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Supplemental Materials and Methods 

 

Data analysis and Softwares 

 

RNA-Seq. All RNA-Seq datasets, whether specifically generated for this study or 

obtained from public databases (see Data availability paragraph of the Materials and 

Methods section in the main text), have been analyzed/re-analyzed using the same 

pipeline implemented for this project. The RNA-seq data was analyzed using the 

Galaxy platform (The Galaxy Community et al., 2022). HTSeq (Anders et al., 2015) 

mapped the reads to the GRCm38 assembly for mouse and GENCODE-M25 

(www.gencodegenes.org) was used to count the transcript abundance. Differential 

expression analysis was done via the DESeq2  (Love et al., 2014) package for R, 

which uses the Wald test for significance. To define the transcriptional signatures of 

activated B cells, PBs, and PCs, the analysis was performed using the naïve B cell 

RNA-Seq dataset from the same study (Minnich et al., 2016) for baseline 

comparison. Expression of differentially expressed genes were obtained from 

Immgen database (The Immunological Genome Project et al., 2020) and visualize by 

R and ggolot2 packages (https://ggplot2.tidyverse.org/) after scaling. For the 

comparative assessment of Cd19Cre/+ and Rif1F/FCd19Cre/+ B cell transcriptomes at 48 

h after activation, RNA-seq datasets from L-I and L-B-T splenocytes cultures were 

merged. The increase in sample size (from 3 to 6 repeats) for both groups enhanced 

statistical power to detect minor gene expression differences. The multiple 

treatments are used to discern genotype effects, thus ensuring that the observed 

differences are due to the absence of RIF1. 
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ChIP-Seq. ChIP-Seq and BLIMP1 Bio-ID datasets (see Data availability paragraph) 

have been analyzed/re-analyzed using the same pipeline implemented for this 

project. FASTQ files were aligned against mouse genome (mm10) using BWA 

aligner (Li & Durbin, 2009). Processing and peak-calling of ChIP-Seq data were 

performed with MACS2 (Zhang et al., 2008). Peak annotation was done using R and 

ChIPseeker package (Yu et al., 2015). Functional assessment of genomic regions 

enrichment and motif analysis were performed by GREAT and MEME-ChIP, 

respectively (Machanick & Bailey, 2011; McLean et al., 2010). For the comparative 

genomic distribution analysis of RIF1, H3K4me3, and H3K27me3 in reference to 

BLIMP1-occupied regions, the aligned reads were converted into BigWig format. The 

signals were subsequently transformed into a matrix via the ComputeMatrix 

software, and visualized as a heatmap (Ramírez et al., 2016). 

 

Statistical analysis. The statistical significance of differences between groups was 

determined by the Mann–Whitney U test for all data presented in this study, with the 

following exceptions. For the RNA-Seq analysis, the expression values of specific 

transcripts were normalized by DESeq2, and genes with an adjusted p-value < 0.05 

were considered to be significantly differentially expressed. Statistical details of 

experiments can be also found in the figure legends. 

 

Source Codes for Data Analysis. All codes used to generate graphs and to 

compare different datasets can be found on our GitHub page 

(https://github.com/arahjou/RIF1_paper). 
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Figure S1. Stimulation-dependent clustering of B cell transcriptomics profiles after ex vivo 
activation. (A-B) Principal component analysis (A) and dendrogram (B) for the RNA-Seq datasets 
of WT splenocytes before (naïve) and after 48 h stimulation with LPS and IL-4 (LI), LPS, BAFF 
and TGFβ (LBT), or LPS only (L). The RNA-Seq analysis was performed on three biological 
replicates/mice per condition. Related to Figure 1.
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Figure S2. RIF1-deficiency alters the transcriptional landscape of activated B cells. (A-B) Dendrograms (A) 
and scatterplots (B) for the RNA-Seq datasets generated according to the experimental scheme depicted in Fig. 2A. 
For the 48 h time point, the analysis was performed on both LI- and LBT-stimulated cultures. Data summarizes 
results from three mice per genotype per stimulation condition. In the scatterplots, genes with an adjusted p-value 
<= 0.05 that are up- or down-regulated in Rif1F/FCd19Cre/+ cells are highlighted in red or blue, respectively, and the 
number of DEGs per category is included in parenthesis. (C) Expression of Pax5, Ebf1, Foxo1, Bach2, Irf4, Xbp1, 
and Prdm1 as determined by the RNA-Seq. Values were normalized by DESeq2 and the adjusted p-value of the 
only significant difference between samples is indicated. (D) Venn diagrams depicting the overlaps between genes 
up- (left) and down- (right) regulated in RIF1-deficient splenocytes at 48 h (top) and 72 h (bottom) post-activation 
and the corresponding up-and down-regulated (over naïve B cells) categories in the activated (Act) B cell, PB, and 
PC transcriptional signatures (Minnich et al. 2016). Related to Figure 2.
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Figure S3. Rif1F/FCd19Cre/+ mice exhibit physiological numbers of ASCs after immunization. Left: 
Representative flow cytometry plots measuring percentage and number of antibody secreting cells in 
spleens and bone marrows of mice of the indicated genotypes at day 14 after immunization, and 
according to the scheme in Fig. 4A. Right: Graphs summarizing the percentage and number of 
antibody secreting cells in spleens (top) and bone marrows (bottom) for at least four mice per genotype 
and time point. Significance was calculated with the Mann–Whitney U test, and error bars represent 
SD. ns: not significant. Related to Figure 4.



0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

0

10

20

30

40

50

60

70

80

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

0

10

20

30

40

50

Rif1F/F

Cd19Cre/+

Cd19Cre/+

Sp

ns

Rif1
+/+

Rif1
F/F

Cd19Cre/+

ns

Rif1
+/+

Rif1
F/F

Cd19Cre/+

Rif1
+/+

Rif1
F/F

Cd19Cre/+

CD138

TA
C

I

MHCII

AA
4.

1

Rif1F/F

Cd19Cre/+

Cd19Cre/+

BM

nsns

%
 T

AC
I+ 

C
D

13
8+ 

- S
p

# 
TA

C
I+ 

C
D

13
8+ 

x 
10

6 
- S

p

%
 A

A4
.1

+ 
M

H
C

II- - 
Sp

%
 T

AC
I+ 

C
D

13
8+ 

- B
M

# 
TA

C
I+ 

C
D

13
8+ 

x 
10

6 
- B

M

%
 A

A4
.1

+ 
M

H
C

II- - 
BM

*

*

Rahjouei & Kabrani _Fig. S4

Figure S4. RIF1 ablation does not result in detectable changes of the plasma cell compartment in 
steady state condition. Left: Representative flow cytometry plots measuring percentage of antibody 
secreting cells and plasma cells in spleens and bone marrows of unimmunized mice of the indicated 
genotypes. The same gating strategy as in Figure 4A was employed. Sp: spleen; BM: bone marrow. 
Right: Summary graphs for four mice per genotype. Significance was calculated with the Mann–Whitney 
U test, and error bars represent SD. ns: not significant; * = p ≤ 0.05. Related to Figure 4. 
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Figure S5. RIF1 and BLIMP1 co-occupied genomic regions comprise active genes involved in lym-
phocyte activation and differentiation. (A) Gene ontology enrichment analysis as determined by GREAT 
for the genomic regions bound by RIF1 in LI-stimulated B cells. The complete name of the category marked 
with “ * ” is “Regulation of adaptive immune response based on somatic recombination of immune recep-
tors built from immunoglobulin superfamily domain”. The X / Y ratio within each bar indicates the number of 
genes occupied by RIF1 (X) out of the total number of genes in the category (Y). FDR: false discovery rate. 
(B) Line plots (top) and heatmaps (bottom) depicting the comparative genome distribution of RIF1, 
H3K4me3, and H3K27me3 in reference to BLIMP1-occupied regions. The line plots illustrate the mean 
normalized signal distribution of the indicated proteins, whereas the heatmaps visualize their signal 
strength at each identified peak. The x-axis in both graph types represents the genomic region relative to 
the peak center. (C) GREAT gene ontology enrichment analysis of the genomic regions co-occupied by 
RIF1 and BLIMP1 in activated B cells. (D) UpSet plots depicting the intersection between activated BLIMP1 
targets (Activated), genes differentially upregulated in Rif1F/FCd19Cre/+ B cells (DEG-Up) and RIF1-occupied 
regions (top), and between repressed BLIMP1 targets (Repressed), genes differentially downregulated in 
Rif1F/FCd19Cre/+ B cells (DEG-Down) and RIF1-occupied regions (bottom). The dot matrixes at the bottom of 
each graph show the intersection relationships among the data sets, with the number of common elements 
in the intersecting sets indicated above each bar. The red lines in the matrixes highlight the group of genes 
occupied and regulated by both BLIMP1 and RIF1. Related to Figure 5. 


