
Biochemical Pharmacology 217 (2023) 115805

Available online 14 September 2023
0006-2952/© 2024 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Review 

The contribution of the AT1 receptor to erythropoiesis 

André F. Rodrigues a,b,*, Michael Bader a,b,c,d,* 

a Max Delbrück Center (MDC), Berlin, Germany 
b German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Germany 
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A B S T R A C T   

The renin-angiotensin system (RAS) comprises a broad set of functional peptides and receptors that play a role in 
cardiovascular homeostasis and contribute to cardiovascular pathologies. Angiotensin II (Ang II) is the most 
potent peptide hormone produced by the RAS due to its high abundance and its strong and pleiotropic impact on 
the cardiovascular system. Formation of Ang II takes place in the bloodstream and additionally in tissues in the 
so-called local RAS. Of the two Ang II receptors (AT1 and AT2) that Ang II binds to, AT1 is the most expressed 
throughout the mammalian body. AT1 expression is not restricted to cells of the cardiovascular system but in fact 
AT1 protein is found in nearly all organs, hence, Ang II takes part in several modulatory physiological processes 
one of which is erythropoiesis. In this review, we present multiple evidence supporting that Ang II modulates 
physiological and pathological erythropoiesis processes trough the AT1 receptor. Cumulative evidence indicates 
that Ang II by three distinct mechanisms influences erythropoiesis: 1) stimulation of renal erythropoietin syn
thesis; 2) direct action on bone marrow precursor cells; and 3) modulation of sympathetic nerve activity to the 
bone marrow. The text highlights clinical and preclinical evidence focusing on mechanistic studies using rodent 
models.   

1. Introduction 

Angiotensin II (Ang II) is the most active peptide hormone of the 
renin-angiotensin system (RAS). Classically Ang II was discovered to be 
produced in the circulation but later it became evident that Ang II is 
additionally locally synthesized in tissues. Angiotensinogen is the only 
precursor protein for Ang II and all other angiotensin peptides of the RAS 
[1] (Fig. 1). Liver angiotensinogen is secreted into the bloodstream and 
cleaved by renin which is primarily expressed and released in the cir
culation by renal juxtaglomerular cells (Fig. 1). The reaction produces 
the inactive peptide Ang I that is further cleaved by angiotensin con
verting enzyme (ACE), mainly in the pulmonary circulation. ACE is a 
transmembrane protein strongly expressed by the endothelium of the 
lung vasculature but also in endothelium of other vascular beds (Fig. 1). 

The RAS components mentioned above, including shedded ACE, are 
imported from the circulation to locally form angiotensin peptides in 
tissues. Additionally, RAS components are also expressed in those tis
sues, including the hematopoietic system, potentially contributing to the 
local production of the peptides [2–6]. The import of RAS proteins from 
the circulation takes place in all peripheral organs. The brain is an 
exception because the blood–brain-barrier limits the traffic of RAS 
proteins and peptides such as Ang II. Ang II has well described modu
latory roles in the brain acting on its receptors expressed at neuronal 
populations involved in vasopressin release, sympathetic nerve activity 
and salt-and-water appetite. Part of these physiological responses are 
triggered by peripheral Ang II action on neurons positioned at circum
ventricular areas where the blood–brain-barrier is permeable. Local 
formation of angiotensins in the brain has been a controversial topic, 
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because the brain produces low amounts renin [7]. Nevertheless, some 
preclinical models support the existence of a functional brain RAS [8,9]. 
Finally, during insults such as hypertension circulating Ang II may ac
cess brain areas otherwise only available to brain-borne Ang II [10,11]. 

Most of the responses to homeostatic and environmental changes are 
adjusted by the sympathetic nervous system. Sympathetic nerves 
innervate virtually all organs of the body. Neurotransmitters released by 
these peripheral neurons control cellular responses at targeted tissues. 
The most abundant and effector sympathetic neurotransmitter is 
norepinephrine, additionally neuropeptide Y and ATP are co-released at 
sympathetic terminals [12–14]. At an organizational level, the sympa
thetic nervous system is composed of presympathetic neurons mainly 
originating from two brain areas, the paraventricular nucleus of the 
hypothalamus (PVN) and the rostroventrolateral medulla (RVLM), 
located in the hypothalamus and brainstem, respectively. Importantly, 
there are several brain nuclei projecting and modulating the activity of 
the two areas mentioned including the nucleus tractus solitarii (NTS), 
the subfornical organ (SFO) and the organum vasculosum of the lamina 
terminalis (OVLT). The PVN and RVLM neurons project to spinal sym
pathetic preganglionic neurons at the intermediolateral cell column 
(IML) which synapses in peripheral sympathetic ganglia releasing 
mostly acetylcholine. Acetylcholine stimulates nicotinic receptors on 
postganglionic neurons that are the neurons effectively innervating 
peripheral organs [14–16]. Importantly, the central effects of Ang II on 
the sympathetic control are complemented by direct modulation of 
neurons of the spinal cord, sympathetic ganglia, and those innervating 
peripheral organs. For instance prejunctional neurons express AT1 re
ceptors and Ang II facilitates norepinephrine containing vesicles release 
via membrane depolarization [17–20]. 

Ang II binds to two major angiotensin receptor types termed angio
tensin receptor type 1 (AT1) and 2 (AT2). AT1 and AT2 receptors are G- 
protein coupled receptors, coupling primarily to Gq/11 and Gi, respec
tively. Most of the physiological effects of Ang II are mediated via the 
Ang II/AT1 axis because AT1 expression is abundant in adult mammals. 
AT2 receptor signaling often exerts antagonistic effects of those elicited 
by Ang II binding to the AT1 receptor [4]. In addition, to the G-protein 
signal, the Ang II/AT1 axis is known to recruit several G-protein inde
pendent pathways including MAPK, JAK/STAT and β-arrestin depen
dent signaling [21]. The AT1 receptor is widely distributed across the 
body and is critical for cardiovascular homeostasis and hydromineral 
balance control. Various independent studies from the past decades 
clearly showed that the Ang II/AT1 axis is involved in the pathogenesis 
of several cardiovascular diseases rendering AT1 blockers one of the 
most successful drug therapies for cardiovascular and renal diseases. 
Many additional physiological and/or pathological processes are under 
Ang II influence because Ang II receptors, especially AT1, are expressed 
at least in some subset of cells of almost all tissues [22]. Using 

genetically modified rodents and pharmacological approaches targeting 
RAS components many additional roles of Ang II were revealed 
including in kidney development [23–25], adipocyte metabolism 
[26,27], insulin signaling [28,29], inflammation [30–32], fibrosis 
[33,34], bone mass regulation [35,36] and erythropoiesis the subject of 
this review [8,37–39]. 

This review covers aspects evidencing that Ang II is a modulator of 
erythropoiesis by activation of the AT1 receptor. We bring together 
clinical and preclinical studies demonstrating the dependence of 
erythropoiesis on the Ang II/AT1 axis giving a particular focus on 
mechanistic data derived from rodents. 

2. Erythropoiesis 

Erythrocytes, also known as red blood cells (RBCs) actively take part 
in the respiratory gas exchange. In mammalians, oxygen is transported 
from the lungs to other organs and carbon dioxide from organs to the 
lungs bound to hemoglobin molecules within enucleated RBCs. Eryth
ropoiesis defines the production of RBCs the most abundant cell type in 
the blood accounting for ~ 99% of the circulating cellular mass which 
correspond to ~ 45% of the blood, the remaining is plasma. Throughout 
life the RBC count is kept well balanced due to highly controlled 
erythropoietic mechanisms that may sharply boost erythropoiesis e.g 
during homeostatic threats such as bleeding [40,41]. 

There are two phases in mammalian erythropoiesis termed primitive 
and definitive. Both primitive and definitive erythropoiesis originate 
from the yolk sac. Primitive erythropoiesis is exclusively embryonic and 
is substituted by definitive erythropoiesis during fetal life, which persists 
across adult life. RBC production during the fetal definitive erythro
poiesis phase takes place in the liver and spleen and as the animal grows 
erythropoiesis is transferred to the bone marrow. Certain pathological 
conditions or insults like anemia may shift erythropoiesis back to the 
spleen and liver in adulthood. [42–44]. 

Bone marrow adult mammalian erythropoiesis begins with he
matopoietic cell lineage-commitment of pluripotent myeloid progenitor 
cells, these cells differentiate into erythroid progenitors, precursors, and 
finally into RBCs. The last step takes part already in the circulation. Each 
process of cellular differentiation is tightly governed by changes in gene 
expression patterns that are tuned by the action of several cytokines 
including erythropoietin (Epo), iron, and hypoxia among others [43,45]. 
Progenitor cells (BFU-E, burst-forming unit erythroid and CFU-E, col
ony-forming unit erythroid) are classified based on the properties of 
these cell types in producing erythroid cells in culture. Erythroid pre
cursors form and develop in erythroblast islands surrounding a central 
macrophage. This macrophage plays a fundamental role during the 
cellular differentiation steps (erythrocyte maturation), and at the final 
step it phagocytes the extruded nucleus during enucleated RBC 

Fig. 1. Classical renin angiotensin sytem (RAS). The precursor protein angiotensinogen (Agt) is secreted in the circulation by hepatocytes. Renin, released from 
the kidneys into the bloodstream, cleaves Agt into the inactive peptide angiotensin I (Ang I). Lung endothelial cells express the transmembrane angiotensin con
verting enzyme (ACE) that cuts Ang I further into the active peptide hormone angiotensin II (Ang II). In addition, Ang II is produced locally in tissues by local 
expression and/or import of circulatory RAS components. Angiotensin type 1 (AT1) receptor is the major Ang II receptor expressed across the body including 
erythropoiesis relevant cells like cells of the bone marrow, erythropoietin producing cells and neurons controlling sympathetic activity. In addition, Ang II binds to 
angiotensin type 2 (AT2) receptors. This illustration was created with BioRender.com. 
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formation [43]. 
Epo is a major factor required for physiological baseline erythro

poiesis (Fig. 3). The production of Epo takes place primarily in renal 
cortical fibroblasts, and the major stimulus controlling Epo expression is 
the reduction of oxygen levels in the kidney. During hypoxia, HIF-2α 
(hypoxia inducible factor 2-alpha) which is otherwise constitutively 
degraded by proteasomal targeting accumulates in this specialized 
population of fibroblasts and is translocated to the nucleus. As conse
quence HIF-2α upregulates Epo mRNA synthesis that will in turn in
crease bone marrow erythropoiesis [46,47]. Epo binds to its receptor 
expressed by erythroid progenitors. The binding of EPO prevents 
apoptosis, consequently proliferation and differentiation are stimulated 
resulting in higher numbers of functional RBCs being released into the 
blood stream (Fig. 3). Moreover, the genetic deletion of Epo or Epo re
ceptor in mice are incompatible with life, in utero death occurs high
lighting the essential role of this element for RBC production [48,49]. 

3. Clinical evidence for Ang II involvement in erythropoiesis 

Homozygous deletional mutations in the angiotensinogen, renin, 
ACE and AT1 genes cause a common pathology known as autosomal- 
recessive renal tubular dysgenesis (OMIM #267430). Most of the pa
tients born with the disease die in the perinatal period due to renal 
failure and respiratory complications driven by lung hypoplasia [50,51]. 
There has been reports describing patients who survived with the help of 
medical intervention. Survived patients most commonly present with 
mutations that allow a certain residual activity of the RAS characterized 
by very low levels of Ang II produced. Some examples in which a re
sidual activity of the RAS is expected are driven by three types of point 
mutations: 1) Mutations in the sequence coding the renin signal peptide 
that do not allow renin release. 2) Mutations in the angiotensin con
verting enzyme leading to rapid solubilization instead of cell membrane 
anchoring. 3) Mutations in the angiotensinogen gene that decrease the 
renin affinity [51–54]. Nevertheless, these patients are severely hypo
tensive and anemia has been described as well [55–57]. The clinical 
presentation of this devastating disease demonstrates that Ang II via AT1 
receptor is essential for blood pressure control and additionally strongly 
suggests that the axis controls erythropoiesis. Importantly, anemia is 
often observed in renal failure patients due to reduced Epo production 
and iron deficiency [58–61]. Both phenotypes were previously observed 
in case reports of patients with extremely suppressed Ang II synthesis, 
and Epo/iron administration are successfully used to manage the anemia 
[62]. Therefore, the anemia observed during autosomal-recessive renal 
tubular dysgenesis is probably not solely due to Ang II deficiency but 
also a product of renal failure. 

A relatively common form of secondary hypertension is caused by 
renal artery stenosis. The reduced renal blood flow activates the RAS due 
to an exaggerated renin production driven by hypoxia. This pathological 
Ang II overproduction has been associated with gain of erythropoiesis 
[63–65]. A caveat is that the increased hematocrit cannot be attributed 
exclusively to Ang II once Epo is also upregulated during renal hypoxia 
[66–69]. Interestingly, the intravenous administration of Ang II for few 
hours increases plasma Epo levels even at subpressor doses. The Ang II 
effects are abolished by the coadministration of the AT1 antagonist 
losartan suggesting that the AT1 receptor, exclusively, mediates this 
process [70,71]. A similar renal hypoxia-driven erythrocytosis is 
observed in circa 15% of patients usually in the first year after renal 
transplant. Interestingly plasma Epo levels seem to be in the normal 
range in the affected patients but other erythropoietic factors such as 
Ang II, androgens and insulin-like growth factor 1 seem to cause the 
pathology. Interestingly, patients who develop erythrocytosis post- 
transplant have more AT1 receptor expression in their erythroid pre
cursors [72]. The fact the hematocrit levels return to normal levels when 
treating these particular patients with AT1 or ACE blockers strongly 
indicates that Ang II controls erythropoiesis [73–77]. 

Another pathological RAS activation is found in chronic obstructive 

pulmonary disease. Some patients develop erythrocytosis during this 
condition. One study compared patients that had an increased hemat
ocrit with patients with a normal hematocrit. Interestingly, Epo levels 
were not different between the groups but plasma renin activity was 
increased in the group that had an increased hematocrit [78]. Moreover 
plasma renin activity but not Epo correlated with the hematocrit sug
gesting that Ang II may control erythropoiesis beyond Epo production 
[78]. In this particular condition the hematocrit is lowered by treating 
the patients with AT1 blockers [79,80]. 

Collectively the data demonstrates that an increased formation of 
Ang II correlates with an increased hematocrit. However, one should 
critically interpret those findings once the effects of Ang II on erythro
poiesis might be biased by mechanisms of pressure natriuresis that ul
timately influence the plasma volume. Normally the kidneys balance 
blood pressure by controlling the extracellular fluid volume. Hence 
prolonged high levels of Ang II are expected to cause hypertension and 
upregulate the hematocrit due to plasma volume depletion. 

3.1. RAS blockers and erythropoiesis 

There are three major classes of RAS blockers used clinically. ACE, 
renin and AT1 blockers, the two first moderate the Ang II production and 
the last one limits Ang II binding to its major receptor (Fig. 1). ACE 
inhibitors and AT1 blockers are widely used clinically due to less side 
effects compared to direct renin inhibitors. These drugs constitute the 
first line of pharmacological therapy to lower blood pressure during 
hypertension and are also successfully used in other cardiovascular and 
renal diseases. Captopril was the first RAS blocker approved for clinical 
use in the early 1980s, eventually AT1 antagonist and direct renin in
hibitors were introduced [4,81,82]. 

Clinical studies demonstrated early that the use of antihypertensive 
medication targeting the RAS is associated with anemia development 
and resolution after treatment discontinuation [83–85]. Other hemato
logical disorders like hemolytic anemia, agranulocytosis, neutropenia, 
pancytopenia were also described in same patients [86–88]. Patients 
that are particularly susceptible to develop anemia during ACE blocker 
treatment are patients suffering from different renal and heart condi
tions [89–92]. RAS inhibition on these patients is effective in delaying 
their disease progression because their RAS is normally activated. The 
fact that these populations are particularly susceptible to anemia 
development could be explained by a higher dependence on Ang II for 
erythropoiesis maintenance. Anemia and other hematological alter
ations caused by ACE inhibition are also observed in patients treated 
with renin inhibitors and AT1 antagonists, and cardiac and renal disease 
patients receiving these medications are especially susceptible [92–96]. 
Altogether, there is abundant clinical evidence supporting that RAS in
hibition disturbs erythropoiesis at least in some patients. 

4. Erythropoiesis in rodent models 

Genetic deletion of RAS proteins in rodents does not induce tubular 
dysgenesis as in humans, this demonstrates a differential role of the RAS 
for renal development across species. RAS-deficient mice (devoid of Ang 
II production or both AT1 receptors) are born with a morphologically 
intact kidney, however as early as two weeks after birth morphological 
changes start to become evident. Consistently observed changes are 
thickening of interlobular arteries and hydronephrosis due to excessive 
renin cell recruitment and urine elimination impairment, respectively 
[97,98]. The period these alterations start to develop coincides with a 
high mortality phase of these mice, after this critical period they usually 
reach adult life [99]. In adulthood, glomerular filtration rate is impaired 
but albuminuria is minimal, increased fibrosis and infiltration of im
mune cells is also observed in the kidneys of these mice [25,99–101]. 

Early studies discovered that ACE-deficient mice are anemic and 
because ACE cleaves N-acetyl-Ser-Asp-Lys-Pro (AcSDKP), a peptide that 
inhibits erythropoiesis, AcSDKP was believed to be the culprit [37]. 
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Later, the N-terminal portion of ACE was specifically deleted in mice 
leading to accumulation of AcSDKP but preserving Ang II formation 
[102,103]. These mice had normal hematocrit despite elevated accu
mulation of AcSDKP similar to conventional ACE-KO mice lacking 
plasma Ang II [103]. Nowadays, it is known that the genetic deletion of 
the Ang II/AT1 axis leads to anemia independently of ACE activity. Mice 
with genetic deletion of angiotensinogen, renin and ACE are similarly 
anemic, as are mice lacking both angiotensin type 1 receptors, AT1a and 
AT1b. The selective deletion of either AT1a or AT1b has no major in
fluence on the hematocrit of mice [38,104,105]. Similarly, AT2- 
deficient mice have an apparently normal erythropoiesis [106]. 
Considering that Ang II is a major vasoconstrictor agent, anemia could 
be secondary to a compensatory plasma volume increase. At least one 
study using ACE knockout mice controlled for the serum volume and 
could demonstrate true anemia [37]. The anemia phenotype is rescued 
in RAS-deficient mice by constant infusion of exogenous Ang II using 
minipumps. A study with angiotensinogen knockout mice could 
consolidate that Ang II/AT1 is relevant for erythropoiesis. In this study, 
the anemic phenotype of angiotensinogen deficient animals could be 
restored by Ang II administration but not when the same dose of Ang II 
was co-administered with the AT1 specific antagonist losartan [38]. 

There were studies demonstrating gain of erythropoiesis associated 
to increased Ang II levels [39,107] or by AT1a receptor mutation- 
induced gain of function [108]. Other reports showed a tendency to 
increased hematocrit or no alteration [37,109–111]. The discrepancies 
among studies are probably driven by differences in the Ang II levels 
reached in each study. Collectively the data suggests that in rodents as in 
humans the Ang II binding to AT1 receptor upregulates erythropoiesis. 

5. Impact of the Ang II/AT1 axis on erythropoiesis control 

There are many studies defending the existence of an intracellular 
(intracrine) RAS where Ang II is generated and may even bind to 
intracellular receptors to regulate cellular functions [112–116]. One 
argument in favor is that there are two isoforms of renin expressed, one 
that remains intracellular and another one being secreted. The intra
cellular isoform is expressed in organs as the brain, heart and adrenals at 
much lower levels when compared to the classical secreted renin pro
duced by juxtaglomerular cells [117]. It is important to highlight that 
the interaction between cytoplasmic renin and secreted angiotensinogen 
is unlikely to happen and to result in the intracellular production of 
angiotensins [7]. Mouse models with specific targeted deletion of the 
secreted or the cytoplasmic renin isoform were generated but only mice 
lacking the secreted isoform were anemic [118,119]. Collectively the 
data indicate that the extracellularly produced Ang II takes part in 
erythropoiesis control. 

Abundant clinical as well as preclinical evidence demonstrated an 
association of erythropoiesis with the RAS especially with the Ang II/ 
AT1 axis as discussed above. In more recent years, researchers mainly 
employing in vivo and ex vivo preclinical experimental setups pointed out 
the following three major mechanisms by which Ang II influences 
erythropoiesis. First, Ang II stimulates Epo secretion. Second, Ang II it
self promotes survival of erythroid progenitors. Third, brain Ang II 
modulates erythropoiesis by bone marrow sympathetic nerve activity 
control (Fig. 3). 

5.1. Ang II and Epo secretion 

Epo is mainly synthesized by a specific subset of renal fibroblasts 
expressing PDGFR-β located at the corticomedullary junction [46]. Epo 
production can be significantly upregulated because there is great 
amount of interstitial cells that might start producing Epo in conditions 
where erythropoiesis has to be upscaled [120,121]. More recently it was 
shown that some interstitial fibroblasts of the kidney express renin 
mRNA, these cells are also PDGFR-β positive. Interestingly, both Epo and 
renin mRNAs may be found in some of these cells, especially during 

anemic and hypotensive conditions [122,123] (Fig. 2). It remains 
largely unknown if a direct modulation exists, such as an Ang II auto
crine signaling (Fig. 2). During kidney development renin producing 
cells give rise to several other renal cell types including vascular smooth 
muscle and Epo producing cells [124] (Fig. 2). Therefore, the remaining 
adult renin positive and Epo producing cell populations share a similar 
genetic configuration. Classical juxtaglomerular renin producing cells 
readily stop producing renin and transform themselves in Epo positive 
cells, if HIF-2α accumulates in these cells [123,125]. 

In vivo administration or transgenic expression of Ang II increases the 
circulating levels of Epo in a dose dependent manner in humans and 
rodents which stimulates erythropoiesis (Fig. 3). These alterations are 
prevented by AT1 blocker co-administration showing that the AT1 re
ceptor modulates the response [39,70,71,126–128]. In agreement the 
administration of ACE blockers and AT1 antagonists cause a decrease in 
renal and plasma Epo as well as in RBC counts [129–132]. Hence, it is 
plausible that Ang II directly stimulates Epo production/release, espe
cially because the expression of AT1 receptors by renal PDGFR-β positive 
fibroblasts is acknowledged [133,134] (Fig. 2). A major confounding 
factor indirectly implicated in the Epo response to Ang II is the reno- 
cortical blood flow that is known to be modulated by Ang II. By 
modulating the vascular tone in the kidney, Ang II influences tissue 
oxygen levels which is major determinant of Epo expression 
[129,135,136]. In line with this observation, HIF-2α is upregulated 
along with Epo upon Ang II infusion in mice [126]. Finally, it is worth 
mentioning that a similar correlation of Epo release is described for renal 
sympathetic nerve activity. Similar to Ang II, high renal sympathetic 
nerve activity or norepinephrine infusion reduce reno-cortical blood 
flow and increase Epo production as a consequence of tissue hypoxia 
[69,137,138]. 

One study has detected increased Epo secretion in mouse kidney 
slices and in human 786-O cells incubated with Ang II. In this study, it 
was concluded that Ang II induced Egr-1 nuclear translocation that is 
dependent on the activation of the Ras/ ERK1/2 MAPK pathway by the 
AT1 receptor [139]. Other studies used HepG2 and Hep3B cells and 
could not find evidence that Ang II increases Epo expression [39,140]. 
More recently a study deleted the AT1a receptor in cells originated from 
Forkhead Box D1 (FoxD1) lineage in AT1b deficient mice [133]. FoxD1- 
positive early progenitors give rise to several renal cell types including 
Epo, renin and smooth muscle cells [124,141]. Mice lacking AT1 re
ceptors in these cells had normal hematocrits and circulating levels of 
Epo, and additionally blood pressure, renal morphology, and renin 
expression were not affected [133]. Perhaps future studies aiming to 
delete AT1 receptors using the promoter of a fibroblast specific marker 
like PDGFR-β would be interesting to study the in vivo effects of Ang II 
injection without the blood flow bias of smooth muscle AT1 deletion 
produced by the FoxD1 loss-of-function strategy. 

Plasma levels of Epo in mice globally lacking ACE or angiotensi
nogen, which exhibit anemia and renal hypoxia, are elevated. If the Epo 
response would be stronger in the presence of Ang II to fully recover the 
anemia is unknown. However, submitting angiotensinogen knockout to 
bleeding increases blood Epo similarly to controls demonstrating that 
Ang II is not necessary to increase Epo at least during bleeding [37,38]. 
Altogether, the lack of Ang II or AT1 receptor in Epo producing cells has 
no major influence on Epo production, but Ang II seems to control Epo 
production if it causes renal hypoxia. 

5.2. Ang II stimulation of erythroid cells 

The bone marrow expresses all relevant components to locally pro
duce Ang II as well as AT1 and AT2 receptors [142–146]. Furthermore, 
Ang II could be detected in cell media of in vitro cultured rat bone 
marrow [145]. In vivo additional circulating angiotensinogen and renin 
probably increases local bone marrow Ang II generation. Finally, 
circulating Ang II is expected to penetrate the bone marrow stroma as it 
does elsewhere except the brain and may therefore modulate 
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erythropoiesis [2,3,147]. 
Ang II receptors are expressed by hematopoietic stem cells (HSCs) 

defined as CD34+ [142,148–150]. In vivo administration of Ang II in
creases the number of HSCs in bone marrow and spleen of mice and 
greatly increases myelopoiesis [151]. Furthermore, Ang II facilitates 
erythroid colony formation from mouse bone marrow and human cord 
blood isolated CD34+ HSCs. Importantly, this effect is largely suppressed 
by the AT1 antagonist losartan, and apparently is dependent on culture 
supplemented with serum [142,152]. In vitro incubation of common 
myeloid progenitors (precursor of erythrocytes) with Ang II facilitates 

proliferation [153] (Fig. 3). Similarly, BFU-E colonies form efficiently if 
CD34+ HSC cells are treated with Ang II in culture media containing Epo 
[142,150]. The need for serum or Epo being present for Ang II induced 
survival of erythroid progenitors strongly suggests that Ang II potenti
ates the Epo signal. Epo survival mechanisms are known to be triggered 
by recruiting the JAK/STAT pathway (Fig. 3). More precisely, JAK2/ 
STAT5 are activated by the erythropoietin receptor resulting in 
expression of anti-apoptotic proteins, like Bcl-xL [49,154]. Moreover, 
Epo receptor activation activates PI3K-AKT and MAPK pathways 
contributing to survival and proliferation, respectively [49,154] (Fig. 3). 

Fig. 2. Origin and fate of renal renin progenitors and their contribution to erythropoietin production. Renal renin progenitors originate from the Forkhead 
Box D1 (FoxD1) lineage. Renin progenitors further differentiate to juxtaglomerular renin-producing cells, vascular smooth muscle cells, and erythropoietin (Epo)- 
producing fibroblasts. Epo producing fibroblasts express the AT1 receptor. The binding of angiotensin II (Ang II) to these cells triggers the release and production of 
the major bone marrow erythropoiesis-stimulating cytokine Epo. Some of the Epo-producing fibroblasts also express renin, but whether an autocrine mechanism 
governs local Ang II formation and Epo release is largely unknown. This illustration was created with BioRender.com. 

Fig. 3. Direct and indirect mechanisms of cell signaling triggered by the angiotensin II (Ang II) type 1 receptor (AT1) on erythroid precursors. Ang II 
activates brain circuits controlling sympathetic nerve activity (SNA). Activated bone marrow innervating sympathetic nerves release the effector neurotransmitter 
norepinephrine (NE). NE activates β2 adrenergic receptors on erythroid precursors that recruit the PI3K/AKT and MAPK pathways. Ang II facilitates the production 
and release of erythropoietin (Epo) from specialized renal fibroblasts. Epo binding to Epo receptor (EpoR) activates downstream signaling including JAK2/STAT5, 
PI3K/AKT, and MAPK. Erythroid precursors express the AT1 receptors, and locally produced or circulating Ang II activates these AT1 receptors which signal through 
the PI3K/AKT and MAPK pathways that facilitate erythropoiesis. This illustration was created with BioRender.com. 
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All these pathways are well known to be activated by the AT1 receptor in 
smooth muscle cells [21,155]. Possible erythroid progenitors are acti
vated in a similar manner but confirmatory studies should be performed. 

Chronic hemodialysis patients often receive Epo to correct anemia 
but RAS inhibitors decrease the beneficial effects of Epo. Indeed, ACE 
inhibitors and especially AT1 antagonists reduce the amount of BFU-E 
colonies of healthy and chronic hemodialysis patients [156]. Chronic 
upregulation of Ang II in mice by transgenic expression of renin and Agt 
leads to erythrocytosis [39]. Exposing these animals to irradiation and 
transplanting them with bone marrow from either wildtype or AT1a- 
deficient mice does not lower their hematocrit [39]. It is important to 
state that AT1a-KO mice are not anemic because the AT1b seems to 
compensate for the AT1a loss in erythropoiesis control. Altogether, Ang 
II seems to potentiate the Epo signaling on erythroid cells and the 
strength of the stimulus is probably different under disease conditions 
and it seems to be more complex in in vivo conditions [38]. 

5.3. Brain Ang II sympathetic activity and erythropoiesis 

Hematopoietic organs, bone marrow and spleen, are innervated by 
sympathetic neurons such as other peripheral organs [12,157,158]. 
Sympathetic nerves enter the bone via the nutrient foramen and sym
pathetic terminals are found in close proximity with the bone marrow 
niche serving as a key keeper of HSC health [159,160]. A well charac
terized role of the adrenergic nerves is the modulation of the HSC niche. 
Sympathetic nerves mobilize HSC from the bone marrow into the cir
culation in a circadian fashion that relies on the circadian pattern of 
sympathetic activity [161]. The mobilization of HSC is key to replace 
tissues resident immune cells, and during immune modulatory responses 
to injury [162,163]. Following injury sympathetic activity is activated 
and the excessive recruitment of HSC to injury sites depletes bone 
marrow erythroid progenitors causing prolonged anemia but addition
ally induces extramedullary erythropoiesis and myelopoiesis in the 
spleen [164,165]. More recently it was shown that the sympathetic 
system causes this HSC shift to the spleen because β-adrenergic agonists 
mimick the phenotype in vivo [166]. The knowledge that the sympa
thetic system controls erythropoiesis is supported by clinical evidence 
from patients with autonomic failure (impaired sympathetic outflow) 
that develop anemia [167,168]. In agreement sympathectomized rats 
develop anemia [169] and cisplatin treated mice develop anemia due to 
loss of adrenergic nerves [170]. 

There have been previous studies using preclinical models describing 
increased sympathetic nerve activity to bone marrow and spleen 
induced by brain or peripheral Ang II infusions [12,171,172]. Chronic 
administration of Ang II or by transgenic RAS protein expression in the 
brain reduces the peripheral RAS activity and increases sympathetic 
nerve activity. Interestingly, this brain-specific increase in Ang II also 
increases erythropoiesis [8,173,174] (Fig. 3). We have recently 
demonstrated in a transgenic mouse model with increased brain Ang II 
and erythropoiesis that these effects are mediated by the sympathetic 
nervous system, because the ablation of the peripheral sympathetic 
system eliminates the effects of brain Ang II on RBC production [8]. In 
agreement transgenic rats with depleted brain Ang II levels have a 
reduced hematocrit demonstrating that the endogenous brain RAS is 
relevant for the homeostatic control of erythropoiesis [175]. Finally, 
transgenic mice expressing human ACE2 in the brain and periphery, a 
major enzyme degrading Ang II, have a lower hematocrit [176]. 

During essential hypertension the peripheral RAS is normally found 
suppressed, however the brain RAS seems to be hyperactive because 
patients often present increased levels of vasopressin in their blood 
[177–179]. Preclinical research demonstrated that during hypertension 
the blood–brain-barrier becomes permeable for Ang II, therefore circu
lating Ang II or intrinsically produced Ang II in the brain overactivates 
existing neuronal brain Ang II receptors. During human essential hy
pertension, which is commonly accompanied by increased sympathetic 
nerve activity, an increased hematocrit is often observe and both 

increased sympathetic activity and the alteration in the hematocrit 
precede hypertension. Therefore, the increased hematocrit in hyper
tension is not solely explained by compensatory mechanisms of pressure 
natriuresis but rather by other mechanism such as increased sympa
thetic activity [180–184]. Owing to the ability of Ang II to drive sym
pathetic activity it is reasonable to postulate that part of the phenotype 
might be attributed to increased activity of the brain RAS. The features 
of increased hematocrit during essential hypertension are also observed 
in the preclinical rat and mouse models of hypertension, spontaneously 
hypertensive rat and Schlager hypertensive mouse. Both models of 
sympathetically mediated hypertension with a contribution of an acti
vated brain RAS also have increased bone marrow sympathetic nerve 
activity and hematocrit levels [185–188]. 

In vitro studies showed that norepinephrine stimulates erythropoiesis 
by increasing CFU-E and BFU-E growth via β2-adrenergic signaling by a 
mechanism apparently operating synergistic to Epo [167,189–192] 
(Fig. 3). Studies indicated that cAMP recapitulates the effects on 
erythroid proliferation triggered by the β2-adrenergic agonist isopro
terenol [191,193]. β2-adrenergic receptors are known to facilitated 
cAMP production by activating adenylyl cyclase via the Gs pathway 
[194]. This effect is also observed in erythroid progenitors and in
teractions with other pathways such as the MAPK recruited by the Epo 
signal may lead to cell proliferation [191,195] (Fig. 3). A possible 
additional contribution of β2-adrenergic receptor activation on 
erythroid cells is the PI3K-AKT anti-apoptotic signal triggered by 
recruiting Gi proteins [194,196] (Fig. 3). Importantly, it seems that 
norepinephrine has a dose dependent effect on erythropoiesis because 
too high norepinephrine concentration inhibits growth of erythroid 
progenitors [71,190]. Finally, α1-adrenergic receptor activation is 
associated to erythropoiesis suppression [197]. Not only HSC but also 
progenitors and other cells in the bone marrow express adrenergic re
ceptors [162,185]. Therefore, the modulatory role of the sympathetic 
nervous system on erythropoiesis is rather complex involving direct 
modulatory actions on progenitor cells or indirect via modulating the 
release of factors such as cytokines by other cells of the niche. 

Because of the highly complex interaction between the sympathetic 
system with other factors regulating erythropoiesis in physiological and 
pathological conditions, the role of norepinephrine is not precisely 
defined and most likely differs depending on homeostatic conditions 
[167]. Which neurons control bone marrow activation is another puz
zling question to be answered. There have been at least two studies in 
this direction. One deleted AT1a receptors in vasopressinergic neurons 
and the other in the paraventricular nucleus of the hypothalamus, both 
could not demonstrate changes in the hematocrit of mice [198,199]. 

6. Final considerations and future directions 

The RAS evolved in mammalians with a major function in restoring 
homeostasis when threatened. An upregulation of the RAS is usually a 
response to reduced renal perfusion. To restore homeostasis Ang II has a 
well-recognized role in upregulating blood volume by fostering fluid 
intake and reducing renal salt and water losses. It is reasonable that 
during the course of evolution the effector peptide Ang II not only 
evolved to increase blood volume but also the circulating RBC mass in 
order to improve tissue oxygenation. Evidence supporting the role 
played by the Ang II/AT1 in RBC production was already laid down in 
the past decades. However, it remains experimentally challenging to 
dissect the precise mechanisms utilized by Ang II to influence 
erythropoiesis. 

As mentioned in this review at least three major mechanisms 
whereby Ang II can influence RBC production were defined. 1) stimu
lation of renal erythropoietin synthesis; 2) direct action on bone marrow 
precursor cells; and 3) modulation of sympathetic nerve activity to the 
bone marrow (Fig. 3). Erythropoiesis regulation involves several organ 
systems. Thus, in vitro experiments are useful to dissect molecular 
mechanisms but they are not useful to quantify the in vivo contribution 
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of these mechanisms. Regarding the contribution of Ang II to erythro
poiesis a major confounding factor is the broad expression of its re
ceptors across different tissues. Ang II certainly modulates 
erythropoiesis but it also causes physiological disturbances that influ
ence measurement of parameters e.g. plasma volume. In addition, the 
impact of Ang II on RBC production seems to vary significantly between 
health and disease states. Altogether, the contribution of each mecha
nism as well as synergistic interactions between them are challenging to 
be established in in vivo experimental settings. 

There are available tools to better dissect mechanisms of erythro
poiesis control using in vivo models. To understand if Ang II controls Epo 
secretion, specific fibroblast promoters in combination with Cre-LoxP 
may be used to manipulate Ang II receptor expression in renal fibro
blasts. Regarding the role of Ang II on erythroid progenitors again se
lective genetic tools might be used to manipulate Ang II receptors during 
specific differentiation stages. In addition, the depletion and replenish
ment of HSCs with different receptor knockouts as well as rescue of 
anemic knockout with wildtype HSCs have not yet been performed. 
There are still many open questions regarding how brain Ang II increases 
erythropoiesis via sympathetic activity, already developed techniques 
such as opto-and chemo-genetics might be helpful to provide important 
insights. Finally, OMICS tools are essential to gain insights in the cellular 
and molecular bases of the regulatory mechanisms but also to under
stand possible compensatory mechanisms driven by Ang II/AT1 signal 
manipulation. ACE inhibitors and AT1 blockers are widely used clini
cally. Therefore, understanding how Ang II controls physiological and 
pathological erythropoiesis will be helpful to use these drugs with more 
safety in patient care. 
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