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Summary
Background Atrial fibrillation (AF) is an important heart rhythm disorder in aging populations. The gut microbiome
composition has been previously related to cardiovascular disease risk factors. Whether the gut microbial profile is
also associated with the risk of AF remains unknown.

Methods We examined the associations of prevalent and incident AF with gut microbiota in the FINRISK 2002 study,
a random population sample of 6763 individuals. We replicated our findings in an independent case–control cohort
of 138 individuals in Hamburg, Germany.

Findings Multivariable-adjusted regression models revealed that prevalent AF (N = 116) was associated with nine
microbial genera. Incident AF (N = 539) over a median follow-up of 15 years was associated with eight microbial
genera with false discovery rate (FDR)-corrected P < 0.05. Both prevalent and incident AF were associated with
the genera Enorma and Bifidobacterium (FDR-corrected P < 0.001). AF was not significantly associated with
bacterial diversity measures. Seventy-five percent of top genera (Enorma, Paraprevotella, Odoribacter, Collinsella,
Barnesiella, Alistipes) in Cox regression analyses showed a consistent direction of shifted abundance in an
independent AF case–control cohort that was used for replication.
Abbreviations: AF, Atrial fibrillation; BMI, Body mass index; FDR, False discovery rate; LPS, Lipopolysaccharides; PCoA, Principal coordinates; SCFA,
Short-chain fatty acid; SD, Standard deviation
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Interpretation Our findings establish the basis for the use of microbiome profiles in AF risk prediction. However,
extensive research is still warranted before microbiome sequencing can be used for prevention and targeted treat-
ment of AF.

Funding This study was funded by European Research Council, German Ministry of Research and Education,
Academy of Finland, Finnish Medical Foundation, and the Finnish Foundation for Cardiovascular Research, the Emil
Aaltonen Foundation, and the Paavo Nurmi Foundation.

Copyright © 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Evidence before this study
Classical cardiovascular risk factors explain slightly over half of
the atrial fibrillation risk. While gut microbiota has been
recently linked to cardiovascular health, it remains still
unknown to which extent the gut microbiota affects atrial
fibrillation risk. However, small case–control study sample
(N = 50) of Chinese patients suggest that different gut
microbiome signatures in atrial fibrillation exist.

Added value of this study
Advances in sequencing allows the evaluation of the role
gut microbiota to the development of hypertension. We
study the risk of hypertension using shallow shotgun
metagenomics data for 6763 FINRISK 2002 participants

with >15 years register-based follow-up data for atrial
fibrillation.

Implications of all the available evidence
We demonstrate that both prevalent and prospective atrial
fibrillation is linked with distinct gut microbial genera. Similar
trend was observed for 75% of the top genera in validation
cohort. The shift of the bacterial composition in atrial
fibrillation towards a spectrum with similarities to the
microbiome previously reported in hypertension and heart
failure highlights a shared underlying pathophysiology.
Extensive research is still required to estimate the significance
of these findings to risk prediction and management of atrial
fibrillation.
Introduction
Atrial fibrillation (AF) is a complex disease, and the
majority of cases occur after the age of 60 years.1 The
exact mechanisms of AF development and perpetuation
remain unclear. Classical cardiovascular risk factors
explain only slightly more than 50% of AF risk. Many of
these established AF risk factors, including age, sex,
hypertension,2 obesity,3 prevalent ischemic heart dis-
ease4,5 and heart failure,6 have been shown to be asso-
ciated with an altered composition and function of the
gut microbiome. Furthermore, diverse bacterial species
have been described in atherosclerotic plaques7 and a
reduced diversity of gut microbiome has been observed
in heart failure.8,9

For AF, however, it remains unknown to which
extent the gut microbial profile is related to the dis-
ease.10,11 The gut microbiome or its products can act on
downstream targets, as has been shown for metabolites
such as short-chain fatty acids (SCFA, a major product of
microbial dietary fibre degradation), trimethylamine N-
oxide, and lipopolysaccharides (LPS).12–14 Recently, a
prospective association of trimethylamine N-oxide with
AF was reported in Norwegian individuals.15 In canine
experiments, trimethylamine N-oxide injected in
ganglionated plexi, which are central components of the
autonomic cardiac system, induced enhanced electrical
excitability, atrial electrical remodelling, and prolo-
nged induced AF,16 resulting in fibrosis and cardiac
dysfunction.17 LPS may act through inflammatory path-
ways. In AF patients, LPS was associated with higher
incidence of major adverse cardiovascular events, and
adherence to a Mediterranean diet appeared to lower
LPS concentrations and outcomes.18 The literature
shows, that to date, most of the research has focused on
more easily measurable gut microbiome-produced me-
tabolites.10 Even without direct measurement of circu-
lating metabolites, a more detailed assessment of the
whole microbiome could help the research community
to identify potential gut microbial species and metabolic
pathways in human AF.

A small series of articles based on a case–control
study of 50 Chinese patients hospitalized with AF was
published recently.19–21 The results suggested that
different gut microbiome signatures in AF exist.
Changes in microbial diversity and the predominant
microbiome pattern have been seen in paroxysmal AF.
Current advances in metagenomics with comprehensive
microbiome characterization permit the examination of
the gut microbiome in relation to AF at scale. In the
population-based FINRISK 2002 cohort of 6763
www.thelancet.com Vol 91 May, 2023
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individuals with >15 years of follow-up, we examined
how the prevalence and long-term incidence of AF was
associated with the compositional profile and functional
potential of the gut microbiome and qualitatively
compared our findings with published gut microbiome
associations with other cardiovascular diseases.22
Methods
Study sample
The Finnish Institute for Health and Welfare has per-
formed population surveys every five years since 1972 to
monitor the development of cardiovascular risk factors
in the Finnish population.23 A random population
sample of 13,437 individuals aged 25–74 years from six
geographic regions was invited to participate in the
FINRISK 2002 study.24 Out of all invited individuals,
8799 (65.5%) participated in FINRISK 2002. In the
cross-sectional sample, we excluded 1568 participants
who did not provide stool samples, 20 participants due
to low total read count (N < 50,000), and 448 participants
due to missing relevant covariates resulting in a final
sample of 6763 individuals. Of the 448 participants
missing relevant covariates, 286 did not provide infor-
mation on alcohol consumption, 115 did not grant
permission to registry follow-up, 30 did not provide
smoking status, and 17 had other missing covariates. In
the prospective analyses, we additionally excluded 116
individuals with prevalent AF for a final longitudinal
sample of 6647 participants.

Health examination
The participants completed a questionnaire on socio-
demographic information, lifestyles, medications, and
medical history at home. In the current study ques-
tionnaire information was used to define smoking sta-
tus, alcohol consumption, physical activity, food choices,
and as one criterion for the definition of diabetes.
Physical examinations were performed at a local study
site by trained staff. The participants underwent mea-
surements for height and weight. A nurse drew venous
blood samples for analysis of routine biomarkers and
measured sitting blood pressure two times on the right
arm using a mercury sphygmomanometer and a 14 × 40
cm sized cuff after a 5-min rest. The health examina-
tions were performed in 2002.

Stool sampling and storage
Stool samples were collected at home after the physical
examination in 50 ml Falcon tubes and were mailed to
Finnish Institute for Health and Welfare using prepaid
packages. The samples were then frozen in −20 ◦C until
they underwent metagenomic sequencing in 2017.

Stool DNA extraction and library preparation
Microbiome analysis was performed at the University of
California San Diego using whole-genome untargeted
www.thelancet.com Vol 91 May, 2023
shallow shotgun metagenomic sequencing against
mapped reference databases, following a previously
published protocol.25 In brief, Illumina-compatible li-
braries were prepared from isolated DNA, normalized to
5 ng input per sample, and sequenced using Hi-Seq
4000 for paired-end 150 bp reads. Sequence reads
were mapped against taxonomy using SHOGUN v1.0.5
against NCBI RefSeq database (version 82; May 8,
2017).26 Functional profiles were calculated from a
combination of observed and predicted Kyoto Encyclo-
pedia of Genes and Genomes Orthology group (KO)
annotations from the RefSeq genomes following the
predicted parameters of the SHOGUN tool.26

Variables and covariates
Body mass index (BMI) was calculated as kg/m2.
Smoking was defined by as current daily smoking. We
used self-reported average absolute alcohol consump-
tion (grams per week) during the last 12 months. In-
formation on medication use was retrieved from the
Finnish National Drug Purchase Register, which cap-
tures all reimbursed prescription drug purchases in
Finland. Antihypertensive medication use was defined
as a drug purchase occurring during the four months
preceding the study baseline under following Anatom-
ical Therapeutic Chemical classification code classes:
diuretics (C03), beta-blockers (C07), calcium channel
blockers (C08), and renin–angiotensin system inhibitors
(C09). Prevalent diabetes was defined as self-reported
diabetes, a previous diagnostic code (ICD-10 codes
E10-E14 or ICD-8/9 code 250) indicating diabetes in the
nationwide Care Register for Health Care, which in-
cludes hospital discharges and specialist outpatient
visits, three prior diabetes medication purchases (ATC
code class A10), or special reimbursement code for
diabetes medications in the Drug Reimbursement
Register. Heart failure was defined using a previous
diagnostic code indicating heart failure in the nation-
wide Care Register for Health Care (ICD-10 codes I50,
I110, I130, I132; ICD-9 codes 4029B, 404, 4148, and
428; ICD8 codes 42,700, 42,710, and 428) or special
reimbursement code for heart failure in the Drug
Reimbursement Register. AF was defined using ICD-10
code I48, ICD-9 code 4273, ICD-8 code 42,792, in the
nationwide Care Register for Health Care, or Causes-of-
Death Registers, or special reimbursement for drone-
darone medication in the Drug Reimbursement Regis-
ter before 31 December 2017.

Validation cohort and data collection
For external validation, we used a case–control study of
patients with AF and limited risk factor burden
compared to matched controls specifically collected for
the examination of the gut microbiome between
October 2019 and March 2020 at the University Clinic
Hamburg-Eppendorf, Germany. Cases and controls
were matched based on age, sex, cardiovascular risk
3
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factors, and medication. N = 64 of patients with AF and
74 of the controls were finally available for analysis. The
OMNIgene.GUT DNA Stabilisation Kit (DNA Genotek)
was used. After aliquoting and freezing at −80 ◦C
samples were shipped to the Max-Delbrück-Center,
Berlin. In total, the cohort comprised 138 individuals
with microbiome data available, 64 with an AF diag-
nosis. Microbial DNA was extracted from stool samples
and shotgun sequenced,27 filtered and quality controlled,
then mapped using NGLESS28 to the mOTU taxonomic
space v2.5.29 Prior to analysis, samples (represented by
reads mapping to mOTU marker genes) were rarefied to
this count from the smallest sample (1884), calculating
alpha diversity in this process, using the RTK software.30

Features identified in FINRISK were assessed in the
replication cohort for (direction of) effects (using the
Cliff’s delta nonparametric measure) by comparing
rarefied abundances of AF and control samples in this
cohort. We did not differentiate between paroxysmal,
persistent and permanent forms of AF.

Statistical methods
We used R version 3.6.3 for all statistical analyses. The
source code for the analyses is available at https://doi.
org/10.5281/zenodo.4312841. Unless otherwise noted,
we adjusted the analyses for age, sex, BMI, systolic
blood pressure smoking, alcohol consumption, dia-
betes mellitus, heart failure, antihypertensive medica-
tion use, and total cholesterol. Alcohol consumption
was log (x+1)-transformed to reduce the skewness of
the lower tail bound distribution. We also assessed the
characteristics of the study sample versus those that
were excluded due to missing covariates. We calculated
alpha diversity (Shannon index as a measure of mean
species diversity as variation and richness in the sam-
ple) using species-level data with the R package
microbiome.31 We studied the association between
prevalent AF and alpha diversity using logistic regres-
sion where prevalent AF was the dependent variable.
With N = 6763, 539 incident cases, and alpha set at
0.05, we had 80% and 90% powers to detect odds ratios
of 1.13 and 1.16.32 We calculated the dissimilarity ma-
trix (beta diversity indicating the variation in taxonomic
abundance profiles between samples) and Principal
Coordinates Analysis (PCoA) using Bray–Curtis
dissimilarity on compositional microbial species-level
abundance using R packages vegan.33 We further
studied common microbial genera prevalent in at least
1% of the sample population with a relative abundance
over 0.1%. We examined associations of prevalent AF
or incident AF (prevalent cases excluded) with the
common microbial genera using DESeq2 with the
Benjamini–Hochberg correction (FDR).34,35 In DESeq2,
microbiome composition is used as the outcome,
instead of the exposure variable. The development of
AF was assessed in subset of participants without AF at
baseline Cox regression models with Breslow
approximation for centered log-ratio transformed
(CLR) microbial abundances.36 We also performed
functional analyses using log (x+1) transformed KEGG
Orthology (KO) groups using Cox regression models
with the Benjamini–Hochberg correction.

We performed two additional sensitivity analyses. In
the first sensitivity analysis, we introduced two addi-
tional covariates: leisure time activity and healthy food
choices.37 In the second sensitivity analysis, we limited
the follow-up to 7.5 years which is approximately half of
the total follow-up time. We also performed sparse
Partial Least Squares Discriminant Analysis (sPLS-DA)
using mixOmics library under R version 4.1.2.38 We
tuned optimal values for the sparsity parameters using
k-fold cross validation.

Ethics
FINRISK 2002 study and the case–control validation
study complies with the Declaration of Helsinki. Hel-
sinki. Informed, written consent was obtained from all
participants. The Coordinating Ethics Committee of the
Helsinki and Uusimaa University Hospital District
approved the FINRISK 2002 study. The case–control
validation study was approved by Ärztekammer
Hamburg (PV5705).

Role of funders
Funders had no role in the in the study design, data
collection, data analyses nor interpretation or writing of
the report.
Results
The baseline characteristics of the cross-sectional and
prospective samples are shown in Table 1. The charac-
teristics of the study sample and of individuals with
missing covariates are reported in Supplemental
Table S1. With the large study sample size even small
between-group differences were significant using chi-
square test and ANOVA. However, the number of in-
dividuals with missing data was low and the absolute/
clinical between-group differences were small. We
defined common genera as genera that were present in
the stool samples of at least of 1% of study participants;
we used a cut-off value of over 0.1% relative abundance
to define the presence of a genus in a stool sample. We
observed 91 common microbial genera (Supplementary
Table S2).

Gut microbiome alpha diversity was not associated
with prevalent AF in the age- and sex-adjusted (odds
ratio [OR] 1.00; 95% confidence interval [CI] 0.83–1.20;
P = 0.98) or in the multivariable-adjusted models (OR
1.04; 95% confidence interval [CI] 0.86–1.26; P = 0.71).
Gut microbiome beta diversity was not associated with
AF in age- and sex-adjusted (R2 = 0.024%; P = 0.05) and
multivariable-adjusted models (R2 = 0.020%; P = 0.12).
Fig. 1 shows microbial diversity (Bray–Curtis
www.thelancet.com Vol 91 May, 2023
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Variable Overall (N = 6763) No prevalent AF (N = 6647) Prevalent AF (N = 116)

Age, years (SD) 49.2 (12.9) 48.9 (12.8) 62.9 (8.5)

Women, N (%) 3680 (54.4) 3646 (54.9) 34 (29.3)

Body mass index, kg/m2 (SD) 26.9 (4.6) 26.9 (4.6) 29.2 (5.2)

Systolic blood pressure, mm Hg (SD) 135.6 (20.2) 135.5 (20.2) 144.2 (21.3)

Diabetes mellitus, N (%) 371 (5.5) 357 (5.4) 14 (12.1)

Current smoker, N (%) 1594 (23.6) 1580 (23.8) 14 (12.1)

Antihypertensive medication, N (%) 1216 (18.0) 1134 (17.1) 82 (70.7)

Total cholesterol, mmol/l (SD) 5.6 (1.1) 5.6 (1.1) 5.6 (1.0)

Alcohol consumption, g (SD) 80.4 (122.0) 80.7 (122.1) 62.8 (113.8)

Prevalent atrial fibrillation, N (%) 116 (1.7) 0 (0.0) 116 (100.0)

Incident atrial fibrillation, N (%) 539 (8.0) 539 (8.1) 0 (0.0)

Heart failure, N (%) 94 (1.4) 70 (1.1) 24 (20.7)

Alcohol consumption reported before log(x+1)-transformation. Data are provided as mean (standard deviation [SD]) number (%).

Table 1: Baseline characteristics of the study cohort.

Articles
dissimilarity) as principal coordinate analysis for
species-level bacterial abundances. The first three PcoA
axes explained 31.2% of the variation in bacterial
abundances. Ecological diversity measures did not
accurately discriminate participants with AF status.

We observed prevalent AF having nine significant
associations with common microbial genera with FDR-
corrected P < 0.05 (Fig. 2, Table 2). The associations
were positive for Eisenbergiella, Enorma, Enterobacter,
and Kluyvera, and negative for Bacteroides, Bifidobacte-
rium, Holdemanella, Parabacteroides, and Turicibacter.
Therefore, specific genus level gut microbial abun-
dances have potential to identify individuals with AF.
We also performed sPLS-DA analysis to maximize the
discrimination potential between general gut microbial
composition and AF. The method did not improve
discrimination compared to principal coordinate anal-
ysis. Therefore, we suggest that the potential link be-
tween gut microbiota and AF is mainly driven by
specific gut microbial species rather than general gut
microbial composition.
Fig. 1: Microbial diversity (Bray–Curtis dissimilarity) shown using princ
prevalent atrial fibrillation cases denoted using red.

www.thelancet.com Vol 91 May, 2023
A total of 539 individuals developed AF over a me-
dian follow-up of 14.8 ± 3.0 years. There were no sta-
tistically significant differences in gut microbiome alpha
or beta diversity between individuals who did and did
not develop AF. We observed eight associations between
incident AF and baseline common microbial genera
with FDR-corrected P < 0.05 using DESeq2 (Table 3,
Fig. 2). These associations were positive for Bifido-
bacterium, Enorma, Lactococcus, Mitsuokella, and Sell-
imonas, and negative for Tyzzerella, Hungatella, and
Sanguibacteroides. Comparisons between top bacterial
genera in each analysis were evaluated in the validation
cohort (baseline characteristics see Supplementary
Table S3) as the direction of effect contrasting AF
cases and controls (Supplementary Table S4). Regres-
sion analysis revealed that 6 out of 8 shared top bacterial
genera detected in both cohorts were shifted in the same
direction (Fig. 3). The top hits DEseq2 models over-
lapped for Enorma, Eisenbergiella, and Bifidobacterium
(Fig. 4). While ecological diversity measures did not
accurately discriminate participants that developed AF
ipal coordinate analysis of species-level microbial abundances with

5
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Fig. 2: Heatmap showing log-fold change associated with atrial
fibrillation in common microbial genera for nominally significant
associations after FDR-corrected P value. Asterisk denotes association
with bacterial plasmid. DEseq2 models were adjusted for age, sex,
body mass index, systolic blood pressure, smoking, alcohol con-
sumption, diabetes mellitus, heart failure, antihypertensive medica-
tion use, and total cholesterol.

Bacterial genus Log2-fold change SE FDR-corrected P value

Enorma 0.91 0.15 <0.001

Holdemanella −0.80 0.18 0.001

Eisenbergiella 0.81 0.19 0.001

Kluyvera 1.07 0.30 0.008

Parabacteroides −0.47 0.16 0.039

Turicibacter −0.74 0.25 0.039

Enterobacter 0.88 0.29 0.039

Bacteroides −0.79 0.27 0.039

Bifidobacterium −0.49 0.17 0.041

Desulfovibrio 0.56 0.20 0.051

The estimates are adjusted for age, sex, body mass index, systolic blood
pressure, smoking, alcohol consumption, diabetes mellitus, heart failure,
antihypertensive medication use, and total cholesterol. P values shown are
adjusted for multiple testing using the Benjamini–Hochberg correction (FDR).
Log2-fold changes were estimated using DESeq2. SE stands for standard error.

Table 2: Top ten associations of prevalent atrial fibrillation (N = 116)
with common genera using DESeq2 (N = 6763).
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during follow-up, baseline genus level abundances have
potential to identify individuals with extended follow-up.

In sensitivity analyses we observed that half of the
genera associated with incident AF remained significant
and had relatively unchanged effect sizes when follow
up was limited to 7.5 years (Supplementary Table S5).
The eight genera associated with incident AF remained
significant with similar effect sizes in sensitivity ana-
lyses when additional covariates for exercise and healthy
food choices were included in the model
(Supplementary Table S5). We also studied the associ-
ation between the common microbial genera and inci-
dent AF using Cox proportional hazards models but
observed no significant associations after FDR correc-
tion (Table 4).

We then studied the functional associations between
KO groups and incident AF using Cox proportional
hazard models. Based on prior literature, we focused on
479 KO groups that are associated with the production
of SCFAs and 14 trimethylamines, both well-known gut
microbiome products.39,40 In total, 288 of these 493 KO
groups were detected in our baseline sample. We
observed positive associations of AF with two KO groups
(K15896, K15913) related to amino sugar and nucleotide
sugar metabolism and with one KO group (K07271)
linked to lipopolysaccharide biosynthesis (uncorrected
P < 0.05; Supplementary Table S6). We also studied the
associations between all available 6843 KO groups and
incident AF observing FDR-corrected P > 0.05 for all
associations (Supplementary Table S6).
Discussion
In a large, well-established population-based cohort we
identified modest associations of prevalent and incident
AF with the gut microbiome. The proportion of variance
in microbial diversity measures explained by AF was
low. We observed that prevalent AF was associated with
nine genera and incident AF with eight genera using an
FDR-corrected P value threshold of 0.05; Enorma, Bifi-
dobacterium, and Eisenbergiella were among the top as-
sociations of prevalent and incident AF. Enorma also
appeared among the top hits in Cox regression models
for AF. Some plausible species and genera were iden-
tified in relation to AF, which are known in the context
of established AF risk factors such as blood pressure
control and heart failure. In a validation analysis, 75% of
top genera (Paraprevotella, Odoribacter, Collinsella,
Enorma, Barnesiella, Alistipes) in our Cox regression an-
alyses showed a consistent direction of shifted abun-
dance in an independent AF case–control cohort.

Differentially abundant genera in atrial fibrillation
At the genera level, the top association of prevalent AF
was observed with Enorma. Enorma belongs to the
family of Coriobacteriaceae, which were among the core
www.thelancet.com Vol 91 May, 2023
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Fig. 3: The trends in top bacterial genera with atrial fibrillation in
derivation and validation cohorts. High agreement between bacterial
genera scoring highest versus incident atrial fibrillation under a Cox
regression model (see Table 4) with the direction (upwards-facing
blue: positive association; downwards-facing red: negative associa-
tion) in FINRISK (Cox estimate) and the validation cohort (Cliff’s
Delta nonparametric effect size parameter).

Bacterial genus Log2-fold change SE FDR-corrected P value

Sellimonas 1.02 0.09 <0.001

Mitsuokella 1.02 0.13 <0.001

Enorma 0.46 0.07 <0.001

Tyzzerella −0.32 0.05 <0.001

Bifidobacterium 0.37 0.08 <0.001

Lactococcus 0.47 0.11 <0.001

Hungatella −0.20 0.06 0.016

Sanguibacteroides −0.26 0.08 0.022

Lactobacillus 0.27 0.10 0.051

Eisenbergiella −0.24 0.09 0.084

The estimates are adjusted for age, sex, body mass index, systolic blood
pressure, smoking, alcohol consumption, diabetes mellitus, heart failure,
antihypertensive medication use, and total cholesterol. P values shown are
adjusted for multiple testing using the Benjamini–Hochberg correction (FDR).
Log2-fold changes were estimated using DESeq2. SE stands for standard error.

Table 3: Top ten associations of incident atrial fibrillation (N = 539)
with common genera using DESeq2 (N = 6647).

Articles
families related to heart failure.6 In a small, clinical
case–control study with 20 heart failure patients the
authors showed a significantly lower abundance of
Coriobacteriaceae in diseased individuals.6 Enorma spe-
cies also appeared among the top associations with
incident AF in both, DESeq2 and Cox regression ana-
lyses even after adjustment for prevalent heart failure.
An association between Enorma and hypertension,
which is strongly related to AF, has also been reported.41

Further, Coriobacteriaceae have been positively corre-
lated with total cholesterol, low-density cholesterol, and
body mass index in healthy humans.42 A phase II study
evaluating the safety and efficacy of a non-steroidal
farnesoid X receptor agonist in non-alcoholic fatty liver
disease was terminated early because short intervals of
cardiac arrhythmia were recorded during Holter moni-
toring. In this study, the authors had measured a rela-
tive decrease in abundance of Coriobacteriaceae in the
participants’ gut microbiome.43

In DESeq2 analyses we found Eisenbergiella border-
line differentially abundant in incident AF and signifi-
cantly related to prevalent AF. This finding is in line
with reports showing how Eisenbergiella is more abun-
dant in normotensive persons.44 In addition, the abun-
dance of this genus is different in coronary artery
disease patients.45 Which is a strong predictor and
established risk factor of AF.

We observed a possible negative association of
prevalent AF with Bifidobacterium, and a positive rela-
tion for incident AF. This observation may reflect
different disease stages with higher impact of concur-
rent conditions such as heart failure in individuals with
AF at baseline. In heart failure patients, the genus
Bifidobacterium is depleted.46 Bifidobacterium has been
positively correlated with ejection fraction and nega-
tively with the cardiac stress marker N-terminal pro B-
type natriuretic peptide.47 This prior knowledge may
www.thelancet.com Vol 91 May, 2023
help explain the lower abundance observed in prevalent
AF with a link to heart failure. Bifidobacterium belongs to
the most abundant intestinal bacteria and is an integral
part of most probiotics. Treatments with probiotics
containing Bifidobacterium have been suggested to
improve the atherogenic lipid profile.48,49 Furthermore,
Bifidobacterium has been related to favourable modula-
tion of blood pressure.50

In Cox regression analysis for incident AF, the genus
Odoribacter was among the most differentially abundant
bacteria. It comprises common species of the human
intestinal microbiome isolated from faeces.51 One of the
7
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Fig. 4: The circle illustrates the interaction between cardiovascular risk factors, gut 2 microbiome, and atrial fibrillation (AF) initiation/
perpetuation. The upper dark green box shows 3 the observed associations of prevalent AF with microbial genera, the lower box the top 4
associations of incident AF with genera in DESeq2 analyses. The light green box comprises 5 the top associated genera in both analyses.
*Associations have been reported in prior studies.
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top associations in both prospective analyses was
observed with a related taxon of Sanguibacteroides.52 In
our cohort, individuals who developed AF had lower
abundances of Odoribacter and Sanguibacteroides. A
higher relative abundance of the Odoribacter genus has
been related to lower blood pressure in pregnant
women.53 Blood pressure is a strong AF risk factor.54

Bacteria of this genus produce the SCFA acid butyrate,
Bacterial genus HR 95% confidence in

Odoribacter 0.917 0.851–0.982

Solobacterium 1.093 1.021–1.164

Sanguibacteroidesa 0.943 0.891–0.995

Collinsella 1.041 0.982–1.100

Enormaa,b 1.069 0.967–1.172

Barnesiella 0.96 0.913–1.008

Paraprevotella 0.962 0.914–1.011

Alistipes 0.942 0.871–1.013

Enterococcus 0.941 0.857–1.024

Clostridium 1.087 0.967–1.207

The hazard ratios (HR) are adjusted for age, sex, body mass index, systolic blood pressur
medication use, and total cholesterol. Microbial abundances were transformed using ce
regression model. P values shown are adjusted for multiple testing using the Benjamini–
with top genera in prevalent atrial fibrillation.

Table 4: Top ten common genera associated with incident atrial fibrillation
a signalling molecule in blood pressure control.55 SCFAs
belong to the most abundant gut microbiome-derived
physiologic modulators. They interact with G-protein
coupled receptor pathways including renin secretion
and sympathetic activation,56 which are central to blood
pressure regulation. Further, Odoribacter abundance
positively correlates with isobutyric acid and an unfav-
ourable lipid profile.57 On the other hand, abundance of
terval P value FDR-corrected P value

0.009 0.697

0.015 0.697

0.026 0.804

0.186 0.818

0.201 0.818

0.095 0.818

0.12 0.818

0.101 0.818

0.15 0.818

0.174 0.818

e, smoking, alcohol consumption, diabetes mellitus, heart failure, antihypertensive
ntered log-ratio transformation. We used Breslow approximation for ties in Cox
Hochberg correction (FDR). aOverlap with top genera of DESeq2 analyses. bOverlap

in Cox regression analyses (N = 6923).
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succinate-metabolizing Odoribacteraceae was lower in
obesity, with a significant variation in the gut micro-
biome under Mediterranean diet.58

Results from previous reports in context with the
current data
Prior studies have been small and inconsistent often
lacking robust validation. In 50 Chinese AF patients, the
genus Dorea was among the ten genera with the highest
differences compared to controls and was more abundant
in AF patients.19 Dorea was less abundant in heart failure
in a prior study59 and has been associated with athero-
sclerotic cardiovascular disease.20 However, in our study
neither prevalent nor incident AF was associated with
Dorea. Whether this is a spurious finding or related to
differences in ethnicity or exposome remains unclear. In
the same study by Zuo K et al., Bifidobacterium was also
more abundant in AF whereas we observed a negative
association in our data. Another Chinese case–control
study reported a gut microbial shift towards Bacteroides
besides Prevotella as the dominant enterotypes. This
change in microbial composition was already seen in
paroxysmal AF and accentuated in more persistent AF and
with longer duration of AF.20,21 Bacteroides were among the
top ten genera for prevalent AF in our current study and
thus may demonstrate a certain consistency of findings.

Further overlap in results of our and other prior AF
or heart failure studies that usually had samples sizes of
<100 participants and used less deep 16S ribosomal
RNA sequencing for analysing bacterial populations was
only minor.19 In our study, besides Enorma, there was
further partial overlap of the most strongly associated
genera such as Parabacteroides in relation to prevalent
and Sellimonas bacteria in relation to incident AF. For
Sellimonas species a negative association with sodium
and blood pressure has been demonstrated.41 Thus, a
minor shift in underlying faecal microbial composition
related to the arrhythmia can be assumed.

Whereas our data are not intended to fully elucidate
the mechanisms between changes in gut microbiome
composition and AF, the aspect of its modifiability is
attractive. In our results, a major pathophysiological axis
to hypertension evolved. The majority of the most
abundant genera in relation to prevalent and incident AF
(>70%) have been shown to correlate with blood pressure
indices in the FINRISK cohort.41 The gut–immune
interaction can be modulated by salt-intake2 and thus
address salt-sensitive hypertension. It can be speculated
that small changes achieved through dietary, pre- or
probiotic provisions or pharmacologic interventions on
the gut microbiome could produce relevant effects over a
lifetime. Since blood pressure carries a high attributable
risk, even lowering it by a few mm Hg may decrease AF
incidence.54 Further, a Mediterranean diet can increase
the abundance of Bifidobacteria60 and could thus help
restore microbial dysbiosis seen in AF towards a more
favourable enterotype. In a posthoc analysis of the
www.thelancet.com Vol 91 May, 2023
Prevención Con Dieta Mediterránea Trial (PREDIMED),
olive oil in context with a Mediterranean dietary pattern
reduced AF incidence.61 However, more evidence is
needed to understand whether the microbiome compo-
sition represents a modifiable risk factor or risk marker
of lifestyle components and comorbidities in AF patients.

Caveats and limitations
AF is a heterogeneous phenotype and associations may
have been diluted due to the lack of subtype differentia-
tion.62 In the current study, self-reported information was
used to define certain lifestyle-related covariates which
could result in self-reporting bias. For the outcome, we
relied on discharge diagnoses and coded data at in- and
outpatient clinics. Paroxysmal, oligo- or asymptomatic AF
may thus have been missed and weakened observed dif-
ferences in associations. The gut microbiota composition
was assessed only once, which may not accurately repre-
sent the longitudinal changes over time during the follow-
up in this study. We could not replicate and identify
potentially spurious findings derived from mass data
interrogation because unfortunately, there is no compa-
rable study with prospective data. This issue limited us to
validating our main findings in a case–control sample
with a comparatively small sample size. The extensive
requirement of computational resources prevented us
from studying the associations between KEGG Orthology
groups and AF using DESeq2. The matching of the case-
cohort validation sample was performed before the stool
sample substudy. Not all participants were willing to re-
turn to the study center and participate in the substudy.
Therefore, we observe differences between the sample
sizes and proportions of the base characteristics that could
potentially affect the analysis results. Observed differences
are however, mostly modest and the case–control sample
was used only for validation of the previously observed
significant associations.

Strengths of the study are the large sample size with
long-term follow-up and a maximum depth of informa-
tion through shotgun sequencing that provide biologi-
cally plausible results which serve as hypothesis-
generating. In addition, an overlap of the most strongly
associated species can serve as internal validation because
individuals with prevalent AF were excluded from pro-
spective analyses. Furthermore, though agreement was
substantial only for our Cox regression top drivers, our
top findings replicated with regards to direction of
enrichment/depletion in an independent cohort, sup-
porting their relevance and prioritization in further
replication studies. However, the reason behind the
observed association between baseline gut microbiota
and long-term development of AF is non-trivial and there
may be other contributing factors that we were unable to
adjust for in the current study. Although epidemiological
study participation rates have been decreasing over the
past five decades, FINRISK 2002 had a high overall health
examination participation rate of 66% and 54% of all
9
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invited individuals (80% of health examination partici-
pants) donated a stool sample. The invited population
sample was randomly selected from the Finnish popu-
lation register. We therefore think that FINRISK 2002
and the stool samples are fairly representative of the
general population of Finnish people in 2002.

Conclusions
In conclusion, we observed a different microbiome
composition in prevalent and incident AF compared to
non-affected individuals with a number of genera and
species which differed in abundance. Overall, the alpha
and beta diversity of the gut microbiome did not
meaningfully discriminate individuals with prevalent or
incident disease. Machine learning methods optimized
for binomial discrimination and use of species (or even
higher) resolution level may be required to improve our
understanding of the role between AF and gut micro-
biome. The shift of the bacterial composition towards a
spectrum with similarities to the microbiome in hy-
pertension and heart failure highlights a shared under-
lying pathophysiology. It still remains unknown
whether modulating the intestinal microbiome and
metabolism offers new approaches to primary, second-
ary or tertiary prevention of AF, and whether tracking
the gut microbiome composition may help to guide
lifestyle interventions and management in AF patients.
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