… // put here your code
end

15

You might also want to wrap external (CLI) software calls. In this case for all the available (data
processing) execution methods (i.e. "once", "sequential", "parallel", "in_order") you may use the
following command call:
executeCommand(obj.configuration.tool_command...
 + " -arg1 " + num2str(argument_value_number)...
 + " -arg2 " + strjoin(num2str(argument_value_numbers_list), ",")...
 ... % some other parameters
 + " -argN " + argument_value_string, false, obj.log_file_id);

where obj.configuration.tool_command is the parameter for the external command call (for
example, binary file name or file path), obj.log_file_id is the log file identifier to write the
command output to, and argument_X are examples of parameters of different types to be passed
to the command call.
If you want to code module to be parallelized on CPUs using "parallel" execution method or on
GPUs using "in_order" execution method, the assigned index of a parallelized piece of data
(currently only tilt serie/tomogram, but can be else) to be processed on the assigned CPU or GPU
worker is accessible by calling obj.configuration.set_up.adjusted_j.
To access the PARAM parameter of the corresponding computing resource-assigned tomogram
or tilt serie use:
data =
obj.configuration.tomograms.(field_names{obj.configuration.set_up.adjusted_j}).PARAM;

Additionally, for GPU-parallelized module execution (when execution_method parameter is set
to "in_order") to get assigned GPU use:

if obj.configuration.set_up.gpu > 0
% TomoBEAR uses “1” as the first index convention for GPU IDs
gpu_number = obj.configuration.set_up.gpu - 1;

end
Step 3. Link output data and metadata to standard locations. Put here code to make symbolic
links to the intermediate or final output (meta)data:

● using source file and destination file paths:
createSymbolicLink(source_file_path, dest_file_path, obj.log_file_id);

● using source file and destination directory paths where destination dir is a
“(meta)data_folder/” in project directory:
createSymbolicLinkInStandardFolder(obj.configuration, source_file_path, "data_folder",
obj.log_file_id);

16

For each of the described above steps as a good software engineering practice we strongly
recommend to add necessary execution messages in order to inform user about execution status
by INFO and ERROR messages using example commands below:
% Display info-message for user during execution
disp("INFO: Put some info message here...");

% Display error message for user during execution
error("ERROR: Put some error message here!");

Section three contains post-execution module routines, including universal for all modules
cleanUp() method calls from the abstract module Module. Implementation of this method in this
particular module could be filled in with the additional instructions, for example - intermediate
(meta)data folders or files deletion as in the following code example:

function obj = cleanUp(obj)
 % Automated data removal (execution modes except "cleanup")
 obj.deleteFilesOrFolders(files); % for files with folders
 obj.deleteFolderIfEmpty(folder); % for folders only

 % Automated data removal ("cleanup" execution mode only)
 if obj.configuration.execute == false && obj.configuration.keep_intermediates == false
 % put here your code for cleanup
 end

 % Post-execution routines (execution modes except "cleanup")
 obj = cleanUp@Module(obj);
end
All the sections, except for optional section N, are mandatory and their names have to be left as
in the presented template file.
Further notes

The second module template is oriented on wrapping an external Python-based deep learning-
tool, which contains a typical structure consisting of pre-processing, training, prediction and post-
processing stages. The commented code of the corresponding module template is publicly
available on the TomoBEAR GitHub repository, as well as some additional developer-level details
and the repository contribution guidelines.

Project and source code structure

Here we additionally provide a description of the TomoBEAR project and source code folders.

17

TomoBEAR project folder is structured as presented on the figure above (panel A) with the
following elements:

● “input.json” - the input JSON configuration file which users should create themselves;
● “output/” - the main output folder which contains all the kinds of data (input,

intermediate, output) and metadata (for data and pipeline) structured in the following
way:

○ “XX_StepName_1/” - those are processing steps folders, containing in general
step-related “data_files.*” and “data_folders/” (for example, individual
tomogram/tilt serie folders “tomogram_*/” for the modules like CreateStacks,
BinStacks, Reconstruct), as well as step-related pipeline metadata files, like various
JSON files (“input.json”, “output.json”, etc.), log file of the step execution
“StepName.log”, pipeline checkpoint file “SUCCESS” or “FAILURE” (depending on
processing outcome) and execution time log file “TIME”;

○ “pipeline.log” - general log file, tracking global pipeline execution messages
(info/warnings/errors);

○ “data_folders/” and “metadata_folders/” - folders where the most important
(meta)data is moved or linked to.

● “scratch/” - special folder which contains just the folder tree of the output/ folder
reflecting workflow structure and serving as a reference during the pipeline execution.

TomoBEAR source code is structured as presented on the figure above (panel B) and consists of
the following parts:

18

● environment setup scripts/functions (“run_matlab.sh”, “startup.m”, “environment/”) -
those are for configuring environmental and MATLAB path variables;

● processing modules (“modules/”) - those are interface modules for TomoBEAR steps,
wrapping external software and/or our developments functionality;

● pipeline modules (“pipeline/”) - those are pipeline execution modules for different
computational environments;

● modified external routines (“dynamo/”) - special folder to merge main Dynamo source
code with our re-implemented Dynamo routines during TomoBEAR configuration to
virtually produce updated functional version of Dynamo;

● auxiliary functionality and files (“utilities/”, “configuration/”, “configurations/” and
“json/”) - variety of scripts/functions as well as templates and sets of defaults, used
elsewhere in the briefly described above main parts;

● software metadata and documentation (“wiki/”, “images/”, “README.md”,
“CHANGELOG.md”, “CONTRIBUTING.md”, “AUTHORS.md”, “CITATION.cff”,
“LICENSE.md”, “LICENSES/”) - users-oriented files describing how to configure, install and
use TomoBEAR as well as developers-oriented files containing general information about
TomoBEAR as an open-source project like authors and contributors list, licensing and
citation information, list of changes by releases, contribution guidelines, etc.

19

Supplementary Text 3: A tutorial for structural determination of purified 80S ribosomes
(EMPIAR 10064).
To provide an example of the TomoBEAR processing project we have chosen the well-known
cryo-ET benchmarking data set containing 80S ribosomes - EMPIAR-10064.
In this tutorial we will:

● explain structure and important parameters of the input JSON file used as a configuration
file in TomoBEAR projects;

● explain output data structure of TomoBEAR projects;
● explain pipeline execution and control by checkpoint files;
● guide you through the processing of the famous real-world data set EMPIAR-10064 to

achieve resolution of 11.3 Å with 4003 particles in nearly-automated parallelized manner.
Video-tutorials

We have prepared a range of short (8-12 min) video-tutorials following the written version of the
80S ribosome tutorial provided below:

● Video-tutorial 0 (link: https://www.youtube.com/watch?v=2uizkE616tE): explaining how
to get the latest TomoBEAR version and configure TomoBEAR and its dependencies;

● Video-tutorial 1 (link: https://www.youtube.com/watch?v=N93tfAXp990): description of
the project configuration file and the pipeline execution;

● Video-tutorial 2 (link: https://www.youtube.com/watch?v=qbkRtMJp0eI): additional
configuration file parameters description, TomoBEAR-IMOD-TomoBEAR loop for checking
tilt series alignment results and fiducials refinement (if needed);

● Video-tutorial 3 (link: https://www.youtube.com/watch?v=BP2T_Y7BiDo): checking on
further intermediate results (alignment, CTF-correction, reconstruction, template
matching).

Step 0. Install and configure TomoBEAR

All the needed instructions for TomoBEAR installation and configuration you can find on
TomoBEAR GitHub repository in documentation by the following address:
https://github.com/KudryashevLab/TomoBEAR/wiki/Installation-and-Setup.

Step 1. Download tutorial data

You can download the EMPIAR-10064 data set by the following link (mixedCTEM part):
https://www.ebi.ac.uk/empiar/EMPIAR-10064. After downloading the data, extract it in a folder
of your choice.
In our case we used only the mixedCTEM data and achieved 11 Å in resolution with 4003 particles
which is similar to the resolution achieved by the original researchers. If you want you can
additionally use the CTEM data to be able to pick even more particles.

20

Step 2. Setup configuration file

In the TomoBEAR source code folder you will find a subfolder configurations/ containing a file
ribosome_empiar_10064_dynamo.json. This file describes the processing pipeline which should
be setup by TomoBEAR to process used in this tutorial data set.
The following paragraphs will explain the variables contained in the JSON file and the needed
changes to be able to run TomoBEAR on your local machine.
Firstly and most importantly you need to show TomoBEAR the path to the data and the processing
folder. This must be done in the section "general": {} of the JSON file, as shown below:

 "general": {
 "project_name": "Ribosome",
 "project_description": "Ribosome EMPIAR 10064",
 "data_path": "/path/to/the/ribosome/data/*.mrc",
 "processing_path": "/path/to/the/processing/folder/",
 "expected_symmetrie": "C1",
 "apix": 2.62,
 "tilt_angles": [-60.0, -58.0, -56.0, -54.0, -52.0, -50.0, -48.0, -46.0,
-44.0, -42.0, -40.0, -38.0, -36.0, -34.0, -32.0, -30.0, -28.0, -26.0, -24.0, -
22.0, -20.0, -18.0, -16.0, -14.0, -12.0, -10.0, -8.0, -6.0, -4.0, -2.0, 0.0,
2.0, 4.0, 6.0, 8.0, 10.0, 12.0, 14.0, 16.0, 18.0, 20.0, 22.0, 24.0, 26.0, 28.0,
30.0, 32.0, 34.0, 36.0, 38.0, 40.0, 42.0, 44.0, 46.0, 48.0, 50.0, 52.0, 54.0,
56.0],
 "rotation_tilt_axis":-5,
 "gold_bead_size_in_nm": 9,
 "template_matching_binning": 8,
 "binnings": [2, 4, 8],
 "reconstruction_thickness": 1400,
 "as_boxes": false
 },

Since the pixel size and tilt angles are not provided in the header of MRC
files of the data set EMPIAR-10064, we have to add this information in the
"general": {} section of the configuration file.
Step 3. Execute until fiducials refinement

Everything else should be fine for now and the processing can be started. To run the TomoBEAR
on the ribosome data set you need to open and pre-configure interactive MATLAB session by
typing:
./run_matlab.sh

and execute the following command in the opened command window of MATLAB:
runTomoBear("local", "/path/to/ribosome_empiar_10064_dynamo.json")

21

or if you are using a compiled version of TomoBEAR and have everything set up properly, type in
the following command on the command line from the TomoBEAR folder:./run_tomoBEAR local
/path/to/ribosome_empiar_10064_dynamo.json /path/to/defaults.json. When you
follow all the steps thoroughly, TomoBEAR should run up to the first appearance of StopPipeline.
That means the following modules will be executed:
 "MetaData": {
 },
 "CreateStacks": {
 },
 "DynamoTiltSeriesAlignment": {
 },
 "DynamoCleanStacks": {
 },
 "BatchRunTomo": {
 "skip_steps": [4],
 "ending_step": 6
 },
 "StopPipeline": {
 },

This can take a while, as the result of this segment TomoBEAR will create a folder structure with
subfolders for the individual steps. You can monitor the progress of the execution in shell and by
inspecting the contents of the folders. Upon success of an operation, a file SUCCESS is written
inside each folder. If you want to rerun a step you can terminate the process, change parameters,
remove the SUCCESS file (or the entire subfolder) and restart the process.
Here the stacks have already been assembled, so neither "Motioncor2": {}, nor
"SortFiles": {} modules were not needed. Here the key functionality is performed by
"DynamoTiltSeriesAlignment": {} (the recommended tutorial:
https://wiki.dynamo.biozentrum.unibas.ch/w/index.php/Walkthrough_on_GUI_based_tilt_series_
alignment) after which the projections containing low number of tracked gold beads are excluded
by "DynamoCleanStacks": {}. Finally, the output is converted into an IMOD project.
The running time depends on your infrastructure and setup.

Step 4. TomoBEAR-IMOD-TomoBEAR loop for fiducials refinement

After TomoBEAR stops you can inspect the fiducial model in the folder of "BatchRunTomo": {}
which you can find in your processing folder.
cd /path/to/your/processing/folder/5_BatchRunTomo_1

Now you can inspect the alignment of every tilt stack one after the other and can possibly refine
it if needed. For that you can use the following command. Please replace xxx with the tomogram
number(s) that you want to inspect or * for all tomograms:etomo tomogram_xxx/*.edfWhen
etomo starts - choose the fine alignment step which should be magenta-colored if everything
went fine for that tomogram and then click on edit/view fiducial model to start 3dmod with

22

the right options to be able to refine the gold beads. If you do not see the green circles - please
go to the IMOD command window, Edit -> Object l-> Type-> activate scattered and increase the
size of the circle to e.g. 5.
Before you start to refine just press the arrow up button in the top left corner of the window with
the viewport in order to zoom in. To refine the gold beads, click on Go to the next big
residual in the window with the stacked buttons from top to bottom and the view in the viewport
window should change to the location of a gold bead with a big residual.
Now see if you can center the marker better on the gold bead with the right mouse button. It is
important that you do not put it on the peak of the red arrow, but center it on the gold bead. When
you are finished with this gold bead press again on the Go to next big residual button. After
you are finished with re-centering the marker on the gold beads you need to press the Save and
run tiltalign button.

Step 5. Execute up to tomogram reconstructions and template matching

After you finish the inspection of all the alignments in all tomograms you can start TomoBEAR again
as previously and it will continue from where it stopped up to the next StopPipeline section. To
continue running TomoBEAR on the Ribosome data set you need to type in as previously the
following command in the command window of MATLAB:
runTomoBear("local", "/path/to/ribosome_empiar_10064_dynamo.json")

or if you are using a compiled version of TomoBEAR and have everything set up properly type in
the following command on the command line from the TomoBEAR folder:./run_tomoBEAR local
/path/to/ribosome_empiar_10064_dynamo.json /path/to/defaults.json

TomoBEAR should now detect that it has stopped at the previous step StopPipeline and continue
from where it stopped. The following excerpt from the ribosome_empiar_10064_dynamo.json
file is describing what TomoBEAR needs to do next:
 "BatchRunTomo": {
 "starting_step": 8,
 "ending_step": 8
 },
 "GCTFCtfphaseflipCTFCorrection": {
 },
 "BatchRunTomo": {
 "starting_step": 10,
 "ending_step": 13
 },
 "BinStacks": {
 },
 "Reconstruct": {
 },
 "DynamoImportTomograms": {
 },

23

 "EMDTemplateGeneration": {
 "template_emd_number": "3420",
 "flip_handedness": true
 },
 "DynamoTemplateMatching": {
 "sampling": 15
 "size_of_chunk": [463, 463, 175]
 },
 "TemplateMatchingPostProcessing": {
 "cc_std": 2.5
 },

This segment performs estimation of defocus to calculate the Contrast Transfer Function (CTF)
using Gctf and subsequent CTF-correction using Ctfphaseflip from IMOD
("GCTFCtfphaseflipCTFCorrection": {}). You can inspect the quality of fitting by going into
the folder 8_GCTFCtfphaseflipCTFCorrection_1 and typing
imod tomogram_xxx/slices/*.ctfand making sure that the Thon rings match the estimation.
If not - play with the parameters of the GCTFCtfphaseflipCTFCorrection module.
Then binned aligned CTF-corrected stacks are produced by "BinStacks": {} and tomographic
reconstructions are generated for the binnings specified in the section "general": {}. In this
example the particles are picked using template matching. First a template from EMDB is
produced at a proper voxel size, then "DynamoTemplateMatching": {} creates cross-
correlation (CC) volumes which can be inspected. At a high binning level using the whole volume
as a single chunk is more optimal than doing several chunks, so it is important to set the
corresponding parameter to the size of the binned tomogram used for template matching. Finally,
highest cross-correlation peaks, over 2.5 standard deviations above the mean value in the cross-
correlation volume are selected for extraction to 3D particle files, the initial coordinates are stored
in the particles_table folder as a file in the dynamo table format. You can inspect the cross-
correlation volumes and set the threshold for more or less stringent extraction of particles.

Step 6. Execute subtomogram averaging (StA)

In the section below you will find subtomogram classification projects that should produce you
a reasonable structure. They first use multi-reference alignment projects with a true class and
so-called "noise trap" classes to first classify out false-positive particles produced by template
matching; this happens at binning which was used for template matching. In the end of the
segment you should have a reasonable set of particles in the best class.The example
configuration section is the following: "DynamoAlignmentProject": {
 "iterations": 3,
 "classes": 4,
 "use_noise_classes": true,
 "use_symmetrie": false
 },
 "DynamoAlignmentProject": {

24

 "iterations": 3,
 "classes": 4,
 "use_noise_classes": true,
 "use_symmetrie": false,
 "selected_classes": [1]
 },
 "DynamoAlignmentProject": {
 "iterations": 3,
 "classes": 4,
 "use_noise_classes": true,
 "use_symmetrie": false,
 "selected_classes": [1]
 },
 "DynamoAlignmentProject": {
 "iterations": 3,
 "classes": 4,
 "use_noise_classes": true,
 "use_symmetrie": false,
 "selected_classes": [1]
 },
 "DynamoAlignmentProject": {
 "iterations": 3,
 "classes": 4,
 "use_noise_classes": true,
 "use_symmetrie": false,
 "selected_classes": [1]
 },
 "DynamoAlignmentProject": {
 "iterations": 3,
 "classes": 4,
 "use_noise_classes": true,
 "use_symmetrie": false,
 "selected_classes": [1]
 },
 "DynamoAlignmentProject": {
 "iterations": 3,
 "classes": 3,
 "use_noise_classes": true,
 "use_symmetrie": false,
 "selected_classes": [1],
 "box_size": 1.10,
 "binning": 4
 },

25

 "StopPipeline": {
 },

After subtomogram classification the projects are done, you should have a reasonable set of
particles in the best class which you should select. To select the best class, you need to go into
the last DynamoAlignmentProject folder before the last produced StopPipeline folder, and
then go to
alignment_project_1_bin_y/mraProject_bin_y/results/iteQQQQ/averages/ (where
iteQQQQ corresponds to the pre-last iteration folder) and type
imod average_ref_CCC_ite_QQQQ.em

to open produced average for each class CCC to identify the best class to use further.
Such variables as binning y, pre-last iteration number QQQQ and class numbers CCC can depend
on parameters used in DynamoAlignmentProject. But if you repeat instructions provided in this
tutorial, this should be the folder:
23_DynamoAlignmentProject_1/alignment_project_1_bin_4/mraProject_bin_4/result
s/ite0012/averages/ where you may find files average_ref_001_ite_0012.em,
average_ref_002_ite_0012.em, and average_ref_003_ite_0012.em corresponding to the
produced averages for 3 classes, from which you should choose the best one.
Once you have selected the best class, insert corresponding class number in the list [] as a value
of the parameter "selected_classes" to the following section to be executed by TomoBEAR:
 "DynamoAlignmentProject": {
 "classes": 1,
 "iterations": 1,
 "use_noise_classes": false,
 "swap_particles": false,
 "use_symmetrie": false,
 "selected_classes": [3],
 "binning": 4,
 "threshold":0.8
 },

The section above is called a single reference project, which will split the particles of the
previously selected best class into two equally sized classes (called even/odd halves) with
subsequent alignment of the particles in those halves to produce corresponding averages. This
division will be needed further when unbinned data will be produced to be able to calculate the
resolution of the resulting averaged map using Fourier Shell Correlation (FSC) curve.
After the first single reference project introduced above you will need to process tomograms by
similar projects but at lower binnings in order to reduce the voxel size up to unbinned data to get
the information corresponding to the highest possible resolution to be achieved using the current
data set. At this point automated workflow is finished as the user needs to play with the masks,
particle sets, etc.
You may want to try to use the following example of the end section of JSON file in order to have
experience of processing tomograms at lower binnings to produce unbinned data to finally be able

26

to calculate resolution of your ribosome density map as a result of the first experience with
TomoBEAR:
 "DynamoAlignmentProject": {
 "classes": 1,
 "iterations": 1,
 "use_noise_classes": false,
 "swap_particles": false,
 "use_symmetrie": false,
 "selected_classes": [1,2],
 "binning": 2,
 "threshold":0.9
 },
 "BinStacks":{
 "binnings": [1],
 "use_ctf_corrected_aligned_stack": false,
 "run_ctf_phaseflip": true
 },
 "Reconstruct": {
 "reconstruct": "unbinned"
 },
 "DynamoAlignmentProject": {
 "classes": 1,
 "iterations": 1,
 "use_noise_classes": false,
 "swap_particles": false,
 "use_symmetrie": false,
 "selected_classes": [1,2],
 "binning": 1,
 "threshold":1
 }

Consider, that after performing first single reference project you need to select both halves from
the previous step by setting "selected_classes": [1,2] (in order to keep all particles) while
producing one class by setting "classes": 1 at the subsequent steps of binning reduction using
"DynamoAlignmentProject": {} module.

If you get out of memory error while running some of "DynamoAlignmentProject": {} at lower
binnings (especially the last one), you may put additional parameter "dt_crop_in_memory": 0
to the corresponding "DynamoAlignmentProject": {} sections in order to prevent keeping the
whole tomogram in memory for processing. For example, in this tutorial the size of the one of
unbinned tomograms is ~72Gb, while for binning 2 it is near 9Gb.
Step 7. Estimate resolution of the output final map

27

Finally, to estimate resolution of produced by TomoBEAR results, you need to use the following
Dynamo command in MATLAB:
fsc = dfsc(path_to_half1, path_to_half2, 'apix', 2.62, 'mask', path_to_mask,
'show', 'on')

where path_to_half1 and path_to_half2 are paths to the pre-last iteration results of the last
DynamoAlignmentProject folder, which in this tutorial are located in
29_DynamoAlignmentProject_1/alignment_project_1_bin_1/mraProject_bin_1_eo/res
ults/ite0006/averages, where you may find files average_ref_001_ite_0006.em and
average_ref_002_ite_0006.em corresponding to the averages made from halves of the
resulting particles set. You also need to use a mask to filter averages for FSC calculation, and
the accuracy of the used mask has an impact on the resolution estimation. Appropriate mask to
use for the initial resolution estimation you may find in the last DynamoAlignmentProject folder
in a file called mask.em (in this tutorial path_to_mask is
29_DynamoAlignmentProject_1/mask.em).

After that you should get a similar FSC curve to the following one:

where in red we added the FSC at 0.143 threshold to estimate the global resolution of the final
map, which in our case for the final set of 4003 ribosome particles reached 11 Å.

28

Supplementary Text 4: Mini-guide on live data processing

The “live” processing mode is a TomoBEAR feature which allows processing of data “on-the-fly”,
i.e. as it comes from the microscope. The main purpose of this mode is to screen sample quality,
for example to identify presence of the molecular target in the sample. Main prerequisite for “live”
mode is availability of TomoBEAR access to the data folder, where the collected files arrive.

The “live” mode is available for dose-fractionated movies in TIF or MRC format, recorded using
single-shot data collection. During this type of data record the collected tilt series are processed
sequentially in their arrival order.

To properly configure configuration input JSON file for “live” mode, the user needs to set the
following two parameters in the “general” section:

● “minimum_files” - number of files needed to consider tilt serie to be fully collected and
subjected to processing (default: 15);

● “Listening_time_threshold_in_minutes” - threshold for a period of time passed from the
latest arrived file of a tilt serie upon which that tilt serie would be considered as a fully
collected and subjected to processing regardless to the number of collected files (default:
15 [min]).

To reduce the processing time in the “live” mode we implemented the option of a simple
summation of dose-fractionated movies into corresponding tilt images instead of the full motion
correction procedure. As well, the user may skip computationally expensive CTF estimation and
correction steps. Corresponding example of the suggested JSON file for live data processing
setup is accessible by the source code folder path “configurations/live_template.json” and is
provided below:

{
 "general": {
 "project_name": "your_project_name",
 "project_description": "your project name description",
 "data_path": "/path/to/live/data/folder/prefix*.tif",
 "processing_path": "/path/to/processing/folder",
 "expected_symmetrie": "Cx",
 "gold_bead_size_in_nm": xx,
 "rotation_tilt_axis": xx,
 "aligned_stack_binning": 8,
 "pre_aligned_stack_binning": 8,
 "reconstruction_thickness": xxxx,
 "as_boxes": false,
 "minimum_files": 41,
 "ft_bin": 2,
 "listening_time_threshold_in_minutes": 10
 },
 "MetaData": {

29

 },
 "SortFiles": {
 },
 "MotionCor2": {
 "method": "SumOnly",
 "execution_method": "sequential"
 },
 "CreateStacks": {
 },
 "DynamoTiltSeriesAlignment": {
 "use_newstack_for_binning": true
 },
 "DynamoCleanStacks": {
 },
 "BatchRunTomo": {
 "skip_steps": [4, 7, 9],
 "ending_step": 13
 },
 "BinStacks": {
 },
 "Reconstruct": {
 "generate_exact_filtered_tomograms": true,
 "exact_filter_size": xxxx
 }
}

Since “live” data processing mainly serves for sample quality check, in order to additionally reduce
processing time - we advise to use the following setup (as in the example provided above):

● set "ft_bin" parameter value to at least 2 in order to pre-bin views (summarized/motion-
corrected dose-fractionated movies) of pre-processed stack for all subsequent modules;

● use high binning values for "pre_aligned_stack_binning" and "aligned_stack_binning"
parameters (for example, 8 as above);

● enable "use_newstack_for_binning" by setting it to “true” in “DynamoTiltSeriesAlignment”
step;

In order to improve contrast in reconstructions we would recommend enabling
"generate_exact_filtered_tomograms" and setting up "exact_filter_size" to define filters to be used
to produce contrast-enhanced reconstructions.

If you start data collection from zero-tilt, to avoid problems of files perception and sorting caused
by -0.0/+0.0 appearing as the angle for non-tilted views (due to small initial tilting offset being
present) instead of expected 0.0 it is also recommended to add "first_tilt_angle": 0 to the “general”
section of your input JSON file. The same parameter is useful as well when the sample was pre-
tilted (for example, for in situ FIB-milled sample) to explicitly set the pre-tilt angle value to be used.

30

Finally, to execute the workflow, the user needs to start MATLAB interactive session from the
cloned TomoBEAR source code folder by

./run_matlab.sh

and launch the TomoBEAR in “live” mode by typing in the MATLAB command window the
following command:

runTomoBear("local_live", "/path/to/input.json", "/path/to/defaults.json")

REFERENCES FOR SUPPLEMENTARY MATERIAL:

1. Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved

cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).
2. Sanchez, R. M., Zhang, Y., Chen, W., Dietrich, L. & Kudryashev, M. Subnanometer-

resolution structure determination in situ by hybrid subtomogram averaging - single particle
cryo-EM. Nat. Commun. 11, 3709 (2020).

3. Castaño-Díez, D., Kudryashev, M., Arheit, M. & Stahlberg, H. Dynamo: a flexible, user-
friendly development tool for subtomogram averaging of cryo-EM data in high-performance
computing environments. J. Struct. Biol. 178, 139–151 (2012).

4. Zheng, S. et al. AreTomo: An integrated software package for automated marker-free,
motion-corrected cryo-electron tomographic alignment and reconstruction. J. Struct. Biol. X
6, 100068 (2022).

5. Mastronarde, D. N. & Held, S. R. Automated tilt series alignment and tomographic
reconstruction in IMOD. J. Struct. Biol. 197, 102–113 (2017).

6. Zhang, K. Gctf: Real-time CTF determination and correction. J. Struct. Biol. 193, 1–12
(2016).

7. Rohou, A. & Grigorieff, N. CTFFIND4: Fast and accurate defocus estimation from electron
micrographs. J. Struct. Biol. 192, 216–221 (2015).

8. Liu, Y.-T. et al. Isotropic reconstruction for electron tomography with deep learning. Nat.
Commun. 13, 6482 (2022).

9. Castaño-Díez, D., Kudryashev, M. & Stahlberg, H. Dynamo Catalogue: Geometrical tools
and data management for particle picking in subtomogram averaging of cryo-electron
tomograms. J. Struct. Biol, 197, 135-144 (2016)

10. Wagner, T. et al. SPHIRE-crYOLO is a fast and accurate fully automated particle picker for
cryo-EM. Commun. Biol. 2, 1–13 (2019).

