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ABSTRACT 1 

Cells live and interact in three-dimensional (3D) cellular neighborhoods. However, histology 2 

and spatial omics methods mostly focus on 2D tissue sections. Here we present a 3D spatial 3 

atlas of a routine clinical sample, an aggressive human lung carcinoma, by combining in situ 4 

quantification of 960 cancer-related genes across ~340,000 cells with measurements of tissue-5 

mechanical components. 3D cellular neighborhoods subdivided the tumor microenvironment 6 

into tumor, stromal, and immune multicellular niches. Interestingly, pseudotime analysis 7 

suggested that pro-invasive epithelial-to-mesenchymal transition (EMT), detected in stroma-8 

infiltrating tumor cells, already occurred in one region at the tumor surface. There, 9 

myofibroblasts and macrophages specifically co-localized with pre-invasive tumor cells and 10 

their multicellular molecular signature identified patients with shorter survival. Moreover, 11 

cytotoxic T-cells did not infiltrate this niche but colocalized with inhibitory dendritic and 12 

regulatory T cells. Importantly, systematic scoring of cell-cell interactions in 3D 13 

neighborhoods highlighted niche-specific signaling networks accompanying tumor invasion 14 

and immune escape. Compared to 2D, 3D neighborhoods improved the characterization of 15 

immune niches by identifying dendritic niches, capturing the 3D extension of T-cell niches 16 

and boosting the quantification of niche-specific cell-cell interactions, including druggable 17 

immune checkpoints. We believe that 3D communication analyses can improve the design of 18 

clinical studies investigating personalized, combination immuno-oncology therapies.  19 
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INTRODUCTION  1 

Cells build three-dimensional (3D) tissues to perform specific functions. Mechanical cues and 2 

molecular signaling regulating tissue development and function operate in 3D between 3 

neighboring cells. The comprehensive characterization of 3D cellular neighborhoods in terms 4 

of cellular composition, molecular states, mechanical properties and ligand-receptor 5 

interactions is thus central to understand tissue function in health and disease. While light 6 

microscopy [1] and hematoxylin and eosin (H&E) staining [2] enabled the morphological 7 

characterization of tissue organization in 3D, the molecular exploration of 3D cellular 8 

neighborhoods is still in its infancy. 9 

Recent developments in spatial omics methods profoundly changed our ability to characterize 10 

tissue molecular properties [3]. While STARmap [4] and DISCO-MS [5] enabled the 3D 11 

profiling of intact mouse tissues, ad hoc tissue processing hinders their application to 12 

routinely collected fresh-frozen (FF) and formalin-fixed paraffin-embedded (FFPE) clinical 13 

samples. Therefore, the initial molecular studies leveraged the computational registration of 14 

sequential 2D sections for the in silico reconstruction of tissue architecture in 3D. These 15 

included the imaging mass cytometry (IMC) study of breast cancer (40 proteins in 3 samples) 16 

[6] and the multiplexed immunofluorescence (IF) study of colorectal cancer (32 proteins in 1 17 

sample) [7]. While enabling single cell-resolved tissue profiling, these methods are limited in 18 

plexity, only measuring tens of proteins at the time. Conversely, sequencing-based spatial 19 

transcriptomics methods, such as Slide-seq [8], ST [9] (now Visium) and Stereo-seq [10], 20 

which rely on the capture of polyadenylated transcripts on spatially barcoded regions, enabled 21 

the unbiased, genome-wide characterization of 3D gene expression patterns in the mouse 22 

hippocampus (10 µm beads) [8], rheumatoid arthritis synovium (100 µm spots) [11] and 23 

developing Drosophila embryo (10 µm x 10µm or 25 µm x25 µm bins) [12]. However, 24 

intrinsic resolution limits and difficulties in assigning regions to single cells prevented single-25 

cell resolved analyses. Furthermore, polyA-based methods require intact RNA molecules (as 26 

in FF tissues) for efficient transcript capture, thus preventing their application to fragmented 27 

RNA typical of FFPE clinical samples. On the other hand, high-plex imaging-based spatial 28 

transcriptomic methods, such as MERFISH [13] and CosMx [14], use probes to recognize 29 

their targets with single molecule resolution, are compatible with both FF and FFPE tissues 30 

but have not yet been used for the 3D reconstruction of clinical specimens. 31 
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Here we present the 3D, high-plex and single-cell resolved molecular atlas of a human tissue, 1 

enabling the reconstruction, multimodal profiling and systematic exploration of 3D cellular 2 

neighborhoods using CosMx. For this proof-of-principle study, we focused on an aggressive, 3 

early-stage non-small cell lung cancer (NSCLC) sample and investigated the ability of 3D 4 

neighborhoods to identify tumor invasion and immune escape mechanisms active in the 5 

patient under study. Despite being a paradigm of precision medicine with an arsenal of 6 

molecularly targeted therapies and immunotherapy agents [15], NSCLC remains the main 7 

cause of cancer-related death [16]. Furthermore, only 20% of NSCLC patients respond to 8 

immunotherapy [17] and up to 30% of treated patients suffer from immune-related adverse 9 

events [18]. Therefore, the identification of personalized immunotherapy biomarkers 10 

represents an urgent unmet clinical need to maximize therapeutic efficacy and limit toxicity in 11 

NSCLC.  12 

As DNA sequencing guides the administration of targeted therapies through the detection of 13 

druggable mutations [19], spatial omics methods hold great promise for the identification of 14 

immune escape mechanisms active in individual patients, which could serve as personalized 15 

(immune)therapy biomarkers. Here we showcase the power of high-plex, single cell resolved, 16 

molecular histology to simultaneously profile cell types, molecular states, and receptor-ligand 17 

interactions underlying tumor invasion and immune escape. Importantly, we demonstrate how 18 

3D neighborhoods improved the identification of tumor immune escape mechanisms, 19 

compared to their 2D counterparts.  20 

RESULTS 21 

1.  Multimodal study of one aggressive NSCLC tumor in 3D 22 

For this proof-of-principle study, we selected an early-stage NSCLC patient, which 23 

demonstrated rapid disease progression and aggressive tumor biology (Ext data fig 1a). To 24 

reconstruct 3D cellular neighborhoods, we cut 34 consecutive 5 µm-thick tissue sections from 25 

a routinely collected, archival FFPE tumor block. We leveraged deep-learning based 26 

classification of tumor, stromal and normal lung-resident compartments in one whole-slide 27 

H&E image to select one 16 mm2 wide region of interest (ROI) featuring the copresence of 28 

both the primary tumor and cancer-associated stroma for spatial transcriptomics investigation 29 

(Ext data fig 1b). Furthermore, we reasoned that the presence of small-caliber airways 30 
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crossing the section planes would enable the assessment of section alignments in 3D. We then 1 

collected single-cell resolved spatial transcriptomics data from every 6th section (30µm 2 

section-to-section interval) and profiled intervening sections with complementary modalities, 3 

enabling the integrative analysis of tissue morphology, ECM composition, protein markers 4 

and gene expression (Fig 1a). 5 

2. Molecular histology of the tumor microenvironment at single-cell resolution 6 

To gain insights into the spatial organization and crosstalk between tumor, stromal and 7 

immune populations, we performed 1000-plex RNA in situ hybridization (ISH) with CosMx 8 

Spatial Molecular Imager and leveraged deep-learning based cell segmentation of IF staining 9 

of nuclei and plasma membranes to obtain single cell gene expression profiles (Methods). We 10 

profiled 960 cancer-related genes allowing the simultaneous characterization of cellular 11 

identities (211 genes), transcriptomic states (268 genes), and cell-to-cell communication 12 

events (517 genes) in the TME [14] (Supplementary table 1).  13 

We imaged a total of 155,055,865 transcripts distributed in six sequential, non-consecutive 14 

ROIs (Ext data fig 1c). 20 negative probes (i.e. targeting sequences not present in human 15 

tissues) composed only 0.27% of the total detected molecules, demonstrating highly specific 16 

in-situ detection of target genes. To further assess data quality, we confirmed the 17 

colocalization of pancytokeratin (panCK) staining and ISH signal for KRT19 transcripts in the 18 

same section (Fig 1b). 74.1% of the detected transcripts were assigned to 340,644 segmented 19 

cells (101 median genes and 198 median transcripts/cell). Near-perfect correlations of total 20 

transcript counts confirmed robust gene expression profiling across sections (Ext data fig 21 

1d). Furthermore, hierarchical clustering recapitulated the spatial arrangement as sections 22 

closer in the z-axis showed slightly higher correlations than distant ones. 23 

Through unsupervised clustering of gene expression in segmented cells (Ext data fig 1e), we 24 

identified 18 cell types (Fig 1c) based on the expression of canonical marker genes (Ext data 25 

fig 1f) and IF positivity to panCK staining (Ext data fig 1g). In line with previous reports 26 

[20], tumor cells were characterized by a larger cell size and higher transcript counts (Ext 27 

data fig 1g). Transferring cell type annotations back to their tissue positions, we observed 28 

their correspondence with the spatial patterns of epithelial, stromal and immune populations 29 

observed using routine histology (Fig 1d, Ext data fig 1h-i). Comparing gene expression of 30 
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segmented cells with published single-cell RNA sequencing atlases, we confirmed the 1 

agreement of our cell type annotations with healthy lung [21] and NSCLC atlases [22] (Fig 2 

1e). 3 

In summary, we generated a high-quality, single cell-resolved molecular atlas of the TME, 4 

including more than 340,000 cells spanning 18 epithelial, stromal and immune cell types and 5 

went on to explore their 3D cellular neighborhoods. 6 

3. Reconstruction of 3D cellular neighborhoods 7 

To reconstruct 3D cellular neighborhoods, we leveraged STIM [23], which employs state-of-8 

the-art computer vision techniques, to computationally align spatial transcriptomics data and 9 

generate a 3D molecular map of the TME at single-cell resolution. Supporting the high 10 

fidelity of our 3D model, visualization of respiratory epithelium cells revealed that the 11 

successful reconstruction of airway lumen moving along the individual 2D planes (Fig 2a). 12 

We thus went on to define 3D neighborhoods for each cell as a spherical space encompassing 13 

all cells located within a 50 µm center-to-center distance (Fig 2b). By design, 3D cellular 14 

neighborhoods included both a circular 314.16 µm2 area in the section where the center cell is 15 

located and two 251.33 µm2 areas in the sections immediately above and below in the z plane, 16 

which represents a 2.6-fold increase compared to the study of 2D cellular neighborhoods. 17 

Owing to the precise positioning of the ROIs during data collection, relatively minor 18 

transformations were required for 3D image registration (Ext data fig 2a). Nevertheless, the 19 

median shift of cell positions after registration was ~42 µm, which would have altered 3D 20 

cellular neighborhoods if uncorrected. 21 

After excluding cells whose neighborhoods extended beyond the boundaries of the 3D 22 

reconstruction (i.e., located in the first/last sections or within 50 µm from the edge of the 23 

central sections), we set out to study the 3D neighborhoods for 218,378 center cells. 24 

Quantification of 3D neighborhood cell type composition (Fig 2b) revealed the complexity 25 

and richness of cellular microenvironments (median of 71 cells from 9 cell 26 

types/neighborhood). In comparison, 2D neighborhoods featured not only a reduced number 27 

of neighbors but also a lower cell type richness (median of 32 cells from 7 cell 28 

types/neighborhood) and a lower alpha diversity – a common measure of species richness in 29 

ecology studies – (median Chao index 3D: 10.5 vs 2D: 8) (Ext data fig 2b). 30 
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4. 3D neighborhoods enable the unbiased identification of multicellular niches in the 1 

TME 2 

Cellular activities and molecular profiles are shaped by the surrounding tissue 3 

microenvironment [3]. To group cells sharing the same tissue microenvironment, we 4 

unbiasedly clustered center cells based on their 3D neighborhood cellular composition -5 

regardless of their gene expression-. In this way, we identified 10 TME niches (Fig 2c), 6 

defined as multicellular compartments sharing a specific neighborhood composition (Fig 2d). 7 

These comprised both lung-resident epithelial (i.e. ‘airways’ and ‘alveoli’) and stromal (i.e. 8 

‘smooth muscle’) niches and TME-specific tumor, stromal and immune niches. High numbers 9 

of tumor cells characterized the 3D neighborhoods of cells assigned to both ‘tumor core’ and 10 

the ‘tumor surface’. The tumor core featured a higher cellular density but a lower cellular 11 

diversity (Ext data fig2c) as 3D neighborhoods were dominated by tumor cells. On the other 12 

hand, the tumor surface featured a higher count of fibroblasts, macrophages and cytotoxic T 13 

cells, resulting in a higher cell type diversity compatible with its position at the boundary with 14 

the surrounding stroma. 3D neighborhoods not only distinguished the ‘vascular stroma’ – rich 15 

in vascular endothelium and pericytes – from the ‘desmoplastic stroma’, featuring the highest 16 

fibroblast and plasma cell density, but also identified 3 distinct immune niches. Interestingly, 17 

tumor cells were abundant in 3D neighborhoods of ‘dendritic cell niches’ and ‘macrophages 18 

niches’ but not in ‘T cell niches’. Mapping niche annotations back to their tissue positions 19 

revealed that T cell niches were mainly found in proximity of larger airways or dispersed in 20 

the stroma. On the other hand, macrophage niches and dendritic cell niches were embedded in 21 

the tumor surface (Fig 2e), thus explaining the abundance of tumor cells in these niches and 22 

suggesting their functional role in the local regulation of anti-tumoral immune responses. 23 

Furthermore, comparison with manual annotations of routine H&E histology by an 24 

experienced pathologist (S.S.) confirmed the ability of 3D neighborhoods to capture the TME 25 

spatial organization (Ext data fig2d). 26 

We then sought to evaluate the ability of 3D neighborhoods to capture the TME spatial 27 

organization compared to their 2D counterparts. While 2D niches largely corresponded to 3D 28 

ones and even included a ‘macrophage-rich stroma’ (Ext data fig2e), 2D neighborhoods did 29 

not highlight ‘dendritic niches’. While the 2D and 3D niche assignments agreed for 64.1% of 30 

cells, concordance rates varied across niches (Fig 2f). In particular, ‘tumor core’ and ‘T cell 31 

niches’ showed below average concordance rates as around 50% of cells assigned to these 32 
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niches in 3D were reassigned in 2D to the ‘desmoplastic stroma’ and ‘tumor surface’, 1 

respectively. Consequently, the abundance of ‘T cell niches' and ‘tumor core’ was reduced in 2 

2D compared to 3D. Importantly, ‘T cell niches’ and ‘tumor core’ formed smaller 3 

disconnected patches in 2D and most of the cells unique to the 3D analysis formed bridges 4 

across patches, restoring the spatial continuity of these niches (Fig 2g).  5 

In summary, we generated a 3D molecular atlas of the TME and leveraged it to study 3D 6 

neighborhoods for over 200,000 cells. Remarkably, the unbiased analysis of cell type 7 

abundance in 3D neighborhoods decomposed the TME into 10 distinct multicellular niches, 8 

corresponding to expert annotations of morphological tissue structures. While 2D niches 9 

largely agreed with their 3D counterparts, 3D neighborhoods improved the identification of 10 

immune niches in the TME and better captured their 3D spatial continuity. 11 

5. Tumor cells acquire pro-invasive molecular programs in the EMT niche 12 

The ability of cancer cells to detach from the epithelial sheet and infiltrate the adjacent stroma 13 

(i.e. “invasiveness”) is a hallmark of malignant tumors and essential for metastatic 14 

dissemination [24]. At the molecular level, the downregulation of cell-to-cell adhesion 15 

molecules (i.e. EPCAM and CDH1) and the upregulation of mesenchymal markers (i.e. VIM) 16 

during epithelial-to-mesenchymal transition (EMT) promotes the invasion of surrounding 17 

tissues [25]. Quantifying the niche assignments of 38,804 tumor cells, we noted that, while 18 

most tumor cells were located in the tumor bed, more than 9,000 tumor cells were assigned to 19 

other tissue niches (Ext data fig3a). Comparing the observed and expected number of 20 

infiltrating tumor cells (Methods), we identified their preferential infiltration of ‘macrophage 21 

niches’, ‘dendritic cell niches’, ‘desmoplastic stroma’ and ‘alveolar spaces’ (Ext data fig3b). 22 

Through 3D rendering, we demonstrate how the ‘tumor surface’ precisely interlocked and 23 

covered the ‘tumor core’ and studied the spatial distribution of infiltrating tumor cells (Fig 24 

3a). While the spatial continuity of the ‘tumor surface’ with ‘macrophage niches’, ‘dendritic 25 

cell niches’ and ‘alveoli’ could explain the enrichment of tumor cells in these niches (Supp 26 

Video 1), tumor cells the ‘desmoplastic stroma’ extended away from the tumor surface (Fig 27 

3b). We thus focused on these cells to identify molecular pathways activated upon tumor 28 

invasion. 29 
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Comparing the transcriptomic profiles of tumor cells in the ‘desmoplastic stroma’ against 1 

those in the ‘tumor core’, we detected the upregulation of cytokeratins (KRT19, KRT17 and 2 

KRT6A) (Fig 3c), which was validated at the protein level by a stronger panCK IF signal (Ext 3 

data fig3c). Consistent with EMT, VIM expression was upregulated in infiltrating tumor cells 4 

while EPCAM and CDH1 were downregulated. Interestingly, tumor cells assigned to the 5 

‘tumor surface’ already demonstrated such molecular changes - albeit to a lesser extent - (Ext 6 

data fig 3d). This is consistent with the view that EMT is a complex, continuous process with 7 

a spectrum of intermediate states between a fully epithelial and a fully mesenchymal 8 

phenotype [26]. Therefore, we leveraged pseudotime, a popular approach in the single cell 9 

transcriptomics field to reconstruct dynamic molecular processes, to rank tumor cells from 0 10 

(early) to 1 (late) (Fig 3d). Pseudotime captured EMT dynamics as tumor cells with higher 11 

epithelial markers (i.e. CDH1high EPCAMhigh VIMlow) showed earlier pseudotime, while 12 

pseudotime increased in cells undergoing EMT (i.e. CDH1low EPCAMlow VIMhigh) (Fig 3e, 13 

Ext data fig 3e-f). Combining tumor pseudotime and 3D niche assignments, we demonstrate 14 

the progressive activation of an EMT gene expression program from tumor core, over tumor 15 

surface, to stroma infiltrating tumor cells (median pseudotime scores: 0.39, 0.50 and 0.85) 16 

(Ext data fig 3g). We then evaluated the 3D spatial density of pseudotime scores and 17 

confirmed that infiltrating tumor cells feature both an advanced pseudotime and 18 

‘pseudospace’ (intended as distance from the tumor bed), while tumor cells in the tumor core 19 

by both an early pseudotime and pseudospace (given their location in the tumor bed). 20 

Strikingly, we discovered one regionat the interface between the ‘tumor surface’ and the 21 

‘desmoplastic stroma’ where the density of mesenchymal-like tumor cells peaked (Fig 3f, Ext 22 

data fig 3h) and IF validated the presence of panCK+ CDH1low cells (Ext data fig 3i). 23 

Intriguingly, the EMT niche was characterized by the discrepancy between pseudotime 24 

(advanced) and pseudospace (early), indicating that tumor cells may undergo EMT already in 25 

the tumor bed before invading the desmoplastic stroma.  26 

6. A multicellular molecular signature links the EMT niche with reduced survival in a 27 

large cohort 28 

Molecular understanding of tumor invasion is critical for identifying biomarkers to accurately 29 

predict and intercept tumor progression [27]. Investigating tumor-intrinsic molecular 30 

programs active in the ‘EMT niche’ (Fig 4a), we identified LGALS1 and NDRG1 as the genes 31 

with the strongest differential expression (Fig 4b). LGALS1 (Galectin-1) is known to be 32 
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upregulated in NSCLC compared to healthy lung tissues [28] and to promote tumor cell EMT 1 

and immune escape [29], while NDRG1 (N-myc downstream-regulated gene 1) promotes 2 

stem-like properties in NSCLC cells [30]. Remarkably, their expression was not only enriched 3 

but almost spatially restricted to tumor cells in the ‘EMT niche’ (Fig 4c, Ext data fig 4a). 4 

In light of LGALS1 role in microenvironment remodeling, we investigated whether the cell 5 

type composition of the ‘EMT niche’ differed from the rest of TME. While tumor cells were 6 

the most abundant cell type, they composed only 33.1% of the ‘EMT niche’ (Fig 4d). 7 

Fibroblasts and macrophages were the main enriched cell types (Ext data fig4b) and, together 8 

with tumor cells, formed 83.8% of the ‘EMT niche’. We thus focused on fibroblasts and 9 

macrophages differentially expressed genes to identify tumor-extrinsic molecular programs 10 

active in the ‘EMT niche’.  11 

Fibroblasts upregulated IGFBP5 and VEGFA (Fig 4e) and their expression was highly 12 

specific to the ‘EMT niche’ (Fig 4f, Ext data fig 4c). IGFBP5 (Insulin Growth Factor 13 

Binding Protein-5) acts as a reservoir of IGF ligands in the ECM [31] and, especially in the 14 

presence of FN1, potentiates IGF signaling, a key pathway promoting cancer cell EMT, 15 

proliferation and stemness [32]. Therefore, the local upregulation of FN1 (Fibronectin-1) and 16 

downregulation of IGFBP7 (Insulin Growth Factor Binding Protein-7), which blocks IGF1R 17 

activation [33], could further contribute to the local stimulation of pro-invasive IGF signaling 18 

by fibroblasts in the ‘EMT niche’ (Ext data fig 4d-e).  19 

At the same time, VEGFA (Vascular Endothelial Growth Factor) is a key factor in 20 

orchestrating TME remodeling, promoting angiogenesis and the recruitment of tumor-21 

associated macrophages [34]. While the density of capillaries– marked by vascular 22 

endothelium and pericytes - was among the lowest in the TME (Ext data fig4f), macrophage 23 

density peaked in the ‘EMT niche’ (Ext data fig4g). Interestingly, macrophages upregulated 24 

the expression of VIM - expressed by activated macrophages [35]- and the M2 polarization 25 

marker GLUL (Glutamine synthase) [36] (Fig 4g), compatible with a pro-tumorigenic 26 

phenotype. In addition, the expression of SPP1 (Secreted Phosphoprotein-1), a potent 27 

chemoattractant for both tumor cells and macrophages that induces the growth of metastatic 28 

tumors in a preclinical NSCLC model [37], was highly specific to macrophages in the ‘EMT 29 

niche’ (Fig 4h).  30 
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As tumor invasion typically precedes metastasis to distal organs -the main cause of cancer-1 

related death -, we went on to investigate whether the molecular programs localized to the 2 

‘EMT niche’ were linked with patient survival in a large NSCLC cohort. We leveraged the 3 

paired transcriptomic (bulk RNAseq) and survival data for 503 lung adenocarcinoma patients 4 

in The Cancer Genome Atlas to investigate the prognostic role of genes specifically expressed 5 

in the ‘EMT niche’ (difference of expressing cells > 25%). While single gene enrichments 6 

identified patients with a worse prognosis (hazard ratios HR >1), their effects were never 7 

statistically significant (Ext data fig4h-n). On the other hand, a multicellular signature 8 

combining tumor (LGALS1 and NDRG1), fibroblast (IGFBP5 and VEGFA) and macrophage 9 

specific (SPP1) genes robustly identified patients with shorter overall survival (Fig 4i). 10 

Furthermore, NDRG1 was recently identified as the most specific marker of early brain 11 

metastasis (<10 months after diagnosis) in NSCLC patients [38], which matches the clinical 12 

history of the patient under study (brain metastasis 11 months after diagnosis). 13 

Taken together, the ‘EMT niche’ represents a specialized compartment enriched with pre-14 

invasive tumor cells, fibroblast and macrophages. Strikingly, the combination of multicellular 15 

molecular programs spatially restricted to this niche identified patients with poor prognosis, 16 

linking this niche with tumor progression. 17 

7. Fibroblast molecular states are linked with the extracellular matrix and cellular 18 

composition of their 3D neighborhoods 19 

Tissue stiffening is a hallmark of tumorigenesis, promoting both malignant transformation, 20 

EMT and invasion [39]. Thus, we investigated whether tissue biomechanical properties could 21 

explain the enrichment of mesenchymal-like tumor cells in the ‘EMT niche’. Quantifying the 22 

ECM composition in 3D neighborhoods via second harmonic generation imaging (SHG) (Fig 23 

5a, Methods), we confirmed the presence of a homeostatic elastin-rich ECM surrounding 24 

lung-resident populations, such as basal and alveolar cells, while fibroblasts and plasma cells 25 

lived in a collagen-rich (i.e. desmoplastic) ECM (Ext data fig 5a). Compatible with ECM 26 

degradation, tumor cell neighborhoods featured the lowest elastin and collagen signals. Taken 27 

together, while collagen deposition, which is the main determinant of tissue tension [40], may 28 

sustain EMT in tumor cells infiltrating the desmoplastic stroma, it cannot explain EMT 29 

induction in the ‘EMT niche’, which featured a collagen-poor ECM similar to the rest of the 30 

tumor bed (Fig 5b). 31 
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Searching for other factors that could induce/sustain tumor EMT, we shifted our focus 1 

towards fibroblasts, which were abundant and upregulated pro-invasive molecular programs 2 

in the ‘EMT niche’. The unbiased study of molecular phenotypes for 62,604 fibroblasts 3 

revealed six transcriptomic states (Fig 5c), which we annotated through literature-informed 4 

review of their marker genes (Ext data fig5b). Multimodal profiling linked fibroblast 5 

molecular states with the mechanical properties and cellular composition of their 3D 6 

neighborhoods (Ext data fig5c-e). For example, JUN+ FOS+ IGF1+ ‘activated fibroblasts’ 7 

were enriched in the desmoplastic stroma and surrounded by a collagen-rich ECM, while 8 

CD74+ HLA-DRB1+ ‘'antigen-presenting’, TIMP1+ CCL19+ ‘reticular’ and TIMP1+ 9 

CXCL10+ ‘reticular’ fibroblasts lived in a homeostatic ECM and were spatially enriched in 10 

immune niches. On the other hand, FN1+ COL11A1+ ACTA2+ ‘myofibroblasts’ were 11 

surrounded by a collagen- and elastin-depleted ECM. Strikingly, they were spatially restricted 12 

the tumor bed and their density peaked in the EMT niche (Fig 5d). Compared to other 13 

fibroblast states, myofibroblasts upregulated ‘EMT niche’ secreted factors (IGFBP5 and 14 

VEGFA), ECM-remodeling (FN1 and COL11A1) and smooth muscle-specific contractile 15 

proteins (TAGLN and ACTA2) (Ext data fig 5b,f). Similar to wound healing [41], 16 

myofibroblast contraction - rather than fibrillar collagen deposition - could mediate the local 17 

increase in tissue stiffness. Taken together, myofibroblast density distinguished the ‘EMT 18 

niche’ from the rest of the tumor bed, suggesting their central role in tumor invasion. 19 

8. 3D cellular neighborhoods capture the tumor, myofibroblasts and macrophage 20 

crosstalk in the EMT niche  21 

We therefore shifted our focus to the crosstalk between tumor cells, fibroblasts and 22 

macrophages to investigate how the ‘EMT niche’ is formed and maintained. Through the 23 

combination of 3D cellular neighborhoods and the sensitive detection of 165 ligands and 144 24 

receptors via ISH (1-2 molecules/cell [14]), we quantified the spatial activity for 480 receptor-25 

ligand pairs in 3D cellular neighborhoods (Fig 5e, Methods). In the CellChat database [42], 26 

interactions enriched in the ‘EMT niche’ (Fig 5f) belonged either to the ‘ECM-Receptor’ 27 

category, including FN1 (Fibronectin-1), THBS1 (Thrombospondin-1), THBS2 28 

(Thrombospondin-2) and COL4A1 (Collagen type IV, alpha-1 chain), or were annotated as 29 

‘Secreted signaling’, including SPP1 (Osteopontin) and IGF2 (Insulin-like growth factor-2).  30 
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Studying the directionality of these signaling networks in 3D neighborhoods, we confirmed 1 

the role of macrophages as source of SPP1 signaling and identified fibroblasts and tumor cells 2 

as main senders of ‘ECM-receptor’ and IGF2 interactions, respectively (Ext data fig5g, 3 

orange dots). Strickingly, ‘ECM-receptor’ interactions were mainly received by tumor cells 4 

and converged on multiple integrin receptors, including ITGA3, ITGAV and ITGB1 (Ext 5 

data fig5g, blue dots). Integrins are the main cellular adhesion receptors and their central role 6 

in tumor invasion is well-established. They represent key components of the cell migration 7 

machinery and their engagement activates intracellular pathways promoting survival, EMT 8 

and invasion [43]. Accordingly, although individual signaling could be also found in other 9 

niches, the combination of SPP1, FN1, IGF2 and THBS2 spatial activity was collectively 10 

restricted to the ‘EMT niche’ and distinguished it from the rest of the tumor bed (Fig 5g-i, 11 

Ext data fig 5h-l). Interestingly, IGF signaling promoted myofibroblast differentiation of 12 

lung fibroblasts grown on a soft substrate [44], [45]. Intriguingly, tumor-derived IGF2 may 13 

promote myofibroblast accumulation in the EMT niche, which further potentiates pro-14 

invasive IGF signaling through IGFBPs and FN1 production. Furthermore, the co-localization 15 

of THBS2+ myofibroblasts and SPP1+ macrophages was recently linked with T-cell 16 

exclusion in both lung [42] and colorectal tumors [46], linking the EMT niche with the 17 

remodeling of the tumor immune microenvironment. 18 

9. 3D neighborhoods boost the quantification of immune niche-specific interactions, 19 

including druggable immune checkpoints 20 

Under the selective pressure of the immune system, tumor cells eventually develop strategies 21 

to suppress anti-tumoral immune responses, including the reprogramming of antigen-22 

presenting cells (APCs, i.e. macrophages and dendritic cells). In turn, APCs may promote the 23 

recruitment of regulatory T cells, further restricting the activation of tumor-specific cytotoxic 24 

T cells [47]. Compatible with tumor immune escape, APC and regulatory T cells were co-25 

enriched in ‘macrophage niches’ and ‘dendritic cell niches’ (Fig 6a), while cytotoxic T cells - 26 

despite their abundance- did not infiltrate the tumor bed and accumulated in ‘T cell niches’ 27 

(Fig 6a,b).  28 

To identify immunomodulatory interactions, we focused on interactions that distinguished 29 

‘dendritic cell niches’ and ‘macrophage niches’ from the rest of the TME (Fig 6c).  30 
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Compatible with their role in immune cell recruitment (i.e. chemotaxis), numerous 1 

chemokines were enriched in immune niches. The 3D spatial activity CCL19 (CC-chemokine 2 

ligand 19), CCL21 and CXCL9 (C-X-C motif ligand 9), which regulate the homing of 3 

dendritic and T cells in lymphoid tissues [48], marked location of ‘dendritic cell niches’ and 4 

‘T cell niches’ in the TME (Fig 6e, Ext data fig 6b-c, Supp Video 2). In line with their 5 

chemotactic role, CCL19 and CXCL9 interactions were received by most cell types in 6 

‘dendritic niches’, with the exception of tumor cells (Ext data fig 6d), suggesting their 7 

involvement in the induction of - rather than their recruitment to - ‘dendritic niches’. Tumor 8 

cells indeed acted as main MIF (Macrophage Inhibitory Factor) senders, a potent 9 

chemoattractant upregulated in several tumors, including NSCLC [49]. MIF, whose spatial 10 

activity was widespread in the tumor bed (Ext data fig 6e), promotes immunosuppressive 11 

myeloid reprogramming and its inhibition decreased regulatory T cell and promoted cytotoxic 12 

T cell infiltration in a melanoma lung metastasis model [50]. 13 

At the same time, LGALS9 (Galectin 9) and CD80 emerged as the ligands with the strongest 14 

shared upregulation across all immune niches (Fig 6f-g), highlighting their importance in 15 

regulating anti-tumoral immune responses. While the network of LGALS9 interactions in 16 

‘dendritic cell niches’ involved all cell types, CD80 interactions mainly occurred between 17 

dendritic cells and CTLA-4+ (Cytotoxic T-Lymphocyte Antigen 4) regulatory T cells. While 18 

LGALS9-CD44 interactions promote the persistence and function of regulatory T cells in the 19 

TME [51], CTLA4-CD80 interactions mediate their immunosuppressive function [52]. In 20 

fact, CTLA4 prevents the interaction of CD80 with the co-stimulatory receptor CD28 on 21 

cytotoxic T cell [53] and promotes the expression of IDO (indoleamine-2,3-dioxygenase) by 22 

dendritic cells, which deprives adjacent T cells of tryptophan and further inhibits their 23 

activation [54]. Confirming the functional activity of the CD80-CTLA4 axis, dendritic cells 24 

engaged in CD80-CTLA4 interactions upregulated the expression of IDO1 (Ext data fig6f). 25 

Remarkably, 3D neighborhoods consistently returned higher fold changes compared to their 26 

2D counterparts, thereby boosting the identification of enriched ligands across all immune 27 

niches (Fig 6d, Ext data fig 6a).  28 

Taken together, 3D neighborhoods identified signaling networks spatially linked with tumor 29 

invasion and immune responses and may provide the molecular rationale for their therapeutic 30 

blockade, especially in the era of personalized medicine and mechanism-based combination 31 
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therapies [55]. Importantly, monoclonal antibodies targeting key receptors, such as anti-1 

CTLA4 or anti-VEGF agents, are already approved for the treatment of NSCLC, while 2 

numerous inhibitors blocking IGF receptors, integrin signaling, or IDO enzymatic activity are 3 

currently being evaluated in clinical trials (Fig 6h).  4 

DISCUSSION 5 

This study represents the proof-of-principle for the molecular reconstruction of 3D cellular 6 

neighborhoods combining high-plex, single-cell resolved spatial transcriptomic data with 7 

imaging readout of tissue biomechanical properties. 3D neighborhoods captured the tissue 8 

organization of cell types in multicellular niches and enabled the exploration of niche-specific 9 

molecular states. Furthermore, the spatial mapping of more than 450 receptor-ligand pairs in 10 

3D cellular neighborhoods allowed the systematic and highly sensitive (1-2 molecules/cell 11 

[14]) quantification of niche-specific multicellular crosstalk. Leveraging the close spatial 12 

proximity of interacting cells in 3D, we focused on physically possible interactions, thereby 13 

boosting the specificity of our approach. Finally, the alignment of sections profiled with 14 

multiple modalities allowed the integrative analysis of tissue gene expression, ECM 15 

composition and protein marker levels. For example, combining SHG with cellular 16 

communication analysis was instrumental in interpreting how myofibroblasts – together with 17 

macrophages- modulate pro-invasive integrin signaling on tumor cells in the EMT niche. 18 

Furthermore, the integration of mechanical and molecular readouts revealed how fibroblast 19 

states in the TME are linked with the cellular and ECM composition of their neighborhoods. 20 

In general, given the profound impact of tissue biomechanics in shaping cellular molecular 21 

states (and vice versa), we envision that the systematic integration of spatial mechanical and 22 

molecular readouts will reveal novel insights into tissue functioning in health and disease 23 

(e.g., shedding light on the intricate role of tumor-stromal interplay). 24 

While bi-dimensional histology and spatial omics [56], [57] represent powerful methods for 25 

the description of tissue pathology and the discovery of physiological and pathological 26 

cellular interplay, our data argue that 3D neighborhoods improved the identification and 27 

characterization of tissue niches. In line with a recent colorectal cancer study [7], 3D 28 

neighborhoods captured the spatial continuity of seemingly disconnected ‘T cell niches’ in 29 

2D. Furthermore, the study of ‘dendritic cell niches’, where local anti-tumoral immune 30 

responses are orchestrated at the tumor surface was only possible in 3D. Importantly, 3D 31 
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neighborhoods boosted the quantification of cell-cell interactions, which is central to 1 

coordination of immune responses in health and disease states [58]. Here we defined 3D 2 

neighborhoods using a 50 µm radius and a 30µm section-to-section gap. Future studies will 3 

be required to identify both the most cost-effective gap maximizing 3D information while 4 

minimizing repeated sampling of the same cells (average cell radius 10-20 micron) and which 5 

neighborhood radius is most appropriate to capture short vs long-distance molecular 6 

dependencies. Nevertheless, taken together, our data demonstrate the importance of 3D 7 

neighborhoods for the study of immune niches in the TME. 8 

Focusing on an early-stage, aggressive NSCLC tumor, we demonstrate the ability of 3D 9 

neighborhoods to capture the molecular mechanisms linked with tumor invasion and immune 10 

escape. While a recent IMC study demonstrated how the TME spatial organization can 11 

accurately predict survival in early-stage NSCLC patients [59], limited plexity prevented the 12 

identification of personalized drug targets. In this study, 3D neighborhoods spatially linked 13 

VEGF, IGF and integrin signaling with tumor invasion in the ‘EMT niche’ and highlighted 14 

CTLA4 and IDO1 as key immunosuppressive molecules in the patient under study. These 15 

could serve as biomarkers for the response to agents already approved for NSCLC therapy, 16 

including anti-VEGF (e.g. bevacizumab) and anti-CTLA4 agents (e.g. ipilimumab) 17 

monoclonal antibodies. Personalized biomarkers not only have a crucial role in increasing 18 

therapeutic efficacy and limiting treatment-related costs and toxicities but are also urgently 19 

needed for the clinical study of novel therapeutic approaches. For instance, the failure of anti-20 

IGF agents - after decades of encouraging preclinical results [53] – is mainly attributed to 21 

recruitment of unselected NSCLC cohorts in phase III clinical trials due to the lack of 22 

predictive biomarkers [60]. Like the simultaneous identification of multiple druggable 23 

mutations by NGS sequencing opened the door to combination therapies [19], we hypothesize 24 

that the high-plex quantification of active molecular pathways will pave the way to effective, 25 

personalized combination therapies. In this regard, small molecule inhibitors blocking the 26 

signal transduction pathways downstream of multiple receptors are particularly promising. 27 

For example, the simultaneous inhibition of integrin signalling (via FAK inhibitors) and 28 

VEGFR [61], [62] or IGFR receptors [62] could represent a particularly attractive therapeutic 29 

strategy in the patient under study. Ultimately, interventional studies enrolling large patient 30 

cohorts will be critical to assess the predictive ability and clinical benefit of the mechanism-31 

based, personalized biomarkers we identified in this single-patient, observational study. 32 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 10, 2023. ; https://doi.org/10.1101/2023.05.10.539644doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.10.539644
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 

Furthermore, while here we demonstrate the ability of a large cancer-related panel to profile 1 

ligand-receptor interactions in well-established signaling pathways, genome-wide assays will 2 

ultimately be needed to unbiasedly profile cell-cell interactions and discover novel 3 

mechanisms and therapeutic targets. At the same time, unbiased assays will enable the 4 

simultaneous profiling of ligand, receptors and intracellular response genes, further increasing 5 

the likelihood of identifying active signaling axes. While mRNA represents a sensitive, 6 

antibody-independent readout for protein production, discrepancies between transcripts and 7 

protein levels do exist. Therefore, the systematic understanding of the molecular architecture 8 

of the TME will likely require the simultaneous profiling of proteins and transcripts in single 9 

cells. Finally, the integration of additional data modalities, such as epigenomics or 10 

metabolomics, will provide an even more complete picture.  11 

 12 
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MATERIALS AND METHODS 1 

Study design 2 

To study three-dimensional (3D) cellular neighborhoods in the tumor microenvironment 3 

(TME), we focused on a formalin-fixed, paraffin-embedded (FFPE) tumor block from a 4 

NSCLC patient and collected 34 5 µm-thick consecutive sections using a microtome. We 5 

processed sections 4, 10, 16, 22, 28 and 34 with CosMx (section-to-section distance 30 µm) to 6 

generate high-plex, single-cell resolved spatial transcriptomics data, section 3 with both 7 

second harmonic imaging (SHG) to study extracellular matrix (ECM) composition and 8 

hematoxylin and eosin (H&E) staining to capture tissue morphology and section 12 with 9 

immunofluorescence (IF) to validate tumor epithelial-to-mesenchymal transition (EMT) at the 10 

protein level. We then employed computational methods for the 3D alignment of the analyzed 11 

sections to generate a 3D multimodal atlas of NSCLC at single cell resolution. 12 

NSCLC patient’s characteristics 13 

The patient was a 63-year-old female, who presented with a pulmonary tumor mass in the 14 

apex of the right upper lobe (RUL) in the positron emission tomography in March 2020. 15 

Regarding smoking status, she was a 40 pack-year ex-smoker. The patient was fully active, 16 

without any physical restrictions (ECOG grade 0). A transbronchial lung biopsy revealed a 17 

TTF1-positive lung adenocarcinoma (LUAD) with acinar morphology. Staging workup by 18 

abdominal and a brain CT-scan showed no other potential lesions, additionally the bone 19 

scintigraphy was negative. Two months after initial diagnosis, a resection of the RUL was 20 

performed. The pathological examination revealed a tumor with a maximum diameter of 23 21 

mm, infiltration of the visceral pleura, lymphovascular invasion, and three metastases into 22 

hilar lymph nodes with a maximum diameter of 7 mm. The tumor was completely resected. 23 

The pathological tumor classification was as follows: pT2a pN1 (3/24) L1 V0 Pn0 G2 R0. 24 

The patient received three cycles of an adjuvant-combined chemotherapy (Cisplatin + 25 

Vinorelbine). 26 

In February 2021, the patient started having neuronal symptoms and a magnetic resonance 27 

tomography of the head was performed revealing a 10 mm tumor in the frontal cortex. The 28 

tumor was resected and a metastasis of the LUAD was histologically confirmed. Afterwards 29 

the patient received cranial radiotherapy in the form of a volumetric intensity modulated arc 30 
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therapy (VMAT) at a dosage of 25,6 Gray (Gy). In August 2021 a second metastasis was 1 

diagnosed in the left upper lobe (LUL) of the lung.  2 

Sample collection and histological examination 3 

Resected specimens and core needle biopsies were fixed in 10% buffered formalin before 4 

gross processing. After overnight fixation, the specimens were cut in 5-mm-thick slices. As a 5 

first step, the tumor was detected, described and the tumor diameter as well as the minimum 6 

distances to the visceral pleura and the resection margins of lung parenchyma and bronchus 7 

were measured. Next, the resection margins and the representative tumor parts showing the 8 

relation to the relevant anatomical structures, described above, were embedded. Furthermore, 9 

we retrieved all macroscopic detectable lymph nodes. Subsequently the tissue or biopsies 10 

were embedded in paraffin and were stored at room temperature at the archive of the Institute 11 

of Pathology at the Charité University Hospital, Campus Mitte. Histological examination, 12 

including diagnosis, tumor grading, pTNM-classification, angioinvasion, lymphatic invasion, 13 

and tumor stage was done according to the 8th edition of the TNM classification (AJCC). The 14 

study was performed according to the ethical principles for medical research of the 15 

Declaration of Helsinki and approval was approved by the Ethics Committee of the Charité 16 

University Medical Department in Berlin (EA4/243/21).  17 

Deep learning segmentation of whole slide H&E images 18 

For learning a tissue segmentation model, we collected around ~5,000 representative 19 

pathologist annotations for 4 morphological sub-categories on H&E tissue morphology: 20 

“Carcinoma”, “Stroma”, “Necrosis”, and “Normal lung” (e.g. including “Alveoli”, 21 

“Capillaries”, “Respiratory epithelium”, “Vessels”, etc.) for model training. For the 22 

segmentation model, we used a U-Net [63] architecture with a ResNet101 backbone [64]. We 23 

trained models over various hyperparameters for 50 epochs using the Adam optimizer [65] 24 

and selected the top five models based on the global F1 performance on a validation set. We 25 

then combined these five models into a mean ensemble, which achieved a global F1 26 

performance of ~0.93 on a hold-out test set.  27 

Quantification of RNA fragmentation 28 

To quantify the extent of RNA fragmentation, we collected 3 10 µm sections using a 29 

Microtome (Leica Byostems). We then extracted RNA using Qiagen RNAse FFPE kit 30 
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according to manufacturer instructions and evaluated the percentage of total RNA fragments 1 

longer than 200 nucleotides (DV200) using the TapeStation (Agilent). Compatible with 2 

formalin fixation and prolonged storage at room temperature, the DV200 score was 60%. 3 

CosMx sample processing, staining, imaging, and cell segmentation for 1000-plex RNA 4 
profiling 5 

CosMx sample processing, staining, imaging, and cell segmentation were performed as 6 

previously described [14]. Briefly, tissue sections were placed to VWR Superfrost Plus Micro 7 

Slide (Cat# 48311-703) for optimal adherence. Slides were then dried at 37°C overnight, 8 

followed by deparaffinization, antigen retrieval and proteinase mediated permeabilization 9 

(https://nanostring.com/products/cosmx-spatial-molecular-imager/single-cell-imaging-10 

overview/). 1 nM RNA-ISH probes were applied for hybridization at 37°C overnight. After 11 

stringent wash, a flow cell was assembled on top of the slide and cyclic RNA readout on 12 

CosMx was performed (16-digit encoding strategy). After all cycles were completed, 13 

additional visualization markers for morphology and cell segmentation were added including 14 

pan-cytokeratin, CD45, CD3, CD298/B2M, and DAPI. Twenty-four 0.985mm × 0.657mm 15 

fields of view (FOVs) were selected for data collection in each slice. The CosMx optical 16 

system has an epifluorescent configuration based on a customized water objective (13×, NA 17 

0.82), and uses widefield illumination, with a mix of lasers and light-emitting diodes (385 nm, 18 

488 nm, 530 nm, 590 nm, 647 nm) that allow imaging of DAPI, Alexa Fluor-488, Atto-532, 19 

Dyomics Dy-605 and Alexa Fluor-647, as well as removal of photocleavable dye 20 

components. The camera was a FLIR BFS-U3_200S6M-C based on the IMX183 Sony 21 

industrial CMOS sensor (pixel size 180nm). A 3D multichannel image stack (9 frames) was 22 

obtained at each FOV location, with the step size of 0.8 μm. Registration, feature extraction, 23 

localization, decoding of the presence of individual transcripts, and deep-learning based cell 24 

segmentation (developed upon Cellpose [66]) were performed as previously described [14]. 25 

The final segmentation mapped each transcript in the registered images to the corresponding 26 

cell, as well as to subcellular compartments (nuclei, cytoplasm, membrane), where the 27 

transcript is located. 28 

Transcriptomic clustering of segmented cells 29 

For downstream analyses we used the package Seurat [67] (v4.0.4) in R (v4.1, https://www.R-30 

project.org/). For each section, we imported 3 matrices containing the gene expression, 31 
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metadata and positions of segmented cells. We removed the negative probes from the gene 1 

expression matrix, defined a unique cell name and created a merged Seurat object with data 2 

from all the sections. 3 

To identify cell types present in the tumor microenvironment, we adopted a very conservative 4 

filtering strategy removing only cells with less than 10 detected genes and removing genes 5 

detected in less than 1 cell. We then computed SCT-normalized and scaled gene expression 6 

counts [68] and computed the 50 most variable principal components (PCs). We selected the 7 

first 30 PCs to create a shared nearest neighbor graph and to compute a two-dimensional 8 

UMAP plot [69] used for data visualization in a low dimensional space. Finally, we 9 

partitioned the shared nearest neighbor graph using a resolution of 0.8 and identified 24 10 

transcriptomic clusters. 11 

Cell type annotation of transcriptomic clusters 12 

To annotate cell types present in the tumor microenvironment, we identified marker genes 13 

enriched in each cluster for knowledge-based cell type annotation. Epithelial clusters, 14 

characterized by positivity to panCK immunofluorescent staining, comprised both tumor cells 15 

(EPCAM+ S100A10+) and non-malignant epithelial cells, including respiratory epithelium 16 

(SCGB3A1+), basal epithelial cells (KRT5+) and alveolar cells (FGG+). We also detected 17 

numerous stromal populations, including fibroblasts (COL1A2+), vascular (PECAM1+) and 18 

lymphatic (FABP5+) endothelial cells, pericytes (PDGFRB+) and smooth muscle cells 19 

(TAGLN+). We identified innate and adaptive immune cell populations, including 20 

macrophages (CD68+), monocytes (LYZ+), dendritic cells (LAMP3+), mast cells (KIT+), 21 

cytotoxic (CD8A+) and regulatory (FOXP3+) T cells, B cells (IGHM+), plasma cells 22 

(CD79A+) and cycling immune cells (MKI67+). Finally, we merged clusters with similar 23 

marker gene expression as probably related to different cellular states of the same cell type. 24 

We thus annotated clusters ‘0’ and ‘1’ as fibroblasts, clusters ‘2’ and ‘7’ as macrophages and 25 

clusters ‘4’, ‘5’, ‘20’, ‘22’ and ‘23’ as tumor cells. 26 

Data integration with reference atlases 27 

To compare gene expression profiles with published reference atlases, we performed label 28 

transfer using the standard Seurat pipeline. We integrated our data with the Human Lung Cell 29 

Atlas [21] to annotate lung resident cell types and with a NSCLC single cell cohort [22] to 30 
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annotate tumor-specific cell types. For each reference dataset, we identified a subset of 900 1 

shared ‘features’ (i.e. genes) using the SelectIntegrationFeatures function (nfeatures = 900) 2 

and pairs of ‘anchors’ (i.e. cells) between the reference and our query dataset using the 3 

FindTransferAnchors function (normalization.method = "SCT",  reference.assay = 'SCT', 4 

query.assay = ‘SCT’, reduction = 'pcaproject', dims = 1:20, features = features, nn.method= 5 

'rann', eps = 0.5). Then, we leveraged the TransferData function (anchorset = anchors, 6 

prediction.assay = TRUE, weight.reduction = 'pcaproject', dims = 1:20, eps = 0.5) to score 7 

each cell in our query dataset for similarity with annotated cell types in the reference dataset. 8 

3D alignment of spatial transcriptomic data 9 

To align high-plex, single-cell resolved spatial transcriptomic data from 6 sequential, non-10 

consecutive sections, we leveraged the Spatial Transcriptomics ImgLib2/Imaging Project 11 

(STIM) [23]. With STIM, we first converted our spatial transcriptomics data to the n5 image 12 

format for efficient storage and processing using the ‘st-resave’ function. In doing so, we 13 

assigned a channel to each gene and modeled gene expression values as pixel intensities at the 14 

center of the segmentation mask. Then, we applied the ‘st-align-pairs’ function to align each 15 

section to the one above and below (r=1) using the Scale Invariant Feature Transform (SIFT) 16 

[70] according to the expression of the 15 genes with highest standard deviation (n=15). 17 

Finally, we applied the ‘st-align-global’ function to identify a global optimum that minimizes 18 

the distances between all corresponding points across all pairs of slices (--absoluteThreshold 19 

100 --sf 0.5 --lambda 0.5 --skipICP). 20 

Identification of 2D and 3D cellular neighborhoods 21 

Cellular neighborhoods in 2D and 3D were computed with a custom Python script as follows. 22 

First, for a given cell, the Euclidean distances in 2 or 3D between that cell and all other cells 23 

in the dataset were computed. This set of distances was then filtered to remove distances 24 

greater than r= 50 μm, resulting in a list of neighboring cells for that given cell. This list was 25 

finally used to construct the 2D and 3D neighborhood matrices by counting the number of 26 

cells for each of the 18 cell types present in each cellular neighborhood. 27 

3D visualization of airways and 3D cellular neighborhoods 28 

To generate 3D plots at single cell-resolution, we leveraged the Giotto R package (v1.1.2) 29 

[71] and the Plotly R package (v4.10.1, https://plotly-r.com). Briefly, we first created a Giotto 30 
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object with the 3D cell centers coordinates and cell type annotations. To visualize airways, we 1 

used the ‘spatPlot3D’ function (a wrapper for Plotly 3D scatter plot) highlighting ‘respiratory 2 

epithelium’ cells in green and showing all other cell types in gray. To visualize 3D cellular 3 

neighborhoods, we selected an exemplary center cell (Section 22, FOV 1, Segmentation ID 4 

132) and plotted neighboring cells within a 100 µm center-to-center distance. We then 5 

generated a 3D scatter plot using Plotly, highlighting the center cell in red, coloring the cells 6 

within a 50 µm according to their cell type and showing the cells outside of the 3D 7 

neighborhood (between 50 and 100 µm) in gray. 8 

Identification and annotation of 2D and 3D multicellular niches 9 

To identify 2D/3D multicellular niches in the tumor microenvironment, we imported the 10 

2D/3D neighborhood matrix as a new assay in Seurat. We excluded cells with incomplete 3D 11 

neighborhoods, namely those located in sections 4 and 34 and those within 50µm from the 12 

edges of sections 6, 12, 18 and 24. We then performed UMAP dimensionality reduction and 13 

clustering (resolution = 0.3). 3D neighborhoods analysis returned 13 clusters (Supp Fig 1a). 14 

Furthermore, we merged clusters ‘3’, ‘10’ and ‘12’ as ‘T cell niches’ and clusters ‘5’ and ‘9’ 15 

as ‘airways’ given their shared neighborhood composition and spatial patterns (Supp Fig 1b-16 

c). In this way, we identified a total of 10 unique 3D niches, which we annotated based on the 17 

average cell type counts per 3D neighborhood: ‘tumor core’ (Tumor cellshigh, Fibroblastslow, 18 

Macrophageslow), ‘tumor surface’ (Tumor cellshigh, Fibroblastsmid, Macrophagesmid, Cytotoxic 19 

T cellslow), ‘airways’ (Respiratory epitheliumhigh, Basal epithelial cellshigh), ‘alveoli’ (Alveolar 20 

cellshigh), ‘desmoplastic stroma’ (Fibroblastshigh, Plasma cellslow), ‘vascular stroma’ 21 

(Fibroblastsmid, Vascular endotheliummid, Pericytesmid), ‘smooth muscle’ (Smooth muscle 22 

cellshigh), ‘Macrophage niche’ (Macrophageshigh, Tumor cellsmid), ‘Dendritic cell niche’ 23 

(Dendritic cellshigh, Tumor cellsmid, Macrophagesmid, Cytotoxic T cellsmid, Regulatory T 24 

cellslow) and ‘T cell niche’ (Cytotoxic T cellshigh). At the same time, 2D neighborhoods 25 

analysis returned 15 clusters (Supp Fig 1d). Similarly, we merged clusters ‘8’, ‘10’ and ‘13’ 26 

as ‘tumor core’, clusters ‘2’ and ‘3’ as ‘tumor surface’, clusters ‘5’ and ‘12’ as ‘airways’ and 27 

clusters ‘4’ and ‘14’ as ‘T cell niches’ and identified 10 multicellular niches (Supp Fig 1e), 28 

which overlapped with 3D ones, with the exception of ‘dendritic cell niches’ identified only 29 

in 3D and ‘macrophage-rich stroma’ (Fibroblastsmid, Macrophagesmid) identified only in 2D. 30 

Tumor pseudotime analysis  31 
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To reconstruct their molecular dynamics, we ordered tumor cells according to their 1 

pseudotime. We first generated a Seurat object including only tumor cells using the subset 2 

function and then re-normalized gene expression counts using SCTransform. We then 3 

selected the top 400 variable genes and grouped them in 5 PCs using the RunPCA function 4 

for downstream analyses. These included UMAP embedding using the RunUMAP function 5 

and pseudotime analysis. For the latter, we converted the Seurat object into 6 

SingleCellExperiment format using the R package SingleCellExperiment (v1.16.0) [72] and 7 

then used the slingshot function of the R package slingshot (v2.2.1) [73] to compute tumor 8 

cell pseudotime. Finally, we converted pseudotime scores to ranks (between 0 and 1) and 9 

added them as metadata in the Seurat object for plotting. 10 

Immunofluorescence (IF) imaging 11 

The IF workflow for FFPE tissues was performed as previously described [74]. In detail, 12 

FFPE tissue was deparaffinized, rehydrated and a two-step antigen retrieval was performed at 13 

pH 6 and pH 9 sequentially with a rinsing step in PBS in between. Slides were blocked in 14 

Odyssey blocking buffer (LI-COR BioScience, Cat # 927-70001) for 30 minutes. Prior to 15 

antibody incubation, a pre-bleaching step was performed in 4.5% H2O2 and 24 mM NaOH 16 

diluted in PBS for 30 minutes at room temperature in the presence of white light. The tissue 17 

was counterstained with Hoechst 33342 (Thermo Fisher Scientific, Cat #62249), mounted 18 

with ProLong™ Diamond (Thermo Fisher Scientific, Cat #P36961) and imaged. After 19 

acquisition, slides were soaked in PBS for 5-10 minutes to remove the coverslip and antibody 20 

incubation was performed in a humid chamber at 4 °C overnight. Slides were then washed, 21 

mounted, imaged and bleached. Images were acquired on a Zeiss Axioscan7 Slide scanner 22 

using an EC Plan-Neofluor 20x/0.5 M27 objective with 1x1 binning. 23 

Antibodies 24 

Antibody 
target protein 

Vendor Catalog 
no. 

Clone Fluorophore Research resource 
identifier 

E-cadherin CST 3199 24E10 Alexa Fluor® 
488 

AB_10691457 
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Pan-
Cytokeratin 

Thermo 
Fisher 
Scientific 

41-
9003-80 

AE1/AE3 eFluor™ 570 AB_11218704 

Preprocessing of imaging data  1 

To stitch and register the .czi image files, acquired on the Zeiss Axioscan7 widefield 2 

microscope, the ASHLAR algorithm (v 1.17.0) [75] was used. To correct the tissue 3 

autofluorescent background signal, we performed background subtraction. Images were 4 

acquired before the first round of antibody staining; using the same settings for each channel 5 

(only exposure time was modified). The software package from 6 

github.com/SchapiroLabor/Background_subtraction was used (v 0.3.3) based on the 7 

following formula: 8 

𝑀𝑎𝑟𝑘𝑒𝑟!"##$!%$& =	𝑀𝑎𝑟𝑘𝑒𝑟#'( − 𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 ∗	
𝑀𝑎𝑟𝑘𝑒𝑟	𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒	𝑡𝑖𝑚𝑒

𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑	𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒	𝑡𝑖𝑚𝑒	9 

Registration of IF and CosMx images 10 

The IF multi-channel image stack from Section 12 was registered to the CosMx images of 11 

Section 10. To do this, the IF data stored as pyramidal OME-TIFF images were cropped into a 12 

rectangular region of interest (ROI) using bftools from Bio-Formats (v6.11.1) [76]. This was 13 

done to exclude parts of the tissue outside CosMx ROI, reducing the overall size of the 14 

images and simplifying the registration process. The 24 contiguous fields of view of CosMx 15 

raw imaging data for Section 10 were then stitched into a single image using the 16 

Grid/Collection stitching v1.2 plugin in Fiji v1.53t [77]. The average z-stack projection of the 17 

stitched stack was exported as a pyramidal OME-TIFF image. Rigid and affine registration 18 

was performed using wsireg 0.3.7 with default parameters, with the full IF stack of Section 12 19 

as the moving image, and the stitched CosMx stack of Section 10 as the fixed (target) image. 20 

Survival analysis 21 

We downloaded the expression matrices and the associated clinical metadata of the LUAD 22 

study directly from the TCGA cohort ( https://www.cancer.gov/about-23 

nci/organization/ccg/research/structural-genomics/tcga). We subsetted the cohort to remove 24 

patients that received prior treatment, as well as donors for whom only data from healthy 25 
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tissue was available (control group). The corresponding bulk RNA expression data for these 1 

patients was then obtained, and the FPKM values were log-transformed for further analyses. 2 

To perform censored survival analysis, we considered the “days to last follow up” to be 3 

equivalent to the “days to death”, for the cases where the donor was still alive. To compute 4 

gene enrichment scores, we used the R package GSVA v.1.46.0 with the method “zscore” and 5 

a threshold of 0 to cluster the donors into low/high expression scores. The survival curve was 6 

computed with the functions “Surv” and “survfit” of the R package survival v.3.4.0, and by 7 

considering the “days to last follow up” or “days to death” as time, the vital status (alive vs 8 

dead) as the event, and stratifying the data by the clusters identified by the gene enrichment 9 

analysis as described above. To compute the hazard ratio, we computed a Cox model using 10 

the function coxph of the R package survival and inserted the result into the function 11 

tbl_regression of the R package gtsummary v.1.7.0. 12 

Second Harmonic Imaging  13 

Label free imaging of collagen and elastin was performed on a Zeiss LSM 880 NLO equipped 14 

with a Plan-Apochromat 10x NA 0.45 objective (Carl Zeiss Microscopy GmbH, Jena, 15 

Germany) and a tunable femtosecond titanium-sapphire laser (Chameleon-Ultra II, Coherent, 16 

Santa Clara, California). Using an excitation wavelength of 800 nm, the second-harmonic 17 

generation signal from collagen was collected through a 395 – 405 nm spectral window on to 18 

a GaAsP detector and autofluorescence emission from elastin was collected through a 435 - 19 

480 nm spectral window on to a PMT. 20 

ECM composition analysis  21 

To quantify ECM levels of collagen and elastin in section 4 cellular neighborhoods, we first 22 

imported cropped and aligned section 3 SHG TIFF images in R using the grDevices package 23 

(v. 4.1.3). We then normalized the collagen and elastin channels by dividing the pixel 24 

intensities by the maximum value in the respective channel. Finally, we quantified the mean 25 

collagen and elastin pixel intensities in the square with side 2x 50 µm centered on the 26 

segmentation center of each cell in section 4.  27 

Fibroblast transcriptomic clustering and annotation 28 

To identify transcriptomic states of the fibroblast in the TME, we selected cells annotated as 29 

fibroblasts with more than 100 detected transcripts for unsupervised clustering as described 30 
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above, this time selecting the first 5 PCs and identifying 6 clusters and a resolution= 0.15. We 1 

then identified marker genes enriched in each cluster for literature-based cluster annotation 2 

[78]–[82]: ‘matrix fibroblasts’ (LUM+ MGP+ TIMP1+), ‘myofibroblasts’ (FN1+ COL11A1+ 3 

ACTA2+), ‘activated fibroblasts’ (JUN+ FOS+ IGF1+), ‘antigen-presenting’ (CD74+ HLA-4 

DRB1+), ‘CCL19+ reticular’ and ‘CXCL10+ reticular’ fibroblasts. 5 

Ligand spatial activity scores in 2D and 3D cellular neighborhoods 6 

To estimate the spatial activity of a specific ligand, we first downloaded manually-curated, 7 

literature-supported receptor ligand pairs from the CellChat Human database [42] and 8 

selected those in which both the receptor and the ligand were present in our 960-gene panel. 9 

For each center cell, we quantified the spatial activity of 164 ligands in its 2D and 3D cellular 10 

neighborhoods. To quantify the activity of each ligand in a given cellular neighborhood, we 11 

first evaluated single pairs of interacting cells comprising the center cell and one of its 12 

neighbors. For each pair, we computed the geometric mean of receptor expression in the 13 

center cell and ligand expression in the neighbor cell. In this way, we required the non-zero 14 

expression of both receptor and ligand to have positive pair scores. We then compute the 15 

overall ligand activity score for a specific cellular neighborhood summing all the pair scores 16 

having the center cell as receiver. In the case of ligands paired with multiple receptors, we 17 

summarized the ligand activity as the sum of the interactions with each of the associated 18 

receptors. 19 

Niche enrichments 20 

To identify the preferential localization of a group of cells g in a specific niche n, we 21 

compared the observed and expected counts of g cells in niche n. The expected counts are 22 

computed under the assumption of random, independent distribution of cells belonging to 23 

group g and niche n. To compute expected counts, we simply multiplied the total abundance 24 

of g cells in the TME and the fraction of niche n in the TME. We then compute the log2 fold 25 

changes as the log2 of the ratio between observed and expected counts. In this way, we 26 

quantified the enrichment of infiltrating tumor cells, fibroblast states and cell types across all 27 

3D niches. 28 

Quantification and visualization of 3D cellular density 29 
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We quantified the 3D spatial density of a group of cells g and visualized its 2D projection 1 

using the geom_density_2d_filled function from the ggplot2 package using alpha=0.5 and h= 2 

5.6*700. In this way, we quantified and visualized the 3D density of mesenchymal-like tumor 3 

cells (defined as pseudotime rank > 0.75), vascular endothelium and pericytes, macrophages, 4 

myofibroblasts and cytotoxic T cells. 5 

3D rendering of tissue niches, gene expression and ligand activity scores 6 

Three-dimensional visualizations were generated by downscaling and mapping the spatial 7 

coordinates of segmented cell centroids onto 300x300 images along the xy-axes, using data 8 

from sections 10, 16, 22 and 28 along the z-axis. From these, 300x300x100 voxel data was 9 

constructed by interpolating 25 intermediate sections between each of the four sections using 10 

weighted Convolutional Wasserstein barycenters [83]. Voxel data were exported as TIFF files 11 

and visualized using ParaView v5.10 as surface or volumetric representations. 12 

Statistical methods 13 

Cluster-specific marker genes used for cell type and fibroblast state annotation, niche-specific 14 

differentially expressed genes in a specific cell type (including tumor cells, fibroblasts and 15 

macrophages) and niche-enriched ligands (including EMT, macrophage, dendritic, and T cell 16 

niches) were identified using a Wilcoxon Rank Sum Test comparing the expression of all 17 

genes in the group of interest versus all the remaining cells as implemented in the 18 

FindMarkers function in the Seraut R package (v. 4.0.4). p-values added to violin and 19 

boxplots were computed through an unpaired t-test using the stat_compare_means function of 20 

the ggpubr R package (v 0.6.0). Computed p values were adjusted using Bonferroni correction 21 

for multiple testing. 22 

Data and code availability  23 

Image-based spatial transcriptomics are deposited on Zenodo at the following DOI 24 

10.5281/zenodo.7899173 under restricted access for reviewing purposes. Unless requested 25 

otherwise during the review process, open access to raw and processed data will be granted 26 

upon acceptance of the manuscript, together with the release of the full analysis code through 27 
our GitHub page https://github.com/rajewsky-lab. Furthermore, it will be possible to interactively 28 
explore the analyzed data through an interactive webpage.  29 
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 1 

Figure 1. Molecular histology of the tumor microenvironment at single cell resolution. a) 2 

Experimental design for the 3D reconstruction of cellular neighborhoods. 34 consecutive 5 3 

µm sections were cut from one non-small cell lung cancer (NSCLC) tumor block. Second 4 

harmonic imaging (SHG, quantifies collagen and elastin), hematoxylin and eosin (H&E, 5 

detects tissue morphology), spatial transcriptomics (1000-plex RNA in situ hybridization with 6 

CosMx Spatial Molecular Imager), immunofluorescence (IF) were combined for multimodal 7 

spatial profiling. b) Keratin 19 (KRT19) mRNA localization matches pan-cytokeratin 8 

immunostaining. Left:  KRT19 mRN A captured by CosMx (green: KRT19 transcripts, gray: 9 

DAPI (nuclei), blue: cell segmentation masks). Right: pan-cytokeratin IF (epithelial cells, 10 

green; DAPI: blue) c) UMAP of cell types in the tumor microenvironment. d) Traditional and 11 
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molecular histology. Top left and bottom right: H&E staining (section 3). Top right and 1 

bottom left: Cell types mapped to their spatial position (section 4). e) Congruence of gene 2 

expression profiles in segmented cells with healthy and tumor single cell RNA sequencing 3 

references. UMAP plots are colored by their Label Transfer scores indicating similarity to 4 

reference cell types.  5 
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1 
Extended data figure 1 related to figure 1. a) Schematics of characteristics, staging and 2 

clinical history of the NSCLC patient under study. We investigated the lobectomy sample. b) 3 

Deep learning-based whole slide H&E annotation of carcinoma, stroma, and normal lung 4 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 10, 2023. ; https://doi.org/10.1101/2023.05.10.539644doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.10.539644
http://creativecommons.org/licenses/by-nc-nd/4.0/


44 

regions. Black box: profiled region of interest (ROI). c) Whole slide images of the sections 1 

profiled with CosMx. Yellow: 24 fields of view in each ROI. d) Correlation of gene 2 

expression across sections. Section-to-section Pearson correlation of aggregate gene 3 

expression profiles. e) UMAP plot of segmented cells. Cells are colored according to their 4 

transcriptomic cluster assignment. f) Cluster expression of canonical markers used for cell 5 

type annotations. g) Cell type distributions of pancytokeratin (panCK) immunofluorescence 6 

signal (top), cell area from the segmentation masks (middle) and transcript counts (bottom). 7 

h) Spatial plot of cell types in section 4. i) Tissue morphology by conventional hematoxylin 8 

and eosin staining in section 3.  9 
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 1 

Figure 2. 3D neighborhoods identify multicellular niches in the tumor 2 

microenvironment. a) 3D plot of cells in the 6 CosMx sections after registration. Green: 3 

respiratory epithelium cells, gray: other cell types. Axes are scaled to the same length. b) 4 

Analysis of 3D cellular neighborhoods. Exemplary 3D neighborhood (left). Red: center cell: 5 

red, dark green: tumor cells, orange: fibroblasts, gray: other cell types. Quantification of cell 6 

types in 3D neighborhoods is used to build the neighborhood matrix (right). Tumor cells, 7 

fibroblasts and macrophages are shown out of 18 cell types quantified. c) UMAP of 3D 8 

cellular neighborhoods. Cells are grouped based on their 3D neighborhood composition, 9 

regardless of their gene expression, and colored by 3D niche assignment. d) Composition of 10 

3D neighborhoods in multicellular niches. Heatmap of niche-specific average cell type 3D 11 

neighborhood counts. Color scale is clipped to 30 for visualization purposes. e) Spatial map of 12 

3D multicellular niches (section 10). Color legend in panel c. gray: cells within 50 µm of the 13 

section edge. f) Comparison of 2D and 3D niches. Alluvial plot of niche assignments when 14 
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analyzing 2D and 3D neighborhoods. Lines follow the assignment of the same cell in 3D 1 

(left) and 2D niches (left). Color legend in panel c, dark green: ‘macrophage-rich stroma’. g) 2 

3D neighborhoods capture niche spatial continuity. Cells assigned to ‘T cell niches’ and 3 

‘tumor core’ only in 3D (highlighted) connect seemingly separated 2D niches.  4 
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 1 

Extended data figure 2 related to figure 2. a) Boxplot of cellular displacement following 2 

3D alignment. The distribution of cellular shifts for each section is shown. Section 4 was used 3 

as the anchoring section. b) Richness of 2D and 3D cellular neighborhoods. The distribution 4 

for the total number of neighbors, the number of different cell types and the alpha diversity 5 

(Chao index) are shown for 2D and 3D neighborhoods. ****: t-test p-values < 0.005, n= 6 

218,378. c) Violin plots of the number of neighbors (top) and different cell types per 3D 7 

neighborhood for cells in different 3D niches. d) Pathologist manual annotation of tissue 8 

domains superimposed to hematoxylin and eosin (section 3). e) Left: UMAP of 2D cellular 9 

neighborhoods. Cells are grouped based on their 2D neighborhood composition and colored 10 

by 2D niche assignment. Right: Spatial map of 2D multicellular niches (section 10), gray: 11 

cells within 50 µm of the section edge.  12 
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1 
Figure 3. Tumor cells acquire pro-invasive molecular programs in the EMT niche. a) 3D 2 

rendering of the tumor bed. b) 3D rendering of infiltrating tumor cells extending beyond the 3 

tumor surface. c) Molecular characterization of infiltrating tumor cells. Comparison of gene 4 

expression between tumor cells located in the desmoplastic stroma vs those in the tumor core. 5 

Red: genes with more > 5% expression difference, labeled: red genes with absolute fold 6 

change > 1.33. d) Pseudotime captures tumor cell molecular dynamics. UMAP plot of tumor 7 

cells based on their transcriptomic profiles. Tumor cells are colored by pseudotime rank. e) 8 

Epithelial state marker CDH1 (E-Cadherin) is downregulated with increasing pseudotime. 9 

UMAP plot of tumor cells colored by normalized CDH1 expression. f) Tumor cells undergo 10 

epithelial-to-mesenchymal transition (EMT) in one EMT niche. 3D spatial density of tumor 11 

cells with late pseudotime (rank >0.75) highlights one region of the tumor bed.  12 
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 1 

Extended data figure 3 related to figure 3. a) Tumor cells quantification across all niches. 2 

The left barplot includes all tumor cells (yellow: tumor core, red: tumor surface, gray: outside 3 

the tumor bed), while the right one quantifies the niche assignments of infiltrating tumor cells. 4 

Color legend in panel b. b) Preferential localization of infiltrating tumor cells in 3D niches. 5 

log2 fold changes are computed from the ratio of the observed vs expected number of 6 

infiltrating tumor cells per niche. c) Protein validation of keratin upregulation in infiltrating 7 

tumor cells. Quantification of pan-cytokeratin (panCK) immunostaining intensity in tumor 8 

cells located in the tumor core, surface and desmoplastic stroma. ****: t-test p-values < 9 

0.005, n= 38,804. d) Molecular gradients at the tumor surface. Gene expression heatmap for 10 

the top differential genes between tumor cells in the tumor core and desmoplastic stroma. 11 

Row-scaled average gene expression values for tumor cells in the tumor core, surface and 12 

desmoplastic stroma. e-f) Epithelial to mesenchymal transition dynamics in tumor cells. 13 
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Tumor expression of (e) epithelial state marker EPCAM (Epithelial Cell Adhesion Molecule) 1 

and (f) mesenchymal marker VIM (Vimentin). g) Pseudotime progressively increases moving 2 

from the tumor core to the tumor surface and desmoplastic stroma. Boxplot of the pseudotime 3 

rank distribution of tumor cells assigned to the tumor core, surface, and desmoplastic stroma. 4 

****: t-test p-values < 0.005, n= 38,804. h) Spatial distribution of tumor pseudotime scores. i) 5 

Immunofluorescence validation of CDH1 downregulation in the EMT niche (section 12). 6 

Left: Immunostaining for nuclei (DAPI: white) and tumor and normal epithelial cells (panCK: 7 

green). Right: Immunostaining for nuclei (DAPI: white) and epithelial phenotype (CDH1: 8 

magenta), white square: EMT niche.  9 
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1 
Figure 4. A multicellular molecular signature links the EMT niche with reduced 2 

survival in a large cohort. a) 3D rendering of EMT niche (yellow). b) EMT niche tumor 3 

biomarkers. Differential gene expression between tumor cells located inside the EMT niche 4 

vs those outside. Red: genes with more > 5% expression difference, labeled: red genes with 5 

absolute fold change > 1.33. c) LGALS1 expression is specific for tumor cells in the EMT 6 

niche (3D surface rendering), black box: EMT niche. d) Tumor cells, fibroblasts and 7 

macrophages are the main cell types in the EMT niche. Barplot of cell type composition 8 

inside and outside the EMT niche. Gray: cell types with <4% abundance in both regions. e) 9 

EMT niche fibroblast biomarkers. Differential gene expression between fibroblasts located 10 

inside the EMT niche vs those outside. Red: genes with more > 5% expression difference, 11 
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labeled: red genes with absolute fold change > 1.33. f) VEGFA expression is specific for 1 

fibroblasts in the EMT niche (3D volumetric rendering). Gray: tumor bed (3D surface 2 

rendering), black box: EMT niche. g) EMT niche macrophage biomarkers. Differential gene 3 

expression between macrophages located inside the EMT niche vs those outside. Red: genes 4 

with more > 5% expression difference, labeled: red genes with absolute fold change > 1.33. 5 

h) SPP1 expression is specific for macrophages in the EMT niche (3D volumetric rendering). 6 

Gray: tumor bed (3D surface rendering), black box: EMT niche. i) A multicellular EMT niche 7 

molecular signature links the EMT niche with reduced survival. Survival plot of 503 lung 8 

adenocarcinoma patients from The Cancer Genome Atlas (bulk RNA-seq) stratified into high 9 

and low enrichment for the combined expression of LGALS1, NDRG1, IGFBP5, VEGA and 10 

SPP1.  11 
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 1 
Extended data figure 4 related to figure 4. a) NDRG1 expression is specific for tumor cells 2 

in the EMT niche (3D surface rendering), black box: EMT niche. b) Preferential localization 3 

of cell types in the EMT niche. log2 fold changes are computed from the ratio between the 4 

observed and expected number of cells per cell type in the EMT niche. c-e) 3D volumetric 5 
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rendering of IGFBP5 (c), IGFBP7 (d) and FN1 (e) fibroblast expression. Gray: tumor bed 1 

(3D surface rendering), black box: EMT niche. f-g) 3D spatial density plot of vascular 2 

endothelium and pericytes (f) and macrophages (g). h-n) Survival plot of 503 lung 3 

adenocarcinoma patients from The Cancer Genome Atlas (bulk RNA-seq) stratified into high 4 

and low enrichment for the individual expression of LGALS1 (h), NDRG1 (i), IGFBP5 (l), 5 

VEGA (m) and SPP1 (n).  6 
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 1 

Figure 5. Multimodal analysis of 3D neighborhoods captures the tumor, myofibroblasts 2 

and macrophage crosstalk in the EMT niche. a) Extracellular matrix (ECM) remodeling in 3 

the TME. Second harmonic (SHG) imaging (section 3), purple: elastin, green: fibrillar 4 

collagen, white square: EMT niche. b) Collagen signal (section 3) in tumor cell 5 

neighborhoods (section 4). Tumor cells colored by their mean collagen signal are plotted. 6 

white square: EMT niche. c) Different fibroblast transcriptomic states in the TME. UMAP 7 

plot of fibroblasts colored by cluster assignment. d) 3D spatial density plot of myofibroblasts, 8 

demonstrating their accumulation in the EMT niche. e) 3D spatial analysis of cellular 9 

interactions. The sensitive co-detection of ligands and its receptors in 3D cellular 10 

neighborhoods is leveraged to quantify the 3D spatial activity scores. f) EMT niche-specific 11 

ligands. Comparison of 3D spatial activity scores between cells located inside the EMT niche 12 
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vs those outside. Red: Ligands with more > 5% interaction difference, labeled: red genes with 1 

absolute fold change > 1.33. g-h) The combination of SPP1 (g), THBS2 (h) and IGF2 (i) 2 

signaling is specific to the EMT niche. Black box: EMT niche.  3 
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 1 
Extended data figure 5 related to figure 5. a) Median elastin and collagen levels 2 

surrounding cell types in section 4. Dotted lines indicate the global median elastin (horizontal) 3 

and collagen (vertical) levels. b) Dotplot of selected marker genes per fibroblast 4 

transcriptomic cluster. Dot size: percentage of cells expressing the gene. Dot color: scaled 5 

average expression. c) Spatial distribution of fibroblast clusters (section 4). d) Fibroblast 6 

transcriptomic states are linked with their 3D neighborhoods. Heatmap showing enrichment 7 

of fibroblast clusters in 3D niches. log2 fold changes are computed from the ratio between the 8 

observed and expected number of cells per cluster in each 3D niche. e) Fibroblast states are 9 
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linked with ECM remodeling. Quantification of collagen and elastin (section 3) in fibroblast 1 

neighborhoods (section4). f) Myofibroblasts underlie the production of stromal factors 2 

specific to the EMT niche. Expression dotplot for EMT niche-specific fibroblast genes per 3 

fibroblast transcriptomic cluster. Dot size: percentage of cells expressing the gene. Dot color: 4 

scaled average expression. g) Cellular players of EMT niche signaling network. Dotplot of 5 

cell type-specific percentages of involved cells (dot size) and log10 average ligand sender 6 

(orange) and corresponding receptor receiver (blue) scores for ligands enriched in the EMT 7 

niche. h-l) FN1 (h), THBS1 (i) and COL4A1 (l) 3D spatial activity scores. Black box: EMT 8 

niche.  9 
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1 
Figure 6. 3D neighborhoods boost the identification of immune niche-specific 2 

interactions, including druggable immune checkpoints. a) Heatmap showing enrichment 3 

of cell types in 3D niches. log2 fold changes are computed from the ratio between the 4 

observed and expected number of cells per cluster in each 3D niche. b) 3D spatial density plot 5 

of cytotoxic T cells, demonstrating their accumulation in immune niches and exclusion from 6 

the tumor bed. c) Spatial organization of immune niches in the TME. 3D rendering of 7 

‘Dendritic cell niches’ (purple), ‘Macrophage niches’ (magenta), ‘T cell niches’ (blue) and the 8 

tumor bed (gray). d) Systematic scoring of interactions identifies ligands enriched in immune 9 

niches. log2 Fold changes (log2 FC) for 164 ligands in ‘Dendritic cell niches’ (x axis) and 10 

‘Macrophage niches’ (y axis). FC are computed comparing average ligand sender scores for 11 

cells inside immune niches against those outside. 11 ligands with a log2FC > 0.75 in either 12 

niche (red) and PD-L1 (dark grey) are labeled. Arrows connect 2D (dots) and 3D (triangles) 13 
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enrichment scores for each enriched ligand and PD-L1. e-g) CCL19 (e), LGALS9 (f) and 1 

CD80 (g) signaling is enriched in immune niches. h) Cellular interactions driving tumor 2 

invasion and immune escape, revealing mechanism-based personalized targets for cancer 3 

interception. Summary scheme of selected molecular features and interaction in the ‘EMT 4 

niche’ (left) and ‘Dendritic cell niche’ (right). The pill symbol indicates druggable 5 

interactions.  6 
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 1 

Extended data figure 6 related to figure 6. a) log2 Fold changes (log2 FC) for 164 ligands 2 

in ‘Dendritic cell niches’ (x axis)  and T cell niches’ ( y axis). FC are computed comparing 3 

average ligand sender scores for cells inside immune niches against those outside. 14 ligands 4 

with a log2FC > 0.75 in either niche (red) and PD-L1 (dark gray) are labeled. Arrows connect 5 

2D (dots) and 3D (triangles) enrichment scores for each enriched ligand and PD-L1. b-c) 6 

CCL21 (b) and CXCL9 (c) 3D spatial activity scores d) Cellular players of Dendritic cell 7 

niche signaling network. Dotplot of cell type-specific percentages of involved cells (dot size) 8 

and log10 average ligand sender (orange) and corresponding receptor receiver (blue) scores 9 

for ligands enriched in Dendritic cell niche. e) MIF 3D spatial activity scores f) IDO1 is 10 

upregulated upon CD80-CTLA4 interaction. Differential gene expression between dendritic 11 
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cells engaged in CD80-CTLA4 interaction vs those not engaged. Red: genes with more > 5% 1 

expression difference, labeled: top 3 differential genes. 2 
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