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Abstract
Purpose  Resistin, a novel pro-inflammatory protein implicated in inflammatory processes, has been suggested to play a role 
in colorectal development. However, evidence from observational studies has been inconsistent. Mendelian randomization 
may be a complementary method to examine this association.
Methods  We conducted a two-sample Mendelian randomization to estimate the association between genetically determined 
circulating resistin concentrations and risk of colorectal cancer (CRC). Protein quantitative trait loci (pQTLs) from the 
SCALLOP consortium were used as instrumental variables (IVs) for resistin. CRC genetic summary data was obtained from 
GECCO/CORECT/CCFR (the Genetics and Epidemiology of Colorectal Cancer Consortium, Colorectal Cancer Trans-
disciplinary Study, and Colon Cancer Family Registry), and FinnGen (Finland Biobank). The inverse variance weighted 
method (IVW) was applied in the main analysis, and other robust methods were used as sensitivity analyses. Estimates for 
the association from the two data sources were then pooled using a meta-analysis approach.
Results  Thirteen pQTLs were identified as IVs explaining together 7.80% of interindividual variation in circulating resistin 
concentrations. Based on MR analyses, genetically determined circulating resistin concentrations were not associated with 
incident CRC (pooled-IVW-OR per standard deviation of resistin, 1.01; 95% CI 0.96, 1.06; p = 0.67. Restricting the analyses 
to using IVs within or proximal to the resistin-encoding gene (cis-IVs), or to IVs located elsewhere in the genome (trans-IVs) 
provided similar results. The association was not altered when stratified by sex or CRC subsites.
Conclusions  We found no evidence of a relationship between genetically determined circulating resistin concentrations and 
risk of CRC.
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MAF	� Minor allele frequency
EAF	� Effect allele frequency
RETN gene	� Resistin-coding gene
SD	� Standard deviation

Introduction

Resistin is a protein that was first identified as an “adipose-
tissue-specific secretory factor” with insulin resistance 
functions in mouse models (Kim et al. 2001; Steppan et al. 
2001). In contrast to mice, circulating resistin in humans is 
secreted by macrophages, monocytes, and other peripheral 
blood mononuclear cells (Patel et al. 2003; Codoñer-Franch 
and Alonso-Iglesias 2015). In humans, it has been shown to 
exhibit pro-inflammatory properties upon secretion (Boka-
rewa et al. 2005; Zuniga et al. 2017) and to be induced by 
pro-inflammatory stimuli (Lehrke et al. 2004; Anderson 
et al. 2007), thus, plays an important role in inflamma-
tory processes (Bokarewa et al. 2005; Codoñer-Franch and 
Alonso-Iglesias 2015; Zuniga et al. 2017). Since inflamma-
tion predisposes colorectal cancer (CRC) and promotes its 
development, resistin has been proposed as a molecule that 
may be linked to cancer development (Tuomisto et al. 2019). 
Case–control studies suggest that resistin levels measured 
in CRC patients (i.e., post-diagnosis) are higher compared 
to controls (Yang et al. 2016). In contrast, two prospective 
cohort studies found no statistically significant association 
between pre-diagnostic resistin concentrations and CRC risk 
(Ho et al. 2012; Pham et al. 2022). The Women’s Health 
Initiative (WHI) reported a relative risk (RR) of 1.04 (95% 
CI 0.72, 1.50) of CRC among postmenopausal women when 
comparing the highest versus lowest quartile of resistin con-
centrations (Ho et al. 2012). Based on data from the Euro-
pean Investigation into Cancer and Nutrition (EPIC) study, 
we have previously observed a RR of 1.15 (95% CI 0.91, 
1.46) (Pham et al. 2022). However, both studies relied on a 
single measurement of resistin concentrations per individual 
for exposure assessment. Although resistin concentrations 
have shown to be relatively reliable over 3–4 years in human 
bodies (Kaplan et al. 2007; Weikert et al. 2007), a single 
measurement may still be subjected to within-person varia-
tion, which may attenuate RR estimates of exposure-disease 
associations towards the null (White 2011). Therefore, the 
overall picture of the role of resistin for CRC risk remains 
unclear, especially given that based on these previous stud-
ies small effects cannot be ruled out. Genetic variations in 
the resistin gene’s promoter were found to strongly influ-
ence plasma resistin concentrations in humans (Cho et al. 
2004). Thus, a 2-sample Mendelian randomization (MR) 
study based on large-sample-size genome-wide association 

studies (GWAS) may be an alternative robust method pro-
viding adequate power to estimate this association.

A MR study uses germline genetic variants that are 
robustly and independently associated with levels of a 
protein (so-called protein quantitative trait loci (pQTLs)) 
as instrumental variables (IVs) for the protein to estimate 
the association with an outcome (Burgess and Thompson 
2015). MR analyses are conventionally used to reduce the 
risk of residual confounding or reverse causality that may 
occur in observational studies (Wehby et al. 2008; Burgess 
et al. 2013, 2019; Burgess and Thompson 2015). Due to 
the random assortment of alleles occurring during gamete 
formation, genetically increased resistin concentrations 
are a phenotype that always occurs before CRC diagnosis 
(Burgess et al. 2019) or any potentially confounding fac-
tors, thus, limiting the possibility of reverse causation and 
residual confounding and eliminating the influence of differ-
ential bias. Determining the association between genetically 
elevated resistin concentrations and risk of CRC in fact also 
reduces the impact of non-differential misclassification due 
to within-person variation in resistin concentrations. Despite 
the advantages of MR analysis, so far, no study using genetic 
variants as IVs in the relationship between resistin and risk 
of CRC has been conducted. Herein, we implemented an 
instrumental variable approach to estimate the quantitative 
association between genetically determined resistin con-
centrations and risk of CRC using two-sample Mendelian 
randomization (Supplementary Fig. 1).

Materials and methods

Study design: two‑sample Mendelian 
randomization

A two-sample MR study was performed using published 
GWAS summary statistics on the association of pQTLs with 
resistin concentrations from the Systematic and Combined 
Analysis of Olink Proteins (SCALLOP consortium) (Folk-
ersen et al. 2020) and GWAS summary statistics on CRC 
risk from the Genetics and Epidemiology of Colorectal Can-
cer Consortium (GECCO), Colorectal Cancer Transdiscipli-
nary Study (CORECT), and Colon Cancer Family Registry 
(CCFR), hereafter, the studies will be collectively referred 
to as GECCO for simplicity (Huyghe et al. 2019, 2021), 
and the Finnish biobank (FinnGen, publicly accessible and 
downloadable) (Kurki et al. 2022). A graphical illustra-
tion of conceptual MR models describing the relationship 
between IVs, resistin, and CRC is described in Supplemen-
tary Fig. 2 and a workflow describing IVs selection and MR 
analyses is in Fig. 1.
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GWAS summary statistics on resistin concentrations 
(exposure data)

The SCALLOP consortium is a collaborative framework to 
map pQTLs and analysis biomarker data on the Olink plat-
form (Folkersen et al. 2020). The consortium is an ongoing 
project with an increasing number of joining research institu-
tions and cohort studies (https://​www.​olink.​com/​our-​commu​
nity/​scall​op/). The most recently published SCALLOP study 
harmonized the summary statistics of Olink CVD-I protein 
data in a total of 21,758 individuals from 13 GWASs (Folk-
ersen et al. 2020). Among contributing GWAS, 9 studies 
were population-based studies, one randomized control trial 
(RCT) in blood donors, one RCT in chronic coronary heart 
disease, one study in metabolic syndrome patients, and one 
Bipolar cases-control study (Folkersen et al. 2020) (detailed 
description of GWAS in SCALLOP are provided in the in 
Supplement). SCALLOP provides meta-analysis estimates 
of summary-level data on 27 million gene variants and 90 
CVD-I proteins (including resistin) that were derivable for 
secondary analyses (available at GWAS catalog and fully 

available at https://​doi.​org/​10.​5281/​zenodo.​26152​65 for 
unrestricted download access) (Folkersen et al. 2020). The 
mapping of resistin-pQTLs was described in the original 
publication (Folkersen et al. 2020). Briefly, summary statis-
tics of 13.8 million imputed autosomal variants and resistin 
levels had been available in 20,471 individuals of European 
descent (Folkersen et al. 2020). At the conventional p value 
threshold  for GWAS (p < 5 × 10−8), 542 SNPs had been 
found to be significantly associated with resistin concentra-
tions. These significantly associated SNPs had mutual high 
linkage disequilibrium (LD), and using all of them as IVs 
in a MR analysis would have resulted in false positive esti-
mations (Burgess et al. 2017). An approximate conditional 
and joint analysis using GCTA-COJO (genome-wide com-
plex trait conditional and joint analysis) software had been 
performed to retain lead SNPs for each independent locus 
as primary signals (9 SNPs), and then additionally select 
independent SNPs by a stepwise procedure as secondary 
signal (6 SNPs) (Folkersen et al. 2020). Finally, a total of 
15 genetic variants which were robustly and independently 
associated with resistin levels (also referred to as pQTLs) 

Fig. 1   Workflows describing instrumental variable selection and MR 
analyses. GWA​ genome-wide association, pQTLs protein quantitative 
trait loci, SCALLOP Systematic and Combined AnaLysis of Olink 

Proteins consortium, GECCO Genetics and Epidemiology of Colo-
rectal Cancer Consortium, FinnGen Finnish biobanks

https://www.olink.com/our-community/scallop/
https://www.olink.com/our-community/scallop/
https://doi.org/10.5281/zenodo.2615265
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had been identified and referred to as pQTLs (Folkersen 
et al. 2020). We retrieved summary statistic data of these 15 
pQTLs (rs199752470, rs17405635, rs7589428, rs6775731, 
rs2239619, rs7746716, rs73008259, rs77691416, rs445, 
rs10103048, rs3087852, rs4134826, rs3745367, rs34861192, 
and rs10401670) from the original publication (Folkersen 
et al. 2020).

GWAS summary statistics on colorectal cancer 
(outcome data)

Summary statistics of 15 selected IVs and risk of CRC risk 
were extracted from two datasets, including the GECCO 
consortium (Huyghe et al. 2019, 2021) and the FinnGen con-
sortium (Finland Biobank, R7, downloaded on 18/07/2022) 
(Kurki et al. 2022).

GECCO is the largest and most comprehensive GWAS 
meta-analysis for CRC to date, consisting of 45 GWAS stud-
ies, resulting in a total of 58,131 CRC cases (31,083 colon; 
13,857 proximal; 15,306 distal; and 15,775 rectal cancer 
cases) and 67,347 controls (Huyghe et al. 2019, 2021). In 
each contributing GWAS, genome-wide CRC association 
analyses had been performed using logistic regression mod-
els adjusted for study-defined principal components, age, 
gender, and study-specific covariates (Huyghe et al. 2019). 
The estimates from all GWAS had been combined using 
a fixed-effect meta-analysis. We requested meta-analysis 
summary statistics of the associations between 15 resistin-
pQTLs (or their proxies) and CRC risk used in the current 
MR study from GECCO.

Finngen is a research project combining imputed gen-
otype data integrated from Finnish biobanks and digital 
health registry records (Kurki et al. 2022). The R7 release of 
FinnGen has a total sample size of 309,154 (173,746 women 
and 135,408 men (https://​www.​finng​en.​fi/​en/​access_​resul​
ts), among them, 4957 individuals developed CRC (2989 
colon cancer, 1832 rectal cancer, and 136 undefined or rec-
tosigmoid junction). GWAS analyses had been carried out 
using the mixed model logistic regression method SAIGE, 
adjusted for gender, age, genotyping batch, and the first 
10 genetically derived principal components as covariates 
(Kurki et al. 2022). Summary statistics of all associations 
estimated by the FinnGen GWAS had then be made pub-
licly available for download. We check the availability of all 
resistin pQTLs in the summary data of CRC retrieved from 
FinnGen R7 release. When data of a pQTLs were not avail-
able in the summary statistics of CRC data, we replaced it 
with proxies by using LDlinkR (https://​github.​com/​CBIIT/​
LDlin​kR/) which outputs information on all variants ± 
500 Kb of the query variant (Myers et al. 2020) to find a 
genetic variant with a correlation coefficient (r2) greater than 
0.80 for those IVs. Where more than one proxy was found 

for the index pQTLs, one genetic variant with the highest r2 
was selected.

Final data set, cis‑pQTLs, and trans‑pQTLs

Among 15 resistin-pQTLs, the pQTL rs199752470 was not 
available in GECCO and FinnGen and no proxies were found 
for this variant, thus, it was excluded from the MR analysis. 
The resistin-pQTL rs73008259 was accessible in GECCO; 
however, it was not available in FinnGen and was substi-
tuted with rs72992130 in FinnGen (LD-R2 = 0.80, distance 
at + 30.33 Kb of the index variant). Furthermore, rs7746716 
was a palindromic and ambiguous variant (defined as a vari-
ant with the same pair of bases on the forward and reverse 
strands and minor allele frequency (MAF) close to 0.5 (MAF 
of rs7746716 = 0.48) and no resistin-associated variants 
could be found as proxy at LD-R2 ≥ 0.8 for it, and thus, was 
excluded. Eventually, the summary statistics of 13 pQTLs 
were derived from GECCO and FinnGen and used as final 
IVs in the main analysis (Table 1). We classified SNPs into 
two groups based on their locations as follows: cis vari-
ants including those resided within 1 megabase upstream 
or downstream of the transcription start site of the resis-
tin-coding gene (RETN gene) and trans variants including 
those located elsewhere in the genome (Melzer et al. 2008). 
These 13 pQTLs are located widely in 8 different chromo-
somes, among those, 4 are cis-RETN pQTLs, and 9 pQTLs 
are trans-RETN pQTLs. Top pQTLs associated with resis-
tin concentrations included three cis-pQTLs (rs3745367, 
rs10401670, and rs34861192). Among 13 resistin-pQTLs 
(Table 1), no pQTLs were statistically significantly asso-
ciated with CRC in GECCO data, while 2 trans-pQTLs 
(rs7589428, and rs2239619) were significantly associated 
with CRC in FinnGen data (Supplementary Fig. 2).

Mendelian randomization analysis

F-statistics for each pQTL and mean F-statistic for all 
pQTLs together were estimated using the formula F-statis-
tic = ((N−K−1)/K) × (R2/(1−R2))) where R2 is the proportion 
of variance in the exposure explained by the genetic variants, 
N is the sample size and K is the number of instruments 
(Burgess and Thompson 2015). Variance explained by each 
pQTL was calculated using the formula R2 = 2 × (BetaX)2 
× EAF × (1 − EAF) (Burgess and Thompson 2015) where 
BetaX is the genetic association with resistin concentrations 
[expressed as standard deviation (SD) units], and EAF is 
the effect allele frequency. Given that the genetic variants 
serving as IVs in this analysis are uncorrelated, the total 
proportion of variance explained by all IVs is the sum of 
variance explained by each IV. Weak instruments were con-
sidered variants with an F-statistic below 10 (Burgess et al. 
2013). Furthermore, we estimated the minimum detectable 

https://www.finngen.fi/en/access_results
https://www.finngen.fi/en/access_results
https://github.com/CBIIT/LDlinkR/
https://github.com/CBIIT/LDlinkR/
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ORs of the MR analyses by using a webtool at https://​sb452.​
shiny​apps.​io/​power/ (Brion et al. 2013). Of note, the number 
of controls excluding other cancers used in the power esti-
mation in the MR using FinnGen data was 245,442, which 
was obtained based on the number of CRC cases, the unad-
justed prevalence, and the total number of cancer cases, and 
(https://​r7.​riste​ys.​finng​en.​fi/​pheno​code/​C3_​COLOR​ECTAL; 
accessed on 18/07/2022).

The association between genetically determined circulat-
ing resistin concentrations and risk of CRC was estimated 
using all 13 variants as IVs by multiplicative random-
effect inverse variance weighted (IVW) method with the 
assumption that all variants were valid IVs and the mean 
pleiotropic effect is zero (“balanced pleiotropy”). Estimates 
from the IVW method were derived from weighted linear 
regression of the genetic associations with CRC risk on the 
genetic associations with resistin levels with a zero intercept 
(Bowden et al. 2015). Results for the relationship between 
genetically determined circulating resistin concentrations 
and risk of CRC are reported as odds ratios per SD unit 
increase of genetically predicted resistin (ORper SD of resistin) 
and 95% confidence intervals (CIs). MR analyses were fur-
ther carried out for cis-pQTLs and trans-pQTLs. The asso-
ciation was estimated separately for SCALLOP-GECCO 
and SCALLOP-FinnGen and pooled using a meta-analysis 
approach by a random effects model with an inverse vari-
ance method to assign weight given to each IV (Borenstein 
et al. 2010). Several sensitivity analyses were conducted to 
detect and correct for horizontal pleiotropy if present. First, 
we conducted MR analyses using other methods to comple-
ment the results from the main IVW analysis. The MR-Egger 
method was performed to allow the genetic variants partially 
influence the risk of CRC through different causal pathways 
(“horizontal pleiotropy”) by introducing an intercept in the 
regression of the genetic associations with CRC risk on 
the genetic associations with resistin levels (Bowden et al. 
2015). Furthermore, simple median, weighted median, and 
weighted mode methods were applied to relax the pleiotropy 
assumption on 50% of genetic variants by estimating point 
estimates as the unweighted/weighted median (Burgess et al. 
2017) or the mode of the smoothed empirical Kernel density 
function of the estimates (Hartwig et al. 2017) by each vari-
ant individually. Second, we retrieved summary statistic data 
of all 542 resistin-associated SNPs and performed the LD 
clumping to retain variants (“the partially independent cis-
pQTLs”) which (i) reside within ± 100 kb from the RETN 
gene and in the RETN gene, (ii) had low linkage disequi-
librium LDs (r2 < = 0.1) and, (iii) were at a distance rang-
ing from 100 to 10,000 bases apart from each other. Next, 
we conducted a MR analysis accounting for the correlation 
matrix among these variants. Third, we re-estimated the 
effect by sequentially dropping one pQTL at a time (leave-
one-variant-out analysis) to evaluate if the MR estimate is 

driven or biased by a single pQTL that might have a particu-
larly large horizontal pleiotropic effect. Fourth, we extracted 
and aligned all possible phenotypes of all 13 resistin-pQTLs 
from GWAS Catalog using phenoscanner::phenoscanner() 
function in R, and performed a MR analysis after remov-
ing SNPs that may influence CRC developments through 
other pathways rather elevated resistin levels. In subgroup 
analyses, we stratified by sex, and we analyzed CRC sites 
separately (colon, proximal colon, distal colon, and rectal 
cancer).

The presence of pleiotropy manifested as heterogeneity 
among IVs was examined by Cochran’s Q and I2 statistics in 
a meta-analysis of MR estimates (Bowden et al. 2015, Greco 
et al. 2015) and by p values of the MR Egger regression 
intercept tests with null hypotheses that the intercepts are 
equal to zero, and a value of p < 0.05 suggests the presence 
of directional pleiotropy (Bowden et al. 2015). Cochran’s Q 
follows a chi-square distribution with n − 1 degrees of free-
dom when pleiotropy absents, and I2 is the percentage of the 
total variation of the estimates explained by heterogeneity 
rather than sampling errors (Bowden et al. 2015). A funnel 
plot of MR estimates for each pQTL against its precision 
was provided to assess potential asymmetry referred to as 
“directional” pleiotropy (Bowden et al. 2015).

All analyses were carried out in R version 4.0.5 (R 
Foundation for Statistical Computing). Data wrangling and 
manipulation were implemented using the tidyverse pack-
age, and data harmonization and MR analysis were per-
formed using the TwoSampleMR and MendelianRandomi-
zation R packages.

Results

The proportion of variance explained by the 13 pQTLs 
selected as IVs was 7.80% (the cis-pQTLs alone explained 
5.80% of the variance). The mean F-statistic for the IVs 
used for genetically determined circulating resistin levels 
was 103.2, and the F-statistics of individual variants were 
all higher than 10 declining the presence of weak instru-
ments (Table 1). With 80% power, using data from GECCO 
(sample size: 125,478; the ratio of cases to controls: 0.86) 
and FinnGen (sample size: 250,399; the ratio of cases to 
controls: 0.0198) as outcome data, the minimum detectable 
for ORs per SD from the two datasets were 1.06 and 1.16, 
respectively.

A scatter plot of the 13 pQTLs‐resistin against the 
pQTLs‐CRC risk associations along with their 95% CIs is 
shown in Supplementary Fig. 2. Point estimates from the 
MR analyses by IVW and MR-Egger methods are shown 
in Fig. 2 and Supplementary Fig. 2. The IVW estimates 
indicated that there is no statistically significant associa-
tion between genetically determined resistin concentrations 

https://sb452.shinyapps.io/power/
https://sb452.shinyapps.io/power/
https://r7.risteys.finngen.fi/phenocode/C3_COLORECTAL


14895Journal of Cancer Research and Clinical Oncology (2023) 149:14889–14900	

1 3

and risk of CRC using GECCO data (ORper SD of resistin, 
1.01; 95% CI 0.96, 1.07; p = 0.67) or using FinnGen data 
(ORper SD of resistin, 1.00; 95% CI 0.82, 1.22; p = 0.99) or all 
data sources combined (ORper SD of resistin, 1.01; 95% CI 0.96, 
1.06; p = 0.67) (Fig. 2, Supplementary Fig. 2). Point esti-
mates from MR-Egger method were not different from those 
from IVW method suggesting no significant association and 
tests of MR-Egger regression zero-intercepts suggested no 
evidence of directional pleiotropy (p values were 0.12 and 
0.70 for GECCO and FinnGen, respectively) (Fig. 2, Sup-
plementary Table 1). Similar results to the IVW estimates 
were provided by the simple median, weighted median, and 
weighted mode methods (Supplementary Table 1). We also 

found no significant association between genetically deter-
mined resistin concentrations and risk of CRC when restrict-
ing the analysis to cis-QTLs or trans-QTLs and applying the 
IVW method (IVW-ORper SD of resistin, cis-QTLs, 0.98 (95% CI 
0.92, 1.04) and IVW-ORper SD of resistin, trans-QTLs, 1.07 (95% 
CI 0.98, 1.17), or other robust methods (e.g. results from 
the MR Egger method were not different from the IVW esti-
mates and all p values for intercepts of the MR-Egger regres-
sion > 0.05) (Fig. 2, Supplementary Table 1). In the MR 
analysis using single-variant, we found a significant asso-
ciation between resistin and CRC risk when only the trans-
pQTL rs2239619 was used as an IV, but not other pQTLs 
(Fig. 2).In the sensitivity analysis, by using “the partially 

Fig. 2   Two-sample Mendelian randomization analysis of the relation-
ship between genetically determined circulating resistin concentra-
tions and risk of colorectal cancer estimated using each individual 
IV, cis-pQTLs, trans-pQTLs, and multi-loci genome-wide IVs. ORs 
(95% CI) estimated for the effect of one SD increase in genetically 
predicted serum resistin concentrations and risk of CRC. MR analy-
ses were performed separately for GECCO and FinnGen, and com-
bined using a meta-analysis approach by random effects models 
with inverse variance method (results are in “All data combined”). 
Quantifying heterogeneity among 13 SNPs in the combined esti-
mates: τ2 (Sidik–Jonkman estimator for between-study variance in 

a random-effects meta-analysis) = 0.0096 [0.0000; 0.0272]; I2 (total 
variability in a set of effect sizes due to true heterogeneity) = 0.0% 
[0.0%; 56.6%]. Test of heterogeneity: Q = 9.11, p = 0.69. A cis-pQTL 
was defined as a pQTL residing within 1 megabase (Mb) upstream 
or downstream of the transcription start site of the correspond-
ing protein-coding gene; in this figure, “rs34861192”, “rs4134826”, 
“rs3745367”, and “rs10401670” are resistin cis-pQTL. A trans-
pQTL was defined as a pQTL residing elsewhere in the genome. 
Data of rs73008259 is not available in FinnGen and was replaced by 
rs72992130 (LD-r2 = 0.82, distance at + 30.33 Kb of the index vari-
ant)
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independent cis-pQTLs”, we included eight variants includ-
ing rs10401670, rs2161490, rs34124816, rs35547567, 
rs3745367, rs4804766, rs62110711, and rs77509849 as 
IVs. MR analyses using these variants accounted for the 
matrix of correlations between variants showing an IVW-OR 
of 0.97 (95% CI 0.91, 1.04) and an MR-Egger OR of 0.95 
(95% CI 0.85, 1.06) with the p values of MR Egger regres-
sion intercept of 0.60) (Supplementary Table 1). Further-
more, leave-one-variant-out analyses showed that the main 
results were not changed even after excluding one variant 
each time and performing MR analyses using the remaining 
12 variants or the remaining 3 cis-pQTLs or the remain-
ing 8 trans-pQTLs (Supplementary Table 2). Phenotypes 
of all variants extracted and aligned from GWAS Catalog 
databases using Phenoscanner are shown in Supplemen-
tary Table 3. The most frequent phenotypes of the selected 
pQTLs were related to the numbers or percentages of lym-
phocyte, monocyte, neutrophil, basophil, eosinophil, granu-
locyte, myeloid white cell, and white blood cell—the most 
important features of inflammation, although there was one 
pQTL (rs2239619) with phenotypes as low-density lipopro-
tein (LDL) or total cholesterol. MR analysis using only this 
variant resulted in a significant association (OR estimated 
by rs2239619, 1.42; 95% CI 1.04, 1.94; p = 0.03) (Fig. 2); 

however, dropping this variant did not change the main 
results (OR estimated from all SNPs excluding rs2239619, 
1.00; 95% CI 0.95, 1.06; p = 0.91 (Supplementary Table 2). 
There was no evidence of heterogeneity between the pQTLs 
used as IVs for circulating resistin concentrations in IVW 
estimate when using GECCO data (Cochran’s Q for IVW 
p = 0.82, I2 = 0%). However, heterogeneity was present in 
FinnGen data with a Cochran’s Q p = 0.02 and I2 = 42%). An 
approximately symmetric distribution in the funnel plot was 
observed (Supplementary Fig. 3). No statistically significant 
association of genetically determined resistin concentrations 
and risk was observed when stratifying by sex or when ana-
lyzing CRC subsites separately (colon, proximal, distal, rec-
tum) (Table 2, Supplementary Table 1).

Discussion

We found no statistically significant association between 
genetically determined circulating resistin concentrations 
and risk of CRC among individuals of European descent in 
this two-sample Mendelian randomization study using 13 
pQTLs as IVs for resistin concentrations. Robust analysis 
methods with different sets of IVs including all pQTLs, cis-
pQTLs, trans pQTLs, or “partially independent cis-pQTLs” 
revealed no significant association of interest. Subgroup 
analyses showed that genetically determined circulating 
resistin concentrations were not associated with risk of CRC 
subsites regardless of whether the analysis was stratified by 
sex or not. Conclusively, no associations between genetically 
predicted resistin levels were observed despite high statisti-
cal power to detect even weak associations.

To our knowledge, this is the first two-sample MR study 
investigating the relationship between genetically deter-
mined resistin concentrations and CRC risk using statisti-
cal genetic approaches via summary statistics. In line with 
our MR study, findings from two traditional observational 
biomarker studies suggested no association between pre-
diagnosis resistin concentrations and CRC or any subsite 
of CRC risk (Ho et al. 2012; Pham et al. 2022). Of note, 
our previous prospective study had estimated relative risks 
of CRC per doubling resistin concentrations (Pham et al. 
2022) which were not totally comparable to the current MR 
study (ORper SD of resistin). We, therefore, re-estimated the RR 
for per SD unit increase of resistin concentrations for our 
previous prospective observational study and appraised an 
RR of 1.03 (95% CI 0.94, 1.12; p = 0.54) which indicated no 
significant association. Furthermore, it is notable that in our 
previous prospective study, we found a significant associa-
tion of circulating resistin concentrations with risk of CRC 
in participants diagnosed within 2 years after blood sam-
pling and their matched controls [RR 4th vs 1st quartile of 
resistin concentrations, 1.97 (95% CI 1.06, 3.64)], whereas 

Table 2   Two-sample Mendelian randomization analysis of the rela-
tionship between genetically determined circulating resistin concen-
trations and risk of colorectal cancer by subsite and gender

a ORs and 95% CIs estimated for the effect of 1-standard deviation 
genetically determined higher serum resistin concentrations on risk of 
CRC from inverse variance weighted models
b Estimates from a meta-analysis of estimates derived from GECCO 
and FinnGen data
c Data were not available in FinnGen, thus, estimates were derived 
from GECCO only

Subgroup OR (95% CI)a p value

Subsite—all SNPs
 Colonb 0.98 (0.91, 1.05) 0.54
 Rectalb 1.01 (0.93, 1.09) 0.89
 Proximal colonc 0.93 (0.84, 1.03) 0.14
 Distal colonc 1.02 (0.93, 1.11) 0.68

Subsite—cis-RETN
 Colonb 0.95 (0.87, 1.04) 0.24
 Rectalb 0.95 (0.85, 1.06) 0.38
 Proximal colonc 0.94 (0.80, 1.10) 0.46
 Distal colonc 0.94 (0.84, 1.06) 0.30

Gender—all SNPs
 Femalec 0.98 (0.91, 1.06) 0.59
 Malec 1.05 (0.97, 1.13) 0.25

Gender—cis-RETN
 Femalec 0.94 (0.85, 1.04) 0.21
 Malec 1.01 (0.91, 1.11) 0.88
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no significant association was found in participants diag-
nosed with CRC after more than 2 years of blood sampling 
and their matched controls [RR 4th vs 1st quartile of resistin 
concentrations, 1.44 (95% CI 0.97, 2.12)] (Pham et al. 2022). 
Case–control studies, in which resistin concentrations were 
measured after CRC cancer diagnosis, reported higher resis-
tin concentrations in CRC patients as compared to controls 
(Nakajima et al. 2010; Danese et al. 2012) which may be due 
to inflammation in the presence of the existing CRC tumors. 
These observations, therefore, suggest that resistin is not 
related to risk of CRC and that increased resistin concentra-
tions observed in people who were diagnosed with CRC 
shortly after recruitment are likely the result of the existing, 
but yet undiagnosed tumors, i.e. possibility of reverse causa-
tion. However, the previous biomarker studies used only a 
one-time measurement of resistin concentrations (Ho et al. 
2012; Pham et al. 2022) and may neglect the small effect due 
to within-person variability (White 2011). Alternatively, in 
our current MR study we were able to investigate the asso-
ciation between genetically determined lifelong differences 
in circulating resistin in relation to CRC risk (Burgess et al. 
2019) that was less susceptible to attenuation due to within-
individual variations of resistin levels (Pierce and Vander-
Weele 2012) and circumvented reverse causation (Burgess 
et al. 2019). Furthermore, multiple loci from different gene 
regions (Burgess et al. 2019) were employed in this MR 
study as IVs provide high statistical power to identify the 
small effect sizes. Importantly, results from analyses that 
used cis-pQTLs or “partially independent cis-pQTLs” which 
were commonly referred to as “biologically plausible instru-
mental variables” (Burgess et al. 2019) complemented the 
main findings and indicated no significant association. Of 
note, cis-pQTLs are variants located within or in close prox-
imity to the RETN gene, are thus expected to have a direct 
effect on resistin expression. Thereby, cis-pQTLs could 
provide precise and targeted measures of resistin levels by 
RETN gene expression. Conclusively, our MR analysis is 
generally in agreement with the two prospective observa-
tional studies, does not support the hypothesis that circulat-
ing resistin concentrations are associated to risk of CRC, and 
suggests that resistin is a marker of existing tumors rather 
than a causal risk factor.

Although pleiotropy is a major concern in MR, we do not 
suspect that it is a significant issue in this study. Indeed, a 
series of sensitivity analyses were conducted in the present 
study, including robust MR analysis methods that allow dif-
ferent patterns of pleiotropic assumption violations, different 
sets of IVs, leave-one-variant-out analysis, and removing 
potential pleiotropic variants all resulted in effect estimates 
close to one and suggested that the main findings in this 
study are reliable and robust. The pleiotropy may present 
in FinGenn according to Cochran’s Q test and the I2 index, 
however, these values tend to be conservative in a small 

sample of cases as in FinnGen (Greco et al. 2015). Fur-
thermore, we observed no strong pattern of asymmetry in 
the funnel plot and thus, inferred no explicit indication of 
unbalanced or directional pleiotropy. Nevertheless, there is 
evidence pointing out that the trans-pQTL rs2239619 may 
play as a pleiotropic variant. This variant was related to LDL 
and total cholesterol (Spracklen et al. 2017) while studies 
suggest that dyslipidemia is related to a higher risk of CRC 
(Yao and Tian 2015), suggesting that the association of this 
variant with CRC risk could be explained by their involve-
ment in dyslipidemia rather than their involvement in resistin 
concentrations. While a significant association was found 
between genetically determined resistin levels and risk of 
CRC when using trans-pQTL rs2239619 as a single-vari-
ant in the MR analysis, the main findings did not show any 
changes after eliminating this variant, indicating that it may 
not be a potentially influential variant. Thus, trans-pQTL 
rs2239619 even if exhibits pleiotropic effects, is not consid-
ered a significant issue.

The current MR study had several strengths. The associa-
tions between pQTLs-resistin were estimated in the SCAL-
LOP consortium which is the largest-to-date meta-analysis 
GWAS of resistin concentrations for a maximum power 
of the analysis. Indeed, our study has a power of 80% for 
a minimum detectable ORper SD of resistin of 1.06, which is 
ambitious in observational studies (our previous prospec-
tive observational study could provide a minimum detectable 
ORper SD of resistin of 1.12). There is no overlap between the 
two samples in the current MR analysis (e.g. UK biobank 
was only included in the GECCO consortium), while over-
lapping samples may inflate the type-1 error rate and bias the 
estimates toward the null (Burgess et al. 2016). Furthermore, 
all variants used in the MR study are non-weak instrumental 
variables (F values for all individual variants > 10) (Bur-
gess et al. 2016). We retrieved more than one data source of 
genetic summary data on CRC risk to investigate the robust-
ness and the replicability of the estimates.

There are some limitations in this study. First, the study 
estimated the association of genetically determined resis-
tin concentrations and risk of CRC in ethnically homo-
geneous participants of European descent; thus, the gen-
eralizability of the study results could only be applied to 
the European populations. Indeed, there may be ethnic 
differences in resistin-pQTLs between Asian and Cauca-
sian populations (Kumar et al. 2019). For example, two 
pQTLs found as resistin-pQTLs in the Asian population 
(rs3219175 and rs34861192) (Asano et al. 2009; Onuma 
et al. 2010) were not significantly associated with resistin 
levels in Caucasians (Hivert et al. 2009). Second, all 13 
IVs selected in this MR study merely explained 7.80% of 
the variance of resistin concentrations across individuals. 
The original paper of the SCALLOP consortium may use 
a more stringent discovery GWAS threshold considering 
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the multiple testing problems when performing analyses 
for 90 proteins (Folkersen et al. 2020). One may question 
if including more variants as IVs in the MR analysis could 
benefit from increased variance explained while false posi-
tive rates could be controlled. Indeed, the total variation 
explained may be underestimated if only the lead SNPs for 
each independent region are selected (Yang et al. 2012). 
However, in SCALLOP, resistin-pQTLs were selected 
through a comprehensive approach (GCTA-COJO) to not 
only identify the lead SNPs of each region but also second-
ary independent association signals at a region (Folkersen 
et al. 2020). The GCTA-COJO approach has been shown 
to result in the number of pQTLs that well characterize the 
number of causal variants, and resulted in false-positive 
rates that are close to expectation (0.05) under the IVW 
method (van der Graaf et al. 2020). Thus, the selection of 
resistin-pQTLs in the SCALLOP consortium has assured 
the balance of variance explained and false positive rate. 
Furthermore, results did not change by using “the partially 
independent cis-pQTLs” set of IVs which were selected 
by a different approach (LD clumping) rather than the 
GCTA-COJO. Therefore, the selection of IVs in this study 
is deemed justified.

In conclusion, our study does not support the hypothesis 
that circulating resistin concentrations are associated with 
risk of CRC. Future studies should target resistin as a marker 
of existing tumors rather than a causal risk factor of CRC.
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