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Abstract

Summary: We introduce LongDat, an R package that analyzes longitudinal multivariable (cohort) data while simul-
taneously accounting for a potentially large number of covariates. The primary use case is to differentiate direct
from indirect effects of an intervention (or treatment) and to identify covariates (potential mechanistic intermediates)
in longitudinal data. LongDat focuses on analyzing longitudinal microbiome data, but its usage can be expanded to
other data types, such as binary, categorical and continuous data. We tested and compared LongDat with other tools
(i.e. MaAsLin2, ANCOM, lgpr and ZIBR) on both simulated and real data. We showed that LongDat outperformed
these tools in accuracy, runtime and memory cost, especially when there were multiple covariates. The results indi-
cate that the LongDat R package is a computationally efficient and low-memory-cost tool for longitudinal data with
multiple covariates and facilitates robust biomarker searches in high-dimensional datasets.

Availability and implementation: The R package LongDat is available on CRAN (https://cran.r-project.org/web/pack
ages/LongDat/) and GitHub (https://github.com/CCY-dev/LongDat).

Contact: chia-yu.chen@mdc-berlin.de or sofia.forslund@mdc-berlin.de

Supplementary information: Supplementary data are available at Bioinformatics Advances online.

1 Introduction

Recent years have seen the spawning of high-dimensional data (i.e.
data with a large number of features) as biotechnology develops rap-
idly (Assent, 2012; Witten et al., 2010). For instance, metabolomics,
immunomics and metagenomics are becoming prevalent. Among
them, count data derived from microbial metagenomics sequencing
especially require specific methods to tackle since they have several

inherent properties, including uneven sequencing depth across sam-
ples, compositional structure, overdispersion and high sparsity
(Kodikara et al., 2022; Zhang et al., 2017). When the research aim
is to find out the differences in the abundance of microbial features
between groups (e.g. time points, treatments), a typical workflow
consists of pre-processing and differential abundance analysis steps.
Uneven sequencing depth in metagenomic shotgun sequencing needs
to be addressed at the pre-processing step because it is known to

cause bias in evaluating microbial communities (Sanchez-Cid et al.,
2022). Therefore, data-preprocessing approaches such as normaliza-
tion, transformation and rarefaction have been developed to deal

with varying sequencing depth (Lin et al., 2020). When it comes to
differential abundance analysis, we need to consider the typical
characteristics of microbiome data, including () compositional struc-
ture, (ii) overdispersion and (iii) high sparsity. Microbial data from
shotgun sequencing are inherently compositional since the total
amount of reads each sequencing run can generate is fixed. Thus
the abundances of features are not independent of each other
(Gloor et al., 2017). Tools have been proposed to account for the
compositional structure (Mandal et al., 2015). However, some
literature shows that the compositional methods do not always out-
perform the non-compositional methods (Mallick et al., 2021).
Overdispersion denotes a larger variability observed in data than
expected from a specific distribution, while high sparsity implies
that the data are inflated with zeros. When fitting models to the
microbiome data, overdispersion and high sparsity should be
addressed. For example, models like negative binomial regression
and zero-inflated Poisson regression have been introduced to solve
overdispersion and high-sparsity problems (Mallick et al., 2021;
Zhang et al., 2017). Collectively, many different microbiome data
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analysis methods have been proposed so far, and there are plentiful
reviews on their comparisons (Calgaro et al., 2020; Swift et al.,
2023; Weiss et al., 2017). However, there is no universal method for
analyzing all types of microbiome data. Hence, it depends on the
characteristics of the data and the user’s research aim to opt for an
appropriate method in different scenarios.

Microbiome data can be divided into cross-sectional and longitu-
dinal based on its study design. Cross-sectional data are collected by
examining multiple subjects at one time point (Levin, 2006). In con-
trast, longitudinal data from observational or intervention cohorts
are repeated measurements from the same individuals at different
time points (Liu et al., 2010). Compared with cross-sectional stud-
ies, longitudinal studies account for individual variation and enable
researchers to trace changes over time (Hua et al., 2009). Thus, lon-
gitudinal data collection has become more common in biological
and medical fields nowadays (Liu et al., 2010). When fitting models
to longitudinal microbiome data, microbiome features are the de-
pendent variables, while the metadata (i.e. information about the
individuals) are the independent variables. The metadata may in-
clude the time variable and other variables, such as dietary supple-
ments, changes in meals and weight. The aim of longitudinal
microbiome data analysis is to investigate the effect of the time vari-
able since it is the proxy for treatment or intervention in longitudin-
al data. Accordingly, all variables in the metadata except for the
time variables are referred to as covariates, which are defined as the
factors other than the variable we are interested in (here the time
variable) that might associate with the outcome (here microbiome
features) (Field-Fote, 2019). Examples of covariates include, for ex-
ample, how patients benefiting from a dietary intervention (coded as
a time variable) may have their medication dosages reduced during
the course of a trial, raising the question of whether observed -omics
signature changes are direct effects of the intervention or indirect
effects following from the alteration of medication regime (Maifeld
et al., 2021). Consequently, to ensure proper analyses of longitudin-
al microbiome data, it is important to disentangle the time variable’s
effects from the covariates’ effects. In other words, covariates should
be uncovered and controlled for to avoid false conclusions (Pedersen
et al., 2018). In addition, two other critical points need to be consid-
ered when analyzing longitudinal microbiome data. First, selecting
appropriate statistical tests from empirical data distributions is im-
portant for obtaining proper interpretations (Nahm, 2016). Second,
inter-individual variation (e.g. differences in microbial abundance
levels between individuals) should be addressed. Several tools deal-
ing with longitudinal microbiome data already exist, and some
allow taking in covariates for analysis (Asar et al., 2013; Chen et al.,
2016; Gonçalves et al., 2021; Mallick et al., 2021; Mandal et al.,
2015; Opgen-Rhein et al., 2021; Timonen et al., 2021).
Nevertheless, none of these tools reports explicitly on how the effect
of time variable is affected by the presence of other covariates while
detecting and simultaneously controlling for them. Therefore, we
developed LongDat, an R package capable of performing the tasks
as described above.

LongDat is developed and tested centered on microbiome data.
However, we extended its utility to work on different data types
(e.g. immunome, metabolome, transcriptome). The key to
LongDat’s flexibility to adapt to input data with different statistical
distributions lies in the utilization of generalized linear models
(GLMs) and non-parametric effect size calculations in the pipeline.
GLMs can fit skewed data (e.g. data with overdispersion and high
sparsity), allow non-constant variances (heteroscedasticity) and
model various data types, such as continuous, categorical and ordin-
al data (Lindsey et al., 1998). To account for inter-individual vari-
ation in longitudinal data, we treat sample donor origin (i.e.
individual) as a random effect, expanding the GLMs framework to
the generalized linear mixed models (GLMMs) (Bolker et al., 2009).
LongDat utilizes GLMMs to test the significance of the time variable
without and with the presence of covariates in the models, respect-
ively. Subsequently, the effect size of the time variable on each
microbiome feature is calculated. In a longitudinal setting, an effect
size is defined as the degree of feature difference before and after
treatment. Reporting effect sizes in the result is in line with the

current best practice, which urges researchers to report effect sizes
along with P-values in biomedical research (Sullivan et al., 2012).
P-values from the abovementioned model tests indicate the statistic-
al significance of the time variable (proxy of treatments), whereas
standardized and directional effect sizes allow users to interpret the
magnitude of effects both manually and within automated frame-
works. In the LongDat pipeline, directional non-parametric effect
sizes (e.g. Spearman’s rho and Cliff’s delta) are applied to handle
both normally and non-normally distributed data (Marfo et al.,
2019). LongDat focuses on analyzing monotonic (i.e. the direction
of change is fixed) treatment effects within time intervals while
reporting covariates for each feature.

In this report, we describe the method of the LongDat R package
and validate its performance by comparing it with its closest pub-
lished counterpart to date, MaAsLin2 (Mallick et al., 2021). We
tested the performance of LongDat and MaAsLin2 on simulated,
semi-synthetic and real microbiome data. MaAsLin2 is an R pack-
age similar to LongDat in several aspects. They both focus on micro-
biome analysis, adopt GLMMs and allow covariates to be included
in the models. The main difference between MaAsLin2 and
LongDat is that MaAsLin2 does not explicitly report how the effect
of the time variable is affected by the presence of other covariates.
In addition, the ways of treating covariates in the two tools differ.
MaAsLin2 takes in all covariates along with the time variable into a
model at once, while LongDat loops over each covariate in parallel
models (see Methods). This distinction leads to significant differen-
ces in the results of analyzing longitudinal microbiome data with
many covariates, making LongDat more suitable when there are
multiple covariates (see Results). Aside from MaAsLin2, we also
compared LongDat with other R packages which allow covariates
to be included in the analysis, namely ANCOM (Mandal et al.,
2015), lgpr (Timonen et al., 2021) and ZIBR (Chen et al., 2016).
ANCOM is a microbiome-oriented tool that utilizes the compos-
itional method. Lgpr uses additive Gaussian process regression (a
Bayesian method) to achieve non-parametric modeling of longitu-
dinal data. ZIBR incorporates logistic models and zero-inflated Beta
regressions with random effects to test the effect of time on micro-
biome features. Since normalization and rarefaction of the microbial
count data might induce considerable changes to the analysis result,
we compared the performances of these tools when different nor-
malization or rarefaction techniques were applied, including total-
sum scaling (TSS), cumulative-sum scaling (CSS), trimmed mean of
M-values (TMM), geometric mean of pairwise ratios (GMPR), cen-
tered log-ratio (CLR), rarefaction (Chen et al., 2018; McKnight
et al., 2019; Mulè et al., 2022). TSS divides absolute abundance by
the total sum of read depth and converts it into relative abundance
ranging between 0 and 1. CSS is a quantile normalization method
that addresses the bias arising from TSS. The purpose of TMM is to
tackle the problem of composition bias and calculate normalization
factors that aid in comparing different libraries. GMPR computes
the ratio between each pair of values and then takes the geometric
mean of those ratios to normalize data. CLR transformation, com-
monly used for compositional data analysis, takes the logarithm of
the ratios of each component to the geometric mean of all compo-
nents, and then centers the resulting values around zero. Lastly, rar-
efaction randomly subsamples the data to obtain an equivalent
sequencing depth across all samples. Altogether, we assessed how
these tools performed with various normalization or rarefaction
techniques.

The real microbiome data used in this study for comparison are
from our previous study, which reported on a clinical cohort investi-
gating fasting effects on patients with metabolic syndrome (MetS)
(Maifeld et al., 2021). By reanalyzing this dataset in which MetS
patients benefit from a dietary intervention while medication dos-
ages were altered subsequently during the trial course as an indirect
effect following improved health, we demonstrated the need to re-
solve the time variable (proxy of dietary intervention) and covariate
effects in real data. The research question is whether the beneficial
outcome is a direct effect of the intervention or an indirect effect fol-
lowing the alteration of the medication regimen. Below we show
that LongDat could disentangle the intervention’s beneficial direct
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effect from the indirect effect of the changes in drug dosage. Finally,
to demonstrate LongDat’s flexibility to deal with other datatypes be-
sides microbiome data, we also applied LongDat to the immunome
data in the study described above.

2 Methods

2.1 The LongDat method
The LongDat pipeline comprises three major steps, namely the null
time model test, covariate model test and effect size calculation
(Fig. 1).

1. Null time model test. We test whether time associates signifi-

cantly with each feature (dependent variable), regardless of

covariates. LongDat incorporates several R packages specializ-

ing in GLMMs, such as MASS, lme4 and glmmTMB (Bates

et al., 2015; Brooks et al., 2017; Venables et al., 2002), provid-

ing high flexibility for input data types. A negative binomial

model is used to fit count data composed of integers (Ver Hoef

et al., 2007), such as numbers of sequencing reads. A beta model

is applied to proportion data (i.e. that range between 0 and 1)

(Ferrari et al., 2004). For binary data (consisting of either 0 or

1), binary logistic regression is performed (Nick et al., 2007).

For ordinal data (where the features correspond to ranks), a pro-

portional odds model is adopted (Liu, 2009). Finally, continuous

data are first normalized and then fitted by linear models. Each

model is a random intercept model with the sample donor origin

treated as a random factor to account for between-individual

variability and non-independence of samples from the same

donor. P-values are adjusted for multiple testing using the

Benjamini-Hochberg method or other approaches (Benjamini

et al., 1995).

2. Covariate model test. If covariates are present in a dataset, this

step identifies them and disentangles their effects from those of

variables of interest (here, the time variable). In the metadata,

covariates that exhibit significant association with each feature

(e.g. microbiome abundance) via non-parametric tests (i.e. the

Wilcoxon rank-sum, Kruskal-Wallis or Spearman’s correlation

test) are selected. And then, each selected covariate is included

one by one as a fixed effect, together with the time variable, in

GLMMs to examine whether or not the time associations can be

reduced to the influence of each covariate, reflecting the ‘vibra-

tion of effects’ (VoE) concept (Tierney et al., 2021). VoE is the

degree to which different combinations of independent variables

(e.g. adding covariates) change the outcome and assessed signifi-

cance of a model. The larger the VoE, the less robust the associ-

ation is between features and independent variables. That is, a

true association should remain significant across all model

configurations. Significant time-dependent features are subse-

quently classified as fulfilling conditions of ‘effect not reducible

to covariate’, ‘entangled with covariate’ or ‘effect reducible to

covariate’ according to these model tests. If the time variable

remains a significant predictor in all models, the feature will be

flagged as ‘effect not reducible to covariate’. If the time variable

loses significance but the covariate does show significance in any

of the models, the feature is marked as ‘effect reducible to cova-

riate’. If there is no clear covariate but at least one model in

which the covariate and time both failed to show significance,

the feature will be labeled ‘entangled with covariate’.

3. Effect size calculation. Non-parametric effect size calculations

are implemented. These are Spearman correlation for continuous

time variables (e.g. day) and Cliff’s delta for discrete time varia-

bles (e.g. before/after treatment) (Macbeth et al., 2010). Effect

size calculation is based on a naı̈ve association between the inde-

pendent variable and the feature, without being partitioned by

covariates. Therefore, to ensure LongDat calculates the correct

effect size, treatment effects should be monotonic (i.e. no change

in the direction of association) within the time interval of the in-

put data. If this is not the case, analyses should be done separate-

ly on time subranges of the data for which monotony holds.

All results of the steps mentioned above are summarized into
two tables. One table lists the significance estimate (q-values
adjusted for multiple testing) of time dependence and effect sizes
across all features. The other table lists relevant covariates with rela-
tive reducibility status for each of them.

2.2 LongDat package overview
LongDat is built with R (�4.0.0), and its dependencies include lme4
(�1.1-28) (Bates et al., 2015), glmmTMB (�1.1.3) (Brooks et al.,
2017), reshape2 (�1.4.4) (Wickham, 2007), emmeans (�1.7.3)
(Lenth, 2021), bestNormalize (�1.8.2) (Peterson, 2021), MASS
(�7.3-56) (Venables et al., 2002), tidyverse (�1.3.1) (Wickham
et al., 2019), effsize (�0.8.1) (Torchiano, 2020), patchwork
(�1.1.1) (Pedersen, 2020) and car (�3.0-12) (Fox et al., 2019).
There are four main functions that are the most relevant to users of
the LongDat package (Fig. 1). For more detailed tutorials for
LongDat, please visit GitHub (https://github.com/CCY-dev/
LongDat), or install LongDat and then access its vignettes with the
command ‘browseVignettes(“LongDat”)’.

2.3 Simulation of longitudinal data with

microbiomeDASim
Longitudinal data corresponding to microbiome taxonomic abun-
dance measurements from a cohort were simulated using
microbiomeDASim (Williams et al., 2019). MicrobiomeDASim is an
R package aimed at simulating longitudinal differential microbiome

Fig. 1. LongDat pipeline overview. Flowchart of LongDat showing the major functions (bold text in red) and steps. The function ‘make_master_table()’ creates a master table

that can be taken as input by joining metadata and feature tables provided by the user. The two functions ‘longdat_disc()’ and ‘longdat_cont()’ both perform covariate-sensitive

analyses. The main components of them are the null time model test, the effect size calculation and the covariate model test, applied to input master tables to perform covari-

ate-aware tests for the significance of the time variable (the proxy of treatment). The function ‘longdat_disc()’ is suitable for data where time is discrete (e.g. a before/after treat-

ment dataset), whereas ‘longdat_cont()’ is for data with time represented as a continuous variable (e.g. day). Finally, the function ‘cuneiform_plot()’ generates a summarizing

plot of the result table. For more detailed tutorials of LongDat application, please visit GitHub (https://github.com/CCY-dev/LongDat), or refer to its vignettes
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data. It allows the users to define sparsity, effect size, number of
samples and time points. Here, simulated data were generated from
a multivariate normal distribution, and the parameter encoding the
longitudinal dependency within individuals was a first-order autore-
gressive correlation structure.

1. Simulated data with no covariate. For each sample size (10, 20,

38, 75, 150 and 300) and effect size (Spearman’s rho median �
0.2 or 0.5 for time-varying features) combination, 100 simula-

tions were performed. Each simulated dataset contained 200 fea-

tures. Among them, 20 features changed over time/under

intervention, while the remaining 180 were sampled from the

same distribution across time points. Two time points were

simulated for each individual.

2. Simulated data with a single covariate for covariate effect ana-

lysis. A dummy variable correlating with the time variable was

manually added to the aforementioned simulated dataset (sam-

ple size ¼ 75, effect size median � 0.5). The dummy variable

was sampled to correlate with the time variable at a Spearman’s

rho of approximately 0.25, 0.5, 0.75 or 0.99. For each correl-

ation level, 100 simulations were performed. For the negative-

control data, we shuffled the time variable against all other vari-

ables randomly within each individual to wipe out the associ-

ation between the time variable and the features, and the

association between the time variable and the covariates.

3. Simulated data with multiple covariates. 1, 2, 4, 8 or 16 dummy

variables correlating with the time variable were manually added

to the abovementioned simulated dataset (sample size ¼ 75, ef-

fect size median � 0.5). The dummy variables were randomly

sampled to correlate with the time variable at a Spearman’s rho

of approximately 0.25, 0.5, 0.75 or 0.99. For each correlation

level, 100 simulations were performed. For the comparison be-

tween LongDat and Maaslin2, each dataset contained 200 fea-

tures (20 changed over time and 180 did not), and for each

combination of sample size, effect size and tool, 100 simulations

were performed. For the comparison between LongDat,

ANCOM, lpgr and ZIBR, each dataset contained 100 features

(10 changed over time and 90 did not), and 50 simulations were

performed for each combination of sample size, effect size and

tool. The reduction of feature number and simulation number

was due to the heavy computational resource ANCOM (large

memory), lgpr (long runtime) and ZIBR (long runtime) required.

2.4 Simulation of longitudinal data with SparseDOSSA2
Besides microbiomeDASim, another set of longitudinal microbial
data was simulated using SparseDOSSA2 (Ma et al., 2021).
SparseDOSSA2 is an R package specialized for simulating realistic
new microbiome data templated on real microbial communities. In
these longitudinal data simulations, SparseDOSSA2 adopts general-
ized linear models to create feature-covariate associations (here,
the time variable and other covariates) specified by users, and
the template was based on stool microbiome. We followed the tutor-
ial of SparseDOSSA2 (https://github.com/biobakery/biobakery/wiki/
SparseDOSSA2) as a complementary approach to the above to simu-
late longitudinal microbial data for benchmarking.

1. Simulated data with no covariate. For each sample size (10, 20,

38, 75, 150 and 300) and effect size (Spearman’s rho median

� 0.2 or 0.5 for time-varying features) combination, 100 simula-

tions were performed. Each simulated dataset contained 332 fea-

tures. Among them, 33 features were spiked (changed over time/

under intervention), while the remaining ones were sampled

from the same distribution across time points. Two time points

were simulated for each individual.

2. Simulated data with multiple covariates. 1, 4 or 16 dummy vari-

ables correlating with the time variable were manually added to

the abovementioned simulated dataset with 332 features and

varying sample sizes. The dummy variables were randomly

sampled to correlate with the time variable at a Spearman’s rho

of approximately 0.25, 0.5, 0.75 or 0.99. For each correlation

level, 100 simulations were performed.

3. Simulated negative control data. Simulations were done to gen-

erate 100 sets of data with two time points, 150 individuals, 332

microbes and zero effect size for all microbial features (i.e. no

spiked feature). Six versions of the data with different sequenc-

ing depths (the sum of microbial abundance of each feature)

were further generated, to test the impact of systematic effects

on sampling depth as may occur, for example, in clinical low

biomass datasets. Accordingly, for these simulated data, any sig-

nal detected will reflect such systematic bias only. In versions

one and two of the simulation, both of the total abundances at

the first and second time points of each individual were rarefied

to 50 000 and 1000, respectively. In version three, the total

abundances at the first time point were rarefied to 50 000 and

the second time point to 5000, while in version four, the total

abundances at the first time point were rarefied to 5000 and the

second time point to 50 000. In version five, the total abundan-

ces at the first time point were rarefied to 50 000 and the second

time point to 1000, while in version six, the total abundances at

the first time point were rarefied to 1000 and the second time

point to 50 000. When applying LongDat count mode (running

negative binomial models), versions three to six were further

rarefied to either 5000 or 1000 (as per the lowest sequencing

depth) at both time points, such that the sequencing depths are

the same between the two time points, reflecting how a user con-

cerned over unequal sampling depths would preprocess the data

for this method.

2.5 Normalization of the data simulated by

SparseDOSSA2
Several R packages were used to normalize or transform the raw
simulated microbial features from SparseDOSSA2, TSS, rarefaction
(Saary et al., 2017), CLR (van den Boogaart et al., 2008), GMPR
(Chen et al., 2018), TMM (Robinson et al., 2010) and CSS
(Metwally et al., 2018). The combinations of the tools (LongDat,
MaAsLin2, lgpr, ZIBR) and the normalization methods are limited
by each tool’s requirement of the input format.

2.6 Running LongDat on simulated longitudinal data
The function ‘longdat_cont()’ in the LongDat package was used for
analyzing simulated longitudinal data, where the time between sam-
plings was treated as a continuous variable and the data type as
count data. The R package peakRAM was adopted to record run-
ning time and memory usage (Quinn, 2017). Feature associations
with Benjamini-Hochberg (BH)-corrected null-model q-value < 0.1
and BH-corrected post-hoc test q-values < 0.05 were considered sig-
nificant. LongDat was run under CentOS Linux 7 and R version
4.1.1 with 8 GB of memory allocated.

2.7 Running MaAsLin2 on simulated longitudinal data
The function ‘Maaslin2()’ in the MaAsLin2 package was used for
analyzing simulated longitudinal data, where the time between sam-
plings was treated as a continuous variable, and the mode was set as
‘NEGBIN’ for negative binomial model mode and ‘LM’ for linear
model mode (Mallick et al. 2021). Since MaAsLin2 lacks a covariate
model test component that corresponds to the second part of the
LongDat pipeline, we ran MaAsLin2 with two separate runs (with
and without simulated covariate included as a fixed effect,
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respectively) for each simulated data with covariates, such that the
MaAsLin2 result is comparable with that of LongDat. Features with
BH-corrected q-value < 0.1 were considered significant. MaAsLin2

was run under CentOS Linux 7 and R version 4.1.1 with 8 GB of
memory allocated.

2.8 Running ANCOM on simulated longitudinal data
The function ANCOM in the ancom. R Rscript (https://github.com/
FrederickHuangLin/ANCOM-Code-Archive) was used for analyz-
ing simulated longitudinal data. The time between samplings was

treated as a factor, while the random formula was set as sample ID,
and the adjust formula included all the present covariates. Features
were considered significant if their W statistics passed the cutoff of

the number of taxa multiplied by 0.7. ANCOM was run under
CentOS Linux 7 and R version 4.1.1 with 350 GB of memory

allocated.

2.9 Running ZIBR on simulated longitudinal data
The function ‘zibr()’ in the ZIBR package (Chen et al., 2016) was
used for analyzing simulated longitudinal data, where the time be-

tween samplings was treated as a continuous variable. All covariates
in the data were included for analyses, while subjects and time

points were specified. Features with joint P values corrected by BH
< 0.1 were considered significant. ZIBR was run under CentOS
Linux 7 and R version 4.1.1 with 8 GB of memory allocated.

2.10 Running lgpr on simulated longitudinal data
The function ‘lgp()’ in the lgpr package (Timonen et al., 2021) was
used for analyzing simulated longitudinal data, where the time be-
tween samplings was treated as a continuous variable. Sample ID

was set as the random effect, and all covariates in the data were
included for analyses. The number of drawing samples from a Stan

model was 100, and the number of Markov chains was 4. If the time
variable was selected using a 95% threshold for the proportion of
total explained variance, then the feature was considered significant.

Lgpr was run under CentOS Linux 7 and R version 4.1.1 with 8 GB
of memory allocated.

2.11 Semi-synthetic evaluation of metagenomic data:

Fasting study
To perform a semi-synthetic evaluation based on real microbiome
data, we selected the first and second time points from the stool

microbiome data, using bacterial genus abundances. Next, we ran-
domly shuffled the time variable against all other variables for each
individual to eliminate any associations between the time variable

and the microbes, as well as between the time variable and the cova-
riates, such that no real signal of the intervention or of the passage

of time should remain. Data were normalized or rarefied as the
methods in the ‘normalization of the data simulated by
SparseDOSSA2’ section.

2.12 Evaluation of real metagenomic and immunome

data: Fasting study
The fasting study reanalyzed here reported on a clinical cohort

investigating fasting effects on patients with MetS (Maifeld et al.,
2021). This study has two arms, one being the fasting arm and the
other being the DASH (Dietary Approaches to Stop Hypertension,

DASH) arm. MetS patients in the fasting arm first underwent seven-
day fasting, which consists of two days in which the patients took in

a maximum of 1200 kcal/day and five days in which the patients
took in 300–350 kcal/day. And then, there was a three-month re-
feeding stage where MetS patients were asked to follow the DASH

diet. Microbial abundance at the species level and the immunome
data of the fasting arm were reanalyzed to demonstrate the value
and performance of LongDat.

3 Results

3.1 LongDat outperforms MaAsLin2 when there are

multiple covariates in the simulated data
First, we compared the performance of LongDat with its closest
counterpart up to date, MaAsLin2, by running them on
microbiomeDASim-simulated longitudinal datasets templated on
microbiome data from cohort studies without covariates. The de-
fault setting of MaAsLin2 was doing total-sum scaling (TSS) that
converted the data into relative abundance and then fitting linear
model (LM). However, this default setting performs worse than
using the negative binomial model in terms of accuracy, true positive
rate (TPR), false discovery rate (FDR) and Matthews correlation co-
efficient (MCC) (Supplementary Fig. S1). Therefore, we focused on
the MaAsLin2 negative binomial model mode results instead of its
default setting. Both LongDat and MaAsLin2 use negative binomial
models to fit the data. LongDat and MaAsLin2 have comparable ac-
curacy ranging between 0.9 and 1 (Fig. 2). While MaAsLin2
achieves a higher TPR when sample sizes are small, this comes at the
cost of a higher FDR. In contrast, the FDR median of LongDat was
controlled at zero across all tested effects and sample sizes, while
TPR increases with sample size (Supplementary Fig. S2). LongDat
and MaAsLin2 have comparable memory footprints, whereas
LongDat has a longer runtime (Fig. 3A and B) due to the additional
covariate model test, which MaAsLin2 does not possess. Although
MaAsLin2 and LongDat perform similarly on simulated data with-
out covariates, their difference in performance rises as the number
of covariates increases in the simulated data (Supplementary Figs
S3A, B, S4A and B). The performance of LongDat remains stable
across all numbers of covariates. In contrast, FDR escalates and
TPR diminishes in MaAsLin2 as the number of covariates increases,
especially when more than four covariates are present.

Apart from evaluating LongDat and MaAsLin2 using
microbiomeDASim-simulated data, we utilized SparseDOSSA2, an-
other microbiome data simulation tool, to validate that the bench-
marking outcome of LongDat is consistent between different
simulation tools. Here, we assessed the performance of LongDat
and MaAsLin2 using various modes, such as linear or negative bino-
mial models, on simulated data that was either raw, normalized or
rarefied. The benchmarking of performance and requirement of
computational resources on SparseDOSSA2-simulated data with 0
(Supplementary Fig. S5A and B), 1 (Supplementary Fig. S6A and B),
4 (Fig. S7 and S7B) and 16 covariates (Supplementary Fig. S8A and
B) are presented. Within a broader perspective, these results repro-
duce our findings in the benchmarking using microbiomeDASim-
simulated data, where MaAsLin2 and LongDat perform similarly on
simulated data in the absence of covariates. However, as the number
of covariates increases, the performance gap between the two meth-
ods becomes more evident. The performance of LongDat remains
stable across all numbers of covariates while FDR surges and TPR
diminishes in MaAsLin2, particularly when more than four covari-
ates are present. Upon closer examination of each normalization
method, MaAsLin2’s negative binomial model mode generally pro-
duces higher TPR but also higher FDR than its linear model mode
(except when run on CLR-transformed data, which has a high
FDR), thus similar accuracy and MCC. On the other hand, LongDat
produces comparable outcomes when either linear or negative bino-
mial models are run on data processed through different normaliza-
tion or rarefaction methods (except for CLR paired with linear
model, which performs the worst). Specifically, we believe rarefac-
tion is necessary for some situations, although the pair of negative
binomial model and rarefied count data has higher FDR than the
pair of linear model TSS-normalized data. For example, we simu-
lated longitudinal negative control data with two time points in
which the sequencing depths varied systematically between the two
points. In this scenario, the negative binomial model applied to rare-
fied count data maintains a near-zero false positive rate (FPR), while
the linear model applied to non-rarefied TSS-normalized data results
in a high FPR when the depth variation between the two time points
was large (Supplementary Fig. S9). Therefore, we conclude that the
use of linear models to analyze TSS-normalized data is reasonable

LongDat: an R package for covariate-sensitive longitudinal analysis of high-dimensional data 5

https://github.com/FrederickHuangLin/ANCOM-Code-Archive
https://github.com/FrederickHuangLin/ANCOM-Code-Archive
https://academic.oup.com/bioinformaticsadvancesarticle-lookup/doi/10.1093/bioadv/vbad063#supplementary-data
https://academic.oup.com/bioinformaticsadvancesarticle-lookup/doi/10.1093/bioadv/vbad063#supplementary-data
https://academic.oup.com/bioinformaticsadvancesarticle-lookup/doi/10.1093/bioadv/vbad063#supplementary-data
https://academic.oup.com/bioinformaticsadvancesarticle-lookup/doi/10.1093/bioadv/vbad063#supplementary-data
https://academic.oup.com/bioinformaticsadvancesarticle-lookup/doi/10.1093/bioadv/vbad063#supplementary-data
https://academic.oup.com/bioinformaticsadvancesarticle-lookup/doi/10.1093/bioadv/vbad063#supplementary-data
https://academic.oup.com/bioinformaticsadvancesarticle-lookup/doi/10.1093/bioadv/vbad063#supplementary-data
https://academic.oup.com/bioinformaticsadvancesarticle-lookup/doi/10.1093/bioadv/vbad063#supplementary-data
https://academic.oup.com/bioinformaticsadvancesarticle-lookup/doi/10.1093/bioadv/vbad063#supplementary-data
https://academic.oup.com/bioinformaticsadvancesarticle-lookup/doi/10.1093/bioadv/vbad063#supplementary-data
https://academic.oup.com/bioinformaticsadvancesarticle-lookup/doi/10.1093/bioadv/vbad063#supplementary-data
https://academic.oup.com/bioinformaticsadvancesarticle-lookup/doi/10.1093/bioadv/vbad063#supplementary-data
https://academic.oup.com/bioinformaticsadvancesarticle-lookup/doi/10.1093/bioadv/vbad063#supplementary-data
https://academic.oup.com/bioinformaticsadvancesarticle-lookup/doi/10.1093/bioadv/vbad063#supplementary-data


Fig. 2. Comparison of LongDat and MaAsLin2 (using the negative binomial model mode) on performance and power applied to microbiomeDASim-simulated longitudinal

data. The box plots show the accuracy, true positive rate (TPR), false discovery rate (FDR) and Matthews correlation coefficient (MCC). The upper panel features a low effect

size (median � 0.2) while the lower panel features a medium effect size (median � 0.5). For each combination of sample size, effect size and tool, 100 simulations were

performed

Fig. 3. Comparison of LongDat and MaAsLin2 (using the negative binomial model mode) on computational resource profiling applied to microbiomeDASim-simulated longi-

tudinal data. Runtime (A) and total used memory (B) required by LongDat and MaAsLin2 when run on simulated data with 200 features and various sample sizes. For each

sample size, 200 simulations were performed. 1 mebibyte (MiB) � 1.05 megabyte (MB)
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only when there is no systematic bias in sequencing depth between
groups or time points; otherwise, the analysis may result in many
false positives. There is no method suitable for all scenarios; instead,
the selection of an appropriate approach highly depends on the
data’s nature.

3.2 LongDat outperforms ANCOM in computational

efficiency and outperforms lgpr and ZIBR in overall

performance when tested on simulated data
In addition to MaAsLin2, we also compared LongDat with several
other tools capable of analyzing longitudinal microbiome data,
including ANCOM, lgpr and ZIBR, by examining their performan-
ces when multiple covariates are present (Supplementary Figs S10A,
B, S11A and B). Here the simulated data were generated by
microbiomeDASim. The results show that the FDR of ANCOM
remains around zero as LongDat does and has comparable accuracy,
TPR and MCC when there are less than four covariates, whereas
TPR dwindles as the number of covariates increases. The major
drawback of ANCOM is that it needs large memory (requires
350 GB to be allocated or else errors would occur and halt) to run
through each simulated dataset (here each containing 100 features),
making it challenging to run ANCOM on a large scale. ZIBR does
not perform well because its FDR is high, and its accuracy, TPR and
MCC are low across all numbers of covariates. Moreover, ZIBR
needs much time to run through each dataset with large sample sizes
(e.g. around 55 h to finish a run with 300 samples and 16 covari-
ates). Lastly, while lgpr has better TPR than LongDat when the sam-
ple size is small (�38), it simultaneously has a high level of FDR.
The primary shortcoming of lgpr is that its run time (e.g. around
65 h with 150 samples and 1 covariate) is substantially longer than
all other tools, and it could not finish any run within the time limit
(96 h) of the high-performance computing cluster we used. This
impedes lgpr from being widely applied to microbiome data in a
common research environment. From these results, we concluded
that LongDat is the ideal tool for data with multiple covariates since
it has decent performance and low computational resource require-
ments (Supplementary Table S1).

As we did with the comparison between LongDat and
MaAsLin2, we employed SparseDOSSA2 to assess the performance
of LongDat, lgpr and ZIBR, in addition to the microbiomeDASim-
simulated data comparison. ANCOM’s high memory requirement
(>350 GB) for SparseDOSSA2-simulated data analysis caused it to
fail to run on the high-performance computing cluster we utilized,
leading to its exclusion from the analysis here. The assessment of
computational resource requirements and performance benchmark-
ing using SparseDOSSA2-simulated data with varying numbers of
covariates (0, 1, 4 and 16) is depicted in Supplementary Figures
S12A, B, S13A, B, S14A, B, S15A and B, respectively. These findings
confirm our earlier observations based on microbiomeDASim-
simulated data. ZIBR, which operates on TSS-normalized data, has
a high FDR and takes a long time to execute. lgpr performs better
than LongDat in terms of TPR for small sample sizes, regardless of
normalization or rarefaction, but it also has a high FDR. The pri-
mary disadvantage of lgpr is that it takes significantly longer to run
than any of the other tools, making it not able to complete any run
within the time limit (96 h) of the high-performance computing clus-
ter we used when the sample size is relatively large. The performan-
ces of both ZIBR and lgpr decline as the number of covariates
increases. In contrast, LongDat maintains decent performance and
computational resource requirements regardless of the number of
covariates.

3.3 The performance of LongDat was evaluated using

semi-synthetic data, demonstrating a low false positive

rate
To estimate the performance of LongDat based on data aside from
simulated data (microbiomeDASim and SparseDOSSA2), we con-
ducted a semi-synthetic evaluation as well. In this evaluation, we
shuffled the time variable against all other variables in the fasting

microbiome data (at the genus level). Next, we compared the ratio
of significant associations between unshuffled and shuffled data.
The result of LongDat indicates few to no false positives in the
shuffled data in all modes, regardless of whether covariates were
included or excluded in the analysis (Supplementary Fig. S16).
Conversely, MaAsLin2, lgpr and ZIBR were all influenced by the
presence of covariates in their analyses. MaAsLin2 identifies fewer
significant associations in the unshuffled data and more false posi-
tives in the shuffled data than LongDat. ZIBR and lgpr result in
much higher false positive rates than LongDat. Consistent with prior
analyses, we confirmed that LongDat is robust against false positive
findings in both simulated and semi-synthetic evaluations.

3.4 LongDat provides a more smooth and more efficient

workflow than MaAsLin2 despite similar performance
Since MaAsLin2 is the only alternate tool where memory and run-
time scaling do not preclude its application to our full benchmark,
the analyses below focus on the comparison between MaAsLin2 and
LongDat. To compare the performance of LongDat and MaAsLin2
on detecting covariate effects, we added a dummy variable correlat-
ing with the time variable and tested whether this dummy variable,
when instead used as the time input variable, was wrongly reported
as exhibiting a relationship to the simulated feature independent of
time (Fig. 4A and B). LongDat requires only a single run for this
test. In contrast, MaAsLin2 lacks a covariate model test component
corresponding to the LongDat pipeline’s second part, so we ran
MaAsLin2 in two separate runs (with and without covariate
included in the model, respectively) to generate comparable results
with LongDat. We found that LongDat and MaAsLin2 achieved
similar performance, with the median success rate for both tools in
correctly concluding covariate effects remaining at �0.95 (as per
FDR threshold/family-wise error rate) even when the dummy and
time variables were strongly correlated. As a negative control, we
tested how LongDat performs when both the features and covariates
are not associated with time by shuffling the time variable randomly
within each individual (Supplementary Fig. S17). Here we tested if
the shuffled time variable was reported as significant. We found no
false positive occurred across all correlation degrees (the correlation
between the time variable and covariate was, in fact, destroyed be-
cause time was shuffled). These results demonstrate that both
LongDat and MaAsLin2 perform well in accuracy and correctly
flagging covariates.

In the simulated data, with rho being as high as 0.99 between the
dummy and time variables, we demonstrated that LongDat could
distinguish data generated from different underlying ground truths
even when there is substantial confounding. It is worth noting that
LongDat does not label the dummy variable as ‘non-significant’ (i.e.
having no relationship with the feature at all) but rather as ‘redu-
cible to covariate’ or ‘entangled with covariate’ when the correlation
degree is high. These two labels do not signify that the dummy vari-
able is irrelevant to the features but instead intend to communicate
that its association with the features might be from an indirect asso-
ciation. In real data, however, it will be more challenging to discern
between the dummy and the time variables if they are highly corre-
lated. In that case, more investigation or experiments are required to
confirm which variable has direct versus indirect influence, necessi-
tating more careful inspection and domain knowledge before robust
conclusions can be drawn.

3.5 LongDat performs more robustly than MaAsLin2 in

real data with multiple covariates
Subsequently, to compare the performance of LongDat and
MaAsLin2 on real data, we reanalyzed gut microbial data from a
clinical cohort investigating fasting effects on patients with MetS
(Maifeld et al., 2021). One aim of the study was to investigate how
fasting affects blood pressure while controlling for changes in medi-
cation. When no covariates (i.e. medication variables) were included
in the MaAsLin2 analysis, LongDat and MaAsLin2 each identified
27 microbial species that were significantly altered in abundance
throughout the intervention, with 19 of them being consistent
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between the two (Fig. 5A and B; Supplementary Tables S2, S3 and
S4). However, when covariates were included, only two species
were reported significantly different in abundance by MaAsLin2
(Supplementary Table S5). This is because models fitting most of the
significantly affected species returned errors (showed NA in P-values
and standard errors) when multiple fixed effects were included.
LongDat avoids this problem by having only one covariate in a
model at one time and loops over all of them. Thus, LongDat per-
forms more robustly than MaAsLin2 for this type of data when mul-
tiple covariates are present in the dataset, but at the cost of higher
runtime.

3.6 LongDat can be applied to other data types, such as

immunome data
Finally, to demonstrate that LongDat can run on other data types
besides microbiome data, we applied LongDat to the immunome
data from the same fasting study mentioned above (Supplementary
Figs S18 and S19; Supplementary Tables S6–S9). The immunome
data consist of proportion (percentage) and non-proportion (non-
percentage) data, so they were analyzed by LongDat proportion
mode and measurement mode, respectively. These results show that
LongDat can tackle other types of data in addition to microbiome
counts.

4 Discussion

We introduce LongDat, an R package that analyzes longitudinal
data for intervention (or treatment) effects while accounting for
covariates throughout the intervention. LongDat was developed and
tested as a microbiome analysis tool, and we made it able to work
on other high-dimensional data types by using flexible and robust
approaches, chiefly GLMMs and non-parametric tests. The resulting
output allows convenient downstream analysis and interpretation.

Instead of proposing a new theory or mathematical tool to deal with
the problems of high-dimensional data, multiple covariates and dif-
ferent data types (distribution), we packaged the GLMMs and non-
parametric tests together to automate the process of analyzing high-
dimensional data. LongDat relieves the users of the burden of having
to program the R linear modeling functions from scratch. With the
standardized output, including effect sizes reported in Cliff’s delta,
and the visualization of the significances and influences of covariates
for each feature, it is easier for biologists to integrate, compare and
visualize their findings. Though here we do not present a theoretical
advance, we believe LongDat is a practical and convenient modeling
tool immediately applicable to the scale of problems faced, e.g. in
cohort- or intervention-centered systems medical research, and
therefore promotes high-dimensional data analysis in the biomedical
research field. One limitation of LongDat is that it reports standar-
dized non-parametric effect sizes of discrete (Cliff’s delta) or con-
tinuous (Spearman’s rho) variables, both of which are calculated
independently of other covariates. Thus, when covariates are present
in the data, the reported effect size is not a perfect estimate as it does
not incorporate covariates for calculation. We currently are not
aware of any partial standardized directional effect size metrics that
would let us circumvent this obstacle, but we are actively searching
for them to include in later versions of LongDat.

By conducting simulations using two independent tools, namely
microbiomeDASim and SparseDOSSA2, we confirm that the state-
ments below are consistent across benchmarking platforms. The
advantages of LongDat over the most similar existing tool,
MaAsLin2, include lower FDR, the ability to explicitly report cova-
riate effects and their effect sizes, and thus a more convenient func-
tionality in reporting and describing covariates for each feature. The
latter, which reports the influence of covariates on the tested vari-
able, is the exclusive feature of LongDat that no other tool possesses
to the best of our knowledge. The other important feature of
LongDat is that it can handle multiple covariates at once and main-
tain stable performance. This feature is achieved by having only one

Fig. 4. Comparison of LongDat and MaAsLin2 on covariate-sensitive analysis applied to microbiomeDASim-simulated longitudinal data. To compare the ability of LongDat

and MaAsLin2 on detecting covariates, a dummy variable was added to the simulated data and was tested for its effect. ‘Success’ is defined as a tool indicating the dummy vari-

able as either ‘non-significant’, ‘reducible to covariate’ or ‘entangled with covariate’ (time is the covariate here), whereas ‘failure’ occurs when a tool wrongly concludes that

the dummy variable is significant and the time variable is not. (A) The box plot shows the success rate of using LongDat and MaAsLin2 to filter out and conclude covariate

effects at different degrees of correlation between the dummy variable and time. (B) The bar chart illustrates the proportion of success and failure across correlation degrees.

For each degree of correlation, 100 simulations were done
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covariate in a model at one time and looping over them instead of
including all covariates at once, which forms a lengthy formula.
This approach grants LongDat robustness when facing multiple
covariates, but at the cost of higher runtime. By contrast, the per-
formance of MaAsLin2 is highly dependent on the number of cova-
riates in the data. While MaAsLin2 and LongDat have comparable
accuracy when there are no covariates, we observe a trade-off be-
tween TPR and FDR in them. Hence, MaAsLin2 and LongDat are
suitable in different scenarios depending on the priorities of the

application. For instance, when a lower FDR is more emphasized in
an analysis, or when there are many covariates in a study, LongDat
will be a better choice. In contrast, if a higher TPR and power are
prioritized, and no covariate is in the data, then MaAsLin2 is a good
option.

In addition to MaAsLin2, we also compared LongDat with three
other tools: ANCOM, lgpr and ZIBR. While the performance of
ANCOM is fairly good when the number of covariates is low,
ANCOM suffers from the need for huge memory to run. On the

Fig. 5. Comparison of LongDat and MaAsLin2 on analyzing real microbiome data. (A) The cuneiform plot on the left panel shows the gut microbes (species level) that display

significant differences in their abundance in at least one of the time intervals in the assessed study (Maifeld et al., 2021). In that study, metabolic disease patients underwent

7-day fasting and then a 3-month re-feeding period. In the plot, ‘fasting’ indicates the time elapsed from Day 0 to 7, while ‘refeeding’ indicates Day 7 to 90, and ‘study’ indi-

cates the overall duration from Day 0 to 90. Bold species are the ones that appeared significant in both LongDat and MaAsLin2 results. The right panel reports the covariate

status of each microbe as follows. OK_nc: OK and no covariate. Time/intervention has significant effect and there is no covariate. OK_nrc: OK and not reducible to any cova-

riate. Time/intervention has significant effect, and its effect is independent of all tracked covariates. RC: Effect reducible to covariate. Time/intervention when tested on its

own achieves significance; however, its effect is better explained by that of a covariate (whereas the inverse is not true). Microbes with BH-corrected model test q-values < 0.1

and BH-corrected post-hoc test q-values < 0.05 are regarded as significant. (B) The Venn diagram shows the significant species found by LongDat and MaAsLin2. Numbers in-

dicate counts and percentages of each category. Note that for MaAsLin2, covariates were not included in the analyses here. When covariates were included in MaAsLin2 ana-

lysis, only 2 of the species showed significance here remained significant, while all others returned error due to NA in P-values and standard errors (Supplementary Table S5)
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other hand, the performances of both lgpr and ZIBR are highly de-
pendent on the number of covariates, and both tools suffer from
long runtime. Furthermore, ANCOM and lgpr rely on arbitrary cut-
offs (W statistics and the proportion of total explained variance, re-
spectively), which might pose inconvenience and confusion to the
users. Despite the unfavorable ZIBR results shown here, we believe
in the potential of the zero-inflated models (represented by ZIBR
here) since they characterize the distribution of highly sparse micro-
biome data well. We will keep track of its development (or other
related zero-inflated models) and plan to integrate it into the future
version of LongDat.

To investigate the impact of normalization and rarefaction on
analysis results, we conducted benchmarking tests on each tool
using different preprocessing methods. Interestingly, we find that
LongDat and MaAsLin2 have similar overall performance (based on
accuracy and MCC) when analyzing data without any covariates, ir-
respective of the modes (negative binomial or linear model) and pre-
processing methods (except for the CLR transformation). However,
the discrepancy in the performance of LongDat and MaAsLin2
widens as the number of covariates increases. While all modes of
MaAsLin2 struggle to maintain high true positive rates and low false
discovery rates with four or more covariates, LongDat remains sta-
ble and performs well across all scenarios. Meanwhile, ZIBR and
lgpr did not excel in this round of benchmarking test because of
high FDR and extremely long runtime that impedes the users from
applying them effectively. Furthermore, by simulating datasets with
high variation in sequencing depth between time points (or groups),
we underscored that the choice of normalization or rarefaction tech-
nique should be tailored to the specific characteristics of the data. In
the example above, rarefaction is required to remove the systematic
bias between time points, which leads to false positive findings.
Ultimately, we believe that there is no one-size-fits-all approach to
data preprocessing and analysis, and researchers should carefully se-
lect appropriate protocols according to the unique features of their
data.

In conclusion, our comprehensive benchmarking, including inde-
pendent simulation tools, semi-synthetic and real data evaluations,
demonstrates that the LongDat package we present here is a compu-
tationally efficient and low-memory-cost analysis tool for longitu-
dinal data with multiple covariates, and facilitates robust biomarker
searches in high-dimensional datasets.
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