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Supplemental Methods  

  

Samples collection and processing   

Supernumerary material, not needed for clinical allogenic hematopoietic stem cell transplantation, was used 

for this study. Stem cell preparation was performed by CD34-selection via CliniMACS-LScolumns 

(Miltenyi Biotech), and T-cell depletion using SAM-Beads (Miltenyi Biotec) and Orthoclone OKT3-

antbodies (Janssen/Cilag).  

  

Illumina RNA sequencing detailed bioinformatic analyses  

RNA sequencing reads were processed by adapter and quality trimming with cutadapt42, (version 2.4; 

parameters: --nextseq-trim 20 --overlap 5 --minimum-length 25 --adapter AGATCGGAAGAGC -A 

AGATCGGAAGAGC),40 followed by poly-A trimming with cutadapt (parameters: --overlap 20 -

minimum-length 25 --adapter "A[100]" --adapter "T[100]"). Trimmed reads were aligned to the human 

reference genome (hg19) using STAR23, (version 2.7.5a; parameters: --runMode alignReads -

chimSegmentMin 20 --outSAMstrandField intronMotif --quantMode GeneCounts) and transcripts 

assembly was performed using stringtie24 (version 2.0.6; parameters: -e) with the GENCODE annotation 

(release 19). Furthermore, Illumina RNA sequencing data was processed with the fusion caller JAFFA,22 

using the direct mode of this software with standard settings and alignment to hg19. The identified fusion 

transcripts were compared to our translocation and inversion breakpoint dataset using bedtools closest43 

with a cutoff of less than 30kb distance to both corresponding genomic breakpoints. Per patient, genes with 

an average TPM of less than 0.5 across patient and control replicates were excluded from downstream 

analysis.  

The GO terms resulting from our GO analysis were grouped by semantic similarity using the R package 

GOSemSim44 with the semantic similarity measurement by Wang et al.45 the following way: An undirected 

graph was constructed using GO terms as nodes. An edge was drawn between two GO terms if their 

semantic similarity score was above 0.7 and edges where weighted by the respective semantic similarity 

score. Groups of similar GO terms were determined by identifying the minimum spanning forest of the 

graph using Kruskal’s algorithm.46 For the resulting groups of similar GO terms a representative GO term 

was selected based on the minimum False-Discovery Rate (FDR) of all GO terms per group. Up- and down-

regulated genes were tested separately per patient against the genomic background using the “Biological 



 
process” GO database.47 The resulting GO terms were grouped by semantic similarity using the R package 

GOSemSim44 with the semantic similarity measurement.45 For the resulting groups of similar GO terms a 

representative GO term was picked based on the minimum False-Discovery Rate (FDR) of all GO terms 

per group.  

  

Microarray expression data  

The previously generated microarray data that we include in this study was generated as follows. All 

samples were processed as follows: Total RNA isolation was performed using Trizol reagent (Invitrogen, 

Carlsbad, CA). For targeted preparation according to the manufacturer’s protocol, 0.2 microgram of RNA 

was used (GeneChip Whole Transcript Sense Target Labelling Assay manual, Affymetrix, Santa Clara, 

CA). The arrays were scanned with the Affymetrix GeneChip® Scanner 3000. Probe set summarization, 

background correction and normalization were performed by applying the robust multiarray average (RMA) 

algorithm. The exon array data were analyzed in R, oneChannelGUI 1.10.7.48 A z-score expression data 

heatmap of this cohort was generated using Morpheus (Morpheus).  

  

Oxford Nanopore Technology (ONT) DNA library preparation and sequencing  

After extraction, genomic DNA (gDNA) was prepared for ONT WGS using the Ligation Sequencing Kit 

(ONT, SQK-LSK109). We also performed ONT direct cDNA sequencing using mRNA that was processed 

with the Dynabeads mRNA Purification Kit (Thermo Fisher Scientific, 61006) for mRNA isolation from 

total RNA. The mRNA was reverse transcribed and prepared for ONT sequencing using the direct cDNA 

Sequencing Kit (ONT, SQK-DCS109). All ONT libraries were sequenced on a GridION on R9.4.1 flowcells 

(ONT, FLO-MIN106D). ONT WGS of gDNA libraries was performed until a coverage of at least 10x for 

each patient was reached.   

  

Oxford Nanopore Technology (ONT) DNA data analysis  

The average N50 read length of all runs in our dataset was approx.7.1kb. Base calling was performed using 

ONT standard base caller Guppy. Fastq files of the gDNA runs were merged and aligned to the human 

reference genome with the NGMLR long read aligner49 and processed with samtools to generate bamfiles.50 

The sorted and merged bamfiles of all sequencing runs for one patient were processed with the ACE tool51 

at 1 kb, 5 kb, 10 kb, 50 kb, and 100 kb binning size to search for CN alterations. For the final CN dataset, 



 
the 10 kb binning size ACE dataset was used, because of comparably high resolution but still very high 

accordance with the Hi-C coverage comparisons. This CN dataset was further refined by visual detection 

of CN changes in the Integrative Genomics Viewer (IGV) version 2.7.2.52 The CN estimations that were 

derived from visual inspection were validated by comparing local genomic coverage with igvtools.53 This 

enabled us to also identify the CN of fragments that were too small for the ACE CN analysis (< 10-20 kb 

fragments). For detection of SV breakpoints, the gDNA bamfiles were processed with the long-read SV 

caller NanoVar, Version 1.3.2.21 NanoVar was primarily executed with standard filtering criteria, without 

filtering the SV calls by a confidence score (CS), to detect as many SVs as possible that were already 

detected by Hi-C sequencing. After comparing SV calls from Hi-C with the NanoVar SV calls, we were 

able to adjust the filtering criteria without excluding any true positives. For the final dataset, a CS of 0.4 

was used for filtering. To also identify breakpoints of very small segments, which we did not identify by 

primary visual inspection of the Hi-C maps, all NanoVar translocation and inversion calls within 1 Mb at 

the Hi-C breakpoints were searched for in the Hi-C map.   

  

Oxford Nanopore Technology (ONT) direct cDNA sequencing library preparation and analysis  

The identified fusion transcripts were compared to our translocation and inversion SV call dataset using 

bedtools closest43 with a cutoff of less than 30 kb distance to both corresponding genomic breakends. They 

were also compared to the fusion transcripts that were identified by running JAFFA on the Illumina RNA 

sequencing dataset. Fusion calls in the Illumina RNA and ONT direct cDNA datasets were identified as 

matching if they were located at the same exon-intron boundary.  

  

Hi-C data analysis  

Sequencing data of the Hi-C libraries was processed by the Juicer pipeline.54 The output files of Juicer for 

all replicates were merged and read pairs with mapping quality (MAPQ) ≥ 30 were used to generate the 

final maps. We used Juicebox software for visual inspection of the Hi-C maps.55 We analyzed the Hi-C data 

with HiNT-CNV, a coverage-based HI-C CN analysis method, that we executed using standard settings at 

50kb binning size on the human reference genome (hg19). The high accordance of the HiNTCNV dataset 

with the ACE CN data is shown in supplemental Figure 2.   

  

Functional evaluation of fusion genes  



 
To evaluate potential biological effects of the USP7/MVD fusion transcript, RNA from case CK2-Mut was 

extracted and reversely transcribed to cDNA. The cDNA was then amplified and cloned in a pRSF91 

retroviral vector. PCR primers for cloning in the pRSF91 retrovirus backbone were used as following: USP7 

Ex1-Ex1 (AGAGACCGGTACCATGAACCACCAGCAGCAGCA (USP7_forward, Ex1) of USP7 and 

Ex2Ex6 (AGAGACGCGTGTCCCTGCTGAGGCAGTC (MVD_reverse, Ex6) of MVD. The retrovirus 

was produced by transfection of the pRSF91-USP7-MVD fusion transcript as well as VSV-G and packaging 

proteins using TRANS-LTI (Mirrus). The viral supernatant was collected after 36h and 48h. For viral 

infection, cells were seeded with 1 to 2 µg/ml Polybrene (Sigma). At concentrations of 0.5-2 µg/ml, the 

cells were puromycin selected 1 day after transduction. Further cultivation for assaying cell proliferation 

was conducted in RPMI 1640 (Mediatech) or DMEM (Mediatech) with 10-20% heat-inactivated FBS and 

1% penicillin, streptomycin, and L-glutamine (Mediatech).   

  

Identification of breakend signatures and genomic distribution  

We calculated the distribution of breakends inside of repetitive elements and the distribution of breakends 

close to these breakends. The distribution shows the normalized occurrence of repetitive elements within a 

given distance to the breakend. Analysis of local breakend density was performed by kernel density 

estimation for each chromosome. The local density of translocation and inversion breakends was visualized 

using ggridges in R with kernel bandwidths 1 Mb, 1 kb and 0.5 kb. To calculate a genomic background rate 

to simulate a potential random distribution, the total size of these features was compared to the total size of 

the genome. This rate was used for the calculation of observed/expected values. All regions on sex 

chromosomes were excluded because none of these were affected by translocations or inversions in any of 

the cases reported here. Significance of enrichment of repetitive elements and other genomic features inside 

or in close proximity to breakends was investigated with a two-sided Mann-Whitney-U-test against 10000 

random breakpoints (telomeres/centromeres and variable genomic regions excluded). Repeat classes from 

repeatmasker were investigated as well as 3’UTR, 5’UTR, introns , exons, intra- and intergenic-regions, 

excluding features with less than 1% prevalence in the human genome. These tests were performed for 

breakpoints inside the respective genomic regions and separately for increased occurrence of breakpoints 

around the respective genomic features. The findings were corrected by the Benjamini-Hochberg procedure. 

The distances and their 95% confidence intervals were estimated by boot-strap over 5000 iterations. 

  

    



 
Supplemental Results  

  

Cohort overview and structural variant detection using Hi-C and ONT DNA sequencing  

Integrating Hi-C and ONT-GS analyses our workflow maximizes the potential of both technologies by 

thoroughly removing false-positives SV calls from the final dataset. For ONT GS data, this mainly concerns 

false-positives SV calls due to the high mismatch error of this technology. For Hi-C, exact identification of 

correct breakends and discrimination from breakend-like patterns of small fragments (<20 kb) is not 

possible with certainty.   

  

Integrative SV analysis reveals genomic differences in TP53 mutated vs. TP53 wildtype cases  

In order to identify the correct connections of these remaining fragments, we also projected additional 

NanoVar SV calls ranging from 100 kb up to 1 Mb around the putative BND on the Hi-C map. We observed 

that these two missing connections did not directly link to each other, but to two small fragments (N1, 1.3 

kb and N2, 5.2 kb) (Figure 2c; supplemental Figure 3a). These fragments were located in between the 

presumed BND and joined them together (supplemental Figure 3a), and based on the combined ONT GS 

and Hi-C approach, we were able to likely reconstruct the derivate 7 and 8 chromosomes (supplemental 

Figure 3b,c).  

  

Identification of “chromocataclysm” - extremely locally clustered chromothriptic rearrangements 

showing focal amplifications of kilobase and sub-kilobase regions of the genome  

Most SV breakends in our dataset were associated with a CN change very close or directly at the breakend 

(supplemental Figure 7a). Due to this feature, which matches the definition of chromothripsis, we were able 

to display the CN state of fragments <1 kb, including their connections to other fragments. This can only 

partly be visualized due to the enormous complexity of some of the rearrangements (supplemental Figure 

7b-d). Analysis of the CN state distribution of all fragments (including whole chromosomes but also very 

small fragments) showed that all CK-AML cases harbored fragments with CN gain as well as CN loss 

(Figure 3a). However, TP53 mutated cases showed higher genomic complexity than the TP53 wildtype 

cases and the distribution of the fragments varied substantially. Based on our analysis, many of the cases 

harbor amplified fragments with a CN of ≥ 5 (supplemental Figure 8a). Analysis of CN states of small 

fragments (<20 kb) in the four cases with the most total fragments showed that CK4-Mut harbors very few 



 
of these small fragments compared to the other cases (Figure 3b). We did not observe the chromocataclysm 

pattern in this case, while it was observable in the other three cases.   

Overall, the distribution of BNDs in specific chromosomes and cytogenetic bands in all cases showed 

enrichment of translocation or inversion BNDs on chr7 (N=6), chr19 (N=5), chr3 and chr12 (N=5), and 

chr5, chr8, chr11 and chr17 (N=3). Furthermore, cytogenetic bands on chr7 and chr17 were recurrently 

affected by BNDs in three cases (7q11.21; 7q21.3; 7q22.1; 17p11.2; 17p12) (supplemental Table 3). This 

result led us to investigate if these frequently breakpoint-hit chromosomes in CK-AML show a similar 

pattern of gene expression among the cases reported here. Furthermore, we sought also to identify regions 

of the genome prone for being hit by a breakpoint in CK-AML cases.  

  

Gene expression analysis revealed a chromothripsis associated pattern of CN losses and gene down 

regulations in CK-AML related genomic regions   

Commonly up-regulated genes (up-regulated in at least 6 out of 9 patients) were enriched in gene ontology 

(GO) terms of leukocyte biology and function as well as processes of the immune system, while commonly 

down-regulated genes were enriched in GO terms of fatty acid biosynthetic process and blood circulation 

(supplemental Figure 9a,b).  

The genomic distribution showed that all gain and upregulation candidate genes were located on 8q, a 

chromosome arm that is known to be repeatedly affected by CN gains in CK-AML. On the other hand, the 

loss and downregulation candidate genes were located on chromosome arms 7q, 16q, 12p, 17p and 18q, 

regions that are known to be repeatedly affected by CN losses in CK-AML (supplemental Figure 9c).7,56 

Interestingly, almost all of the 30 loss and downregulation candidate genes showed this pattern only in cases 

that we previously identified as chromothripsis. Only two of these genes, ETV6 and LRP6, showed a CN 

loss and gene downregulation state in a case that was not classified as chromothripsis (CK7-Wt). 

While some of these genes could have a CNV alteration specific role in CK-AML, other genes seem to be 

also dysregulated in cases without CN alteration. In these cases, epigenetic mechanisms or the alteration of 

upstream transcription factor genes could lead to the resulting expression profile. To further investigate a 

CK-AML related role of our candidate genes, we compared our findings to our own microarray-based GE 

dataset previously generated in CK-AML cases (n=39) and CD34+ healthy controls (n=3),27 and the Beat 

AML RNA expression dataset from AML with myelodysplasia related changes (n=87) and CD34+ healthy 

controls (n=21).57 One of the CN gain and upregulation candidate genes was TRIB1, a pseudokinase that is 

also thought to function as an oncogene in several malignancies and is involved in TP53 signaling.58 This 



 
gene showed high expression values (z-score transformed gene expression array signal) in our microarray 

GE dataset as well as in the Beat AML dataset, when compared to CD34+ healthy controls. Similarly, 

TNK1, a known tumor suppressor gene59 and one of the candidate genes with CN loss and downregulation 

showed low expression values (zscore) in the AML cases of our two reference datasets (supplemental 

Dataset 5; supplemental Dataset 6). Taken together, our gene expression analyses revealed a common loss 

and downregulation/gain and upregulation pattern that seems to play a role in CK-AML in general, but 

further studies are warranted to elucidate the role of each of these genes in leukemia biology.  

  

     



 
Supplemental Note  

  

Breakend definition  

We defined used the term breakend (BND) here to summarize interchromosomal and intrachromosomal 

breakpoints from our CK-AML cohort. These breakpoints were derived from trans (interchromosomal) and 

cis (intrachromosomal) Hi-C maps. In these maps, patterns of high visual signal intensity that were not 

present in the CD34+ stem cell control maps, were defined as potential breakpoints and integrated with 

potential breakends from the NanoVar tool (ONT WGS data). NanoVar SV calls from the BND and INV 

(inversion) categories were used for this integrative analysis.  

  

Breakend signatures in Hi-C  

In Hi-C, interaction of two genomic loci is represented by signal intensity in the Hi-C maps. The closer two 

genomic loci are in the 3D genome, the more interaction signal is visible in the Hi-C maps. Breakends of 

translocations and inversions are visible in Hi-C maps as a strong local signal, which is not visible in control 

maps (here we used CD34+ stem cell maps). In most cases, especially with simple rearrangements, the 

difference in signal intensity is very high and differences are easy visible. Translocations are visible in the 

trans-maps (interchromosomal) and inversions in the cis-maps (intrachromosomal). The point with the 

highest signal intensity is regularly the actual breakpoint, because the signal intensity decreases rapidly with 

genomic distance. An important but difficult to handle phenomenon that we observed here are breakend-

like patterns, when dealing with very small fragments as reported in this study. If two loci are not directly 

linked via a breakpoint but show close proximity to each other due to for example a smaller fragment that 

is connected with both of them, the Hi-C signal of the connection of these fragments can appear as a 

breakend-like pattern. However, we saw in our dataset that these breakpoint like–patterns are well 

distinguishable from real breakpoints when the fragment size is in the range of about > 100kb, due to 

differences in local signal intensity at the putative breakpoint (supplemental Note Figure 1). For smaller 

fragments, a clear distinction of breakends and breakend like patterns would not be possible without 

integrating the data with the SV data from NanoVar.   

 

 

 



 
 

   
 

 

  
Structural variant detection pipeline  

The pipeline that we report here analyses Hi-C and ONT WGS data in a novel integrative way, in order to 

maximize the potential of both technologies and thoroughly remove false-positives from out dataset. The 

SV detection for each patient started with a primary visual inspection of all Hi-C maps for SV breakpoints. 

The lists of all potential Hi-C breakpoints were then screened for directly corresponding breakpoints in the 

SV breakpoint call list that we generated based on the NanoVar SV caller which we executed on our ONT 

WGS data (see methods). Furthermore, all NanoVar SV calls in the range of 1 Mb around both coordinates 

of the putative Hi-C breakpoints were re-analyzed for additional Hi-C support. This was done in order to 

identify small fragments in clustered breakpoint regions, which were too small to be detected only by Hi-C 

visual inspection. If additional Hi-C support for a Nanovar SV call was detected, we started the pipeline 

again by executing the same procedure on these new Hi-C breakpoints that we performed on the Hi-C 

breakpoints from the primary visual inspection. This procedure was repeated until no additional NanoVar 

SV calls with Hi-C support were identified. This enabled us to generate genome wide CN estimations which 

we integrated with the SV breakpoint calls. In summary, we only integrated SV calls in our final SV call 

dataset that were supported by Hi-C sequencing as well as by NanoVar SV calls, except for a very small 

fraction of fragments (less than 3% of all found fragments) which were enclosed on both sides of the 

fragment by a NanoVar translocation or inversion call and were < 10 kb in size but lacked Hi-C support. 

This enabled us to thoroughly exclude false positives from our dataset.   

  

 

 



 
Chromothripsis definition  

For the assessment of rearrangements as chromothripsis, we used the definition of at least 10 copy number 

(CN) changes on a single chromosome that was already used by other studies previously.13 In our final 

dataset all the five TP53 mutated and one of the TP53 wildtype CK-AML cases (CK6-Wt) fulfilled this 

definition. Case CK5-Mut primarily showed rather simple karyotyping results as well as a simple pattern of 

rearrangements at primary inspection of the Hi-C maps (supplemental Note Figure 2a). However, after 

detailed analysis, also this case fulfilled the criteria for chromothripsis and harbored complex 

rearrangements of smaller fragments (supplemental Note Figure 2). Two cases that we present here (CK2-

Mut and CK3-Mut) were already examined by CN analysis using SNP microarray data. The same cutoff 

value for chromothripsis was used in this study but the data showed much fewer copy number losses and 

gains as seen by our integrative SV detection approach (supplemental Table 2).27  

 

chr7 

 

  

  

Chromothripsis with extreme local breakpoint clustering (Chromocataclysm)  

We termed the phenomenon of extreme local breakpoint clustering that we that we found in small regions 

of some chromothriptic rearrangements as chromocataclysm.  We defined chromocataclysm as the 

occurrence of 4 or more  breakends in a region of 5 kb, in a single chromothriptic rearrangement. This 

requirement was fulfilled by the chromosome 15 and 16 rearrangement in CK2-Mut as well as a 

rearrangement including material from chromosomes 7, 9, 12, 17, 18, 19 and 20 in CK3-Mut and a 

rearrangement including chromosomes 5, 7, 10, 11, 12 and 19 in CK6-Wt. Interestingly, less complex 



 
rearrangements occurred in addition to these extreme complex rearrangements in all these three cases 

(supplemental Dataset 1). Most notably, CK2-Mut showed an additional chromothriptic rearrangement of 

chromosome 3, 7, 20 and 22, which was not connected to the chromosome 15 and 16 rearrangement but did 

show a much lower level of clustering thereby not meeting the criteria for a rearrangement with extreme 

local breakpoint clustering. This suggests that these rearrangements may occurred independently. These 

extreme complex rearrangements consisted largely of fragments that were much smaller than those detected 

with previously used methods and were amplified.12,13,31 

  

Fusion transcript detection pipeline  

We developed an integrative pipeline for fusion transcript detection in our samples. For this pipeline, we 

wanted to be able to detect fusion transcripts with a high confidence. For this, we only integrated fusion 

transcripts that were supported by 2 transcriptome sequencing methods (ONT direct cDNA and Illumina 

RNA-Seq) and by corresponding genomic breakpoints supported by 2 genome sequencing methods (ONT 

WGS and Hi-C) in <30 kb distance from to both transcriptomic “breakpoints” of the fusion transcript. We 

set this cutoff value of <30 kb to also account for intronic breakpoints that are likely distant from the exon-

exon fusions. The fusion transcripts that were discovered by this pipeline were matched with the fusion 

transcript information in the ChimerDB 4.0 database of known fusion transcripts.60 

  

Function of genes that are part of the found fusion transcripts   

USP7 is an ubiquitinase that plays a complex role in the interaction of MDM2 and TP53. Also, it is well 

known to play a role in several cancers including AML.38,39,61 NUP88 is frequently overexpressed in 

cancer62 and was also linked to NF-κB signaling in AML.63 ANKRD12 is very similar paralog of 

ANKRD11, a putative tumor-suppressor gene and known co-activator of TP53 and is itself thought to 

activate TP53.64,65 ARGHAP44 was recently described as a target of mutant TP53 in cancer.  
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Supplemental Figure 1. Exemplary visualization of our SV detection workflow. Hi-C maps were analyzed 
based on visual inspection of the CK-AML maps compared to the CD34+ stem cell control maps. The SV 
calls that were observed in Hi-C were then integrated with ONT GS data that was analyzed with NanoVar 
and ACE tools. Based on these technologies, we obtained a final high confidence SV call dataset. 
 

 

 

 
 

 

 
 

 

 
 

 



 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
Supplemental Figure 2. Translocation calls from HiNT (black squares) and hic_breakfinder (yellow 
squares) projected on the Hi-C trans map (CK1-Mut) of chromosome 7 and 8 (c). For this rearrangement, 
both callers detected 1 out of of 8 Translocation calls that were present in our SV dataset. In addition, 2 false-
positive calls were called by HiNT and 3 false-positive calls were called by hic_breakfinder. MB, genomic 
position in megabases. 
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Supplemental Figure 3. HiNT and ACE copy number (CN) results. (a) and CK7-Wt and (b) CK6-Wt results 
from HiNT and ACE revealed a highly correlation between both tools. ACE CNV results at 100kb binning 
size (gDNA long read sequencing). Selected smaller fragments with a CN > 2,3 or < 1,7, which were present 
in the HiNT as well as in the ACE dataset are marked by red arrows (a,b). The accordance of the Hi-C 
coverage data with CN estimations from ACE was well preserved in all analyzed cases. (c-f) Hi-C coverage 
data is shown as turquoise coverage tracks above the CN data from ACE. ACE CN data is shown as blue 
bars in the size and position of the respective fragment. Selected regions with CN changes of CK1-Mt (c,d) 
and CK6-Wt (e,f). CN, Copy number; MB, genomic position in megabases. 

 

 

 



 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 
Supplemental Figure 4. Reconstruction of the derivate chromosome structure of a chromothriptic 
rearrangement (chromosome 7 and 8) in CK1-Mut based only on Hi-C sequencing. The position of Hi-C 
breakpoints is marked by small black arrows (a). Reconstruction of derivate chromosome structure based on 
Hi-C and NanoVar data (b). N1 and N2 mark fragments which were identified after integration of Hi-C data 
with NanoVar. The position of these fragments in the derivative chromosomes is marked by green arrows. 
The base pair position of the breakpoints after integration of Hi-C data with NanoVar in (c) are marked by 
small black arrows. Schematic view of the N1 fragments and the connections to parts F (chr7) and F (chr8) 
in the context of the previously assumed F-G connection. MB, genomic position in megabases; KB, genomic 
position in kilobases; der, derivative chromosome. All chromosome positions are based on the GRCh37/hg19 
assembly. 
 

 

 



 
 

 
Supplemental Figure 5.: Overview of Structural Variants in the cohort presented in this work. Bar plot of 
the CN distribution for each case in our cohort. Cases on the x axis. Number of distinct fragments (all sizes) 
with a certain CN state on the y axis. CN gain (gray bars) is based on our CN detection approach defined as 
a CN > 2,3. CN stable (light blue) is defined as CN 1.7 ≤ x ≤ 2.3. CN. CN loss (dark blue) is defined as CN 
< 1,7 (a). Bar plot of the Translocation and Inversion distribution for each case in our cohort. Translocations 
(dark green) are here defined as interchromosomal breakends. Inversions (light green) as intrachromosomal 
breakends (b).  
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Supplemental Figure 6. Zoomed-in details of Hi-C trans-map of chromosome 15/16 and cis-map of 
chromosome16 (a). Chromosome positions are based on the GRCh37/hg19 assembly. The connections of a 
chromosome 16 small amplified region of 267 bp (position on chr 16: 4,026,350-4,026,647 bp) are visible 
as fragments in the Hi-C maps. Letters A-T mark Nanovar Translocation and Inversion calls of this region 
projected on the Hi-C map. Coverage estimations based on Hi-C are displayed around the Hi-C maps, the 
CN elevation of this region is very well visible in comparison with the coverage track of a sample in which 
this region is not affected by SVs (CK10-Wt). The segments around the amplified region shows a CN state 
of 1 based on ACE and Hi-C. The final CN of the segments connecting to the 297bp amplified region are 
shown above the coverage tracks and were generated based on our CNV algorithm. The 297 bp amplified 
region is marked on the CK-AML8 coverage track with a black arrowhead. * CK2-Mut coverage, ** CK10-
Wt coverage.  The 297 bp amplified region of CK2-Mut on chromosome 16 as it is represented in the .tdf 
files in IGV, consisting of multiple CN changes (CN state 3-5) and subfragments (b). The .tdf file track of 
CK2-Mut is shown below, here were no CN changes present in this region. The location of the Nanovar calls 
on the segment are marked by letters A-T. All chromosome positions are based on the GRCh37/hg19 
assembly. KB, genomic position in kilobases; Numbers below (b), genomic position in bases. 

 

 
 

 

 
 

 

 
 



 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 
Supplemental Figure 7. Number of breakpoints and their relative distance to the next point of CN change 
plotted for all samples that harbor any translocation or inversion breakpoint (a). Co-occurrence of CN 
changes with inversion or translocation breakpoints, shown for CK6-Wt (b), CK2-Mut (c) and CK7-Wt (d). 
Just small sections of the real complexity of these rearrangements can be visualized here. Translocation 
and/or inversion calls that are connecting the respective fragments here are marked by a black arrow. 
Connections of these fragments are shown as orange lines. The copy number of each fragment is written in 
orange numbers above the fragment. CN changes are marked by vertical dashed lines. KB, genomic position 
in kilobases; B, genomic position in bases. 



 
 
Supplemental Figure 8. Violin plots of CN distribution in the final CNV dataset for all CK-AML cases (a). 
Each dot represents one fragment (distinct region on a chromosome without a CN change) and its respective 
CN. The cases are ordered by complexity, starting with the case with the highest number of CN changes to 
the left. Pie charts displaying the distribution of breakends of the chromocataclysm cases (b) and of 
chromothripsis cases that were not classified as chromocataclysm (c), regarding their occurrence inside of 
repetitive elements (repeat categories from repeatmasker) (c).  
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Supplemental Figure 9: Over-Representation Analysis (ORA) based on Gene Ontology (GO) terms. 
Overrepresentation of GO terms in the Illumina RNA-Seq data of the CK-AML cases vs. the CD34+ 
stem cell controls. Upregulated GO terms (a) downregulated GO terms (b). Genomic distribution of the 
candidate genes of our gene expression analysis (c), downregulation candidate genes in green letters, 
upregulation candidate genes in purple letters. p.adjust, False-Discovery Rate adjusted p values; 
Enrichment ratio, GO term overrepresentation compared to expected rate of occurrence; Gene ratio, 
fraction of GO term associated genes that are dysregulated. Chromosomal distribution of the candidate 
genes (c). CN ↑/GE ↑ candidate genes written in purple, CN ↓/GE ↓ candidate genes written in green. 
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Supplemental Datasets 

 

Supplemental Dataset 1: ACE tool ONT DNA long-read whole genome sequencing copy number data 
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Supplementary dataset 2
Supplemental Dataset 2: Hi-C maps for all rearrangements in this cohort 

  



Supplemental Dataset 3: Circos plots for all Translocation and Inversion breakpoints in this cohort 

 

 

 



Supplemental Dataset 4: CK-AML copy number and gene expression dysregulation candidate genes 



Supplemental Dataset 5: RNA sequencing data heatmap of the CK-AML and CD34+ hematopoetic 
stem cell control cohort reported in this monograph 

RNA sequencing data heatmap

AML-CK and CD34+ healthy control cohort of this paper
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Supplemental Dataset 6: Microarray expression data heatmap of AML-CK cases and CD34+ 
hematopoetic stem cell samples of healthy controls  
 

 

 

 

 

 

 

 

 

 

 

 

 

data derived from Risueño et al., 2014 
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Supplemental Dataset 7: RNA expression data heatmap of AML cases with myelodysplasia related 
changes and CD34+ hematopoetic stem cell samples of healthy controls  

data derived from the Beat AML dataset, Tyner et al., 2018 
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