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Increased flexibility of brain dynamics 
in patients with multiple sclerosis

Nina von Schwanenflug,1,2 Stefan P. Koch,3,4 Stephan Krohn,1,2 

Tommy A. A. Broeders,5 David M. Lydon-Staley,6,7,8 Dani S. Bassett,9,10,11,12,13,14 

Menno M. Schoonheim,5 Friedemann Paul1,15,16 and Carsten Finke1,2

Patients with multiple sclerosis consistently show widespread changes in functional connectivity. Yet, alterations are heterogeneous 
across studies, underscoring the complexity of functional reorganization in multiple sclerosis. Here, we aim to provide new insights by 
applying a time-resolved graph-analytical framework to identify a clinically relevant pattern of dynamic functional connectivity re
configurations in multiple sclerosis. Resting-state data from 75 patients with multiple sclerosis (N = 75, female:male ratio of 3:2, me
dian age: 42.0 ± 11.0 years, median disease duration: 6 ± 11.4 years) and 75 age- and sex-matched controls (N = 75, female:male ratio 
of 3:2, median age: 40.2 ± 11.8 years) were analysed using multilayer community detection. Local, resting-state functional system and 
global levels of dynamic functional connectivity reconfiguration were characterized using graph-theoretical measures including flexi
bility, promiscuity, cohesion, disjointedness and entropy. Moreover, we quantified hypo- and hyper-flexibility of brain regions and 
derived the flexibility reorganization index as a summary measure of whole-brain reorganization. Lastly, we explored the relationship 
between clinical disability and altered functional dynamics. Significant increases in global flexibility (t = 2.38, PFDR = 0.024), prom
iscuity (t = 1.94, PFDR = 0.038), entropy (t = 2.17, PFDR = 0.027) and cohesion (t = 2.45, PFDR = 0.024) were observed in patients and 
were driven by pericentral, limbic and subcortical regions. Importantly, these graph metrics were correlated with clinical disability 
such that greater reconfiguration dynamics tracked greater disability. Moreover, patients demonstrate a systematic shift in flexibility 
from sensorimotor areas to transmodal areas, with the most pronounced increases located in regions with generally low dynamics in 
controls. Together, these findings reveal a hyperflexible reorganization of brain activity in multiple sclerosis that clusters in pericentral, 
subcortical and limbic areas. This functional reorganization was linked to clinical disability, providing new evidence that alterations of 
multilayer temporal dynamics play a role in the manifestation of multiple sclerosis.
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Introduction
Multiple sclerosis (MS) is an autoimmune disease of the CNS 
commonly manifesting with sensorimotor (SM) symptoms, 
fatigue and cognitive deficits.1-3 Dissemination of lesions, 
usually identified with structural imaging, is an important 
criterion in the diagnosis of MS. However, structural dam
age shows limited associations with clinical disability, motiv
ating the search for aberrant functional signatures in MS to 
better understand the link between clinical impairment and 
brain reorganization.4 Changes in brain connectivity are 
thought to reflect compensatory or (mal-)adaptive responses 
to structural brain damage and are frequently linked to 
changes in the patients’ neurological and cognitive status.5

However, ambiguous patterns of connectivity changes that 
span multiple regions and functional systems have been re
ported,6-10 reflecting the intricate pattern of functional re
structuring that occurs in MS.

This ambiguity in existing studies might stem from a focus 
on overly simplistic models of brain function estimating sta
tic functional reorganization, by computing functional con
nectivity (FC) over the entire length of imaging protocols. 
Recent developments have added another dimension to the 
analysis of FC, that is, the temporal fluctuations in functional 
coupling between regions across time.11 Indeed, a growing 
body of literature suggests that models which incorporate 
time-dependent connectivity properties can much more ad
equately describe the inherently dynamic nature of brain ac
tivity, leading to a more holistic understanding of brain 
function.12-15 Emerging work indicates that a focus on dy
namic FC would be fruitful for understanding MS. For ex
ample, Eijlers et al.16 showed that the default mode (DM) 
and visual (VIS) functional systems display reduced temporal 
variability complemented by weakened anti-correlation be
tween these systems in cognitively impaired MS patients rela
tive to healthy controls. A longitudinal study showed that 
changes in FC occur early in the course of the disease and 
continue to change over time.17 In another study, patients 
exhibit altered brain dynamics and clinical correlations be
tween brain dynamics, clinical disability and multi-domain 
impairments in MS.18 Interestingly, these changes seem to 
be apparent across all phenotypes, with progressive MS 
types showing more severe changes.19 Together, these obser
vations reveal clinically relevant functional dynamics that re
main undetected in conventional (static) analyses, which in 
turn motivates further investigation of dynamic FC signa
tures in MS.

Incorporating the different ways altered dynamics of func
tional reorganization affect local and global network levels re
quires a comprehensive framework such as graph-analytical 
models.20,21 In these models, the brain is represented as a net
work with brain regions as nodes and functional connections 
between these nodes, quantified as statistical dependencies be
tween the blood-oxygen-level-dependent time series of 
nodes,22,23 as edges. By applying a community detection algo
rithm, communities of highly interconnected nodes can be iden
tified, thereby providing insights into organizational principles 

of functional connections.24 In particular, previous studies sug
gest disrupted structural and functional network organization 
with overly segregated communities as a new imaging marker 
in MS.25 Multilayer community detection models extend these 
static approaches and track dynamic changes in network top
ology by incorporating the momentary configuration of the net
work in a time-resolved fashion.26 This assessment is typically 
achieved by decomposing the blood-oxygen-level-dependent 
times series into temporal windows of fixed length and by inves
tigating computing FC within these windows. The gathering of 
window-specific FC then allows an examination of how con
nectivity changes over time. A similar method was recently ap
plied to large cohorts of MS patients, providing evidence that an 
overall increased degree of network reconfiguration over the 
course of an imaging session is associated with structural dam
age and cognitive decline in cognitively impaired compared to 
cognitively preserved patients.19,27 However, it remains unclear 
at which spatial scale this dynamic reorganization is most pro
nounced and if such reorganization clusters in specific function
al brain systems.

To address this gap, we here applied multilayer commu
nity detection to identify alterations in dynamic network 
configuration in MS at multiple scales, characterizing local, 
resting-state functional system (RSFS) and global levels 
of functional dynamics. To this end, we calculate 
graph-theoretical measures including flexibility, promiscu
ity, cohesion, disjointedness and entropy on a global, system 
and regional level. We furthermore assess the temporal core– 
periphery organization,28 a network property that describes 
a temporal core comprising unimodal regions of low flexibil
ity and a temporal periphery comprising transmodal areas of 
high flexibility. As such, we assess a potential temporal re
organization of brain activity, especially given that this 
core–periphery structure has been linked to motor perform
ance.28,29 Moreover, we provide a summary measure of 
whole-brain reorganization in flexibility that rests on a direct 
comparison of brain organization in healthy participants. 
Lastly, we explore the relationship between disability and 
altered network dynamics.

Materials and methods
Participants
For this study, 75 patients with MS were recruited from 
the NeuroCure Clinical Research Center, Charité- 
Universitätsmedizin Berlin and the Department of 
Neurology at Charité - Universitätsmedizin Berlin. All pa
tients met the current criteria for relapsing–remitting MS 
(N = 62), primary progressive MS (N = 4), secondary pro
gressive MS (N = 8) or clinically isolated syndrome (N = 1) 
according to Thompson et al.30 Median time between diag
nosis and testing session was 6.0 years (interquartile range 
[IQR]: 11.4). Disease severity at the time of scan was assessed 
with the Expanded Disability Severity Scale (EDSS). The con
trol group consisted of 75 age- and sex-matched healthy 
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participants without any history of neurological or psychi
atric disease. The two groups had the same male:female ratio 
and did not differ with respect to age (t = −1.88, P = 0.34). 
Clinical and demographic characteristics are summarized in 
Table 1. All participants gave written informed consent, 
and the study was approved by the ethics committee of the 
Charité – Universitätsmedizin Berlin.

MRI data acquisition
MRI data were collected at the Berlin Center for Advanced 
Neuroimaging using a 3 T Trim Trio scanner equipped 
with a 20-channel head coil (Siemens, Erlangen, Germany). 
Resting-state functional images were acquired using 
an echo planar imaging sequence (recognition time =  
2.25 s, echo time = 30 ms, 260 volumes, voxel size =  
3.4 mm × 3.4 mm × 3.4 mm), with a duration of 9:51 min. 
High-resolution T1-weighted structural scans were collected 
using a magnetization-prepared rapid gradient echo se
quence (voxel size = 1 mm × 1 mm × 1mm). Lesion volume 
for MS patients was calculated based on a fluid-attenuated 
inversion recovery sequence (recognition time = 6000 ms, 
echo time = 388 ms, inversion time (TI) = 2100 ms, voxel 
size = 1 mm × 1 mm × 1 mm, matrix = 256 × 256, field of 
view (FOV) = 256 mm and 176 contiguous sagittal slices; 
see Supplementary Material 1 for a detailed description of 
lesion segmentation). Healthy controls with white or grey 
matter lesions were not included in this study.

Preprocessing of resting-state 
functional MRI
Prior to preprocessing, framewise displacement31 was calcu
lated for each participant and assessed against a mean frame
wise displacement cutoff of 0.50 mm, and no participant had 
a framewise displacement of 0.5 mm or higher in more than 
20% of time points following Eijlers et al.16 Preprocessing 
of resting-state functional magnetic resonance imaging 
(fMRI) scans included discarding the first three volumes to 

account for equilibration effects, slice time correction, realign
ment to the first volume, spatial normalization to Montreal 
Neurological Institute and Hospital (MNI) space (voxel size 
2 mm × 2 mm × 2 mm) and spatial smoothing with a 6 mm 
full width at half maximum smoothing kernel. Denoising 
steps included white matter and CSF signal regression and mo
tion regression (12 regressors: 6 motion parameters + 6 first- 
order temporal derivatives). Preprocessing and denoising 
were performed using the CONN Toolbox (https://web. 
conn-toolbox.org/). Following previous related work,32,33 a 
band-pass filter was applied between Hz = [0.035–0.125] 
and the mean time series of all voxels within spheres of 
5 mm radius around atlas coordinates defined by Power 
et al.34 were extracted. In order to include subcortical (SUB) 
areas, five additional spherical regions of 5 mm radius per 
hemisphere (amygdala, hippocampus, nucleus accumbens, en
torhinal cortex and perirhinal cortex35-38) were manually 
placed at the centre of each region in standard space and 
added to the Power atlas, which resulted in 274 regions (here
in also referred as nodes). Each nodal timeseries was divided 
into windowed segments (i.e. ‘layers’) with a length of 19 rec
ognition time (=43.225 s) and steps of 9 recognition time 
(20.25 s) as these parameters provide a good trade-off be
tween signal-to-noise ratio and variance in the graph measures 
investigated.29,39 Intra-layer adjacency matrices of FC were 
estimated using Spearman’s correlation coefficient, whereby 
negative correlations were set to 0 following the recommenda
tion of Rubinov and Sporns.40 For each participant, this pro
cess resulted in 27 FC layers, to which we applied multilayer 
community detection.26

Multilayer community detection
A multilayer network model accounts for the time depend
ency between successive FC matrices.26 Herein, the intra- 
layer connectivity of each node is linked to the connectivity 
of the exact same node in the preceding and following layer, 
resulting in a multilayer brain network. A multilayer com
munity detection algorithm (for a detailed description of 
the method, see Ref. 41) is then applied with a spatial 
(ω) and temporal (γ) resolution parameter set to default (de
fault = 1), which assigns the nodes within each layer to com
munities of densely connected nodes. Specifically, we used 
the generalized Louvain MATLAB code for time-varying 
multilayer community detection [https://github.com/ 
GenLouvain/GenLouvain (2011–19)].42

This procedure was repeated 500 times to account for heur
istics in the algorithm that produce slightly different commu
nities in each run43 and subsequently averaged across the 
repetitions.32 Finally, due to the inter-layer dependency of 
the model, switches between communities of each node can 
be quantitatively characterized with dynamic graph metrics.

Dynamic graph metrics
Five graph metrics that capture the functional dynamics of 
interacting brain regions were assessed for each participant’s 

Table 1 Demographic variables and clinical measures of 
the participants

MS 
patients

Healthy 
controls

N 75 75
Sex Female/male 45/30 45/30
Age (years) Median ± IQR 42.0 ± 11.0 40.2 ± 11.8
Phenotype RRMS/PPMS/SPMS/CIS 62/4/8/1
EDSS (at scan) Median; first/third 

quartile
2.0; 1/3

Disease duration 
(years)

Median ± SD 6.0 ± 11.4

Lesion volume (ml) Median ± SD 4.9 ± 9.3

N, number of participants; EDSS, expanded disability severity scale; IQR, interquartile 
range; RRMS, relapsing–remitting multiple sclerosis; PPMS, primary progressive multiple 
sclerosis; SPMS, secondary progressive multiple sclerosis; CIS, clinically isolated 
syndrome, fluid-attenuated inversion recovery hyperintensity volumes (see 
Supplementary Material 1).

http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcad143#supplementary-data
https://web.conn-toolbox.org/
https://web.conn-toolbox.org/
https://github.com/GenLouvain/GenLouvain
https://github.com/GenLouvain/GenLouvain
http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcad143#supplementary-data
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multilayer network model: flexibility, promiscuity, cohesion, 
disjointedness and entropy. The dynamic metrics—except 
entropy, which is custom measure (see below)—were ob
tained using Matlab-functions from the Network 
Community Toolbox (http://commdetect.weebly.com/).44

Flexibility represents a core organizing principle of the 
brain as a dynamic system,45 capturing the degree to which 
communities of interacting brain regions reconfigure over 
time.32 In particular, it captures the number of times a 
node changes its community allegiance across time (i.e. 
which community the node is assigned to according to the 
community detection algorithm), normalized by the number 
of times the node could have changed communities,46 The 
flexibility of a node can thus take values between 0 (no 
change of communities) and 1 (change of community in 
every layer). Flexibility has been linked to behaviour and dis
ease both at rest and during tasks.27,32,33,46-50 Promiscuity 
describes the fraction of all possible communities a node par
ticipates in. Promiscuity is highest (maximum value of 1) if 
the node participates in each community at least once, and 
lowest if it adheres to the same community across time (min
imum value of 1/Ncommunities). In contrast to flexibility, 
promiscuity assesses the range of all possible communities 
visited, thus captures the functional diversity of a node.

While flexibility and promiscuity focus on the number of 
community changes or the number of communities visited, 
these metrics do not provide information about whether 
nodes change communities independently or collectively 
with other nodes.

Cohesion is a metric that measures the extent to which 
nodes change communities together. It captures the propor
tion of time a node changes its community allegiance in a co
ordinated manner with at least one other node from its 
previous community. This metric provides information 
about the interdependence between nodes in terms of com
munity changes, and how nodes interact with each other ra
ther than focusing on the number of community changes 
(flexibility) or the number of communities visited by a 
node (promiscuity). It contrasts with the disjointedness met
ric, which measures the number of times a node changes 
communities independently without being accompanied by 
other nodes from its previous community.

For a more detailed description of flexibility, promiscuity, 
cohesion and disjointedness, see Refs 41 and 46.

Finally, we computed a custom measure of entropy on the 
nodal community affiliation dynamics. Specifically, for each 
node i = 1, 2, … 274 of a given scan, this quantity is calcu
lated as

Hi =
−
􏽐k

j=1 pjlog2pj

􏽨 􏽩

HU(1, k) 

where pj represents the proportion of windows a node visited 
in community j, k represents the number of detected commu
nities in the scan across all nodes, the numerator computes 
the Shannon entropy51 on the affiliation distribution over 

all k possible communities, and the denominator normalizes 
this value by the maximal possible entropy. The latter is com
puted from the uniform distribution U(1,k) over the k pos
sible communities and ensures that entropy values of 
different scans (and thus potentially varying values of k) 
can be compared. As such, Hi quantifies the diversity of a 
node’s community affiliations over time and is 0 if only 
one community was ever visited (minimum diversity) and 
is 1 if all communities were visited equally often (maximum 
diversity). More generally, this metric can intuitively be in
terpreted as the irregularity of a brain region’s functional af
filiations. When comparing promiscuity and entropy, 
entropy measures how evenly a node moves between com
munities while promiscuity measures the proportion of all 
potential communities visited. For example, if a node visits 
all but one community once and sticks to one community 
for all other visits, entropy is low and promiscuity is high. 
Thus, the convergence of these metrics shown in 
Supplementary Fig. 1 is an empirical observation rather 
than a theoretical necessity and should be viewed as a 
more complete characterization of empirical brain dynamics 
rather than an indication of redundancy.

Statistical analyses
Dynamic graph metrics
Each metric was calculated for each node, RSFS (average 
across all nodes within a system), and for the whole brain 
(averaged across all 274 nodes). Correlation between dy
namic graph metrics is shown in Supplementary Fig. 1. 
RSFSs were based on Yeo et al.52 and included the dorsal at
tention (dATT), ventral attention, SM, DM, fronto-parietal 
(FP), VIS and limbic (LIM) systems. SUB and cerebellar re
gions were subsumed as the SUB and cerebellar systems, re
spectively. Group comparisons on each level (node, system 
and whole brain) were then performed using a non- 
parametric permutation test as applied in Glerean et al.53

and corrected for multiple comparisons.54

In a separate validation analysis, we tested whether the ob
served differences between groups could be captured by the 
static and linear connectivity features. To this end, following 
Prichard and Theiler,55 surrogate data were created from the 
original blood-oxygen-level-dependent time series using 
phase randomization of Fourier-transformed data. This 
method preserves the static covariance structure and n-lag 
autocorrelation of the original time series but randomizes 
other properties such as non-linearity or non-stationarity 
(see https://github.com/taabroeders/Recon_Dyn_MS/blob/ 
main/Generate_surrogate.m for the randomization code27). 
The randomization procedure was repeated 50 times, result
ing in 50 sets of surrogate data. To each set, the community 
detection algorithm was applied, and global dynamic metrics 
were calculated as described in the Materials and methods 
section and subsequently averaged over the randomizations. 
The empirically observed metrics were then adjusted by 

http://commdetect.weebly.com/)
http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcad143#supplementary-data
http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcad143#supplementary-data
https://github.com/taabroeders/Recon_Dyn_MS/blob/main/Generate_surrogate.m
https://github.com/taabroeders/Recon_Dyn_MS/blob/main/Generate_surrogate.m
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regressing out the surrogate metrics, and conducting group 
comparison the residuals. If differences were still observed 
between groups despite adjustment for surrogate data, this 
would suggest that static covariance and autocorrelation in 
these surrogate data are not sufficient to explain the empiric
ally observed community dynamics.

Identification of the temporal core 
and periphery
As a next step, we determined the 5% least flexible nodes (i.e. 
temporal core) to identify the regions that remain relatively 
rigid in their community allegiance throughout the scan; 
similarly, we determined the 5% most flexible nodes (i.e. 
temporal periphery) to identify the regions that change com
munity allegiance flexibly. Previous studies have shown that 
regions from primary sensory functional systems are densely 
interconnected, rather inflexible and thus form the temporal 
core, whereas regions from higher-order functional systems 
are more flexible.28,29 The temporal core–periphery organ
ization is a fundamental property of brain network organiza
tion that is complementary to the community structure and is 
thought to mediate interactions between unimodal and 
transmodal information processing systems.28 However, 
this formation seems to be dissolved in several neuropsychi
atric conditions.49,50 Therefore, we averaged the flexibility 
of each node across patients and healthy controls, respective
ly, and determined nodes within the 5th and the 95th per
centile for each group separately. The nodes were then 
plotted on a brain surface and the distribution of RSFS to 
which the nodes belong were determined and compared de
scriptively between groups.

Flexibility reorganization index
The reorganization index quantifies the global reorganiza
tion of network topology in patients based on each node’s 
relative change of a given graph metric as compared to a ref
erence value. It is calculated in analogy to the hub disruption 

index introduced by Achard et al.56 First, a node’s average 
flexibility was calculated within healthy controls to consti
tute a reference flexibility value for each node; second, the 
reference flexibility values were sorted in ascending order; 
third, the node’s reference flexibility value was subtracted 
from the corresponding flexibility value of each individual; 
fourth, the reorganization index was estimated for each par
ticipant as the slope β of a linear regression fitted to the dif
ference in flexibility of each node between the reference value 
and the individual’s flexibility value. These slopes were then 
compared between patients and healthy controls using a 
permutation-based t-test.

Correlation with disease severity
Moreover, the association between graph metrics that 
showed a significant group difference on the global and sys
tem level and clinical disability (EDSS at the time of scan) and 
lesion load (ml; fluid-attenuated inversion recovery hyperin
tensity volumes) was explored. To this end, we computed 
Spearman’s ρ between these variables given the non-normal 
distribution of EDSS scores and lesion volumes. Due to the 
exploratory nature of these analyses, post hoc correlation 
tests were not corrected for multiple comparisons.

Results
Dynamic graph metrics
On the whole-brain level, patients with MS showed higher 
flexibility (t = 2.38, PFDR = 0.024), promiscuity (t = 1.94, 
PFDR = 0.038), cohesion (t = 2.45, PFDR = 0.024) and en
tropy (t = 2.17, PFDR = 0.027) compared to controls, while 
disjointedness did not differ between groups (t = −0.05, 
PFDR = 0.478, Fig. 1). Moreover, these group differences re
mained significant (for entropy, P = 0.052 after false discov
ery rate (FDR) correction) when controlling for a null model 
(see the Materials and methods section and Supplementary 
Table 1), indicating that dynamic metrics capture properties 

Figure 1 Between-group comparison of whole-brain flexibility, promiscuity, cohesion, disjointedness and entropy. Statistical analyses were 
performed using a permutation-based t-test and corrected for multiple comparisons. Coloured dots represent individual values for dynamic graph 
metrics. Thick lines represent the mean. White dots and whiskers represent the median and upper and lower quartile, respectively. Group 
comparisons were performed with a permutation-based t-test. *PFDR < 0.05

http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcad143#supplementary-data
http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcad143#supplementary-data
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beyond differences in n-lag autocorrelation or covariance of 
the time series (i.e. static connectivity).

Regarding the RSFSs, group differences for dynamic 
graph metrics were most prominent in LIM, SUB, dATT 
and SM functional systems, with additional group differ
ences observed in the DM system (Fig. 2 and 
Supplementary Table 2). In all of these RSFSs, patients 
showed higher flexibility compared to controls. 
Promiscuity was higher in patients in the SM and LIM sys
tems. For entropy, we found increases in patients in dATT, 
SM, SUB and LIM systems, while disjointedness was signifi
cantly increased in the LIM system only. For cohesion, we 
determined whether nodes showed cohesive community 
switching with nodes from the same RSFS (cohesion within 
systems) or from different systems (cohesion across systems). 
Here, patients showed less cohesive community switching 
within the LIM system, but higher cohesion between nodes 
from different systems in the dATT, SM, DM, LIM and SUB.

These system results are also reflected by nodal group dif
ferences in dynamic graph metrics. Interestingly, the topo
logical distribution of altered graph metrics (i.e. the 
constraint to LIM and pericentral areas) is even more appar
ent in nodal analyses (Fig. 3 and Supplementary Tables 3–7). 
For all comparisons shown in Fig. 3, dynamic metrics were 
increased in patients compared to controls, except for dis
jointedness where significant decreases were observed in pa
tients in the right amygdala and the left superior frontal 
cortex (Supplementary Table 6).

To ensure that our results are not biased by patients with 
secondary progressive multiple sclerosis, primary progres
sive multiple sclerosis or clinically isolated syndrome, we 
have repeated the group comparison of dynamic metrics 
for the relapsing–remitting multiple sclerosis cohort, yielding 
highly consistent results. The results of these validation ana
lyses can be found in the Supplementary Material
(Supplementary Tables 8 and 9, Figs 2 and 3).

Shift in temporal core–periphery 
organization of brain regions
Values of flexibility differed considerably across nodes and 
RSFSs (Fig. 4). In healthy controls, nodes of the temporal 
core (i.e. nodes with the 5% lowest flexibility values) were 
found mainly (86%) in the SM system, along with nodes 
from the VIS and DM systems. In contrast, nodes of the tem
poral periphery (i.e. nodes with the 5% highest flexibility) 
were almost equally distributed across different RSFSs, in
cluding LIM, SUB, FP, DM, SM and cerebellar systems.

Patients with MS showed a considerable rearrangement of 
core–periphery organization compared to healthy controls. 
In patients, the temporal core shifted from the predominant 
SM system (86%) towards areas equally distributed across 
the VIS (43%), FP (29%) and DM (29%), replacing the 
SM system entirely (0%). In contrast, the temporal periphery 
mirrors the hyper-flexibility of LIM areas detected in the 
group comparison of flexibility measures. Whereas LIM 
areas constitute 29% of the periphery in controls, they 

accounted for 50% of the periphery in patients, followed 
by areas from SUB, VIS, FP, DM and dATT functional 
systems.

Reorganization index
The reorganization index provides a summary measure for 
the degree of reorganization in flexibility across nodes in pa
tients compared to controls. On average, the nodes with the 
lowest flexibility values in the healthy controls show the 
highest increase in flexibility in patients, whereas nodes 
with a high referential flexibility value remain constant 
(Fig. 5A). Mirroring our previous results, patients showed 
abnormally increased flexibility values in pericentral and 
SUB areas (Fig. 5B). The slope of each individual against 
healthy controls was calculated and tested between groups 
(Fig. 5C). Our results show significant lower slopes in pa
tients compared to controls (t = −5.46, P < 0.001), suggest
ing a reorganization of community dynamics in patients. 
MS patients consistently demonstrate this systematic shift 
in flexibility as shown in Fig. 5D.

Correlation with disease severity
Correlation analyses were performed between clinical dis
ability at the day of scanning (as measured by the EDSS) 
and metrics with significant group differences on the global 
and system levels as well as the slope of flexibility reorganiza
tion in patients. While no correlations were found for 
the slope and global metrics, dynamic reorganization on 
the system level exhibited significant associations with 
clinical disability: higher promiscuity and entropy in the 
SM system were associated with higher disability (promiscu
ity: ρ = 0.29, P = 0.013; entropy: ρ = 0.23, P = 0.046). 
Likewise, higher EDSS scores correlated with higher cohe
sion across systems in the SM, DM and LIM systems (SM: 
ρ = 0.36, P = 0.002; DM: ρ = 0.36, P = 0.002; LIM: ρ =  
0.28, P = 0.015). No significant correlation between lesion 
load and dynamic metrics was observed.

Discussion
In the current study, we investigated the time-varying topo
logical properties of functional brain dynamics in patients 
with MS as well as the relation of these topology dynamics 
to clinical impairment. Using a multilayer community detec
tion algorithm, we find that patients show consistent in
creases in the flexibility, promiscuity, cohesion, and 
entropy of how individual brain regions form momentary 
functional communities. These increases were observed 
mainly in pericentral, LIM and SUB areas, highlighting the 
importance of these regions in MS pathophysiology. 
Critically, increases in dynamic metrics were correlated 
with a higher disability as measured by EDSS scores, linking 
the alteration of functional dynamics to clinical outcomes. 
Together, these findings highlight a seemingly maladaptive 
hyperflexible and multi-scale reorganization of functional 

http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcad143#supplementary-data
http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcad143#supplementary-data
http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcad143#supplementary-data
http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcad143#supplementary-data
http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcad143#supplementary-data
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Figure 2 Between-group comparison of dynamic metrics for each RSFS. dATT, dorsal attention; vATT, ventral attention; SM, sensorimotor; DM, 
default mode; FP, fronto-parietal; VIS, visual; SUB, subcortical; LIM, limbic; CB, cerebellar. Coloured dots represent individual values for dynamic 
graph metrics. Thick lines represent the mean. White dots and whiskers represent the median and upper and lower quartile, respectively. Group 
comparisons were performed with a permutation-based t-test. *PFDR < 0.05, **PFDR < 0.01, ***PFDR < 0.001. con, control participants; pat, 
patients with MS
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brain dynamics in MS that cannot be detected in traditional 
static analyses.

Intrinsic brain activity exhibits highly structured spontan
eous fluctuations.57,58 Temporal coherence of these fluctua
tions between distant brain regions constitutes the 
architecture of RSFSs, collectively summarized as the func
tional connectome.34,52 Across all clinical subtypes, patients 
with MS demonstrate widespread disruptions of the func
tional connections that evolve with disease progression and 
are related to cognitive and clinical disability.6,8-10,17,19,59-62

These FC alterations are suggested to partially represent 
compensatory or maladaptive mechanisms as a reaction to 
increasing tissue damage.6,17,61 Furthermore, the extent of 
functional reorganization has been shown to vary with dis
ease stage, potentially mirroring accumulating inefficiencies 
in adaptive capabilities when the disease progresses, which 
may contribute to clinical deterioration.10,17,19,61,63

However, findings from resting-state FC studies in MS re
main divergent and inconclusive—potentially because cur
rent static accounts of functional reorganization do not 
adequately capture time-varying FC alterations in MS. In 
contrast, dynamic changes of connectivity that occur within 
seconds or minutes may be a more sensitive measure of pro
gressing tissue damage and cognitive as well as overall clinic
al decline.12,64 In other words, while traditional approaches 
have mainly asked where in the brain, we observe differences 
between patients and control participants, dynamic ap
proaches allow to study when such differences are present. 
In general, it is conceivable that (potentially momentary) 
changes in brain dynamics are both relevant to understand 
the pathology but at the same time masked by more trad
itional static approaches, especially when the latter are based 
on comparatively coarse measures such as signal covariance. 

Indeed, recent studies on dynamic FC observed reduced tem
poral dynamics in MS16,19,65,66 that reflect multi-domain 
clinical impairment.18 While these studies focus either on ag
gregate whole-brain FC patterns (brain states) or on changes 
in regional FC variability (i.e. quantified as the standard de
viation of FC), the assignment of a node to a functional sys
tem may itself be dynamic, which is not easily detected by 
these approaches. More holistic models of brain organiza
tion, such as time-resolved graph-analytical approaches as 
applied in the current study, can capture multi-scale altera
tions of the variability between functional connections and 
complex properties in network topology26,32,46 thus inte
grating fine-grained connectivity dynamics with features of 
topological reorganization.

Indeed, we observed multi-level changes in dynamic net
work topology in patients compared to controls. In MS, 
nodes in the pericentral, LIM and SUB areas show signifi
cantly increased flexibility, demonstrating aberrant dynam
ics in these brain regions in patients. Furthermore, these 
nodes also exhibit increased promiscuity and entropy, sug
gesting higher volatility and more irregular functional affilia
tions. Despite this, the nodes still formed a ‘functional 
coalition’ jointly displaying abnormal brain activity, as indi
cated by the concurrent increases in cohesion. This behav
iour is reflected in summary measures showing significant 
increases in the respective RSFS (i.e. SM, LIM and SUB sys
tems) and globally altered dynamics in functional reorgan
ization in patients. Taken together, these results indicate a 
shift in functional affiliations that may ultimately lead to a 
de-differentiation of RSFS organization. Interestingly, the 
concept of relative cortical disconnection in MS was pro
posed in a recent review by Chard et al.67 and could be 
caused by advancing disruption of white and grey matter 

Figure 3 Between-group comparison of node-wise dynamic metrics. Brain plots show significant increases of dynamic metrics in patients with MS 
compared to controls thresholded to PFDR < 0.05. Group comparisons were performed with a permutation-based t-test. The overlap of the 
increases in flexibility, promiscuity, cohesion, disjointedness and entropy is shown in the inset
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due to progressive neurodegeneration and (focal) inflamma
tion. Moreover, the idea of de-differentiation of resting-state 
systems is further supported by the observed increases in co
hesion across systems in patients compared to healthy con
trols. Nonetheless, it should be noted that the current 
sample has a comparatively limited disease burden with 
low EDSS scores, disease duration and lesion loads, raising 
the interesting question of whether de-differentiation may 
become more even pronounced as the disease progresses.

MS has previously been associated with alterations in FC 
in the basal ganglia, as well as pericentral and LIM 
areas.18,62,68-70 It is suggested that the SM cortex, thalamus 
and basal ganglia play an essential role in the integration of 
cortico-somatosensory input and motor function.71 Altered 
structural and FC between these areas may undermine stable 
integration of information, resulting in aberrant execution of 
movements. This is particularly interesting given our finding 
of a significant, yet modest, association between increased 
dynamic metrics in the SM/LIM systems and higher EDSS, 
as the EDSS quantifies clinical disability in patients with 
MS with a particular focus on walking abilities. Earlier stud
ies have shown that the allegiance between VIS and motor 
communities decreases with increasing levels of practice of 
a motor task, indicating that high cohesion in the initial 
learning phase facilitates the acquisition of a motor se
quence.72,73 In MS, the formation of an overly dynamic func
tional community connecting the pericentral, LIM and SUB 
systems could therefore represent a maladaptive mechanism 
that aims to maintain sensory-motor integration by forming 
a cohesive functional network structure. This interpretation 
is supported by a previous study that identified a significant 
association between clinical disability and local network ef
ficiency of the SM system, suggesting increased FC and inte
gration62 and possibly reflecting a form of disinhibition 
followed by a network collapse.10 Another recent study 

investigating alterations of recurrent FC states showed that 
dynamic FC abnormalities became more severe in progres
sive MS and correlated with motor impairment.19

Conceivably, such network reconfigurations might vary 
throughout the disease course alongside neurodegenerative 
and inflammatory tissue damage.17,59 To follow this promis
ing avenue, further studies are needed which explore poten
tial imaging biomarkers and the predictive value of dynamic 
FC features on clinical outcome.

Similarly, the level of dynamic graph metrics may depend 
on context and vary across disease courses. For example, in 
healthy controls, higher flexibility has been associated with 
better working memory performance, enhanced reinforce
ment learning of VIS cues47 and higher learning speed in 
the early learning phase.46 In contrast, increased flexibility 
compared to controls has been reported in various neuro
psychiatric diseases including schizophrenia,33,50 attention- 
deficit/hyperactivity disorder,49 and cognitively impaired 
MS patients.27 Therefore, an intermediate degree of flexibil
ity may be optimal for brain dynamics, whereas very low 
flexibility may indicate limited adaptive capacities and exces
sive flexibility may represent system instability.74-76

Furthermore, flexibility appears to vary depending on loca
tion and function within a network28 (cf. the temporal 
core–periphery analysis below), neurotransmitter release33

and structure–function coupling,76 and may also display dif
ferent characteristics in task versus rest settings.

Brain regions are likely to exhibit varying degrees of flexi
bility depending on their function.28,75 In general, unimodal 
areas process information from single modalities (e.g. vision) 
and form the inflexible but densely connected temporal core, 
whereas transmodal areas are thought to primarily process 
multiple modalities, and as such constitute the adaptive 
(i.e. flexible) but sparsely connected temporal periph
ery.28,29,49 Bassett et al.28 have shown that the generation 

Figure 4 Temporal core–periphery organization in healthy controls and patients with MS. Brain plots display regions in the top (core) and bottom 
(periphery) fifth percentile of flexibility values. The pie chart indicates the proportion of RSFSs over the nodes that form the temporal core (top) 
and periphery (bottom)
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of a motor task involves a relatively stable set of core regions 
to maintain motor function, and a set of regions from the 
flexible periphery to enable task adaption. Our results in 
healthy controls are consistent with previous findings on 
the core–periphery structure showing that SM and VIS areas 
form the temporal core, while SUB and temporal areas 
constitute the temporal periphery.28,29,49 Notably, this 
core–periphery organization was considerably disturbed in 
patients, with more regions from the DM and FP systems be
longing to the temporal core, and an overrepresentation of 
LIM structures in the temporal periphery. This redistribution 
reflects the hyper-flexibility of LIM areas found in the group 
comparison of flexibility measures. Such a shift in the tem
poral core–periphery organization in MS might point to
wards reduced stability that is necessary to maintain 

sequential, goal-directed (motor) behaviour28 due to exces
sive nodal flexibility in core regions. This reorganization 
may be caused by a disruption of highly myelinated white 
matter tracts of unimodal networks. However, further re
search would be needed to confirm these hypotheses. 
Interestingly, this ‘shift’ in brain organization and disturbed 
stability of community affiliation in MS is supported by our 
finding of a systematic reorganization in flexibility: nodes 
with the lowest flexibility values in healthy controls (i.e. tem
poral core regions) show the highest increases in flexibility in 
MS. Moreover, this systematic shift emphasizes the need for 
more fine-grained descriptions of brain dynamics, as global 
metrics alone cannot identify spatially specific patterns of 
functional reorganization. By linking these metrics to local 
regions, inferences can be made about the spatial 

Figure 5 Reorganization in flexibility in patients with MS relative to healthy controls. (A) F rank-based mean nodal flexibility difference in patients 
compared to healthy controls. The x-axis shows the mean flexibility of each node in the healthy control group (i.e. the reference group). The y-axis 
depicts the average percentage change in flexibility of each node for patients as compared to healthy controls. The colour of the points denotes the 
mean percentage difference between groups in the flexibility of each node. The slope β of the line fitted to the data represents the reorganization 
index. (B) Surface mapping of the difference in mean flexibility between patients and healthy controls using the same colour scale as in (A); red 
denotes increased flexibility, on average, in patients compared to healthy controls; blue denotes decreased flexibility in MS patients. (C) Group 
comparison of the individually estimated reorganization indices (slope β, represented by dots) for healthy controls and patients. A slope of zero 
would indicate no difference between a participant’s nodal flexibility values and those of the reference group (i.e. all healthy control participants). 
In contrast, deviations in nodal flexibility values would yield a slope closer to −1. Thick lines and whiskers represent the mean and standard 
deviation, respectively. Group comparisons were performed with a permutation-based t-test. ***P < 0.001. (D) Individual slopes for MS patients. 
The thick line represents perfect adherence to the reference values, i.e. a slope of 0 with no increase or decrease in flexibility as compared to 
healthy controls
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distribution of functional reorganization. Along these lines, 
the current study shows that the increased regional volatility 
is not randomly distributed across the brain and therefore is 
unlikely to be related to the relatively disseminated focal 
structural lesions in MS.

Some limitations of the present study are worth noting: 
First, it is important to keep in mind that all metrics are a 
function of the number of windows on which they are calcu
lated.29 To provide a trade-off between the variance in me
trics and the number of windows, we applied a window 
size of ∼43 s, which has been shown to be sensitive in earlier 
dynamic FC studies.39 Second, the applied dynamic graph 
metrics can be correlated with each other.41 Despite this 
fact, they are complementary, each providing additional un
ique information on dynamic network reconfiguration, as 
previously demonstrated.41 Third, our sample primarily con
sists of patients with relapsing–remitting multiple sclerosis 
leaving clinically isolated syndrome, primary progressive 
multiple sclerosis and secondary progressive multiple scler
osis under-represented potentially adding a source of vari
ability. Although the validation analysis including only 
relapsing–remitting multiple sclerosis patients showed high
ly consistent results (Supplementary Tables 8 and 9, Figs 2 
and 3), the investigation of differences in dynamic graph me
trics across phenotypes (see e.g. de la Cruz et al.19) should be 
addressed in future studies. Fourth, the interpretation of 
functional reorganization as compensatory or maladaptive 
mechanism in MS as well as adaptive changes in graph me
trics across the disease course is inherently limited by the 
cross-sectional nature of the study and should be addressed 
in longitudinal studies. Lastly, we believe caution must be ta
ken when drawing inferences about pathophysiology from 
correlational approaches or when directly comparing graph- 
based metrics with more established metrics of FC as they are 
likely to measure different aspects of FC. Therefore, further 
research is needed exploring dynamic imaging biomarkers 
and determining the predictive value of different dynamic 
features for clinical outcomes. This should also systematical
ly include factors such as disease duration as well as lesion 
load and distribution.

In summary, the present study investigated the temporal 
dynamics of brain network configurations in patients with 
MS using a time-resolved community detection approach. 
Our results suggest topologically constrained, hyperflexible 
and unstable network dynamics in patients with MS that 
are related to clinical disability. Finally, our results indicate 
that incorporating temporal dynamics into models of 
FC analyses can provide important insights into fundamen
tal network reconfiguration in MS and serve as an import
ant starting ground to explore potential imaging 
biomarkers.
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Supplementary material is available at Brain Communications 
online.
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