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Spatially resolved multiomics of human 
cardiac niches

     
Kazumasa Kanemaru1,13, James Cranley1,13, Daniele Muraro1, Antonio M. A. Miranda2, 
Siew Yen Ho3, Anna Wilbrey-Clark1, Jan Patrick Pett1, Krzysztof Polanski1, Laura Richardson1, 
Monika Litvinukova1,4, Natsuhiko Kumasaka1, Yue Qin2, Zuzanna Jablonska2, 
Claudia I. Semprich1, Lukas Mach2,5, Monika Dabrowska1, Nathan Richoz6, Liam Bolt1, 
Lira Mamanova1, Rakeshlal Kapuge1, Sam N. Barnett2, Shani Perera1, Carlos Talavera-López1,7, 
Ilaria Mulas1, Krishnaa T. Mahbubani8, Liz Tuck1, Lu Wang9, Margaret M. Huang8, Martin Prete1, 
Sophie Pritchard1, John Dark9, Kourosh Saeb-Parsy8, Minal Patel1, Menna R. Clatworthy1,6, 
Norbert Hübner4,10,11, Rasheda A. Chowdhury2, Michela Noseda2,14 ✉ & 
Sarah A. Teichmann1,12,14 ✉

The function of a cell is defined by its intrinsic characteristics and its niche: the tissue 
microenvironment in which it dwells. Here we combine single-cell and spatial 
transcriptomics data to discover cellular niches within eight regions of the human 
heart. We map cells to microanatomical locations and integrate knowledge-based and 
unsupervised structural annotations. We also profile the cells of the human cardiac 
conduction system1. The results revealed their distinctive repertoire of ion channels, 
G-protein-coupled receptors (GPCRs) and regulatory networks, and implicated FOXP2 
in the pacemaker phenotype. We show that the sinoatrial node is compartmentalized, 
with a core of pacemaker cells, fibroblasts and glial cells supporting glutamatergic 
signalling. Using a custom CellPhoneDB.org module, we identify trans-synaptic 
pacemaker cell interactions with glia. We introduce a druggable target prediction tool, 
drug2cell, which leverages single-cell profiles and drug–target interactions to provide 
mechanistic insights into the chronotropic effects of drugs, including GLP-1 analogues. 
In the epicardium, we show enrichment of both IgG+ and IgA+ plasma cells forming 
immune niches that may contribute to infection defence. Overall, we provide new 
clarity to cardiac electro-anatomy and immunology, and our suite of computational 
approaches can be applied to other tissues and organs.

The heart is composed of distinct tissues that contain niches of spe-
cialized cell types conferring site-specific functionality. Single-cell 
RNA sequencing (scRNA-seq) and single-nuclei RNA sequencing 
(snRNA-seq) offer a powerful, unbiased framework to characterize 
these cells2,3. The addition of spatially resolved transcriptomics allows 
us to restore structural information lost in single-cell techniques and 
to gain insight into collective function4,5.

The cardiac conduction system (CCS), responsible for the regular and 
coordinated electrical activation of the heart, contains structures includ-
ing the sinoatrial and atrioventricular nodes (SAN and AVN, respectively), 
the atrioventricular bundle (AVB) and the His-Purkinje network, which 
are each home to cells with distinct electrophysiological properties6. 
We combine targeted dissection and histology to generate full-breadth 
transcriptomics profiles of human CCS cells. Furthermore, we use spatial 

transcriptomics to map these cells into their microanatomical locations 
and discover their niche-partner cells. Inspired by the broad receptor 
expression profile of pacemaker cells (P cells), we extend the cell–cell 
interaction database CellPhoneDB7 with a new neural–GPCR module. 
This module highlights synaptic connections, including new insights 
into neighbouring glial cells and glutamatergic signalling capability.

Off-target activity of non-cardiac therapies on the heart and its con-
duction system is a major reason for drug development failure and 
withdrawal8. To help address this challenge, we develop a pipeline, 
drug2cell, which integrates drug–target interactions from the ChEMBL 
database with user-provided single-cell data to comprehensively evalu-
ate drug-target expression in single cells. Applying this approach to 
P cells provides mechanistic insight into the chronotropic effects of 
non-cardiac medications.
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Finally, we show that our integrated multiomics approach is capa-
ble of niche (that is, cellular tissue microenvironment) discovery. 
We define an epicardial immune defence system and a ventricular 
myocardial-stress niche, and infer specific intercellular signalling 
active within each cellular microenvironment. These new cardiac cel-
lular niches enable us to refine the cellular components that underlie 
the microanatomy of the human heart.

Multimodal profiling of the human heart
We integrated previously published scRNA-seq and snRNA-seq  
(sc/snRNA-seq) datasets2 with newly generated multiome data (paired 
snRNA-seq and single nucleus assay for transposase-accessible chroma-
tin using sequencing (snATAC-seq)) and spatial transcriptomics data 
(10x Genomics). We studied the following eight anatomical regions: the 
left and right ventricles (LV and RV, respectively), the left and right atria 
(LA and RA, respectively), the apex (AX), the interventricular septum 
(SP), the SAN and the AVN (Fig. 1a). In total, our data included samples 
from 25 donors ranging from 20 to 75 years old (Fig. 1a). All tissue sam-
ples were from transplant donors without a history of cardiac disease 
or arrhythmia (Supplementary Table 1), and hearts contributing to 
the SAN and AVN regions were from donors with normal conduction 
parameters confirmed by 12-lead electrocardiograms before donation 
(Supplementary Table 1).

To capture CCS tissues from the SAN and the AVN regions, we used 
a two-stage dissection protocol (Supplementary Fig. 1). The presence 
of CCS structures was confirmed by haematoxylin and eosin (H&E) 
histology in adjacent sections from the same blocks (Fig. 1b). The SAN 
forms a discrete subepicardial structure at the junction of the crista ter-
minalis and the RA posterior wall, with P cells smaller and rounder than 
neighbouring cardiomyocytes (CMs) and surrounded by fibroblasts 
(FBs) and dense extracellular matrix (ECM) (Fig. 1b and Supplementary 
Fig. 1a). For the AVN, tissue samples including the triangle of Koch and 

the basal septum were collected (Fig. 1b and Supplementary Fig. 1b). 
Subsequently, adjacent sections were taken for spatial transcriptom-
ics analysis. The remaining tissue was sectioned and homogenized to 
generate nuclei suspensions for multiome analysis.

After sample processing and quality control, 704,296 cells and nuclei 
(of which 211,060 nuclei were from newly generated multiome data) 
were retained for gene expression, and 144,762 nuclei were retained 
for ATAC-seq analyses (Fig. 1a). Integration of gene expression data was 
performed and accounted for batch variations such as donor, cell or 
nuclei and the 10x Genomics chemistry version used (Supplementary 
Fig. 2a) while retaining the regional differences of the atrial (RA and LA), 
ventricular (RV, LV, SP and AX) and conduction system (SAN and AVN) 
samples (Supplementary Fig. 2b). Leiden clustering was performed on 
the neighbourhood graph created using batch-corrected latent vari-
ables. The analyses identified 12 coarse-grained cell types annotated 
using curated lineage-specific gene markers (Extended Data Fig. 1a,b).

To identify fine-grained cell states of the CCS, SAN region atrial CMs 
were subclustered, which revealed a clearly separated cluster of P cells 
(SAN_P_cell) that expressed canonical pacemaker-associated channel 
genes (HCN1, HCN4 and CACNA1D) and the transcription factor (TF) 
TBX3 (ref. 1) (Fig. 1c and Extended Data Fig. 2a). Subclustering of AVN 
atrial and ventricular CMs (aCMs and vCMs, respectively) showed two 
CCS clusters: P cells (AVN_P_cell) and AV bundle cells (AV_bundle_cell) 
(Fig. 1d and Extended Data Fig. 2b). AV bundle cells formed a distinct 
cluster defined by an enrichment of GJA5 (which encodes the gap junc-
tion protein Cx40), CRNDE and CNTN5, which were previously iden-
tified as markers of AV bundle cells in the mouse heart9 (Fig. 1d and 
Extended Data Fig. 2c). Purkinje cells (originally termed fibres) are 
specialized CM-like cells that constitute the distal ramifications of the 
ventricular conduction system. They play an important part in propa-
gating impulses from the AV bundle branches and their fascicles to the 
ventricular muscle and are most abundant at the AX10. To identify this 
rare population at single-cell resolution, CMs from AVN samples were 
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Fig. 1 | Multimodal profiling of the adult human heart. a, Left, overview of 
study design and analyses. Multiome and Visium spatial transcriptomics  
data were generated from eight regions (RA, LA, RV, LV, SP, AX, SAN and AVN)  
of the adult human heart and integrated with a published sc/snRNA-seq atlas 
dataset2. Middle, the dot plot shows the donor numbers by age group (x axis) 
and region ( y axis). Dot colour represents data modality. The number of cells  
or nuclei is shown in parentheses. Right, data were used for cellular niche 
identification, spatially resolved cell–cell interaction analyses and drug-target 
discovery analysis (drug2cell). b, H&E micrographs of the SAN, the AVN and the 
AVB (yellow bordered). P cells in the nodal tissue (red box) are smaller than 
neighbouring CMs in non-nodal tissue (blue box) and embedded in dense ECM. 

The AVB is pictured at its transition to the left bundle branch (LBB). Images are 
representative of sections from four (SAN), two (AVN) and four (AVB) donors. 
CT, crista terminalis; ENDO, endocardium; EPI, epicardium; IAS, interatrial 
septum; MS, membranous septum; TV, tricuspid valve. c–e, UMAP embedding 
of gene expression data of SAN aCMs (c), AVN aCMs (d), and AX and AVN CMs (e). 
Marker genes of CCS cells are shown. f, Abundance of CCS cell states in spatial 
coordinates of SAN, AVN and SP Visium sections as estimated by cell2location. 
Dashed lines highlight SAN, AVN, AVB and Purkinje cells defined by histology 
(Extended Data Fig. 2g). Illustrations in a were created using BioRender 
(https://biorender.com). The CellPhoneDB illustration is courtesy of the 
Wellcome Sanger Institute.
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integrated and clustered with those from the AX. Cluster 8 (Extended 
Data Fig. 2d) contained CCS cells from the AVN and a population derived 
from the AX expressing Purkinje cell marker genes (GJA5, IRX3, KCNJ3 
and MYL4)9 (Fig. 1e and Extended Data Fig. 2d,e). All the identified CCS 
cells were observed in multiple donors (Extended Data Fig. 2f).

To confirm their identity, CCS cell states defined by sc/snRNA-seq 
data were mapped in spatial transcriptomics data using cell2location, a 
deconvolution method capable of resolving even rare cell populations11. 
This analysis showed each cell state localized to their expected histo-
logically identified CCS structures (Fig. 1f and Extended Data Fig. 2g).

Other cell states were defined using label transfer with a published 
dataset2 as a reference. Minor revisions of annotation were included. 
Based on recent studies of the heart and the gut that defined cells 
expressing PLP1, NRXN1 and NRXN3 as glial cells12,13, we annotated cells 
expressing pan-glial gene markers and lacking core neuronal genes 
(Extended Data Fig. 2h,i) as glia (labelled with the ‘_glial’ suffix). FB4 
was named as FB4_activated on the basis of increased expression of 
TGFβ-responsive FB activation signature genes (POSTN, TNC, COL1A1, 
COL1A2, COL3A1 and FN1), which includes genes encoding ECM pro-
teins, compared with other FBs (Extended Data Fig. 2h,j). vCM3 was 
named vCM3_stressed on the basis of expression of CM stress markers 
(NPPB, LMCD1, XIRP2, ACTA1 and PFKP)3,14 (Extended Data Fig. 2h,k). 
Myeloid cell states were annotated as described in the Methods (Sup-
plementary Fig. 2c,d). Collectively, we defined 75 cell states (Extended 
Data Fig. 1a).

Chromatin landscape of cardiac cells
snATAC-seq data were analysed to understand the chromatin landscape 
and the genomic regulation of cardiac cell identity. Coarse-grained cell 
types were clearly separated in the uniform manifold approximation 
and projection (UMAP), which indicated that each cardiac cell type has 
a distinct pattern of chromatin accessibility (Extended Data Fig. 1a,b). 
In the vCM compartment, vCM3_stressed showed a clear separation 
in the UMAP (Extended Data Fig. 1a), and regions associated with its 
marker genes were differentially accessible compared with other CMs 
(Extended Data Fig. 2l). Differential chromatin accessibility analysis 
comparing CCS cells and other aCMs identified major markers for 
P cells such as genes encoding ion channel subunits (CACNA1D and 
CACNA2D2) and TFs (ISL1, TBX3 and SHOX2) (Extended Data Fig. 2m).

Common variant single nucleotide polymorphisms (SNPs) iden-
tified by genome-wide association studies (GWAS) are frequently 
located in noncoding regions15. We used snATAC-seq data to link 
cell types with cardiovascular traits by calculating the enrichment 
of GWAS trait-associated SNPs in their open chromatin regions 
(Extended Data Fig. 3a). Traits that reflect ventricular physiology 
(for example, QRS duration, systolic function and QT interval) showed 
an expected enrichment among vCMs but also in aCMs and CCS cell 
states, in particular SAN P cells. This result underscored that fact 
that ventricular function partly depends on atrial function. Con-
versely, traits that reflect pacemaker activity (RR interval, heart 
rate response to exercise and its recovery) were limited to P cells 
and aCMs. For disease-associated SNPs, vCMs were enriched for 
cardiomyopathy-associated SNPs as expected; however, hypertrophic 
cardiomyopathy (HCM) SNPs were also enriched in aCMs (Extended 
Data Fig. 3b). This result suggests that the frequent atrial involve-
ment in HCM might also be due to a primary atrial myopathy and is 
not merely a secondary phenomenon. The result is also consistent 
with the finding of atrial dysfunction in patients with HCM carrying 
pathogenic variants who have not developed ventricular hypertrophy. 
Conversely, atrial fibrillation SNPs were significantly enriched in CCS 
cells, aCM2 cells and vCM3_stressed clustered cells. The latter finding 
emphasizes the interdependence of atrial and ventricular function 
and supports the strong epidemiological evidence that abnormal 
ventricular function may drive atrial fibrillation16.

Unbiased discovery of cellular niches
To understand the cellular composition of microanatomical struc-
tures, we mapped the fine-grained cell states defined by sc/snRNA-seq 
analysis to spatial transcriptomics data using cell2location11 (Fig. 2a). 
In parallel, histological structural annotation based on H&E images 
was performed by an expert (S.Y.H.). Mapping of expected cell types 
to the structures was confirmed (Supplementary Fig. 3a–d). In the 
histologically annotated node of SAN samples, we found enrichment 
of P cells and other cell states, such as FBs and glial cells expressing NGF 
(which encodes neuronal growth factor) (NC2_glial_NGF+) (Extended 
Data Fig. 4a,b). Similarly, the annotated node and AV bundle structures 
of AVN samples from multiple donors included FBs, NC2_glial_NGF+ 
and tissue-resident macrophages (MPs) (LYVE1+ MP) together with 
P cells or AV bundle cells, respectively (Extended Data Fig. 4a,c–e).  
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Fig. 2 | Identification of cellular niches in the adult human heart. a, Overview 
of the spatial data analysis workflow. Visium spots were histologically 
annotated. Cell states defined by sn/scRNA-seq analysis were mapped to 
Visium spots using cell2location. NMF was used to decompose manually 
annotated structures into factors. Spatially resolved analysis of cell–cell 
interactions was performed using a custom neural–GPCR CellPhoneDB 
module. b–g, Cellular microenvironment identification in the SAN (b–d) and 
the RV (e–g). Histological structures were manually annotated on the basis of 
H&E stainings (representative of four hearts) (b,e). Factor loadings (estimated 
abundance of cell state group) of factors identified using cell2location NMF 
analysis are shown in spatial coordinates (c,f). Dot plots illustrate cell states 
with more than 0.4 normalized cell abundance (dot colour and size) in a factor 
(d,g). Illustrations in a were created using BioRender (https://biorender.com). 
The cell2location illustration is reproduced with permission from ref. 11, 
Springer Nature America. The CellPhoneDB illustration is courtesy of the 
Wellcome Sanger Institute.

https://biorender.com


804 | Nature | Vol 619 | 27 July 2023

Article
In contrast to results reported for mouse AVN17, our data did not high-
light the expression of connexin 43 (encoded by GJA1) or other connex-
ins in MPs and monocytes of the SAN and AVN (Extended Data Fig. 4f). 
In the epicardium of all four cardiac chambers, we detected enrichment 
of expected cell states (mesothelial cells, FBs, lymphatic endothelial 
cells (EC8_ln) and adipocytes), but also plasma B cells (B_plasma) and 
LYVE1+IGF1+ MPs (Extended Data Fig. 4g).

To identify cellular niches in an unbiased manner and to decompose 
the H&E-discernible structures, we performed non-negative matrix 
factorization (NMF) on the cell2location spot-by-cell output and 
defined factors of co-occurring cell states11. We assessed the similar-
ity between the NMF-identified factors and the manually annotated 
structures by calculating an effect size of the spot factor loadings in a 
given structure compared with other areas (Fig. 2a and Supplementary 
Fig. 4). This analysis confirmed that NMF analysis can define multi-
ple distinct cellular niches within histologically defined structures. 
For example, the node structure in SAN sections from three donors 
separated into central and peripheral regions (Fig. 2b,c and Extended 
Data Fig. 5a(i),b(i–iii),c(i–iii)). The central region contained P cells, 
FB4_activated and NC2_glial_NGF+ cells, whereas the peripheral region 
was enriched for tissue-resident LYVE1+ MPs and other FBs, including 
the basal FB2 (Fig. 2d and Extended Data Figs. 5a(ii),b(iii,iv),c(iii,iv) 
and  6a–d). These data clearly indicate that the human SAN is a com-
partmentalized structure that consists of a central region with the 
functionally important P cells embedded among activated FBs and 
glial cells, and surrounded by a peripheral region of immune and other 
FB populations. This two-layered structure of the SAN may contribute 
to insulating the P cells to optimize the source–sink relationship and 
maintain sinus node function18. In the node and bundle structures of the 
AVN region, we observed the enrichment of P cells and NC2_glial_NGF+ 
cells together with FBs and LYVE1+ MPs. However, unlike the SAN, there 
was no compartmentalized cell arrangement, and FB4_activated cells 
were not abundant (Extended Data Fig. 4a–d).

Spatial transcriptomics data showed enrichment of genes that 
encode ECM proteins and metalloproteinases in the SAN (Extended 
Data Fig. 6e). CellPhoneDB analysis7 of the cells predicted TGFβ 
ligand–receptor interactions from cells expressing the ligand genes 
TGFB1 (LYVE1+IGF+ MPs) and TGFB2 (SAN_P_cell and NC2_glial_NGF+) to 
FB4_activated cells expressing the receptor genes TGFBR1 and TGFBR3 
(Extended Data Fig. 6f). This result suggests that cells from both central 
and peripheral regions contribute to ECM formation.

In ventricular and atrial free walls, we assessed the similarities  
of NMF-identified factors compared with the manually annotated 
epicardium–subepicardium structure (comprising the epicardial 
mesothelium monolayer and subepicardial fibrosis) (Extended Data 
Fig. 7a,b). This analysis decomposed the epicardium–subepicardium 
structure into a distinct immune epicardium niche (enriched for 
lymphatic endothelial and immune cells) and a fibrotic epicardium 
niche (consisting of multiple FB cell states) (Fig. 2e,f and Extended 
Data Fig. 7c,d). Plasma B cells were present in both epicardial niches, 
although at a higher proportion in the immune niche (Fig. 2g and 
Extended Data Fig. 7d).

Ion channel profile of CCS cells
Differential ion channel expression profiles (relative to non-CCS aCMs) 
highlighted the electrophysiological specialization of the CCS cell 
states: SAN and AVN P cells, AV bundle cells and Purkinje cells (Fig 3a, 
Extended Data Fig. 8a and Supplementary Table 2). In contrast to other 
CMs, the P cell action potential upstroke is mediated by calcium rather 
than sodium influx6. Accordingly, both the SAN and AVN P cells showed 
downregulation of the sodium channel gene SCN5A and upregulation 
of the L-type calcium channel gene CACNA1D (Fig. 3a), the mutation 
of which causes sinoatrial node dysfunction and bradycardia19. Two 
classical hyperpolarization-activated cyclic nucleotide-gated (HCN) 

pacemaker channel genes (HCN1 and HCN4) were enriched in P cells 
from both nodes (Fig. 3a, phase 4). CACNA1G, which encodes the T-type 
calcium channel α-subunit (CaV3.1) and is crucial in pacemaking in 
rodents6, was highly expressed in SAN P cells only. Moreover, the expres-
sion of CACNA1G was lower than for CACNA1D, which highlights the 
importance of the latter in human pacemaking (Fig. 3a, phase 0). Sev-
eral ion channels (CACNA1D, HCN1, KCNJ3, TRPM3 and CLIC5) seemed 
to have cross-species importance because they were also upregulated 
in mouse SAN P cells (relative to working atrial myocytes) (Supple-
mentary Fig. 5a).

Potassium channel currents contribute to membrane repolariza-
tion, which in turn regulates the firing rate of P cells (Fig. 3a, phase 3).  
KCNJ5, a G protein-coupled inwardly rectifying potassium (GIRK) 
channel subunit was upregulated in both P cell types (Fig. 3a). GIRK 
channels are directly activated by the βγ-subunit of various GPCRs 
to modulate cell excitability6, which highlights the specialization of 
P cells to respond to physiological stimuli. Among other potassium 
channels, KCNN2 was highly expressed in both P cell types, whereas 
KCNK13 was specific to AVN P cells (Extended Data Fig. 8a). The former 
is activated by intracellular calcium whereas the latter is activated by 
a range of stimuli, including arachidonic acid and purine receptor 
agonism6.

Various ion channel genes not traditionally associated with cardiac 
pacemaking were highly expressed in P cells, including several mem-
bers of the transient receptor potential (TRP) family of nonselective 
cation channels (TRPC4, TRPM3, TRPM7, PKD2, MCOLN2 and MCOLN3). 
Notably, TRPM3 was strongly expressed in SAN P cells (Extended Data 
Fig. 8a). ANO6, which encodes a calcium-activated chloride channel, 
was upregulated in SAN and AVN P cells and in AV bundle cells (Extended 
Data Fig. 8a). The role of these ion channels in CCS cell function requires 
further investigation.

Although there were similarities in the ion channel expression pro-
files of AV bundle cells and P cells (CACNA1D, KCNN2, ANO6 and GRIA3), 
bundle cells were marked by the expression of the high-conductance 
gap junction subunit Cx40 (Extended Data Fig. 8b). KCND2, a gene 
associated with nocturnal atrial fibrillation20 and Brugada syndrome, 
was also specifically expressed in AV bundle cells. Purkinje cells 
showed a gene expression profile closest to vCMs (Extended Data 
Fig. 8c). However, the GIRK channel subunit KCNJ3 and two classically 
neuron-associated calcium channel subunits (CACNA1E and CACNA1B) 
were more highly expressed in Purkinje cells than in vCMs (Extended 
Data Fig. 8d). Consistent with a fast-conducting phenotype, AV bundle 
and Purkinje cells were enriched for GJA5 expression, whereas P cells 
expressed the ultra-low conductance gap junction subunit GJC1 (which 
encodes Cx45)6 (Extended Data Fig. 8c).

Altogether, these data provide a highly specific map of genes and 
cells of the conduction system and may guide future functional studies 
defining cell-specific druggable targets.

GPCR profile of CCS cells
Heart rate is tightly regulated by various neurohumoral factors, primar-
ily through GPCR signalling21. CCS cells exhibited a wide range of GPCRs, 
G protein subunits and second-messenger machinery (Extended Data 
Fig. 8e,f). Within the group of receptors were the classical acetylcholine 
muscarinic (M2) (encoded by CHRM2) and catecholamine β (encoded 
by ADRB1) receptors, which are responsible for mediating the major 
heart-rate-modulating effects of the autonomic nervous system 
(ANS)22. In addition, we found receptors for several neurohumoral 
ligands in P cells, including angiotensin II (encoded by AGTR1), calci-
tonin gene-related peptide (encoded by CALCRL), glucagon-like peptide 
1 (encoded by GLP1R), parathyroid hormone (encoded by PTH1R) and 
vasoactive intestinal peptide (encoded by VIPR2). The adhesion GPCR 
family, which are activated by the binding of their extracellular domain 
to ligands on neighbouring cells or within the ECM and are involved in 
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neuronal cell migration and synaptogenesis23, were highly represented 
within CCS cells (ADGRL3, ADGRG6 and CELSR1) (Fig. 3b, Extended 
Data Fig. 8e).

To enable a comprehensive analysis of GPCR interactions in the 
node, we supplemented the CellPhoneDB database7 with a custom 
module of GPCR and trans-synaptic adhesion molecule interactions, 
adding more than 1,000 new ligand–receptor pairs (Supplementary 

Tables 3 and 4). Spatially resolved CellPhoneDB analysis showed multi-
ple interactions through adhesion GPCRs expressed in SAN P cells. 
ECM proteins, including laminin (encoded by LAMA2) expressed in 
NC2_glial_NGF+ cells and FBs interacted with the receptor encoded by 
ADGRG6 in SAN P cells (Extended Data Fig. 8g). Interaction of angio-
tensinogen (encoded by AGT), the precursor peptide for the ligand 
angiotensin II, and its receptor encoded by AGTR1 was predicted in the 
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nodes of both the SAN and the AVN (Extended Data Fig. 8g,h). Spatial 
transcriptomics data confirmed AGT expression in the manually anno-
tated node structure (Supplementary Fig. 5b). This result is consistent 
with the identification of local renin–angiotensin circuits and a previous 
study24 showing enriched angiotensinogen expression in the human 
CCS. These GPCR repertoires support CCS cell responsiveness to an 
array of neurohumoral factors and interactivity with ECM components 
and cells in their niche.

Gene regulatory networks in P cells
To reveal gene regulatory networks that influence P cell gene expression 
profiles, we constructed both activator and repressor networks using 
multiome data (Fig. 3c, Extended Data Fig. 8i, Supplementary Fig. 5c,d 
and Supplementary Tables 5 and 6). TF and target gene interactions 
inferred from the snATAC-seq data analysis largely overlapped with 
the network predicted by gene expression.

Notably, our results indicated that FOXP2, a TF associated with lan-
guage centre development in the brain, is a key TF targeting major 
P cell ion channel genes such as HCN1 and CACNA1D, as well as TBX3  
(a repressor of working myocyte gene programmes1) (Fig. 3c and Sup-
plementary Table 5). The FOXP2 and HCN1 interaction was also observed 
in the snATAC-seq analysis (Extended Data Fig. 8j). This result may 
explain why mice carrying one non-functional Foxp2 allele have lower 
pulse rates than wild-type littermates25. PRDM6, which is associated with 
heart rate recovery during exercise26, regulated multiple genes encod-
ing ion channels and GPCR. CREB5, which encodes cAMP-responsive 
element-binding protein 5 and is associated with atrial fibrillation27, 
was also one of the TFs highly expressed in P cells compared with other 
aCMs.

In the repressor network, TBX3 was highlighted as a regulator of 
genes encoding GPCRs and proteins involved in electrophysiologi-
cal processes, such as SCN5A and GJA1, and NPPA (Extended Data 
Fig. 8i and Supplementary Table 6). This result is consistent with a 
TBX3-dependent mechanism that suppresses the working myocyte 
programme in P cells1. TCF4, which is associated with the capacity to 
increase heart rate during exercise28, showed repressive interactions 
with multiple genes that encode sarcomeric proteins (MYOM1, MYOM2 
and MYL4) (Extended Data Fig. 8i).

These predicted control mechanisms may be useful in the engineer-
ing of better models of human P cells in vitro.

Glutamatergic signalling in the nodes
In the histological node structure of both the SAN and the AVN, we 
observed enrichment and colocalization of P cells with NC2_glial_NGF+ 
cells (Fig. 2d and Extended Data Figs. 4a and 5). This glial population 
expresses neurexins (NRXN1 and NRXN3), which form trans-synaptic 
complexes with cell adhesion molecules29. Our neural–GPCR Cell-
PhoneDB module highlighted several such interactions with P cells 
(NLGN1, ADGRL1, ADGRL3, DAG1 and CLSTN1) (Fig. 3d and Extended 
Data Fig. 9a).

We also discovered that P cells and NC2_glial_NGF+ cells express genes 
involved in glutamatergic signalling. P cells expressed high levels of 
the glutamate receptor GRIA3 (an AMPA-type receptor) and GRID2 
(Extended Data Fig. 9b), which encodes a postsynaptic auxiliary subunit 
that forms a molecular bridge to the presynaptic membrane30. The 
glutamate transporter SLC1A3 and synthetic enzyme GLS, as well as 
synaptic vesicle genes such as SNAP25 and STX7, were expressed in both 
SAN and AVN P cells. Spatially resolved CellPhoneDB analysis of the cen-
tral nodal niche in the SAN or the node structure of the AVN highlighted 
P cell-to-P cell glutamatergic signalling through three ionotropic glu-
tamate receptors (GRIA3, GRIK1 and GRIK2) in both the SAN and the 
AVN (Extended Data Fig. 9c,d). Expression of GRIA3 is consistent with 
the recent observation in rodents of cardiomyocyte–cardiomyocyte 

glutamate signalling through Gria3 (ref. 31). Opening of these iono-
tropic channels increases cardiomyocyte excitability and may directly 
accelerate P cell firing. NC2_glial_NGF+ cells expressed genes involved in 
the glutamate–glutamine cycle, the means by which astroglia replenish 
glutamine pools for neighbouring glutamatergic neurons32. That is,  
the glutamate reuptake transporter EAAT2 (encoded by SLC1A2),  
glutamine synthetase (encoded by GLUL), which remakes glutamine 
from glutamate, and the glutamine transporter (encoded by SLC38A9), 
which releases extracellular glutamine (Extended Data Fig. 9b). Con-
versely, P cells expressed glutamine transporter (encoded by SLC38A1) 
and glutaminase (encoded by GLS), which converts glutamine to the 
active neurotransmitter glutamate. These findings suggest that human 
P cells express the requisite machinery for glutamatergic signalling 
and that NC2_glial_NGF+ cells may form synapses with CCS cells and 
have an astrocyte-like support role.

Innervation of the nodes
The majority of cardiac autonomic neurons reside in extracardiac struc-
tures (the paravertebral ganglia and brainstem). However, a number of 
neurons are native to the heart, forming the intrinsic cardiac nervous 
system (ICNS)22. The ICNS neuronal bodies are concentrated within 
the subepicardial fat in structures known as ganglionated plexi33. 
Our snRNA-seq data did not contain cells matching the profiles of 
autonomic neurons, probably because of the rarity of ICNS neurons. 
However, we identified the right atrial ganglionated plexus (RAGP), 
which houses the somata of neurons innervating the SAN33, in six spa-
tial transcriptomics sections across three donors (Fig. 3e). A score 
calculated for the expression of pan-neuronal cytoskeletal markers 
(PRPH, NEFL, NEFM and NEFH) mapped to the Visium spots on the RAGP 
region (Fig. 3e and Extended Data Fig. 9e). Correlating the score with 
gene expression for the corresponding Visium spots enabled us to 
reveal a transcriptome-wide profile of a human ganglionated plexi 
(Extended Data Fig. 9f and Supplementary Table 7). The neuropeptide 
somatostatin (encoded by SST), previously identified as a marker of 
RAGP neuronal populations in pig33, was highly correlated with the 
pan-neuronal cytoskeletal score. Other significantly correlated genes 
were the cholinergic markers SLC18A3, SLC5A7, CHAT and ACHE, the 
catecholamine synthetic enzymes TH and DDC and the sympathetic 
co-transmitter neuropeptide Y (encoded by NPY) (Fig. 3f and Extended 
Data Fig. 9f,g). The relevant corresponding receptors (adrenergic 
and cholinergic) were also expressed in P cells. The expression of sev-
eral markers typical of neuroendocrine cells, such as synaptophysin 
(encoded by SYP), secretogranin II (encoded by SCG2), chromogra-
nin A (encoded by CHGA) and chromaffin granule amine transporter 
(encoded by SLC18A1), also correlated with the pan-neuronal cytoskel-
etal score (Supplementary Table 7).

Cardiac sympathetic neuron viability depends on a continuous 
source of the neurotrophin NGF, with recent work in rats suggesting 
that CMs are a source34. However, in our human dataset, NGF was more 
highly expressed in NC2_glial_NGF+ cells than in CMs and other neu-
ral cells (Extended Data Fig. 2i). Furthermore, the expression of NGF 
receptors p75NTR (encoded by NGFR) and TrkA (encoded by NTRK1) 
correlated with the pan-neuronal cytoskeletal markers (Fig. 3f and 
Extended Data Fig. 9f). In porcine RAGP, NTRK1 expression was found 
specifically in neurons with axonal projections to the SAN33. Thus, nodal 
NGF signalling from NC2_glial_NGF+ cells may promote and maintain 
innervation from the nearby RAGP.

Overall, we propose a nodal cellular circuit wherein NC2_glial_NGF+ 
cells play a pivotal part. That is, they synaptically interact with P cells, 
facilitating glutamatergic signalling (which potentially modulates 
firing rate) and promoting autonomic innervation through NGF 
signalling (Fig. 3g). Immunofluorescence staining of the node with 
antibodies targeting markers of glial cells (PLP1) and P cells (HCN1) 
confirmed the proximity of these two cell types in the node (Fig. 3h).  
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In particular, processes from PLP1-positive glial cells seemed to contact 
HCN1-positive P cells, thereby providing support for our proposed 
model.

Drug targeting at single-cell resolution
The cells of the CCS are important targets for chronotropic drugs. 
Therefore, we sought to leverage our human heart data to map drugs 
to target these cells. Several single-cell studies and methods have been 
published that use drug-response transcriptional signatures obtained 
from cell line experiments and data-mining35 to predict drug effects. 
However, these studies require the development of cell-type-specific 
in vitro models, which can fail to fully recapitulate the profiles of their 
in vivo human counterparts. To comprehensively evaluate drug-target 
expression using single-cell data, we developed a Python package, 
drug2cell, which uses pairs of drugs and their target molecules from 
any drug or target database. In this instance, we used the ChEMBL 
database (https://www.ebi.ac.uk/chembl/) (Fig. 4a). With this stream-
lined workflow, we applied selected drug–target pairs to single-cell 
datasets that can be filtered on the basis of quantitative bioactivity 
metrics, drug categories and clinical trial phases, and target molecule 
classes. Once drug scores were calculated, it was possible to achieve the  
following targets: (1) find cells that are targeted by drugs of interest; 
(2) find drugs that target cells of interest; and (3) find target molecules 
expressed in the target cells and potentially mediate the effect of the 
drug (Fig. 4a).

As an example, we explored clinically approved drugs of all catego-
ries (Anatomical Therapeutic Chemical classification) registered in 
ChEMBL to identify the drugs with the strongest predicted effect on 
P cells compared with other cardiac cell states (Fig. 4b). This analysis 
highlighted the group of drugs belonging to the ‘Cardiovascular system’ 
category, including ivabradine (a HCN1 and HCN4 inhibitor), quini-
dine (a class I antiarrhythmic agent) and atropine (an anticholinergic 
agent), which are clinically used drugs with chronotropic effects and 
are known to act on P cells36. To further explore other groups of drugs 
that potentially affect P cell function, we searched broadly for clinically 
approved and preclinical bioactive molecules with drug-like properties 
that target GPCRs or ion channels. As a result, we found drugs that tar-
get the GPCRs ADRB1, ADRB2, CHRM2 and GLP1R and the ion channels 
CACNA1C, CACNA1D, CACNA1G, HCN4 and TRPV1 expressed in P cells 
(Extended Data Fig. 10a and Supplementary Fig. 6). In addition, we 
found several drugs that block the angiotensin II receptor (encoded 
by AGTR1), which indicated that these drugs potentially have a direct 
effect on P cells.

Notably, our analysis identified P-cell-expressed targets for 
non-cardiac medications with documented chronotropic effects 
(Fig. 4b and Extended Data Fig. 10a). These included the antidiabetic 
medication liraglutide (a GLP-1 analogue) and the anti-epileptic medica-
tion perampanel (an AMPA receptor inhibitor) (Fig. 4b and Extended 
Data Fig. 10a). Both drugs are known to alter heart rate, but as their 
targets were not known to be present in P cells before this study, alterna-
tive sites of action (the ANS and CNS, respectively) had been proposed 
as mediators of these effects37,38 (Fig. 4c).

To test the effect of GLP-1, we used human induced pluripotent 
stem-cell-derived cardiomyocytes (hiPSC-CMs), which exhibit pace-
maker properties such as automatic firing39. Expression of the pace-
maker channel genes HCN4, HCN1 and GLP1R was confirmed at the 
mRNA level and at the protein level by immunofluorescence staining 
(Extended Data Fig. 10b,c). Live imaging of intracellular calcium tran-
sients was performed on cells treated with GLP-1 or ivabradine, a nega-
tive chronotropic agent that slows diastolic depolarization by blocking 
pacemaker (HCN1 and HCN4) channels as a control. Ivabradine treat-
ment decreased spontaneous firing rates of hiPSC-CMs, as shown by an 
increase in the time between peak maximum (Pk2Pk) (Extended Data 
Fig. 10d). By contrast, GLP-1 reduced the time between peak threshold 

and peak maximum (Time2Pk) value, which is indicative of a positive 
chronotropic effect (Extended Data Fig. 10e). These results are consist-
ent with the documented chronotropic effects observed in patients 
treated with GLP-1 analogues and suggest that the effect is at least 
partially mediated by a direct action on P cells (Fig. 4c).

In summary, drug2cell can identify specific cellular targets of bio-
active molecules with drug properties based on sc/snRNA-seq data, 
potentially revealing hidden mechanisms of action and predicting the 
impact of medicines on specific cell types.
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genes encoding targets of chronotropic drugs (yellow circle), indicative of 
ANS-independent mechanisms, such as in the case of the GLP1 analogues and 
perampanel. β, β-adrenergic receptor; M2, muscarinic acetylcholine receptor 
M2. Illustrations in a,c were created using BioRender (https://biorender.com).
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Immune niche in the epicardium
To further understand the immune niche that incorporates epicardial 
plasma B cells (Fig. 2g and Extended Data Fig. 11a), we localized plasma B 
cells and the associated genes encoding immunoglobulin heavy chains 
in the spatial transcriptomics data. Genes encoding the immunoglobu-
lin heavy chains (IGHG1, IGHG3, IGHG4 and IGHA1) were significantly 
enriched in the epicardium–subepicardium histological structure 
(Extended Data Fig. 11b), and the spots expressing IGHG1 and IGHA1 
showed distinct localization (Fig. 5a,b and Extended Data Fig. 11c). 
This result suggests that different mechanisms regulate the fate of 
IgG+ and IgA+ plasma B cells within the epicardial–subepicardial niche.

To understand the mechanisms that regulate the dynamics of this 
cellular niche, we performed spatially resolved CellPhoneDB analy-
sis (Extended Data Fig. 11d). Endothelial cells, FBs, mesothelial cells 
and MPs expressed genes encoding CCL2 and CXCL12 (also known 
as SDF1), and plasma B cells expressed genes encoding their recep-
tors, CCR2 and CXCR4, respectively (Fig. 5c). This result suggests that 
plasma B cells may be recruited through a chemokine-dependent 
mechanism40. Our data also pointed towards a CCL28–CCR10 inter-
action, a specific mechanism for IgA+ plasma B cell recruitment40, 

from lymphatic endothelial cells (EC8_ln) to plasma B cells (Fig. 5c). 
Ligand-encoding genes TNFSF13B (which encodes BAFF) and TNFSF13 
(which encodes APRIL) were expressed in MPs, monocytes and FBs, 
whereas their receptor counterparts TNFRSF13B (which encodes TACI) 
and TNFRSF17 (which encodes BCMA) were expressed in plasma B 
cells (Fig. 5d). This result suggests that tumour necrosis factor (TNF) 
superfamily-dependent signalling contributes to the homeostasis of 
the niche41. Consistent with our CellPhoneDB predictions, multiplex 
single-molecule fluorescence in situ hybridization (smFISH) analysis 
confirmed the colocalization of plasma B cells expressing TNFRSF13B 
(which encodes the BAFF receptor) alongside MPs in the epicardium 
(Fig. 5e). Immunofluorescence staining also confirmed the presence 
of IgA in the subepicardial region (Fig. 5f). Furthermore, CellPhoneDB 
predicted interactions between plasma B cells and FBs (FB2, FB3 and 
FB5), LYVE1+IGF1+ MPs and endothelial cells (EC6_vec and EC8_ln) 
through TGFβ1 and TGFβ receptors (Extended Data Fig. 11e). In line 
with a previous study42 showing a key role of plasma B cells in fibrosis, 
plasma B cells together with LYVE1+IGF1+ MP and endothelial cells were 
the major sources of TGFB1 (Extended Data Fig. 11f).

The manually annotated epicardial–subepicardium structure highly 
expressed genes for secreted antimicrobial defence molecules, includ-
ing SLPI and RARRES2 (encoding chemerin)43, as well as monocyte/
neutrophil-attracting chemokines (CXCL1, CXCL6 and CXCL8). This 
result is consistent with the enrichment of these genes in mesothelial 
cells (Extended Data Fig. 11g,h), and suggests that they have directly 
contribute to the immune defensive function of the heart.

In summary, we defined a new epicardial niche in which MP-derived 
and stromal-cell-derived signals mediate the recruitment and homeo-
stasis of plasma B cells that secrete immunoglobulins. These anti bodies, 
together with other antimicrobial molecules, provide an immune bar-
rier that protects the heart against lung-derived invading pathogens 
(Fig. 5g), and its dysregulation could contribute to auto immune mecha-
nisms of cardiac disease44.

Ventricular myocardial-stress niche
From the results above, we noted activated FB cell states with high 
collagen expression profiles (FB4_activated) and stressed ventricular 
CMs expressing cardiomyocyte stress signatures (vCM3_stressed) 
(Extended Data Fig. 2h). By testing their abundance in publicly available 
datasets of dilated cardiomyopathy (DCM) and HCM45,46, we detected 
expansions of FB4_activated and vCM3_stressed populations in both 
DCM and HCM samples compared with samples from healthy individu-
als (Extended Data Fig. 12a,b). To validate this finding, we examined 
ventricular myocardium samples from patients with DCM using mul-
tiplex smFISH. This analysis revealed the colocalization and enrich-
ment of marker genes for FB4_activated (COL1A1) and vCM3_stressed 
(NPPB) cells in DCM samples compared with controls (Extended Data 
Fig. 12c). Spatial transcriptomics analysis of the SP region of donor 
hearts revealed colocalization of these two cell states with vascular 
cells and immune cells defining a myocardial stress niche (Extended 
Data Fig. 12d–f). Spatially refined CellPhoneDB analysis suggested that 
the TGFβ superfamily contributed to intercellular communications 
within this microenvironment. Specifically, endothelial cells, smooth 
muscle cells (SMC2_art), FBs (FB4_activated and FB5) and immune 
cells (MPs and NK cells) expressed genes encoding TGFβ ligands. By 
contrast, TGFβ receptors were expressed in both FB4_activated and 
vCM3_stressed populations (Extended Data Fig. 12g). Also, several 
endothelial cell populations and SMC2_art cells expressed inflamma-
tory cytokines (IL6, TNFSF10 and TNFSF12), which interact with their 
cognate receptors expressed in vCM3_stressed cells (Extended Data 
Fig. 12h). This result indicates that there is direct proinflammatory 
signalling to the cardiomyocytes. In fact, compared with other vCMs, 
vCM3_stressed cells expressed higher levels of genes encoding recep-
tors for IL-6, TNFSF12 and IL-1 (IL6R, TNFRSF12A, and IL1R1 and IL1RAP, 
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respectively) (Extended Data Fig. 12i), which are associated with the 
pathogenesis of heart failure44. We speculate that this myocardial-stress 
niche may be a precursor to adverse cardiac remodelling and patho-
genic fibrosis typical of cardiomyopathy (Extended Data Fig. 12j).

Discussion
Our work sheds new light on the cellular profiles and composition of 
niches in the human heart. In the CCS, P cells expressed the TF FOXP2 
and ion channel genes not traditionally associated with cardiac pace-
making. These include members of the TRP family of non-selective 
cation channels for which their conductance is regulated by phys-
icochemical stimuli and can modulate cardiomyocyte excitability47. 
TRPM3, inhibited by the βγ-subunits of Gi/o-coupled GPCRs, has been 
implicated in SAN-associated and AVN-associated GWAS traits48,49 and 
could modulate P cell excitability in a fashion similar to GIRK channels50. 
We also report ANO6, which encodes a calcium-activated chloride 
channel, in human CCS cells. Notably, another member of the same 
anoctamin family (ANO1) is the primary pacemaker channel responsi-
ble for peristaltic slow-wave generation in the Cajal cells of the gut13,51, 
and was detected in mouse SAN52. We developed drug2cell, a tool to 
identify drug-target expression at the single-cell level. This tool high-
lighted P cells as previously unknown cellular targets for drugs with 
chronotropic side effects (including GLP-1 analogues and perampanel), 
the mechanisms of which had remained elusive37. In the future, apply-
ing drug2cell to whole-body cell atlas datasets may improve in silico 
screening by predicting adverse effects in cell types across all organs.

Through our spatial analyses, we showed that the glial population 
NC2_glial_NGF+ is a niche partner of CCS cells in both nodes and the 
AV bundle. These cells express key elements required to maintain the 
glutamine pool and may therefore facilitate cardiac glutamatergic 
signalling in an astrocyte-like role. Similarly, our analysis highlighted 
multiple trans-synaptic adhesion interactions suggesting a synapse-like 
interconnection, as supported by the envelopment of P cells by glial 
processes. Consistent with the recently suggested cardiomyocyte–
neuron signalling circuit34, NC2_glial_NGF+ cells may promote CCS 
innervation through the secretion of the neurotrophic factor NGF, 
the receptors of which (NGFR and NTRK1) are expressed in the nearby 
RAGP. Together, these findings indicate an important multifaceted 
role for NC2_glial_NGF+ cells in supporting CCS cells.

The presence of IgA+ and IgG+ plasma B cells in the epicardium and 
subepicardium is consistent with a role as a barrier to direct invasion of 
pathogens such as those infecting the neighbouring lungs. Mesothelial 
cells may have a key part in the formation of the epicardial immune 
niche by expressing chemokines (CCL2) and pro-survival factors for 
B cells (BAFF) and the immune defensive function by expressing antimi-
crobial molecules (SLPI and RARRES2). This role is similar to the immu-
noregulatory function of mesothelial cells in the peritoneal cavity53. 
Within the myocardium, we discovered a myocardial-stress niche with 
enrichment of genes encoding inflammatory cytokine receptors (IL-1 
and IL-6 receptors) in the stressed CM population (vCM3_stressed). This 
result implies a mechanism that mediates the susceptibility of the heart 
to inflammation and remodelling within the myocardial-stress niche44.

This framework, which combined multimodal data and integrated 
knowledge-based and unsupervised microstructural annotations, has 
the power to drive niche discovery and can be applied to other tissues 
in health and disease.
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Methods

Research ethics for donor tissues
All heart tissue samples were obtained from transplant donors after 
Research Ethics Committee approval and written informed consent 
from donor families as previously described2. The following ethics 
approvals for donors of additional heart tissue were obtained: D8 
and A61 (REC reference 15/EE/0152, East of England Cambridge South 
Research Ethics Committee); AH1 (DN_A17), AH2 (DN_A18), AH5 (DN_
A19) and AH6 (DN_A20) (REC reference 16/LO/1568, London, London 
Bridge Research Ethics Committee); AV1 (HOPA03), AV3 (HOPB01), 
AV10 (HOPC05), AV13 (HOPA05) and AV14 (HOPA06) (REC reference 
16/NE/0230, North East, Newcastle & North Tyneside Research Eth-
ics Committee). Samples of failing hearts used for validation were 
obtained under the Research Ethic Committee approval given to the 
Royal Brompton & Harefield Hospital Cardiovascular Research Centre 
Tissue Bank (REC reference 19/SC/0257).

Tissue acquisition and processing
Cardiovascular history was unremarkable for all donors (Supplemen-
tary Table 1). Hearts contributing to the SAN and AVN regions were 
from donors confirmed to be in sinus rhythm with normal conduc-
tion parameters by echocardiogram before donation (Supplementary 
Table 1). Hearts were acquired after circulatory death (D8, A61, AH1, 
AH2, AH5 and AV3) and after brain death (AV1, AV10, AV13, AV14 and 
AH6). For donation after circulatory death donors, after confirmation 
of death there was a mandatory 5-min stand-off before sternotomy. In 
all cases, the aorta was cross-clamped and cold cardioplegia solution 
was administered to the aortic root before cardiotomy. Samples AV1, 
AV3, AV10, AV13 and AV14 were procured in the standard fashion and 
then immediately preserved with and transported on a hypothermic 
perfusion machine. Sample AH2 was similarly preserved, but with 
immediate normothermic perfusion. It then underwent 4 h of nor-
mothermic perfusion before samples were taken. For single nuclei 
sequencing, all donor samples were full-thickness myocardial tissues 
from the SAN, the AVN, the LA, the RA, the LV, the RV, the SP and the AX. 
For spatial transcriptomics, ventricle regions, the thicknesses of which 
were larger than one side of the Visium frame (6.5 mm), were separated 
into epicardial and endocardial portions. Samples used for single nuclei 
isolation and spatial transcriptomics were flash-frozen or frozen in OCT 
and stored at −80 °C, or formalin-fixed and subsequently embedded 
in paraffin blocks. All tissue samples were stored and transported on 
ice at all times until freezing or tissue dissociation to minimize any 
transcriptional degradation.

Preparation of node samples
For the SAN, a 6 × 3 cm portion of the posterolateral RA with its long 
axis parallel to and centred on the crista terminalis was dissected. This 
was then divided into 5-mm-thick strips cut perpendicular to the crista 
terminalis (Supplementary Fig. 1a). For the AVN region, a tissue sample 
including the triangle of Koch (bordered by Todaro’s tendon, the coro-
nary sinus ostium and the tricuspid valve annulus) as well as the basal 
septum (spanning from the interatrial to interventricular septum and 
including the membranous septum) was dissected (Supplementary 
Fig. 1b). As before, the sample was then divided into strips that were 
cut perpendicular to the tricuspid annular plane. Each strip was then 
embedded in OCT medium and frozen, retaining information of its 
position in the septum–lateral wall axis. As confirmed by H&E stain-
ing, the lateral portions captured AV nodal tissue, whereas the septal 
portions included the AVB and its branches.

Single nuclei isolation
Single nuclei were obtained from flash-frozen tissues using sectioning 
and mechanical homogenization as previously described2,54. Slices 
of 5–10 mm thickness from frozen tissue were first sectioned with a 

cryostat in a 50-μm thickness section. All sections from each sample 
were homogenized using a 7 ml glass Dounce tissue grinder set (Merck) 
with 8–10 strokes of a loose pestle (A) and 8–10 strokes of a tight pes-
tle (B) in homogenization buffer (250 mM sucrose, 25 mM KCl, 5 mM 
MgCl2, 10 mM Tris-HCl, 1 mM dithiothreitol (DTT), 1× protease inhibi-
tor, 0.4 U μl−1 RNaseIn, 0.2 U μl−1 SUPERaseIn and 0.1% Triton X-100 
in nuclease-free water). Homogenate was filtered through a 40 μm 
cell strainer (Corning). After centrifugation (500g, 5 min, 4 °C), the 
supernatant was removed and the pellet was resuspended in storage 
buffer (1× PBS, 4% BSA and 0.2 U μl−1 Protector RNaseIn). Nuclei were 
stained with 7-AAD viability staining solution (BioLegend), and positive 
single nuclei were purified by FACS using a MA900 Multi-Application 
Cell Sorter (Sony) and its proprietary software (Cell Sorter v.3.1.1) (Sup-
plementary Fig. 7). Nuclei purification and integrity were verified by 
microscopy, and nuclei were further processed for multiome paired 
RNA and ATAC-seq using Chromium Controller (10x Genomics) accord-
ing to the manufacturer’s protocol.

Chromium 10x library preparation
Single nuclei were manually counted by Trypan blue exclusion. Nuclei 
suspension was adjusted to 1,000–3,000 nuclei per microlitre and 
loaded on a Chromium Controller (10x Genomics) with a targeted 
nuclei recovery of 5,000–10,000 per reaction. Next, 3′ gene expression 
libraries and ATAC libraries were prepared according to the manufac-
turer’s instructions from Chromium Single Cell ATAC and multiome 
ATAC+Gene Expression kits (10x Genomics). Quality control of cDNA 
and final libraries was done using Bioanalyzer High Sensitivity DNA 
Analysis (Agilent) or a 4200 TapeStation System (Agilent). Libraries 
were sequenced using a NovaSeq 6000 (Illumina) at the Wellcome 
Sanger Institute with a minimum depth of 20,000–30,000 read pairs 
per nucleus.

Visium slides and library preparation
For fresh-frozen samples, samples were frozen and embedded in 
OCT medium using a dry ice-cooled bath of isopentane at −45 °C. 
OCT-embedded samples were sectioned using a cryostat (Leica 
CX3050S) and were cut at 10 μm.

For formalin-fixed paraffin-embedded (FFPE) samples, fresh samples 
were fixed in >5 times their volume of 4% v/v formalin at ambient tem-
perature for 24 h before processing to paraffin on a Tissue-Tek Vacuum 
Infiltration Processor 5 (Sakura Finetek). FFPE blocks were sectioned 
at 5 μm using a microtome (Leica RM2125RT).

Samples of the microanatomical regions of interest (ROIs) were 
selected on the basis of morphology with expert review (S.Y.H.), ori-
entation (based on H&E staining) and either RNA integrity number 
(fresh-frozen samples) or DV200 (formalin-fixed) that was obtained 
using an Agilent 2100 Bioanalyzer. In addition, FFPE tissues were 
checked for possible detachment issues using 10x Genomics Adhe-
sion test slides. FFPE Visium Spatial Gene Expression (10x Genomics) 
was performed following the manufacturer’s protocol. For fresh-frozen 
samples, the Tissue Optimization protocol from 10x Genomics was 
performed to obtain a permeabilization time of 45 min, and the FF 
Visium Spatial Gene Expression experiment was performed as per the 
manufacturer’s protocol (10x Genomics). H&E-stained Visium Gene 
Expression slides were imaged at ×40 magnification on a Hamamatsu 
NanoZoomer S60. After transcript capture, the Visium Library Prepara-
tion protocol from 10x Genomics was performed. Eight cDNA libraries 
were diluted and pooled to a final concentration of 2.25 nM (200 μl vol-
ume) and sequenced on 2× SP flow cells of an Illumina NovaSeq 6000.

Read mapping
After sequencing, samples were demultiplexed and stored as CRAM 
files. Each sample of sc/snRNA-seq was mapped to the human refer-
ence genome (GRCh38-3.0.0) provided by 10x Genomics and using 
the CellRanger software (v.3.0.2) or STARsolo (v.2.7.3a) with default 
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parameters. For single nuclei samples, the reference for pre-mRNA 
was created using the method provided by 10x Genomics (https://
support.10xgenomics.com/single-cell-gene-expression/software/
pipelines/latest/advanced/references). Each sample of multiome, or 
Visium, were mapped to the human reference genome (multiome: 
GRCh38-2020-A-2.0.0; Visium: GRCh38-3.0.0) provided by 10x Genom-
ics using CellRanger ARC (v.2.0.0) or SpaceRanger (v.1.1.0) with default 
parameters. For Visium samples, SpaceRanger was also used to align 
paired histology images with mRNA capture spot positions in the Visium 
slides. Part of the SAN samples were mixed with different donors after 
the nuclei isolation for cost-efficient experimental design (Supplemen-
tary Table 8) and computationally demultiplexed (Soupercell, v.2.0)55 
on the basis of genetic variation between the donors.

Quality control and processing of data
For sc/snRNA-seq and multiome gene expression data, the CellBender 
algorithm56 (remove-background) was applied to remove ambient 
and background RNA from each count matrix produced using the 
CellRanger pipeline. Python (v.3), Pandas (v.1.3.5), NumPy (v.1.21.5), 
Matplotlib (v.3.5.2) and Scanpy (v.1.8.2 and v.1.9.1) were used for qual-
ity control and downstream processing. Cells or nuclei for each sam-
ple were filtered for more than 200 genes and less than 20% (cells) or 
5% (nuclei) mitochondrial and ribosomal reads. A Scrublet57 (v.0.2.3) 
score cutoff value of 0.3 of was applied to remove doublets. The Scanpy 
toolkit was used to perform downstream processing.

For multiome ATAC data (10x Genomics), the data processed using 
CellRanger ARC were further analysed using ArchR (v.1.0.2)58. Quality 
control was performed, considering, among other factors, transcrip-
tion start site enrichment, nucleosomal banding patterns, the number 
and fraction of fragments in peaks, reads falling into ENCODE blacklist 
regions as well as doublet scores computed by ArchR. For high-quality 
cells, reads were mapped to 500-bp bins across the reference genome 
(hg38) (TileMatrix). Gene scores based on chromatin accessibility 
around genes were computed from TileMatrix using the create-
ArrowFiles function to check their consistency with measured expres-
sion values. Before peak calling, pseudo-bulk replicates were generated 
(addGroupCoverages) for each fine-grained cell state annotated using 
the paired gene expression data. Peak calling (501 bp fixed-width peaks) 
was performed for each cell state, and the peak sets were merged to 
obtain a unified peak set (addReproduciblePeakSet). A cell-by-peak 
count matrix was obtained using the addPeakMatrix function.

For Visium data, the Scanpy toolkit was used for quality control and 
downstream processing. Visium spots of each sample were filtered for 
more than 500 UMI counts and 300 genes.

Data integration and cell-type annotation
All transcriptome data were integrated using scVI59 (v.0.14.5, n_
hidden=128, n_latent=50, n_layers=3, dispersion=‘gene-batch’) 
and scArches60 (v.0.5.5, n_hidden=128, n_latent=50, n_layers=3, 
dispersion=‘gene-batch’) with correcting batch effects (donor, cells 
or nuclei, and 10x Genomics library generation kits) and removing 
unwanted source of variations (total counts, per cent mitochondrial 
genes and per cent ribosomal genes for ‘continuous_covariate_keys’). 
Scanpy functions were used to compute a neighbourhood graph of 
observations based on the scVI latent space (scanpy.pp.neighbors) 
and to perform dimensionality reduction (scanpy.tl.umap) and Leiden 
clustering (scanpy.tl.leiden, resolution = 1.0). Clusters showing hybrid 
transcriptional signatures that also had a high scrublet score were 
removed. After re-clustering, cell lineages were annotated on the basis 
of the expression of major marker genes and statistically identified 
marker gene expression for each cluster (scanpy.tl.rank_genes_groups).

To identify fine-grained cell states of the CCS, aCMs of the SAN 
were subclustered; thus we identified a cluster of P cells (SAN_P_cell) 
that expressed canonical channel genes (HCN1 and HCN4)61 and a TF 
(TBX3) (Fig. 1c and Extended Data Fig. 2a). Subclustering of AVN aCMs 

and vCMs showed two CCS cell state clusters (AVN pacemaker cell; 
AVN_P_cell and AVB cell; AV_bundle) (Fig. 1d). AVB cells formed a distinct 
cluster defined by an enrichment in GJA5 (which encodes Cx40), CRNDE 
and CNTN5, which were previously identified as a marker of His bundle 
cells in the mouse heart9 (Extended Data Fig. 2c). To identify Purkinje 
cells, CM populations from AVN samples were integrated and clustered 
with those from the AX. This analysis showed one cluster (cluster 8) that 
contained not only the CCS cells from the AVN but also a population 
derived from the AX expressing Purkinje cell marker genes (GJA5, IRX3, 
KCNJ3 and MYL4)62 (Fig. 1e and Extended Data Fig. 2d,e).

Cell states of other cell types and other regions were defined by 
label transfer (scNym)63 using a published dataset2 as a reference with 
revised annotations. The new annotations include neural cell popula-
tions, which express pan-glial markers and lack core neuronal markers 
(Extended Data Fig. 2i); therefore this compartment is best described as 
glia and will be described below with the ‘_glial’ suffix. FB4 was renamed 
as FB4_activated based on FB-activation signature genes (POSTN and 
TNC) and genes encoding ECM proteins (COL1A1, COL1A2, COL3A1 and 
FN1) (Extended Data Fig. 2h,j). vCM3 was renamed as vCM3_stressed 
based on the specific expression of NPPB, which encodes B-type natriu-
retic peptide (BNP), which is a diagnostic marker for HF and a valuable 
prognostic predictor for the entire spectrum of disease severity and 
expressed in stressed CMs64 (Extended Data Fig. 2h,k). EC7_atria was 
renamed as EC7_endocardial based on a recently published study45. 
For myeloid cells, dimensionality reduction and batch correction 
(scVI) with Leiden clustering were repeated to identify and annotate 
fine-grained cell states, such as tissue-resident LYVE1+ MPs65, based on 
the markers (Supplementary Fig. 2c,d). The transferred cell state labels 
that were not consistent with the coarse-grained cell-type labels based 
on the global clusters were replaced with ‘unclassified’ and excluded 
from downstream analyses.

snATAC-seq data were integrated using cell-by-peak count matrix and 
peakVI66 (v.0.19.0) with correction for batch effects (donor). Scanpy 
functions were used to compute a neighbourhood graph of observa-
tions based on the peakVI latent space (scanpy.pp.neighbors) and to 
perform dimensionality reduction (scanpy.tl.umap).

Spatial mapping of cell states with cell2location
To spatially map heart cell states defined by single-cell transcriptom-
ics data analysis in the Visium data, we used our cell2location (v.0.1) 
method11,67. In brief, we first estimated reference signatures of cell states 
using sc/snRNA-seq data of each region and a negative binomial regres-
sion model provided in the cell2ocation package. For the cell types that 
had fewer than 100 cells or nuclei per region, cells or nuclei from all the 
regions were used for the reference signature inference. The inferred 
reference cell state signatures were used for cell2location cell-type 
mapping for corresponding regions that estimate the abundance of 
each cell state in each Visium spot by decomposing spot mRNA counts. 
The H&E images of the Visium slides were used to determine the aver-
age number of nuclei per Visium spot (n = 7) in the tissue and used as 
a hyperparameter in the cell2location pipeline. For Visium–FFPE sec-
tions (Extended Data Fig. 6c,d), cell state proportions in each Visium 
spot were calculated based on the estimated cell state abundances.

Cell state spatial enrichment analysis
Anatomical microstructures of spatial transcriptomics data were manu-
ally annotated using the paired histology images as follows: epicardium, 
subepicardium, endocardium, myocardium, vessel, nerve, adipose 
tissue, cardiac_skeleton, fibrosis, node, AVB and Purkinje cell. Cell state 
proportions per spot were calculated based on the estimated abun-
dance of cell states (cell2location). Cell state enrichments (odds ratio) in 
each structure were calculated by dividing the odds of target cell state 
proportions by the odds of the other cell state proportions. Odds of 
cell proportions were calculated as the ratio of cell proportion in the 
spots of a structure of interest to that in the other spots. Significance 
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was obtained by chi-square analysis (scipy.stats.chi2_contingency) 
and the P value was corrected using the Benjamini–Hochberg method.

The mapping of expected cell types to histologically defined struc-
tures such as EC7_endocardial in the endocardium, glial cells (NC1_glial) 
in the nerve, arterial smooth muscle cells (SMC2_art) in the vessel, and 
FBs and MPs in fibrosis structures (Supplementary Fig. 3a–d) provided 
further validation of the spatial mapping method.

Cellular microenvironment discovery
The NMF analysis implemented in the cell2location pipeline was per-
formed on the spatial mapping results of each anatomical region of the 
heart. The NMF model was trained for a range of cell state combinations 
(number of factors: n_fact) N={5,...,14}, and the effect size of the cell 
state group abundance between the spots within a given structure 
against the spots in the other areas was calculated for each factor (95 
factors in total) (Supplementary Fig. 4, step 1). To test the significance, 
we permuted the annotation labels of all spots and generated a null 
distribution of the effect size. The P values were calculated on the basis 
of the proportion of the value that is as high as or higher than the actual 
effect size. For each given structure, we first selected the factor that has 
the highest significant effect size (best-factor) (Supplementary Fig. 4, 
step 2). Next, we selected the n_fact that had multiple numbers of fac-
tors (fine-factors) with an effect size more than an arbitrary proportion 
(0.5) of the best-factor (Supplementary Fig. 4, step 3). We considered 
the fine-factors as refined microenvironments, which were identified 
using the NMF method (and not with the knowledge-based structural 
annotations).

For the myocardial-stress niche, first the estimated abundance values 
(cell2location) of FB4_activated and vCM3_stressed cells were multi-
plied. Based on the multiplied abundance, clusters of neighbouring 
spots (n > 5) that had higher than a value of (0.03) were selected.

CellPhoneDB neural–GPCR expansion module
Using the HUGO Gene Nomenclature Committee (HGNC)68 library of 
GPCRs as a master list (HGNC group 139), we used publicly available 
databases (UniProt, Reactome, IUPHAR and GPCRdb (https://gpcrdb.
org/)69) to generate a set of GPCRs with known ligands. To generate 
ligand–receptor interactions for these GPCRs, we used ligand genes 
(for gene-encoded ligands). For non-gene-encoded ligands (such as 
small-molecule ligands), we used ligand proxies in the form of specific 
biosynthetic enzymes or transporter genes. Additionally, we added 
new trans-synaptic adhesion molecule interactions29,70,71. Together, this 
formed more than 800 new interactions (Supplementary Tables 3 and 
4), which we used with the user-defined ‘database generate’ function 
in CellPhoneDB7.

Spatially resolved cell–cell interaction analysis
CellPhoneDB7,72 analyses with a custom neural–GPCR expansion module 
were performed on the identified niches and the cell state compo-
nents. Overall, the cell–cell interaction inferences were performed 
using single-cell transcriptomics data of each anatomical region and 
by restricting to the cell states that were colocalized in the identified 
cellular niches.

For CCS and myocardial-stress niches, we selected the cell states 
that were either in the node of the SAN or the AVN and retrieved the 
interacting pairs of ligands and receptors that satisfied the following 
criteria: (1) all the members were expressed in at least 10% of the cells 
in the cell states; and (2) ligand–receptor complexes specific to two 
cell states were inferred by the statistical method framework in Cell-
PhoneDB (‘statistical_analysis’, P value threshold = 0.05).

For epicardial–subepicardial niches, the ligand–receptor interac-
tions of the colocalized cell states were retrieved on the basis of the 
following criteria: (1) all the members were expressed in at least 10% 
of the cell states; and (2) at least one of the members in the ligand or 
the receptor was a differentially expressed gene (DEG) compared with 

other cell states (scanpy.tl.rank_genes_groups, P value threshold = 0.05, 
log2(fold change) threshold = 0.1). The ligand–receptor interactions 
were further selected on the basis of mean expression levels and the 
biological questions as indicated in the Results and the figure legends.

The following HGNC annotations were used for selecting some of the 
ligand–receptor interactions: chemokines (HGNC GID:189), cytokines 
(HGNC GID:599, 602, 1932, 781 and 1264), and LGIC (HGNC GID:GID161).

The following cell states were used in each analysis: SAN (SAN_P_cell, 
FB2, FB4_activated, FB5, FB6, NC2_glial_NGF+ and LYVE1+IGF1+ MP); AVN 
(AVN_P_cell, aCM2, FB1, FB2, FB5, SMC1_basic, SMC2_art, NC2_glial_
NGF+, LYVE1+IGF1+ MP and mast); epicardial–subepicardial niche (meso, 
EC6_ven, EC8_ln, PC2_atria, LYVE1+IGF1+ MP, B_plasma, T/NK_cycling, 
FB2, FB3, FB5 and NC1_glial); and myocardial-stress niche (FB3, FB4_acti-
vated, FB5, vCM3_stressed, EC2_cap, EC3_cap, EC4_immune, EC6_ven, 
PC3_str, SMC2_art, LYVE1+IGF1+ MP, MoMP and NK_CD16hi).

Ion channel and GPCR profile
Differential gene expression analysis with t-test method was performed 
using the Scanpy function scanpy.tl.rank_genes_groups. Only multiome 
gene expression data were used to avoid the technical batch effects due 
to kit differences. P value correction was performed using the Benja-
mini–Hochberg method. Each of the CCS cells (SAN_P_cell, AVN_P_cell, 
AV_bundle_cell and Purkinje cells) was compared with non-CCS aCMs as 
a reference (Supplementary Table 2). Genes were deemed differentially 
expressed with an adjusted P value of < 0.05. DEGs encoding for ion 
channels and GPCRs were selected based on HGNC groups 177 and 139, 
respectively. Upregulated (log2(fold change) > 0) DEGs were depicted in 
the GPCR overview schematic (Fig. 3b). To compare the transcriptional 
similarity of working (aCM, vCM) and CCS cell states, a dendrogram 
based on principal-component-analysis-reduced gene expression was 
computed using the Scanpy function scanpy.tl.dendrogram (Extended 
Data Fig. 8c).

Mouse DEG analysis
A list of upregulated ion channel genes (log2(fold change) > 1, adjusted 
P value < 0.01) for SAN_P_cells was made. Differentially expressed 
testing summary statistics from two mouse single-cell studies were 
obtained52,73. In both studies, differentially expressed testing was con-
ducted by comparing sinoatrial CMs (P cells) against all other cells. 
Genes orthologous to the list of upregulated (human) P cell genes were 
identified in the mouse differentially expressed summary statistics 
(using the NCBI Orthologs database as a reference). The differentially 
expressed statistics (log2(fold change), –log(P value)) from the mouse 
are plotted. Human and mouse data were not integrated.

Identification of ligands in Visium data
Four spatial transcriptomics, sections were identified as contain-
ing the RAGP by an expert anatomist (S.Y.H.). Spot counts from the 
Visium–FFPE sections that contained RAGP were normalized, and 
spots were scored for the expression of four generic pan-neuronal 
cytoskeletal markers (PRPH, NEFL, NEFM and NEFH) using the SCANPY 
sc.tl.gene_score() function. Correlation of individual gene expression 
profiles with this score was calculated (Pearson r and P value for each 
gene). The ligand/ligand-proxy list created as part of the CellPhoneDB 
neural–GPCR module was used to identify ‘ligand’ genes among the 
set of correlated genes.

Gene regulatory network
The Scenic pipeline74,75 was used (pySCENIC, v.0.11.2) to predict TFs 
and putative target genes regulated in P cells. First, gene regulatory 
interactions were calculated based on co-expression (either positively 
or negatively correlated) across the single-cell transcriptomics data-
sets of aCMs (using only multiome data) with GRNBoost2 (ref. 76). 
This was followed by pruning interactions using known TF-binding 
motifs and the construction of dataset-specific regulatory modules 
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(regulons)77. Regulons were then scored in each individual cell using 
AUCell. P-cell-relevant TFs and target genes were retrieved based on the 
following criteria: (1) regulator TFs that are DEGs in P cells compared 
with other aCMs (scanpy.tl.rank_genes_groups, with only multiome 
data, P value threshold = 0.05, log2(fold change) threshold = 0.5);  
(2a) for activating regulons, target genes that were expressed in at least 
10% and differentially expressed in P cells compared with other aCMs 
(same criteria as TF selection); and (2b) for repressor regulons, target 
genes that were expressed at low levels in P cells compared with other 
aCMs (P value threshold = 0.05, log2(fold change) threshold = −0.5). 
A network of regulatory TFs and target genes was then constructed 
by linking individual regulons to create a graph (NetworkX, v.2.6.3) 
(Fig. 3c and Extended Data Fig. 8i). The node colour of the target genes 
is based on the class GPCR (HGNC and GID139), ion channel (HGNC 
and GID177) or TFs78.

The interactions of regulatory TFs and target genes were also 
inferred using the snATAC-seq data and ArchR (v.1.0.2)58. TF-binding 
motifs in the identified peaks were searched (addMotifAnnotations, 
motifSet=“cisbp”), and correlations between peak accessibility and 
gene expression were analysed (addPeak2GeneLinks and getPeak-
2GeneLinks, correlation > 0.2 or < −0.2, FDR < 1 × 10–4) using the mul-
tiome data of aCMs. TFs and potential target gene interactions were 
obtained by combining the two results (Supplementary Fig. 5c). The 
inferred interactions are highlighted in red in the activator network 
graph (Fig. 3c) and blue in the repressor network graph (Extended 
Data Fig. 8i).

GWAS SNP enrichment analysis
To create a list of SNPs associated with various physiological and patho-
logical cardiovascular traits, index SNPs (meeting genome-wide signifi-
cance) were first extracted from the NHGRI-EBI GWAS Catalog79 using 
the R package gwasrapidd80. Index SNPs were added to by SNPs in tight 
linkage disequilibrium (r2 > 0.8) based on 1000 Genomes (phase 3) 
European samples, obtained using the Ensembl API80,81, with the window 
size set to the default 500 kb.

For each nucleus barcode in the snATAC-seq dataset, counts of each 
identified peak was binarized (1 if the read count was >0). The binarized 
barcode by peak matrix was then aggregated by cell state (defined using 
the paired gene expression data) to form a cell state-by-peak matrix, in 
which a peak was defined as open for a given cell state if the binarized 
count was 1 in at least 5% of that population.

To calculate enrichment, a permutation test was performed using 
a previously described method82. For each cell state, a random back-
ground was created by shuffling the open/closed labels of the peaks of 
that cell state such that a random set of peaks were annotated as open, 
the number of which equalled the actual number of open peaks for that 
cell state. This was repeated to create 1,000 random permutations. 
For each trait and cell state, the proportion of trait-associated SNPs 
falling within the open peaks of that cell state was calculated (the SNP 
proportion). This SNP proportion was also calculated for each of the 
1,000 random permutations. A P value could then be calculated as the 
fraction of times the random SNP proportion exceeded or was equal 
to the real SNP proportion. Finally, these P values were corrected for 
multiple testing using the Benjamini–Hochberg method.

Drug2cell
Drug and target gene information was obtained from ChEMBL83,84 (v.30). 
Drugs were filtered based on targeting organisms (Homo sapiens), 
achieved phase in a clinical trial (max_phase=4, clinically approved), 
and functionally active or not. The activity (pChEMBL) threshold was 
specifically set for each family of target molecules according to the 
IDG project (https://druggablegenome.net/ProteinFam) (kinases: 
≦30 nM; GPCRs: ≦100 nM; nuclear hormone receptors: ≦100 nM; ion 
channels: ≦10 μM; others: ≦30 nM) (Supplementary Table 9). Clinically 
approved drugs were categorized based on the WHO ATC classification  

(https://www.who.int/tools/atc-ddd-toolkit/atc-classification). Drug 
scores in each single cell were calculated based on the target gene 
expression levels. Score were obtained by taking the mean of a set of 
target genes either without (method=’mean’) or with (method=’seurat’) 
subtracting with the mean expression of a reference set of genes85. 
The reference set was randomly sampled from the gene pool for each 
binned expression value. For the drug repurposing analysis, all the drugs 
tested and selected were ones that had the statistically highest score in 
a cell type of interest by testing with Wilcoxon sum test, and P values 
were adjusted using the Benjamini–Hochberg method. For the drugs 
targeting GPCRs or ion channels, we searched the clinically approved 
(maximum phase: 4) and preclinical bioactive molecules with drug-like 
properties (maximum phase: 1–3) that target genes encoding GPCRs 
(HGNC GID:139) or ion channels (HGNC GID:177). The drug2cell Python 
package is available at GitHub (https://github.com/Teichlab/drug2cell).

In vitro validation of chronotropic effects of GLP-1
Cell culture. hiPSC-derived CMs (hiPSC-CM) were differentiated and 
maintained as previously described86,87. In brief, IMR90 hiPSCs from 
WiCell88 were seeded onto plates coated with Matrigel (Corning, 356231) 
in TeSR-E8 medium (StemCell Technologies, 05990) with 10 μM Y-27632 
dihydrochloride (Sigma-Aldrich, Y0503). The next day, the medium 
was switched to TeSR-E8 without Y-27632. Media were subsequently 
changed daily. Before starting the differentiation into CMs, the cells 
were replated twice using 0.5 mM EDTA (Thermo Fisher, 15575020, di-
luted 1:1,000 in PBS (Gibco, 20012027)) at room temperature for 6 min 
to detach them before plating. For the differentiation process, cells that 
reached 90% confluency were treated for 2 days with 5 μM CHIR-99021 
(Tocris, 4423) in RPMI 1640 (Gibco, 11875119) supplemented with B27, 
minus insulin (Gibco, A1895602). On day 2, the cell culture medium 
was replaced with RPMI/ B27, minus insulin. For the next 2 days, 2 μM 
Wnt-C59 (Biorbyt, orb181132) was added in RPMI/B27, minus insulin. 
Cells were then cultured in RPMI/B27, minus insulin, with media changes 
every 2 days. hiPSC-CM contraction was observed between days 8 and 
10. On day 11, the cells were placed in starvation medium (RPMI without 
glucose (Gibco, 11879020) supplemented with B27 (Gibco, 17504044)) 
for 2 days to improve purity. On day 15, the cells were detached using 
TrypLE select enzyme (10×) (Life Technologies, A1217702) and replated 
at a density of 2 × 106 per well in RPMI/B27, 10% KOSR (Thermo Fisher, 
10828028) and 10 μM Y-27632 dihydrochloride. The cells were then 
cultured in RPMI/B27, and media were changed every 2 days.

Gene expression analysis of hiPSC-CMs. Bulk RNA-seq data from 
IMR90-derived CMs, deposited into the Sequence Read Archive public 
repository with accession number PRJNA629893, were analysed as 
previously described89. Transcripts per million (TPM), indicating the 
normalized amplitude of gene expression, were used to examine gene 
expression. The TPM was calculated by dividing the read counts by 
gene length and the total number of exon reads, and then multiplied  
by the scaling factor of 1,000,000 (ref. 90).

Calcium imaging and quantification. hiPSC-CMs were stained for 
calcium imaging 30–35 days after the differentiation protocol was 
started. Cells were seeded in 96-well plates at 100,000 cells cm–2 density 
1 week before imaging and staining. On the day of imaging, cells were 
gently washed with phenol-red-free RPMI (Thermo Fisher, 11835063), 
then stained with 1 μM Fluo-4 (Thermo Fisher, F14201) solution and 
incubated at 37 °C for 40 min. After incubation, the Fluo-4 solution 
was replaced with fresh, pre-warmed phenol-red-free RPMI. Then, 
hiPSC-CMs were transferred to a microscopy humidified chamber 
(pre-set at 37 °C with 5% CO2) and allowed to acclimatize for 10 min. Cells 
were imaged using a Zeiss Axio Observer inverted widefield microscope 
with a ×20/0.8 objective. The time series experiment was performed 
with 10 ms exposure time on the Fluo-4 channel (excitation 494 nm, 
emission 516 nm), and recorded for 10 s at 100 f.p.s. Stage positions 
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for each well were stored to allow recurrence after drug treatment. All 
wells were scanned for baseline calcium transients. Then, hiPSC-CMs 
were treated with ivabradine (Sigma, SML0281), GLP-1 (Tocris, 2082) or 
the corresponding vehicles (DMSO for ivabradine and water for GLP-1). 
After 20 min, cells were scanned again using the same configuration.

Quantification of calcium imaging videos was performed using Fiji 
(v.2.1.0). To correct the intensity decay due to photobleaching, the Fiji 
bleach correction plugin (exponential fit method) was applied to the 
raw image series. Then, corrected image series were divided by their 
minimum intensity to remove background. A confluent region (con-
taining at least 20 cells) was selected for quantification. Spiky plugin 
(https://github.com/PCCV/Spiky)91 was used to automate peak detec-
tion and quantification. Amplitude (peak value minus baseline value), 
Pk2Pk (time between two consecutive peaks), Time2Pk (time between 
threshold to the peak) and RW50 (time at 50% of amplitude from peak to 
next baseline at right) were averaged from multiple peaks detected. All 
results were normalized to the corresponding baseline values.

Statistical tests were performed in Prism 9 using D’Agostino and 
Pearson test to test for normal distribution. Unpaired t-test was used 
to compare vehicle and treated groups. P < 0.05 was regarded as  
significant.

Immunofluorescence staining of cells. hiPSC-CMs were fixed in 3.7% 
formalin in PBS then either blocked and permeabilized in 4% (w/v) BSA 
(Sigma Aldrich, A3059) and 0.2% (v/v) Triton X-100 (Thermo Fisher, 
85111) in PBS (Gibco, 20012027) (for HCN1 and HCN4 staining) or 
blocked in 1% (w/v) BSA and 5% (v/v) normal goat serum (EDM Millipore, 
S26-100ML) in PBS (for GLP1R staining) for 30 min at room tempera-
ture. Incubation with primary antibodies (Supplementary Table 10) 
diluted in BSA, Triton X-100 and PBS (HCN1 and HCN4) or BSA, goat 
serum and PBS (GLP1R) was done overnight at 4 °C. Isotype controls 
and secondary antibody only (Supplementary Table 10) stainings were 
performed as negative controls. Following three washes with PBS, cells 
were stained with secondary antibodies diluted in BSA, Triton X-100 and 
PBS or BSA, goat serum and PBS was done for 1 h at room temperature 
(Supplementary Table 10). After three washes in PBS, cell nuclei were 
stained with DAPI (Invitrogen, D1306) for 15 min at room temperature. 
DAPI was rinsed and PBS was added to the cells. Confocal imaging acq-
uisition was performed using a Zeiss LSM-780 inverted microscope 
with a EC Plan Neofluar ×40/1.3 oil objective at the Imperial College 
London Hammersmith FILM facility using 405 nm, 488 nm and 633 nm 
lasers for excitation. Image processing was performed in Fiji (v.2.1.0).

smFISH
The FFPE-embedded heart tissue sections (with a thickness of 5 μm) 
were placed onto SuperFrost Plus slides. Staining with a RNAscope 
Multiplex Fluorescent Reagent kit v2 assay (Advanced Cell Diagnostics, 
Bio-Techne) was automated using a Leica BOND RX, according to the 
manufacturer’s instructions. The tissues were baked and dewaxed 
on the Leica Bond RX, followed by the application of a heat-induced 
epitope retrieval step with epitope retrieval 2 for 15 min at 95 °C and 
protease digestion with protease III for 15 min. Subsequent processing 
included RNAscope probe hybridization and channel development 
with Opal 520, Opal 570 and Opal 650 dyes (Akoya Biosciences) at a 
concentration of 1:1,000, and streptavidin-conjugated Atto-425 (Bio 
Trend) at a concentration of 1:400 using TSA-biotin (TSA Plus Biotin 
Kit, Perkin Elmer). All nuclei were DAPI stained. Stained sections were 
imaged using a Perkin Elmer Opera Phenix High-Content Screening 
System with a ×20 water-immersion objective (NA of 0.16, 0.299 μm 
per pixel). The following channels were used: DAPI (excitation, 375 nm; 
emission, 435–480 nm); Opal 520 (excitation, 488 nm; emission, 500–
550 nm); Opal 570 (excitation, 561 nm; emission, 570–630 nm); Opal 
650 (excitation, 640 nm; emission, 650–760 nm); and Atto 425 (exci-
tation, 425 nm; emission, 463–501 nm). Stained sections were also 
imaged on a Hamamatsu S60 with a ×40 objective (0.23 μm per pixel).

RNAscope quantification
Quantification of RNAscope images was performed using ImageJ. To 
remove background, each channel was initially normalized using the 
following steps: (1) subtracting the raw image with a Gaussian blur 
transformation with σ = 50; (2) performing a background subtraction 
with rolling ball radius of 50 pixels; and (3) setting every pixel with an 
intensity lower than 40 (of an 8-bit image) to 0. Following normaliza-
tion, each section was quantified with sequential ROIs of 200 × 200 μm. 
To avoid any bias due to the placement of the initial ROI, quantifica-
tion was performed over three rounds, with the initial ROI displaced 
by 50 μm in the x and y axis in each round. The following parameters 
were recorded per ROI: number of nuclei; COL1A1 area; and NPPB area.

For data analysis, to avoid variation due to cell density, for each ROI, 
COL1A1 and NPPB areas were normalized by dividing the area value by 
the number of nuclei in the ROI. Only ROIs with more than ten nuclei 
were considered for analysis. An ROI was only considered to contain a 
COL1A1 or NPPB niche if the staining area was equal to or higher than 
1 μm2. To avoid any confounding effect due to different section sizes, 
we quantified the increase in the number of COL1A1 and NPPB niches 
through the average ROI percentage, consisting of the number of 
COL1A1 or NPPB niche ROI divided by the total number of ROI, aver-
aged over the three rounds of quantitation. To quantify the expression 
of COL1A1 and NPPB, we averaged the normalized area of each ROI per 
niche over the three rounds of quantitation.

Immunofluorescence staining of tissues
The FFPE-embedded heart tissue samples were sectioned at 6 μm thick-
ness and placed on VWR Superfrost Plus Microscope slides. Depar-
affinization was performed in xylene (twice for 10 min), followed by 
graded washes in 100% ethanol (twice for 10 min), 95% ethanol for 
5 min, 70% ethanol for 5 min, 50% ethanol for 5 min, and incubated in 
deionized water for rehydration. Antigen retrieval was performed using 
a proteinase K kit (Abcam ab64220) for 5 min at room temperature. 
Following antigen retrieval, sections were permeabilized and blocked 
in 0.1 M Tris containing 0.1% Triton X-100 (Sigma), 1% normal mouse 
serum, 1% normal goat serum and 1% BSA (R&D Systems). Samples 
were stained for 2 h at room temperature in a wet chamber with the 
appropriate antibodies, washed three times in PBS and mounted in 
Fluoromount-G (Southern Biotech). Images were acquired using a 
TCS SP8 (Leica) inverted confocal microscope with a ×40/1.1 NA water 
objective. Raw imaging data were processed using Imaris (Bitplane). 
The antibody information is provided in Supplementary Table 10.

For node and glial cell staining of fresh-frozen heart tissue, 10 μm sec-
tions were cut on to Superfrost plus slides and stored at −80 °C. These 
were thawed for 10 min at room temperature, briefly rehydrated in TBS 
and fixed with room temperature 4% paraformaldehyde for 5 min. Slides 
were then immersed for 10 min in TBS, and a hydrophobic pen was used 
to delimit the area of staining before starting the permeabilization pro-
cess (0.25% saponin in TBS for 10 min). Blocking buffer (0.3 M glycine 
in antibody dilution buffer) was applied for 1 h at room temperature, 
followed by an overnight incubation with primary antibody at 4 °C 
in a humidified chamber. The primary antibodies used were mouse 
anti-HCN1 (Abcam, ab84816) at 1:100 dilution and rabbit anti-PLP1 
(Abcam ab254363) at 1:500 in 10% normal goat serum in 0.2% Tween-
20 and TBS. The isotype controls were Abcam ab37355 and ab172730. 
Slides were washed three times (5 min each) in 0.2% Tween-20 and TBS 
with gentle shaking, then secondary antibody solution was applied 
for 1 h at room temperature in the dark (1:1,000 goat anti-rabbit IgG 
AF555, LifeTech A21428 and 1:1,000 goat anti-mouse IgG AF647Plus, 
Fisher 15627898). Slides were washed three times (5 min each) in 0.2% 
Tween-20 and TBS, incubated with DAPI for 15 min at room temperature 
in the dark (Invitrogen D1306, 5 mg ml–1 stock then diluted 1:50,000), 
washed again briefly and mounted with ProLong gold antifade mount-
ant (Thermo Fisher). Slides were scanned at ×40 magnification on a 
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Hamamatsu NanoZoomer S60, and ROIs were imaged on a Leica SP8 
confocal at ×20 magnification. The antibody information is provided 
in Supplementary Table 10.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Open-access datasets are available from ArrayExpress (www.ebi.
ac.uk/arrayexpress) with accession numbers E-MTAB-12916 (multiome 
snRNA-seq), E-MTAB-12919 (multiome snATAC-seq) and E-MTAB-12975 
(Visium). Processed data of sc/snRNA-seq and Visium data are available 
for browsing gene expression and download from the Heart Cell Atlas 
(https://www.heartcellatlas.org). A CellTypist92 model trained on this 
atlas is available for download from the Heart Cell Atlas (https://www.
heartcellatlas.org) for automated cell-type annotation of other cardiac 
sc/snRNA-seq datasets. The CellPhoneDB neural–GPCR expansion 
module is available from Supplementary Tables 3 and 4 or at GitHub 
(https://github.com/ventolab/CellphoneDB; CellPhoneDB-database, 
v.4.1)93. The external adult heart sc/snRNA-seq dataset is available from 
the Human Cell Atlas Data Coordination Platform with accession num-
ber ERP123138. The human reference genome (GRCh38) used for read 
mapping is available from 10x Genomics (https://support.10xgenomics.
com/single-cell-gene-expression/software/release-notes/build). The 
ChEMBL database used for drug2cell analysis is available at the follow-
ing ftp site: https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/
releases/chembl_30.

Code availability
The drug2cell Python package is available at GitHub (https://github.
com/Teichlab/drug2cell). The custom code for the other analyses 
performed in this study is available at GitHub (https://github.com/
Teichlab/HCA_Heart_ver2).
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Extended Data Fig. 1 | Profiling of cardiac cells. a. UMAP representation of 
from the eight regions showing the fine-grained cell state labels. The data were 
integrated based on their gene expression (left) or chromatin accessibility 
(right) with accounting for batch effects and embedded in two-dimensional 

UMAP space. b. Dot plot showing the expressions of curated lineage-specific 
genes (upper) and the gene scores of differentially accessible genes (lower) in 
the 12 major cell types.
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Extended Data Fig. 2 | See next page for caption.



Article
Extended Data Fig. 2 | Identification of fine-grained cell states. a. Dot plot 
showing the marker gene expressions of SAN and AVN P cells. b. UMAP 
representation of gene expression data of AVN atrial and ventricle CMs. 
Dimensional reduction and leiden clustering were repeated for atrial CMs and 
CCS cell clusters (colored in black) (Fig. 1d). c. Dot plot showing the marker gene 
expressions of AV bundle cells. d. UMAP representation of gene expression  
data of AX and AVN atrial and ventricle CMs. With the labels of leiden clusters, 
regions, and AVN CCS cells. e. Dot plot showing the marker gene expressions of 
Purkinje cells. f. Donor proportions of CCS cell. g. H&E morphology of the CCS 
spatial transcriptomic samples shown in Fig. 1f. Histologically identified CCS 
regions are in dashed lines. Images representative of sections from four (‘node’ 
in SAN), two (‘node’ in AVN), and four (‘AV bundle’ in AVN) donors. The ‘Purkinje 
cell’ structure was identified in this section only. The middle panel shows a 

section which is oblique to the long axis of the heart which captures the 
compact AVN at its junction with the origin of the AV bundle. The bundle 
penetrates into, but not completely through the CFB (central fibrous body, 
marked by asterisks) in this section. h. UMAP embedding of gene expression 
data from eight cardiac anatomical regions (704,296 cells and nuclei). 
Highlighted in colour are four non-CCS cell states with a refined annotation 
compared to the previously published human heart atlas2. i. Dot plot showing 
the expressions of glial, schwann, and neuronal cell marker genes in neural cell 
populations and other cell types. j. Dot plot showing the FB activation and ECM 
gene signature expressions in FB cell states. k. Dot plot showing the signature 
genes of cardiomyocyte stress in vCM cell states. l. Dot plot showing the gene 
scores of the cardiomyocyte stress signature genes in vCM cell states. m. Dot 
plot showing the gene scores of the marker genes of SAN and AVN P cells.
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Extended Data Fig. 3 | GWAS SNP enrichment analysis. Heatmaps 
demonstrating enrichment of cell state-specific open chromatin regions for 
SNPs associated with physiological (a) and pathological (b) cardiovascular 
traits. A non-cardiac trait, ‘Venous Thromboembolism’ is a control trait. This 
was evaluated using a permutation test (Methods), in brief: A binary cell type 
by peak matrix was created indicating peaks open in cell types. The presence of 
GWAS trait-associated SNPs in peaks was evaluated. The proportion of SNPs in 

open peaks was calculated (“SNP proportion”). This was compared to a null 
distribution of SNP proportion generated by 1000 random permutations of the 
true open peaks. The p-value being the proportion of the 1000 random 
permutations with a greater SNP proportion than the observed SNP 
proportion. p-values were corrected for multiple testing using the 
Benjamini-Hochberg method.
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Extended Data Fig. 4 | See next page for caption.



Extended Data Fig. 4 | Cell state spatial enrichment in histologically 
annotated structures. a. Cell state enrichment (odds ratio) in the CCS 
structures: ‘node’ of SAN and AVN, and ‘AV bundle’ of AVN. Visium spot 
numbers are SAN: 27,108, AVN: 24,026. b. Abundance of the cell states (mapped 
by cell2location) enriched in the ‘node’ of SAN. c,d. H&E image, manual 
structural annotations, and abundance of the cell states enriched in the ‘node’ 
(c) or ‘AV bundle’ (d) of AVN. H&E images are representative of sections from 
two (‘node’) and four (‘AV bundle’) donors. e. Cell state enrichment (odds ratio) 
in the CCS structures for each donor: ‘node’ of SAN and AVN. Visium spot 
numbers in the analyses are AH1: 4,243, AH2: 3,802, AH5: 12,781, AV14: 6,282 for 

SAN and A61: 10,278 and AH6: 2,942 for AVN. f. Dot plot showing expression of 
connexin genes in MP and monocyte cell states from the SAN and AVN regions. 
g. Cell state enrichments (odds ratio) in the ‘epicardium-subepicardium’ of the 
free wall of the four regions: RV, LV, RA, and LA. Visium spot numbers are RV: 
5,039, LV: 9,626, RA: 7,027, and LA: 5,822. Data of cell state spatial enrichment 
analyses (a,e,g) show log odds ratio with upper and lower 95% confidence 
interval, and statistically significant enrichments (chi-square test, p < 0.05,  
p-values were adjusted for multiple comparisons using the Benjamini-Hochberg 
method) are shown in magenta-pink.
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Extended Data Fig. 5 | See next page for caption.



Extended Data Fig. 5 | Cellular niche identification in the node. a(i), b(i), c(i). 
Selected factors which had high effect size in the ‘node’ of SAN visium sections 
(as indicated by the arrows): donor AH1 (section HCAHeartST10659160) (a(i)), 
donor AV14 (section HCAHeartST13228105) (b(i)), and donor AH5 (section 
HCAHeartST13233996) (c(i)). The factor names were assigned based on Fig. 2c, 
Extended Data Fig. 5b(iii), and Extended Data Fig. 5c(iii). a(ii), b, c. Cellular 
microenvironment identification in the SAN. Manual structural annotations 
were performed based on the H&E images (b(ii), c(ii)). Factors from cell2location 

NMF analysis which showed high similarity (Cohen’s d) with the ‘node’ 
structure were selected (as described in Methods). Factor loadings across 
locations (estimated abundance of cell state group) are shown in spatial 
coordinates for the selected factors (b(iii), c(iii)). The accompanying dot plot 
illustrates cell states with more than 0.4 normalised cell abundance (visualised 
by dot size and colour) in the selected factors (b(iii), c(iii)). Estimated abundance 
of representative cell states in the central node of SAN sections (a(ii), b(iv), c(iv)). 
Images of b(ii) and c(ii) are representative of sections from four donors.
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Extended Data Fig. 6 | Cellular localisations in the node. a–d. Analyses on 
Visium-FFPE slides of the SAN region: H&E image and manual structural 
annotations (representative of three independent replicates)(a), cell state 
enrichments in the ‘node’ of SAN (b), and the proportions of the cell states 
(mapped by cell2location) enriched in the ‘node’ (c,d). Data in (b) show log odds 
ratio with upper and lower 95% confidence interval, and statistically significant 
enrichments (chi-square test, p < 0.05, p-values were adjusted for multiple 
comparisons using the Benjamini-Hochberg method) are shown in 
magenta-pink. Visium spot number used in (b) is 11,312. e. Expression of 
extracellular cellular matrix component genes which were differentially 

expressed in the central nodal niche compared with the peripheral niche 
(two-sided t-test, p < 0.05, log2FC>0.5, p-values were adjusted for multiple 
comparisons using the Benjamini-Hochberg method). Each niche was defined 
based on the NMF analysis and the corresponding spots were selected by 
thresholding the factor loadings (top 10% of all spots). f. Inferred spatial 
cell-cell interactions involving TGFβ superfamily member ligands in the node, 
signalling to cognate receptors in the FB4_activated cells (LR mean>0.5).  
LR mean (mean expressions of the interacting ligand-receptor partners). 
Illustrations in f were created using BioRender (https://biorender.com).

https://biorender.com
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Extended Data Fig. 7 | Epicardial cellular niches. a. Selected factors (n_fact = 
5) which had high effect size in the ‘epicardium-subepicardium’ of RV. The 
factor names were assigned based on Fig. 2e. b. Selected factors (n_fact = 6) 
which had high effect size in the ‘epicardium-subepicardium’ of LA. The factor 
names were assigned based on Extended Data Fig. 7d. c. Manual structural 
annotations based on the H&E image. Image representative of sections from 

four donors. d. The factor loadings across locations (estimated abundance of 
cell state group) are shown in spatial coordinates for the selected factors in (b). 
The accompanying dot plot illustrates cell states with more than 0.4 
normalised cell abundance (visualised by dot size and colour) in the selected 
factors.
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Extended Data Fig. 8 | Characterisation of human pacemaker cells and their 
niche. a. Dot plot shows the expression of the DEGs (log2FC>0, p < 0.05) 
encoding ion channels in any of the CCS cell states compared with the other 
aCMs. b. Dot plot shows the expression of P cell ion channel genes, genes 
encoding Connexins 45 (GJC1) and 40 (GJA5), and the potassium channel gene 
KCND2. c. Dendrogram comparing overall gene expression profile of working 
(aCMs, vCMs) and CCS cell states. d. Dot plot shows ion channel genes highly 
expressed in Purkinje cells compared to other vCMs. e,f. Dot plot shows the 
expression of the DEGs (log2FC>0, p < 0.05) encoding GPCRs (e) or G-protein 
complexes and RGS (f) in any of the CCS cell states compared with the other 
aCMs (left). Dot plot shows the genes expressed (>10%) in any of the CCS cell 
states (right). RGS (regulators of G-protein signalling). g,h. Inferred spatial cell-
cell interactions of GPCRs (CellPhoneDB with neural-GPCR module) in the 

central node of SAN (g) or the ‘node’ structure of AVN (h), with P cell as the 
receiver. LR mean (mean expressions of the interacting ligand-receptor 
partners). i. Analysis of TF repressor network in P cells using pySCENIC 
(Methods). TFs (grey) and their predicted target genes (TGs) are displayed. 
Interactions inferred from snATAC-seq analysis are highlighted in blue. TG 
colours represent class: GPCRs (green), ion channels (blue), or TFs (yellow). For 
a complete list of TG see Supplementary Table 6. j. Peak-to-gene linkage plot of 
HCN1 (ArchR). One of the peaks linked to HCN1 has FOXP2 binding motif as 
indicated. DEG testing (a,e,f) was performed with two-sided t-test. p-values 
were adjusted for multiple comparisons using the Benjamini-Hochberg 
method (Supp. Table 2). Illustrations in g,h were created using BioRender 
(https://biorender.com).
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Extended Data Fig. 9 | Cell-cell interactions in the node. a. Inferred cell-cell 
trans-synaptic interactions (CellPhoneDB neural-GPCR module) in the AVN, 
spatially refined by cell states enriched in the ‘node’ structure, with AVN_P_cells 
as the receiver cells with expression receptors (LR mean>1). LR mean (mean 
expressions of the interacting ligand-receptor partners). b. Mean expression of 
glutamatergic signalling machinery genes (heatmap, upper). A schematic 
illustrates paracrine glutamatergic signalling involving P cells and NC2_glial_
NGF+ (lower). c,d. Inferred spatial cell-cell interactions of LGICs in the node of 
SAN (b) or AVN (c) region, with P cell as the receiver. e. Plot of ‘pan-neuronal 

cytoskeleton score’ (Methods) in spatial coordinates matches RAGP (inset 
showing RAGP in the associated H&E image in Fig. 3e). f. Several GPCR ligands 
correlate with the pan-neuronal nerve cytoskeleton score. Correlation 
(Pearson’s r) of individual ligand genes with the pan-neuronal nerve 
cytoskeleton score (Methods). Ligand genes with p value < 0.05 and Pearson’s r 
> 0.1 are labelled. p-values were corrected for multiple testing using the 
Benjamini-Hochberg method. g. Plots of significantly correlated ligand genes 
in spatial coordinates. Illustrations in a-d were created using BioRender 
(https://biorender.com).
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Extended Data Fig. 10 | In vitro validation of chronotropic effects of GLP1. 
a. Dotplot shows clinically approved drugs (y-axis) which target GPCRs or Ion 
channels and had higher scores in P cells compared to other cell states. Genes 
encoding their molecular targets are shown on the x-axis. Target genes 
expressed in ≥10% of P cells are highlighted in red. b. Bar graphs showing 
normalised transcript per million (TPM) values obtained from bulk RNA 
sequencing of hiPSC-CMs for genes encoding for HCN channels and GLP1R. 
Data shown as mean ± SEM; n = 3 independent experiments. c. Representative 
confocal images of HCN4, HCN1 and GLP1R expression in hiPSC-CMs. Cardiac 
troponin T (cTnT) was used to visualise CMs and nuclei were stained with DAPI. 
Images representative of three independent replicates. d. Left, representative 

calcium transient peaks, shown as relative fluorescence intensity (F/F0), 
detected in hiPSC-CMs before and after 20 min of Ivabradine treatment. Right, 
bar graphs showing normalised Amplitude, Pk2Pk, Time2Pk and RW50 values. 
Data shown as mean ± SEM; unpaired two-tailed t-tests; N = 3 independent 
differentiation batches, n = 9–12 experimental replicates. e. Left, 
representative calcium transient peaks, shown as relative fluorescence 
intensity (F/F0), detected in hiPSC-CMs before and after 20 min of GLP1 
treatment. Right, bar graphs showing normalised Amplitude, Pk2Pk, Time2Pk 
and RW50 values. Data shown as mean ± SEM; unpaired two-tailed t-tests; N = 3 
independent differentiation batches, n = 9–12 experimental replicates.
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Extended Data Fig. 11 | An immune niche in the epicardium. a. Abundance  
of the co-locating cell states (estimated by cell2location) in the ‘epicardium-
subepicardium’ structure of RV (Fig. 2f). b. Dot plot showing expressions of  
IGH genes significantly enriched in the ‘epicardium-subepicardium’ compared 
with other manually annotated structures (p-value<0.05, log2FC>1). c. Images 
show abundances of plasma B cells (estimated using cell2location), mapping  
of IGHG1 and IGHA1 expression, and annotations of histological structures  
in spatial transcriptomic sections from the indicated anatomical regions.  
d. Workflow of spatial CellPhoneDB analysis focusing on B_plasma cells.  
e. Inferred spatial cell-cell interactions of TGFβ superfamily, spatially refined 
by niche partner cell states, with plasma B cells as the sender cell expressing 

ligands. LR mean (mean expressions of the interacting ligand-receptor 
partners). f. Dot plot showing TGFB1 expression in the cell states localised in  
the epicardial niches. g. Dot plot showing the expressions of ‘antimicrobial 
humoral response’ genes (Gene Ontology Term, GO:0019730) which were 
expressed significantly higher in mesothelial cells compared to other cells  
(p-value<0.05, log2FC>1). h. Expression of antimicrobial response genes, SLPI 
and RARRES2, in spatial transcriptomics data. DEG testing (b,g) was performed 
with two-sided wilcoxon test. p-values adjusted for multiple comparisons 
using the Benjamini-Hochberg method. Illustrations in e were created using 
BioRender (https://biorender.com).

http://amigo.geneontology.org/amigo/term/GO:0019730
https://biorender.com
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Extended Data Fig. 12 | Ventricular myocardial-stress niche. a,b. Comparisons 
of FB4_activated proportions amongst FBs (a) and vCM3_stressed amongst 
vCMs (b) between control and diseased samples in publicly available DCM and 
HCM datasets45,46. Cell state labels were transferred from the dataset in this 
study using scNym63. p-values are provided for each comparison (two-sided 
wilcoxon rank-sum test, p-values were adjusted for multiple comparisons using 
the Benjamini-Hochberg method). c. Multiplex single-molecule fluorescence 
in situ hybridization (RNAscope) of left ventricular regions (LV, SP, and AX) for 
NPPB and COL1A1. DAPI (blue) was used to stain nuclei. The proportions of the 
COL1A1/NPPB co-location and the expressions of each gene in the area of 
COL1A1/NPPB co-location were quantified for control (n = 2 donors x 3 regions) 
and DCM samples (n = 2 donors x 3 regions). For the box plots, the centre line 
shows the median, the box limits represent the 25th and 75th percentiles, the 
whiskers show the minimum and maximum values, and the dots represent 

potential outliers. d,e. Visium section of SP showing FB4_activated and  
vCM3_stressed abundances (d), and expression of their markers NPPB and 
COL1A1 (e). The myocardial-stress niche was defined based on the abundances 
of FB4_activated and vCM3_stressed (Methods). f. Cell states enriched in  
the myocardial-stress niche, ordered by mean abundance. g,h. Inferred  
cell-cell interactions of cytokines in the myocardial-stress niche cell states, 
with FB4_activated (g) or vCM3_stressed (h) as the receiver. i. Dotplot showing 
inflammatory cytokine receptor expressions in vCM3_stressed and other 
vCMs of left ventricular regions (LV, SP, and AX). j. Myocardial-stress niche  
in the ventricle. TGFβ superfamily interactions from immune cells and 
vasculature cells to FB4_activated and vCM3_stressed may cause pathogenic 
fibrosis. Vasculature cells also express inflammatory cytokines which may 
directly affect vCMs and lead to adverse cardiac remodelling. Illustrations in 
g,h,j were created using BioRender (https://biorender.com).

https://biorender.com
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in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection Software used include: Single-nuclei were sorted using MA900 Multi-Application Cell Sorter (Sony) and its proprietary software (Cell Sorter 
Software v3.1.1). Single-cell and single-nuclei RNA-seq samples were aligned using 10x Genomics CellRanger (3.0.2) or STARsolo (2.7.3a).  
Multiome samples were aligned using 10x Genomics CellRanger ARC (v.2.0.0). Visium spatial transcriptomics samples were aligned using 10x 
Genomics SpaceRanger (v.1.1.0).

Data analysis Single cell data analysis was performed using Python (version 3), Pandas (v.1.3.5), NumPy (v.1.21.5),  
Matplotlib (v.3.5.2), and ScanPy (v.1.8.2 and v.1.9.1). Ambient mRNA was removed using CellBender (v.0.2.0).  
Doublet removal using Scrublet (v.0.2.1). Batch correction- scVI (v.0.14.5). ATAC data analysis using ArchR (v1.0.2) and peakVI (v.0.19.0). 
Spatial mapping of cells using cell2location (v.0.1). CellPhoneDB (v3.0) with neuroGPCR module as described in the Method section. Gene 
regulatory network analysis using pySCENIC (v.0.11.2). Drug target analysis using Drug2cell (v.0.0.1)(https://github.com/Teichlab/drug2cell). 
Quantification of calcium imaging videos was performed using FIJI (v.2.1.0) . 
Additional custom codes used in this manuscript is available at https://github.com/kazukane/HCA_Heart_ver2. 

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

Open access datasets are available from ArrayExpress (www.ebi.ac.uk/arrayexpress), with accession numbers E-MTAB-12916 (Multiome snRNA-seq), E-
MTAB-12919 (Multiome snATAC-seq), and XX (Visium). 
Processed data of sc/snRNAseq and Visium data are available for browsing gene expression and download via heartcellatlas.org (https://www.heartcellatlas.org/
#ver2)(User: heart, Password: ver2, the link will be publically available at the time of publication). A CellTypist model trained on this atlas is available for download 
from https://www.heartcellatlas.org/#ver2 for automated cell type annotation of other cardiac sc/snRNA-seq datasets. CellPhoneDB NeuroGPCR expansion module 
is available from Supp. Table 3 and 4 or https://github.com/ventolab/CellphoneDB (CellPhoneDB-database, v4.1). 
The external adult heart sc/snRNA-seq dataset is available from the Human Cell Atlas Data Coordination Platform with accession number: ERP123138. The human 
reference genome (GRCh38) used for read mapping is available from 10X Genomics website (https://support.10xgenomics.com/single-cell-gene-expression/
software/release-notes/build). 
The ChEMBL database used for drug2cell analysis is available from https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_30.

Human research participants
Policy information about studies involving human research participants and Sex and Gender in Research. 

Reporting on sex and gender The cohort consisted of 11 male (D2, D3, D6, D7, D8, H2, H3, H4, AV10, AV14, AH2) and 14 female (D1, D4, D5, D11, H5, H6, 
H7, A61, AH1, AH5, AH6, AV1, AV3, AV13) donors.

Population characteristics Tissues are from 25 individuals, six (H2-7) were collected in North America, the remainder being collected in the United 
Kingdom. Donors were 20-75 years of age.  12 donors were classified as DCD (Donation after Circulatory Death: 
D2,D4-8,D11,A61,AH1,AH2,AH5,AV3) and 13 donors were classified as DBD (Donation after Brain Death: 
D1,D3,H2-7,AH6,AV1,AV10,AV13,AV14,).

Recruitment Tissues were obtained from healthy transplant organ donors. Hearts were retrieved by trained cardiac surgeons using clinical 
transplant retrieval protocols. Cardiovascular history was unremarkable for all donors. We believe this method of recruitment 
does not introduce any bias that can impact our results.

Ethics oversight All heart tissues were obtained from deceased transplant organ donors after Research Ethics Committee approval and 
informed consent from the donor families. 
 
Research Ethics Committee approval references: 15/EE/0152 (East of England Research Ethics Committee, for D1-8,D11,A61), 
16/LO/1568 (London Research Ethics Committee, for AH1,AH2,AH5,AH6) and 16/NE/0230 (North East Research Ethics 
Committee, for AV1,AV3,AV10,AV13,AV14). 
 
Failing hearts samples used for validation were obtained under the Research Ethic Committee approval given to the Royal 
Brompton & Harefield Hospital Cardiovascular Research Centre Tissue Bank (REC ref: 19/SC/0257).

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Sample size were determined by availability of donors within the sampling time-frame. No statistical methods were used to calculate  
appropriate sample size. We followed standards in the field and Human Cell Atlas criteria.

Data exclusions For the final count matrix, we excluded cells and spots of spatial transcriptomics samples based on pre-established criteria. Cells or nuclei for 
each sample were filtered for more than 200 genes and less than 20% (cells) or 5% (nuclei) mitochondrial and ribosomal reads. A Scrublet 
(v.0.2.3) score cut-off 0.3 of was applied to remove doublets. Visium spots of each sample were filtered for more than 500 UMI counts and 
300 genes.
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Replication Multiome (paired single-nuclei RNA and ATAC sequencing) was performed on the 8 regions of heart tissue from 10 adult donors, with 
comparable results among the donors. Visium spatial transcriptomics was performed on the 8 regions of heart tissue from 12 adult donors, 
with consistencies of the results between donors.  
 
For the micrographs in Figure 1b, 2b, 2f, 3f, 3i, 5e-f; Extended Figure 2g, 4c-d, 5b(ii), 5c(ii), 6a, 7c, 10c, and 12c are representative images, 
from two-six independent tissue sections (for each) with similar results. 
 
For in-vitro iPCS-CM, experiments were performed using three independent differentiation batches with similar results.

Randomization Randomization was not relevant due to the study design where sample collection was based on availability of transplant donors. 

Blinding For the sequencing samples, we made no comparison between discreet groups for human participants, thus blinding of investigators was not 
necessary.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used anti IgA1-AF488 (1:200, clone: B3506B4, SouthernBiotech, cat: 9130-30), anti IgA2-AF488 (1:200, clone: A9604D2, SouthernBiotech, 

cat: 9140-30), anti HCN1 (1:100, polyclonal, Alomone Labs, cat: APC-056), anti HCN4 (1:200, polyclonal, Alomone Labs, cat: APC-052), 
anti cTnT (1:200, clone: 13-11, Invitrogen, cat: MA5-12960), anti GLP1R (1:500, polyclonal, Alomone Labs, cat: AGR-021), anti HCN1 
(1:100, clone: N70/28, Abcam, cat: ab84816), anti PLP1 (1:500, clone: EPR23504-106, Abcam, cat: ab254363),  
 
goat anti-rabbit IgG Alexa Fluor 555 (1:1000, polyclonal, LifeTech, cat: A21428), goat anti-mouse IgG Alexa Fluor 647Plus (1:1000, 
polyclonal, Fisher Scientific, cat: 15627898), rabbit IgG isotype (1:200, clone: DA1E, Cell Signaling, cat: 3900S), mouse IgG1 isotype 
(1:200, Santa Cruz, cat: sc-3877), Goat anti-rabbit IgG Alexa Fluor 647 (1:200, polyclonal, Invitrogen, cat: A21244), Goat anti-mouse 
IgG Alexa Fluor 488 (1:200, polyclonal, Invitrogen, cat: A11017)

Validation IgA1 (9130-30): validated with FLISA against human IgA1-Fc comparing with IgA2, IgG, and IgM-Fc. The data shown on the supplier 
website.  
IgA2 (9130-40): validated with FLISA against human IgA2-Fc comparing with IgA1, IgG, and IgM-Fc. The data shown on the supplier 
website. 
HCN1 (APC-056): validated with WB, IF, and immunocytochemistry against human, mouse, and rat HCN1. The specificity has been 
validated in a knockout or knockdown system. The data shown on the supplier website. 
HCN4 (APC-052): validated with WB, IF, and immunocytochemistry against human, mouse, and rat HCN4. The specificity has been 
validated in a knockout or knockdown system. The data shown on the supplier website. 
cTnT (MA5-12960): validated with WB, IF, and IHC against dog, hamster, human, mouse, pig, rat, xenopus, zebrafish cTnT. This 
Antibody was verified by Cell treatment to ensure that the antibody binds to the antigen. The data shown on the supplier website. 
GLP1R (AGR-021): validated with WB, IF, and IHC against human, mouse, and rat GLP1R. The data shown on the supplier website. 
HCN1 (ab84816): validated with WB, IHC, and flow cytometry against human, mouse, and rat HCN1. The data shown on the supplier 
website. 
PLP1 (ab254363): validated with WB, IF, IHC, and immunocytochemistry against human, mouse, and rat PLP1. The data shown on the 
supplier website.
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Flow Cytometry

Plots
Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation As described in the Methods section. Briefly, the single nuclei were isolated by mechanical homogenisation and  
washed. The nuclei were stained with commercially available 7-AAD Viability Staining Solution (BioLegend, 420404) . The 
samples were  kept on ice and directly loaded onto the FACS-sorter.

Instrument MA900 Multi-Application Cell Sorter (Sony)

Software Proprietary software of the MA900 sorter (Cell Sorter Software v3.1.1)

Cell population abundance This is not relevant since 7AAD-positive nuclei were sorted as many as possible for downstream processing.

Gating strategy Single nuclei were selected for single signal on the SCC and FCC to avoid aggregates. The 7AAD-positive nuclei were selected. 

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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