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a b s t r a c t 

Background and objectives: Cardiovascular Magnetic Resonance (CMR) imaging is a growing field with 

increasing diagnostic utility in clinical routine. Quantitative diagnostic parameters are typically calculated 

based on contours or points provided by readers, e.g. natural intelligences (NI) such as clinicians or re- 

searchers, and artificial intelligences (AI). As clinical applications multiply, evaluating the precision and 

reproducibility of quantitative parameters becomes increasingly important. Although segmentation chal- 

lenges for AIs and guidelines for clinicians provide quality assessments and regulation, the methods ought 

to be combined and streamlined for clinical applications. 

The goal of the developed software, Lazy Luna (LL), is to offer a flexible evaluation tool that is readily 

extendible to new sequences and scientific endeavours. 

Methods: An interface was designed for LL, which allows for comparing annotated CMR images. Ge- 

ometric objects ensure precise calculations of metric values and clinical results regardless of whether 

annotations originate from AIs or NIs. A graphical user interface (GUI) is provided to make the software 

available to non-programmers. The GUI allows for an interactive inspection of image datasets as well as 

implementing tracing procedures, which follow statistical reader differences in clinical results to their 

origins in individual image contours. The backend software builds on a set of meta-classes, which can be 

extended to new imaging sequences and clinical parameters. Following an agile development procedure 

with clinical feedback allows for a quick implementation of new classes, figures and tables for evaluation. 

Results: Two application cases present LL’s extendibility to clinical evaluation and AI development con- 

texts. The first concerns T1 parametric mapping images segmented by two expert readers. Quantitative 

result differences are traced to reveal typical segmentation dissimilarities from which these differences 

originate. The meta-classes are extended to this new application scenario. The second applies to the open 

source Late Gadolinium Enhancement (LGE) quantification challenge for AI developers “Emidec”, which il- 

lustrates LL’s usability as open source software. 

Conclusion: The presented software Lazy Luna allows for an automated multilevel comparison of readers 

as well as identifying qualitative reasons for statistical reader differences. The open source software LL 

can be extended to new application cases in the future. 

© 2023 Published by Elsevier B.V. 
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. Introduction 

Cardiovascular Magnetic Resonance imaging (CMR) is an ever- 

rowing field of imaging and diagnostic techniques that are promi- 

ent in research and clinical practice [1] . These imaging techniques 

nclude cine imaging to capture motion, Late Gadolinium Enhance- 

ent (LGE) for focal scar imaging and parametric mapping tech- 

iques (i.e. T1 and T2 mapping) mainly for diffuse fibrosis and 

dema imaging, respectively. Focal scarring is locally concentrated 

car tissue, diffuse fibrosis refers to distributed scar tissue, and 

dema reflects the water content in myocardial tissue. 

CMR is affected by multiple confounders, which influence its 

rocessing pipeline, and require standardization and quality man- 

gement. On the level of image reconstruction, standardization is 

pproached with open-source reconstruction frameworks like Gad- 

etron [2] . The “Image Biomarker Standardization Initiative” aims 

or increased reproducibility of radiomics features in image pro- 

essing [3] . Image segmentation challenges offer quality assess- 

ents of post-processing algorithms on openly available datasets 

 4 , 5 ]. However, these challenges often lack rigorousness due to 

heir detachment from clinical reality. Furthermore, recommenda- 

ions and consensus statements attempt to address confounders in 

he processing pipeline by summarizing evidence-based best prac- 

ices and expert agreements [ 1 , 6–8 ]. Nonetheless, such statements 

tress the need for continuously updating recommendations for 

igher reproducibility of post-processing and clinical parameters in 

he future. 

CMR diagnostic techniques rely on image processing. Although 

rocessing techniques differ in their specifics, they share key char- 

cteristics. They build on CMR images, onto which geometrical an- 

otations are drawn. These annotations could be delineations of 

loodpools, myocardium or scar tissue, or corresponding anatom- 

cal landmarks in an image sequence. Annotated images are used 

o calculate clinical results (e.g. amounts of fibrosis, cardiac output, 

tc.). 

Many challenges remain for establishing and improving CMR 

rocessing methods. Manually annotating images is a laborious 

ndertaking and training new readers is time-intensive; often in- 

luding supervision by another experienced reader while analysing 

any training cases to reduce deviations from other experts 

 9 , 10 ]. Experienced readers annotate images according to the SCMR 

uidelines [1] . Nevertheless, significant inter- and intrareader dis- 

greements remain due to post-processing software, site specific 

egmentation behaviour, difficult segmentation choices, etc. [11–

4] . In order to assess precision and reproducibility of diagnostic 

echniques, we offer a software package capable of tracing reader 

ifferences of image annotations, over calculated clinical parame- 

ers to statistical differences ( Fig. 1 ). The software package, called 

azy Luna (LL), allows for the comparison of exactly two readers. 

In recent years, convolutional neural networks (CNN) have 

hown their ability to automatize image annotation tasks [ 5 , 10 ]. 

everal CNN architectures are optimized for image segmentation, 

uch as the UNet [ 15 ] and architectural derivatives [ 16–18 ]. CNNs

ssign classes to image voxels. Thresholding generates segmen- 

ation masks as outputs. Although CNNs calculate clinically ac- 

eptable parameters, segmentation errors disregarding cardiac ge- 

metry remain frequent, diminishing their credibility [ 19 , 20 ]. The 

uantitative evaluation of CNN contours is habitually based on seg- 

entation metrics like the Dice similarity coefficient (DSC) or the 

ausdorff distance (HD). LL is capable of CNN evaluation and com- 

arison as well. 

The software was introduced in Hadler et al. [14] . LL was ap- 

lied to a comparison of two readers on short-axis cine stacks to 

llustrate the workability of such comparison software. However, 

his did not delve into the software architecture and the interac- 

ion of its classes, or it’s capability to generalize over sequences. 
2 
n order to make the software replicable and ensure it’s generaliz- 

bility, this paper aims to formalize and expound on LL’s software 

rchitecture. To our knowledge, LL is the only available software 

ackage engineered towards dealing with CMR specific QA tasks, 

hat offers a multilevel reader comparison with error-tracing as in- 

egrated software. 

The aim of this paper is to design, extend and demonstrate Lazy 

una’s ability to generalize to quality assurance tasks in CMR. In or- 

er to address these tasks adequately, LL must fulfil the following 

riteria: LL is accessible to CNN developers and medical profession- 

ls. LL is intended as open source software and should be devel- 

ped with accessible, well-known backend libraries. LL is adaptable 

o new imaging techniques and scientific endeavours. 

. Requirements 

LL is intended as generic software capable of a multilevel reader 

omparison. Multilevel refers to comparing readers on the annota- 

ion level, which consists of comparing the annotations on indi- 

idual images, while comparing derived clinical parameters on the 

atient level, and also offering a statistical level of reader compar- 

son, i.e. to determine systematic biases ( Fig. 1 ). LL ought to be 

apable of tracing differences from the image level to the reader 

evel. 

ccessibility, product independence and precision 

LL needs an intuitive, generic interface for images and annota- 

ions pertaining to them so that readers can be compared, inde- 

endent of vendors or reader output (polygons for human readers, 

mage masks for CNNs). The software must offer precise calcula- 

ions of quantitative results. LL is intended as open-source software 

nd should build on available open-source components. 

daptability and extendibility to new sequences and scientific 

ndeavours 

LL requires an understandable backend so that developers can 

xtend the software to new sequences. LL’s core components 

hould be broken down into classes, which allow for a generic and 

xtendable backend. 

sability and target groups 

LL should be usable by CNN developers and medical experts 

like and address needs of both target groups. CNN developers 

nd medical experts agree on the significance of calculating and 

isplaying clinical results and their statistical evaluation. Clinicians 

mphasize the importance of visual inspections, whereas CNN de- 

elopers focus on exact representations of contours and segmen- 

ation metrics to assess the effects of post-processing alterations. 

 graphical user interface (GUI) should be provided in order to 

llow for an automatic reader comparison with expressive visu- 

lizations and statistical analyses, independent of programming 

amiliarity. 

. Computational methods and software architecture 

.1. Data model 

In order to make LL’s backend simple to use and generic to dif- 

erent reader types and tasks we use folders as repositories for im- 

ges and annotations pertaining to these images. The images are 

ept in the DICOM [ 21 ] (Digital Imaging and Communications in 

edicine) format, the image annotations are stored as pickle files 

 22 ] containing Shapely [ 23 ] objects. The following subsections ad- 

ress these decisions separately. 

DICOM is the standard for the communication and manage- 

ent of medical imaging information and related data [ 24 ]. The 

ibrary Pydicom [ 25 ] offers a simple interface to these data. The 
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Fig. 1. A case comparison builds on two individual cases that share the same CMR images. Two readers annotate these images (reader 1 top, reader 2 bottom). The contours 

can be compared to each other visually (centre image) and quantitatively. Clinical results, such as the American Heart Association model segments, are calculated from 

a stack of contoured images. These can be compared to each other as segment value differences. When two readers analyse several cases, statistical procedures can be 

performed and visualized (right). Here, the quantitative parameter: T1 difference is shown. The levels of analysis are connected, allowing for the investigation of processing 

step influence and pipeline sensitivity. 

Abbreviations: CMR: Cardiovascular magnetic resonance, AHA: American heart association. 
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ICOM standard allows for pooling image and image information 

n the same file such as the RescaleIntercept and RescaleSlope, 

hich convert the stored pixel data to their intended output units 

y a linear function. 

LL requires a DICOM tag for the image type (e.g. SAX T1). This is 

ecessary for clinical practice, in which series are occasionally re- 

one. Labelling allows for identification of the relevant series when 

everal are available. 

In order to sort images spatially or temporally, DICOM offers 

ags such as ImagePosition and InstanceNumber. For area and vol- 

me calculation DICOM tags provide PixelSpacing and SliceThick- 

ess. 

Annotations are stored in a custom format. Every annotated im- 

ge has an annotation file in pickle format. The file’s basename 

s the referenced DICOM’s unique SOPInstanceUID. The pickle file 

tores a python dictionary of key value pairs. Its keys are contour 

ame strings (i.e. ‘lv_myo’ for LV myocardium). The keys map to 

eometrical Shapely objects and auxiliary information for individ- 

al contours. 

.2. Annotation processing and precision 

Shapely is a Python package for manipulating and analysing ge- 

metric objects (i.e. polygons, points) [ 23 , 26 ]. Contours are mod- 

lled as Polygons (LV, RV endo- and epicardial contours) or Mul- 

iPolygons (papillary muscles); markers are modelled as Points 

i.e. insertion points) or MultiPoints (i.e. extent points). Shapely 

ffers precise geometrical operations including calculations, inter- 

ections, unions and Hausdorff distance (HD) calculations. Since 

uman readers often segment on a subpixel level Shapely allows 

or exact geometrical calculations. In order to calculate precise 

alues for segmentation masks (typical outputs for CNNs) the 

egmented pixels are outlined to produce a polygon. LL uses Ras- 

erio’s rasterize function to generate exact outlines from segmen- 

ation masks in Shapely format [ 27 ]. This permits precise calcula- 

ions when comparing different reader types. 

etrics 

Metrics allow for the comparison of annotations on the image 

evel. For contours the Hausdorff Distance is calculated as the fur- 

hest distance of any point on either geometry from its nearest 
3 
oint on the other geometry. The Dice Similarity Coefficient is cal- 

ulated as two times the intersection area divided by the sum of 

wo Shapely geometries. The millilitres and their differences (ml 

iff) are calculated using DICOM tag information on pixel height, 

idth and slice thickness in mm and the contoured areas. 

l Di f f ( A, B ) = ( | A | − | B | ) × area per pixel × slice thickness 

ice ( A, B ) = 

2 × | A ∩ B | 
| A | + | B | 

D ( A, B ) = max { max a ∈ cA ( mi n b∈ cB d ( a , b ) ) , max b∈ dc ( mi n a ∈ cA d ( a , b ) ) } 

For points, the millimetre distance (mm Diff) is calculated. For 

onnecting lines of specific annotation points, angular differences 

angle Diff) may also be calculated: 

m Di f f ( p 1 , p 2 ) = | p 1 − p 2 | 

ngleDi f f ( p 1 , 1 , p 1 , 2 , p 2 , 1 , p 2 , 2 ) = arccos ( u, v ) , 

u = 

p 1 , 1 − p 1 , 2 

| p 1 , 1 − p 1 , 2 | , v = 

p 2 , 1 − p 2 , 2 

| p 2 , 1 − p 2 , 2 | 

.3. Adaptability and extendibility to new image types and scientific 

ndeavours 

.3.1. Software class structure 

LL is intended to be accessible and extendable software. LL is 

ritten in Python [ 28 ] and follows an object oriented program- 

ing paradigm. An overview of LL’s software class structure and 

he classes’ interactions are illustrated in Fig. 2 . The classes are 

laborated on in Hadler et al. [14] . 

xtending Lazy Luna classes to new image techniques 

Extending LL to new imaging techniques may require alter- 

tions or extensions to several of the above backend classes. The 

mplementation of new Clinical Results or Metrics may require 

lterations to underlying code, such as the Annotation class or 

he Category classes. Extendible classes, their main functions and 
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Fig. 2. Class Diagram of Lazy Luna. 

Repository (grey). 

The repository contains DICOM images and annotation files. The images are sorted into folders by case; the annotation files are sorted into folders by reader and case. 

Backend (blue). 

The class diagram depicts Lazy Luna’s backend classes and how they interconnect. A Case is a container class for DICOM images and annotation files. It makes annotations 

accessible with an Annotation class, which offers visualization functions and geometric operations. A Case has Categories, which structure the images into slices and phases. 

Clinical Result classes can be attached to a Case in order to calculate CRs based on the images, annotations and categories. Case Comparisons contain two cases that 

reference the same images. Metric classes can be attached to a Case Comparison to calculate metric values for the case’s annotations. View classes organize the other classes 

to address the needs of certain series. For example: a SAX Cine View can inform a case to focus on the subset of SAX Cine images and annotations, as well as attaching the 

respective CRs. 

Frontend (purple). 

Visualizations inherit their behavior from the Matplot.Figure class, allowing for user interactions. Tables inherit their behavior from the Pandas.DataFrame class. Both classes 

permit easy integration into PyQt5 tabs. The Analysis Tool is the GUI’s central GUI. It allows for loading cases of two different readers, customizing the cases via the views 

and adding new tabs to the GUI. 

Legend: CR: Clinical Result, GUI: graphical user interface, DICOM Image [ 24 ], Matplotlib.Figure [ 29 ], Pandas.Dataframe [ 30 ], PyQt5 [34] . 
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xtension possibilities to new endeavours are listed in Table 1 . 

or more practical implementation details we refer to the Github 

epository and accompanying documentation. 

Annotation: is a utility class that handles pickled dictionaries 

ontaining Shapely geometries. New geometrical calculations or vi- 

ualizations would be implemented as Annotation class functions. 

ategories: sort images and annotations by slice and phase. Fur- 

her categorizations of images, based on their temporal and spa- 

ial relationship to other images, would be implemented as Cate- 

ory class functions. Clinical Results: calculate clinical parameters. 

ew imaging modalities may require new clinical parameters, im- 

lemented as individual classes. Metrics: are classes that calculate 

uantitative comparisons between individual annotations. New sci- 

ntific endeavours may focus on new comparisons, which are im- 

lemented as individual classes. Views: organize cases to address 

ser needs for an imaging modality. A View makes the relevant 

ategories available (such as those that organized the fibrosis im- 

ges). It connects relevant clinical results to a case. Tabs that were 

esigned for the imaging modality are registered in Views and 

ade available during runtime. 

.3.2. Visualizations and tables: plug-in scheme 

Matplotlib Figures [ 29 , 31 ] and Pandas DataFrames [ 30 , 32 ] are

sed as base classes to integrate visualizations and spreadsheets 

nto a GUI written in PyQt5 [ 33 ]. Visualizations inherit the func- 

ionality to interact with figures via events (e.g. mouse movements 

r key presses). Matplotlib’s FigureCanvas allows for integrating 

L’s Visualizations into PyQt5 tabs [ 34 ]. Tables allow for exports to 

iverse spreadsheet formats. LL offers an interface class for PyQt5 

ntegration via QTableViews. LL’s comparison tool is the Analy- 

is Tool; it builds on PyQt5’s QTabWidget, which allows attaching 

Widgets. QWidgets can be added to the Analysis Tool and embed 

isualizations and spreadsheets. 
4

.3.3. Error tracing 

LL allows for connecting tables, visualizations and tabs. This en- 

bles tracing the consequences of annotation differences from the 

mage level to the patient level. In turn, CR differences on the pa- 

ient level can be traced to their contour difference origins. Alter- 

atively, entire tabs can be opened when a specific case is to be 

nspected. For example, by plotting outliers in statistical plots of 

Rs an outlier case can be investigated for differences of individ- 

al contours. 

.3.4. Extendibility and availability 

In results we demonstrate how LL was extended to fibrosis 

maging as well as to focal scar imaging. For the fibrosis imag- 

ng extension, this includes devising class extensions, tables and 

isualizations, as well as producing GUI elements to mirror the re- 

uirements. 

LL is available as open source code and published on Github. A 

rst-use experience is described for the EMIDEC dataset, in which 

ate Gadolinium Enhancement was used for focal scar imaging. A 

se-session video is uploaded as supplementary material. 

.4. Usability 

raphical user interface 

LL offers a GUI capable of creating and loading cases of two 

eaders in order to compare them to each other. 

utomated outputs 

LL was developed for quick and extensive reader comparison. 

n order to accomplish this, each LL View offers a sequence spe- 

ific storage function. This includes storing spreadsheets of metric 

alues for annotated images, clinical results as well as outputting 

tatistical plots. 
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Table 1 

Class Description and Extension. 

The table consists of four columns, the class name, intended class utility, main functions and a description of its extension with potential examples. The main classes are 

Annotation, Category, Clinical Result, Metric and View. 

Class Use Description Functions Extension Description 

Annotation Interface class to geometries: 

- Getters: for access to geometry objects 

- Visualizations: of geometries atop 

matplotlib axes 

- Helper functions: contain complex 

geometrical calculations for simple access 

Getter functions: 

- get_contour(cont_name) 

- get_point(point_name) 

Visualization functions: 

- plot_contours(axis, cont_name, color) 

- plot_points(axis, point_name, color) 

- plot_face(axis, cont_name, color) 

- plot_cont_comparison(axis, other_anno, 

cont_name, colors) 

Helper functions: 

- get_contour_as_mask(cont_name) 

How to: 

The class is extended by adding new 

functions 

Exemplary helper functions: 

- Point distances 

- Angle calculations 

- Bounding box determination 

Category Sorts images and annotations and offers a 

simple interface: 

- Sorting: sorts images and annotations 

spatially and temporally according to dicom 

attributes 

- Getters: simple interface for dicoms, 

images and annotations 

- Helper functions: contain calculations 

requiring sorted dicoms and annotations 

Sorting function: 

- get_sop2depthandtime(sop_uid2filepath) 

Getter functions: 

- get_dcm(slice, phase) 

- get_img(slice, phase) 

- get_anno(slice, phase) 

Helper functions: 

- get_volume(cont_name, phase) 

How to: 

The class is extended by adding new 

functions 

Exemplary helper functions: 

- Cardiac geometry descriptions (such as 

basal, midventricular, apical slices) 

- Determining phases in cardiac cycle (like 

end-systolic phase) 

Clinical Result A Clinical Result calculates a clinical 

parameters for a case 

Clinical parameters: calculation of values 

and differences between readers 

Setter: 

- init(case): sets case, clinical parameter 

name, measurement unit 

Getters: 

- get_val(as_string = False) 

- get_val_diff(other_clinical_result, 

as_string = False) 

How to: 

Lazy Luna is extended by clinical results for 

new imaging modalities by writing new 

classes 

Exemplary extension: 

- Clinical result for calculation of average 

myocardial voxel intensity 

Metric A Metric quantifies the difference between 

two annotation geometries with the support 

of corresponing dicoms 

Metric values: calculation of metric values 

Setter: 

- init(): sets metric name, measurement 

unit 

Getter: 

- get_val(geo1, geo2, dcm = None, 

as_string = False) 

How to: 

Lazy Luna is extended by metrics for new 

imaging modalities by writing new classes 

Exemplary extension: 

- Difference in number of pixels within 

contour type for two readers 

View A view structures cases by appending 

relevant categories, clinical results and tabs 

Setter: 

- init(): sets the view name, tabs for 

inidividual case_comparisons and lists of 

case comparisons 

Adjust case: 

- initialize_case(case): calculates 

information requiring only one calculation 

- customize_case(case): connects the view’s 

categories and clinical results 

Store information function: 

- store(case_comparisons) 

How to: 

Extending Lazy Luna to a new imaging 

modality requires the implementation of a 

custom View class 

Exemplary extension: 

- A View for focal scar imaging 
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evelopment strategy and code maintenance 

gile development 

LL’s current outputs and tabs were developed in an agile de- 

elopment environment with clinicians in iterative feedback loops 

or the individual sequences. Following the implementation of the 

nderlying backend (load images, sort them by space and acquisi- 

ion time, calculate volumes from annotations), new functionalities 

ere discussed, implemented and finally integrated or discarded in 

terative loops of clinical feedback ( Fig. 3 ). 

ode maintenance 

LL’s code is published on Github as open source software and 

aintained by the first author. Github’s Issues functionality allows 

or tracking bugs, and other forms of feedback for incremental code 

mprovements. LL builds on several open source packages that are 

ommunity maintained. As the underlying code and API of these 

nderlying software packages evolve, LL’s backend code will re- 

uire adjustments that can also be effectively pursued as issues. 

. Results 

The Results section will be divided into subsections correspond- 

ng to the Requirements paragraphs. 
5

.1. Accessibility, product independence and precision 

recision 

As described in “Computational Methods and Software Archi- 

ecture” and presented in Hadler et al. [14] Lazy Luna’s backend 

ffers precise calculations for annotation comparisons and calcula- 

ion of clinical parameters. Polygonal contour calculations allow for 

eometrical accuracy, while sorting slice positions and interpolat- 

ng missing slices guarantee clinical results with numerical preci- 

ion. LL’s backend was used for extensive comparisons of CNN ar- 

hitectures to a medical expert on SAX Cine images with different 

cquisition techniques [ 35 ]. 

ardware specifications 

LL was tested for 64-Bit systems of macOS Mojave 10.14.6, Win- 

ows 10 Home and Ubuntu 20.04. LL has been tested for Python 

.6 – 3.8. 

ccessibility, open source software and product independence 

LL builds on several open-source libraries, as described in 

Computational Methods and Software Architecture”. LL is available 

s open-source software on Github: https://github.com/thadler/ 

azyLuna . 

https://github.com/thadler/LazyLuna
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Fig. 3. Agile Software Development for Lazy Luna. 

Starting at version n of LL, the incremental development consisted of team meetings with users who described concrete features they required, followed by abstractions of 

these to implementable features, their implementation and testing. These in turn were then kept or discarded according to the utility clinicians/AI developers saw in them 

in the next group meeting. After one or several such development loops a next version n+1 of LL was installed for trainee or AI evaluation. 
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.2. Usability and target groups 

LL offers a GUI as presented in Figs. 5 , 6 , 7 , 8 making it available

o programmers, researchers and clinicians alike, regardless of pro- 

ramming skills. The software has been used in several settings to 

ssert its utility, including trainee comparison and AI assessment, 

s follows. The software’s graphical user interface has been used by 

linicians in the working group for comparison between trainees 

nd expert readers to provide quality assurance and standardiza- 

ion of contouring techniques in research and clinical routine. LL 

as also used for an extensive comparison between two readers 

n an in-house dataset [14] . LL’s backend was used for extensive 

omparisons of AIs with different backend CNN architectures to a 

edical expert on SAX Cine images with different acquisition tech- 

iques [ 35 ]. 

The rest of the Results section will focus on the requirement of 

L’s adaptability and extendibility by presenting different steps of 

n extension to fibrosis and edema imaging (T1 & T2 mapping) as 

ell as focal scar imaging (LGE). 

.3. Adaptability and extendibility to new sequences and scientific 

ndeavours 

LL’s class structure is extendable to new sequences. By inherit- 

ng from the base classes for specific purposes LL can be extended. 

e demonstrate such extensions, first, for fibrosis imaging, second 

or focal scar imaging. 

.3.1. Extending Lazy Luna to fibrosis imaging 

The adjustments largely mirror typical requirements of T1 map- 

ing [ 36 ]. This type of parametric technique often entails locating 

uantitative difference within the cardiac geometry ( Fig. 4 ). 

LL’s extension will reflect this in the extended classes below: 

• Annotation: T1 mapping requires contours of the myocardium 

and an insertion point, which demarcates where the right ven- 

tricle connects to the left ventricular (LV) myocardium. The in- 

sertion point and the centroid of the LV endocardium divide the 

LV myocardium into segments by degrees. The Annotation class 

allows for calculating arbitrary numbers of segments 
• Category: Images are typically acquired as stacks that span the 

length of the heart from base to apex. Sorting images allows for 

locating abnormalities/pathologies and defining segments ac- 

cording to the American Heart Association model [ 37 ]. The Cat- 

egory class must be extended to sort the images according to 

cardiac location 

• Clinical Result: The average of T1 values in ms for annotated 

images 
6

• Metrics: The Dice Similarity Coefficient and the Hausdorff met- 

ric are transferred from the SAX Cine applications. The my- 

ocardium’s average pixel values and their differences are added 

for T1 mapping, as well as the insertion point to LV centroid 

angle differences between both readers 
• Visualizations: One figure visualizes segmentation and insertion 

point differences between readers by plotting a coloured com- 

parison of differences ( Fig. 6 ). A second figure produces the 

AHA model according to annotations of the respective readers. 

A third figure presents histograms for different segment aver- 

ages, depending on the insertion point positioning 
• Tables: LL offers a table of T1 value averages and average dif- 

ferences for myocardial segments for both readers 
• Tabs: A tab for an average AHA model for all cases and their 

differences is offered ( Fig. 7 ). Another tab for individual cases 

allows the inspection of the effect of segmentation differences 

and insertion point differences on the T1 averages of arbitrary 

numbers of segments ( Fig. 8 ). 

lug-in concept for tables and visualizations 

A case overview tab was implemented. It shows a table of the 

ase’s clinical results and images with annotations plotted on top. 

he user can click through the image stack with up/down arrow 

eys. The Table uses LL’s Clinical Result classes. The visualization 

uilds on a T1 mapping Category for slice sorting/accessing images 

y slice, image correction by rescaling the image values according 

o DICOM attributes and the Annotation class’ support functions 

or contour plotting ( Fig. 5 ). 

etrics, qualitative comparisons and error tracing 

LL admits for tracing reader differences from the patient 

evel to the image level by connecting statistical analysis tabs 

o case specific tabs. Statistical visualizations, which plot cases 

s points (e.g. Bland-Altman, correlation plots, etc.), can interac- 

ively open tabs with additional information pertaining to the case 

 Fig. 6 ). 

HA model and error tracing 

The 16-segment AHA model is a popular geometrical abstrac- 

ion of the heart that is used in the clinical environment to present 

ocal average T1 mapping values. It sorts the image stack into 

asal, midventricular and apical slices, and divides individual slices 

nto six (for basal, midventricular) and four (for apical) segments. 

his allows for tracing the global value of T1 parametric values 

rom the patient level to the position of T1 value outliers. In or- 

er to consider image segments the Annotation class was extended 

o allow for their calculation. This requires the myocardial contour 

nd the reference point. 
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Fig. 4. Pipeline on calculating the AHA model from DICOM images with Annotations. 

At the top left there are T1 parametric mapping images with contours and insertion points pertaining to them. The myocardium is divided into segments (red, blue) via 

angle maps, which are derived from the annotations (lower left). The LVM mask is generated from contours by selecting all pixels whose centre is within the polygon or 

by Bresenham’s line algorithm. The individual images are assigned to a basal, midventricular or apical location depending on the their spatial relationship to the extent and 

apical points in a long-axis view of the heart (top right). On the bottom right the AHA model is calculated by assigning sorting the segments into their respective bins and 

calculating the average. The rings correspond to the basal, midventricular and apical positions (outside to inner). 

Legend: AHA: American Heart Association, LVM: Left ventricular myocardium. 

Fig. 5. Adding Tables and Visualizations to LL Analysis Tool. 

On the left code samples are exemplified; on the right the resulting tab of the LL Analysis Tool is presented. On the upper left, code for the integration of an LL Table into 

the Analysis Tool is shown. After implementing an LL Table it can be instantiated and added to a tab by using QTableViews as an interface. On the lower left, code for the 

integration of an LL Visualization into the Analysis Tool is presented. After writing an LL Visualization, it can be instantiated and added to a tab by using the FigureCanvas 

class as an interface to PyQt5. The GUI can be connected to the visualization’s key press events with the function mpl_connect. On the right, the Analysis tool is presented 

with the tab containing the table and visualization. Further code examples can be viewed in github online. 

Legend: LL: Lazy Luna, QTableView [ 34 ], FigureCanvas [ 29 ], GUI: graphical user interface, Global_T1: Average of T1 values inside myocardium for all slices in image stack. 
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In order to compare two readers at assessing the reproducibility 

f the AHA segments, LL provides AHA calculations and visualiza- 

ions for individual cases as well as reader differences by segment. 

nalogously, for patient cohorts, averaged AHA models and aver- 

ges of the differences between both readers’ segment values are 

resentable ( Fig. 7 ). 
7 
umber of myocardial segments and insertion point and error 

racing 

As above, calculating average T1 values in myocardial segments 

f images is central to post-processing of fibrosis images to lo- 

ate abnormal ranges. Average segment value differences between 

eaders can be caused by contour deviations or different insertion 
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Fig. 6. Error Tracing and Differences. 

On the left two, Lazy Luna tabs are presented. On the right, outlined GUI parts are expanded. The upper left tab provides a table of average CR values and statistical plots 

of the analysed cases, including a paired boxplot, a QQ-plot and a Bland-Altman plot of global T1 values. The Bland-Altman plot is magnified with the circled case being 

the largest outlier (upper right). By clicking the case the lower tab was opened for an in-depth inspection (lower left). A table of metric values per slice is presented on 

the top, and a visualization of reader contours and their agreement/disagreement below (gold reader red, reader 2 blue, reader agreement green). The reader differences, as 

quantified by the DSC and the T1 Average Difference are caused by these contour differences, revealing the origin of the global T1 value difference of the outlier case. 

Legend: LL: Lazy Luna, QTableView 

32 , FigureCanvas 30 , GUI: graphical user interface, Global_T1: Average of T1 values inside myocardium for all slices in image stack. 

Fig. 7. AHA model. 

On the top the Average AHA Model tab for several patients shows the average (and the standard deviation) of segment values of a reader for all provided cases. The reader 

was selected on the upper left of the GUI. Below three figures generated from this tab are presented (from left to right): First, the average AHA model for all cases for the 

first reader is presented. Second, the average of differences between the first and second reader is visualized. Third, the average AHA model for all cases for the second 

reader. 

Legend: AHA: American heart association, GUI: graphical user interface. 
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oints, which position the segments along the myocardium. Vary- 

ng numbers of segments may affect the value averages since the 

umber of pixels per segment decreases when the number of seg- 

ents grows. LL’s backend classes offer functions to assess these 

egment-level confounders. LL’s GUI allows the user to examine 

he effects of these confounders ( Fig. 8 ). 
8 
.3.2. Extending Lazy Luna to focal scar imaging and CNN outputs 

An LL jupyter notebook was used to convert Emidec’s image 

ataset from Nifti format to DICOM format and the segmentation 

asks to LL’s annotation format. The Nifti format consists of a 

eader with the image’s meta information and the image data. The 

eader contains relevant information such as voxel width, height, 
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Fig. 8. Tracing Segment Differences. 

The Segments and Insertion Point tab allows to switch between two different visualizations (a). The first line of the tab consists of the (left to right) selecting the number 

of segments for the myocardium, an update button for the table and figure below, and a selection option for the insertion point (first reader’s insertion point, the second 

reader’s, or each individual reader’s point). The second row is a table of segment values; three consecutive columns concern the first reader’s segment average, the second 

reader’s and their difference. The main figure (row three) shows contours and insertion points for both readers, which are plotted on the left and right image, respectively. 

The centre image presents a contour comparison of both readers. In b) the figure of tab a) was switched (via shift key) to histograms of the segments’ average values: 

The first and third histograms concern the readers’ average segment values; the middle histogram represents the average segment value differences. In c) histograms were 

created according to the second reader’s insertion point for both readers, which led to minor histogram value deviations. In d) a histogram was calculated with four instead 

of six histograms, which “averaged away” 30ms of reader differences. 
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nd depth. The image data has a shape, which provides the im- 

ge sizes, the number of phases and slices. With this information 

 Dicom file is constructed. The annotation files were generated 

rom the Nifti file masks, stored in the same format as the images. 

he voxel segmentations in Nifti format were outlined as polygons 

nd stored in LL annotation format as pickle files, mapping con- 

our names to shapely geometries. The exact code is published in 

he repository as a Jupyter Notebook and may guide new users to 

xtending LL to new data formats. 

The annotation class required no changes to generalize to fo- 

al scar imaging. Several new clinical results were implemented as 

lasses, including the LV volume, LVM volume and mass, scar vol- 

me, mass and fraction, excluded volume as mass as well as no re- 

ow volume. LL also required a new View class, the SAX_LGE_View 

o refocus the cases on the images and clinical parameters. 

A UNet predicted segmentation masks for myocardium, scar 

nd no reflow tissue. We used this under-trained network to pre- 

ict the Emidec segmentations for the training set. We used LL to 

roduce the reader comparisons in Fig. 9 and offer an investigative 

ideo in supplementary material. 

. Discussion 

Lazy Luna (LL) is a software package that offers a multilevel 

omparison of readers on different CMR techniques. It is available 

o clinicians and programmers alike. LL’s extendibility to new im- 

ge types and scientific endeavours was illustrated by presenting 

 step-by-step extension of LL to fibrosis imaging. In results this 

llowed for an illustrative reader comparison on fibrosis imaging 

ases. LL has been used in other settings to assert its functional- 

ty and utility. The GUI has successfully been used for comparison 

etween trainees and expert readers to provide quality assurance 

nd standardization of contouring techniques in research and clini- 

al routine. LL was also used for an extensive comparison between 

wo readers on an in-house dataset [14] . 

LL provides error tracing by connecting different analysis levels. 

e demonstrated this on an AHA model difference for individual 

ase comparison and an average of AHA model differences for two 

eaders. By doing this, the relevance of contouring differences can 
9

e traced from individual images and segments to reader trends, 

hile offering insights into how segmentation difficulty and car- 

iac geometry interact. 

Increasingly, AIs are being applied to multiple sequences to 

uantify several cardiac parameters simultaneously: such as SAX 

ine imaging, LAX Cine-, fibrosis-, edema- and scar imaging 

 38 , 39 ]. As this becomes more prominent, full sequence compar- 

sons as offered by LL should become more typical. LL is provided 

s open-source software. Its usability and general concept can be 

erified quickly with the EMIDEC dataset on Github. LL should al- 

ow AI developers to evaluate the quality of their algorithms on 

everal levels of analysis simultaneously, satisfying the interest of 

NN developers while addressing the clinical relevance of differ- 

nces. 

In recent years, CNN developers have argued that their algo- 

ithms are within the range of interobserver reproducibility and 

hus also in typical variability of clinical routine parameters [ 5 , 16 ].

he equivalence of different contouring software has been assessed 

y testing that confidence intervals were within defined tolerance 

anges [11] . Such ranges are necessarily parameter specific as dif- 

erent confounders have different effect-sizes. Assessing and defin- 

ng tolerable biases between CNNs and clinicians as well as lim- 

ting the proportion of cases, which lie outside of such tolerance 

anges, may be the topic of another work. LL should be extended to 

est for, and visualize, reader equivalence according to well-defined 

riteria. 

Likewise, the training and education of readers is a time- 

ntensive task, based on curriculums and proficiency assessments 

 10 , 40 ]. One-on-one teacher-student training is deemed most ad- 

antageous, but is also most resource absorbing [ 9 , 10 ]. Training 

nd education has been shown to improve LV volume reproducibil- 

ty [9] . LL could be used in training settings to automate differ- 

nce assessment as well as offering illustrations of annotation dif- 

erences between teacher and student. 

utlook 

LL can analyse and characterise reader differences in order to 

tandardize contouring methods for more reproducible clinical re- 

ults. AIs are increasingly relevant for quantifying CMR images. LL 

as been used to investigate different CNN architectures’ (UNet 
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Fig. 9. Emidec CNN Analysis. 

The top three sub-figures compare the UNet’s LVM estimation to the gold standard’s. The Clinical Results tab (top left) offers an overview of all clinical result averages of 

the gold standard and the UNet_60 as well as their differences. The focus lies on the paired boxplot enlarged on the upper right. Here, the two readers (Gold top, Unet_60 

bottom) are presented as boxplots with the case‘s LVM values plotted as dots on top. Lines connect the case dots in order to visualize the case-specific reader differences. 

Below the reader contours of CaseP096 were presented, showing the constant overestimation of the epicardial contour, providing a qualitative clue to the LVM difference. 

The bottom three sub-figures provide an analogous analysis concerning the UNet’s SCARV estimation. The paired boxplot reveals that the UNet consistently underestimates 

the scar volume drastically. The lower plot reveals that the UNet has not yet learned to estimate the full scar but only fragments of it. 

Legend: LVMMASS: left ventricular mass, SCARV: scar volume, ml: millilitre, g: gram. 
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 15 ], FCN [ 41 ], Dilated UNet [ 42 ], MultiResUnet [ 43 ]) performances

gainst expert readers [ 35 ]. Several working groups have enhanced 

NN performance by integrating cardiac geometry assumptions or 

lausibility checks of the heart’s blood pool volumes over the car- 

iac cycle into the overall segmentation pipeline [ 44–46 ]. Whether 

I performance improves by integrating cardiac geometry informa- 

ion should be investigated. 

We based LL on a class diagram for explainability. The general 

dea is intuitive: Cases contain images and annotations, categories 

anage the images and annotations, and the images and annota- 

ions can be combined to calculate clinical results per case. When 

wo cases reference the same images the annotations can be com- 

ared to each other on the image level, and the clinical results on 

atient level. This applies to CMR as we could generalize to differ- 

nt sequences in Results. Furthermore, this principle applies to any 

onceivable 2D imaging modality, such as Neuro MRI, CT scans or 

chocardiography. 

Releasing the software as open source code should allow for 

ore feedback and a sharing of maintenance costs for LL. This 

hould provide incentives to improve and adjust the software to 

 variety of needs. 

imitations 

LL requires user intervention to recognize image types (such 

s SAX Cine or T1 Mapping images). Currently, this recognition is 

emi-automated by a DICOM tag focussed image-type suggestion. 

owever, users have described it as tedious and the task ought to 

e automatized in future work. The current version of LL allows for 

he comparison between exactly two readers (regardless of them 

eing human or AI). Comparing multiple readers to another reader 

often the gold standard reader) would be a useful extension to LL. 

his study is limited to the analysis of LL’s software architecture. 

ase studies that would illustrate the utility of LL in QA scenarios 

re out of the scope of this work’s scope. 
10 
. Conclusion 

The presented software Lazy Luna allows for a multilevel reader 

omparison on several sequences typical in the clinical domain, 

hile remaining flexible and extendible to new scientific under- 

akings. Extending LL to T1 parametric mapping demonstrated the 

oftware’s flexibility. LL will enhance reader comparisons by merg- 

ng AI analysis with clinical analysis and contribute to standardiza- 

ion and reproducibility in clinical routine. 
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