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SUPPLEMENTARY FIGURES (S1-S21):

Figure S1: T2T-CHM13 inversion callset summary and comparison to GRCh38 (n=373).
A) A donut plot showing the total counts of inversion classes (‘complex/lowconf’ - complex and low-confidence calls, ‘inv’
- balanced inversions, and ‘invDup’ - inverted duplications) defined based on Arbigent and PAV genotypes [7]. B) A size
distribution of the whole callset stratified per inversion class. C) A barplot showing the percentage of inverted bases per
inversion category (misorient - misorientation, inv - balanced inversion, invDup - inverted duplication, and complex/lowconf
- structurally complex region or low-confidence call) given the chromosome size. For each chromosome, the left- and
right-side bars represent the fraction of inverted bases in GRCh38 and T2T-CHM13, respectively. Lighter color highlights
bases being inverted only in a single sample (see light green color for chromosome 2 contributed by a single pericentromeric
inversion ~23 Mbp in size in sample NA19650).

https://paperpile.com/c/Xxnlze/A09a


Figure S2: Differences between GRCh38 and T2T-CHM13 callsets.
A scatterplot shows the total number of balanced inversions detected per chromosome (y-axis) given the chromosome length
(x-axis) separately per GRCh38 (beige) and T2T-CHM13 (purple) inversion callset. Size of each dot represents the total
number of SD bases reported for a given chromosome and given reference.



Figure S3: Inversion callset summary with respect to T2T-CHM13 reference.
A) An upset plot showing the total number of inversions uniquely detected by each technology (‘PAV’ - phased-assembly;
‘BIONANO’ - Bionano Genomics, and ‘SSEQ’ - Strand-seq) and those detected by two and more (gray). B) A donut plot
showing the number of megabases contributed separately by a single technology and those supported by more than one
(gray). C) A size distribution of balanced inversions stratified by technology supporting each inverted site and those
supported by more than one technology (gray - SHARED). D) Pie charts show proportions of balanced inversions (n=296),
supported by each evaluated technology (see above) stratified per size. E) A barplot stratifying balanced inversions by size
(x-axis) and for each size category showing the number of inversions (green), total number of overlapping protein-coding
genes (orange), and number of inversion overlapping at least one protein-coding gene (purple). F) Fraction of inverted sites
in each size category that overlap with at least one protein-coding gene.



Figure S4: Nonsyntenic and likely novel sites in T2T-CHM13 inversion calls.
The ideogram shows the position and size (dot size) of all balanced inversions (n=63) that either fall within (≥90% reciprocal
overlap) nonsyntenic regions between GRCh38 and T2T-CHM13 (‘Nonsyn’) or failed to map to GRCh38 reference
(‘Unmapped’) (Methods, Additional file 2: Table S2). Red dots point to regions whose sequence failed both to map to
GRCh38 reference and fall within nonsyntenic regions (n=18).



Figure S5: Enrichment of inversions in pericentromeric regions.
Enrichment analysis was done using a permutation test by counting the number of inversions overlapping with
pericentromeric regions separately per each chromosome. Permuted counts of pericentromeric inversions are shown as black
violin plots. Observed values are shown as red dots. Enrichment analysis is reported separately with respect to T2T-CHM13
(left) and GRCh38 (right) (Methods). For the T2T-CHM13 reference, we highlight fold-enrichment values for chromosomes
that reached significance after Bonferroni correction (Additional file 2: Table S3).



Figure S6: Sequence composition of inversions from pericentromeric regions.
A) The total number of base pairs of various genomic features (such as various classes of human satellites, 'SD.pairs' -
intrachromosomal pairs of SDs no further than 5 Mbp apart and ‘other’ - none of these features) overlapping pericentromeric
inversions (n=60). B) Proportion of genomic features assigned to each brnn region based on the number of ‘burned’
haplotypes within each brnn region. C) An assignment of each pericentromeric inversion to a single feature based on the
majority overlap (proportion of the given feature >0.5) or are labeled as ‘mixed’ if no feature is >0.5.
NOTE: In this analysis we excluded the large pericentromeric inversion on chromosome 2 that is ~23 Mbp in size to prevent
our results being skewed by including such a large genomic region.



Figure S7: Novel pericentromeric inversion on chromosome 1.
A zoomed-in plot shows the novel pericentromeric inversion on chromosome 1 (highlighted by dotted lines) presented in
Fig. 1C. The read-coverage profiles of Strand-seq data over a chromosome 1 centromeric region are summarized as binned
(bin size: 50 kbp step size: 10 kbp) read counts represented as bars above (teal; Crick read counts) and below (orange;
Watson read counts) the midline. Dotted lines highlight the novel centromeric inversion detected on chromosome 1 only with
respect to T2T-CHM13. In this region equal coverage of Watson and Crick counts represents a heterozygous inversion as
only one homologue is inverted with respect to the reference while reads aligned only in Watson orientation represents a
homozygous inversion. Above is a centromere and SD annotation.



Figure S8: Complete assemblies of chromosome 1 centromeric region.
Dotplots show the alignment directionality (yellow - reverse, green - forward) between complete assemblies of chromosome
1 centromere (x-axis) against T2T-CHM13 reference (y-axis). T2T-CHM13 centromere annotation is shown as colored
boxes on the y-axis.



Figure S9: Relative position of alpha satellite array and novel pericentromeric inversion on
chromosome 1.
A) RepeatMasker annotation of centromeric repeats for six complete assemblies of chromosome 1 centromere along with
T2T-CHM13 reference (CHM13v2_1). We highlight alpha satellites (purple), beta satellites (orange) and human satellites
(green). Mapped left (yellow) and right (red) inversion breakpoints are highlighted as vertical bars (Methods). Distances
between boundaries of alpha satellite repeats and left-most inversion breakpoints are shown as an arrow with the distance in
Mbp. Similarly, we show the distance between left and right inversion breakpoints. B) NucFreq validation of assembled
centromeric regions presented in A). Black dots show read depth for the most common base at a given position while red
dots show the second most common base. Regions where we observe high depth of the second most abundant base (red) are
likely assembly collapses. Predicted inversion breakpoints are marked as black arrowheads at the bottom of each plot.



Figure S10: Inversion phasing at pericentromeric region of chromosome 7.
An arrowhead plot showing the inverted status of each defined region reported as colored arrowheads (dark blue - direct,
bright blue - inverted, see the legend) for corresponding regions with respect to GRCh38 (left) and T2T-CHM13 (right).
Gray rectangle in the middle highlights the positions of chromosome 7 centromere in GRCh38.

Figure S11: Evaluation of putative misorients in GRCh38 with respect to T2T-CHM13.
A) Distribution of region sizes of 28 putative misorients in GRCh38 (green) and their respective sizes after mapping onto the
T2T-CHM13 reference genome (Methods). B) Fraction of Watson (minus; orange; wReads) and Crick (plus; teal; cReads)
reads mapped to each region separately for reads mapped to GRCh38 and T2T-CHM13 reference genomes. Read counts are
concatenated across all unrelated individuals (n=41) reported in this study.



Figure S12: Evaluation of inversion differences between GRCh38 and T2T-CHM13 references.
A GRCh38 ideogram shows the fraction of Watson (orange; minus) and Crick (teal; plus) reads aligned to both GRCh38 (left
side pie) and T2T-CHM13 (right side pie) references for a selected number of regions. Strand-seq read counts are
summarized across all unrelated individuals (n=41) from this study. Positions of putative minor alleles in GRCh38 (n=33,
blue lines) reference with respect to T2T-CHM13 are highlighted by blue lines. Putative misorientations in GRCh38 (n=26)
evaluated with respect to T2T-CHM13 are highlighted by red lines. Putative minor alleles in T2T-CHM13 (n=11) predicted
with respect to GRCh38 are highlighted by green lines. Inset: Shows positions of protein-coding genes that reside within
100 kbp distance from GRCh38 misorientation (n=8), GRCh38 minor alleles (n=37) or T2T-CHM13 minor alleles (n=14).
Gene names colored in red have been previously reported as part of genome-wide association studies (GWAS).



Figure S13: Examples of minor and misoriented alleles at chromosome 16.
A “backgammon” plot for a 20 Mbp region at chromosome 16p region depicting changes in the representation of major
alleles as inverted (light blue) and direct orientation (dark blue) based on phased inversion genotypes reported with respect
to GRCh38 and T2T-CHM13 reference genomes. In most cases, GRCh38 was either erroneous or represented the minor
allele. Each horizontal set of arrowheads represents a single haplotype from diverse human populations (AFR - African,
AMR - American, EAS - East Asian, EUR - European, and SAS - South Asian).

Figure S14: Structural differences at Xq28 between GRCh38 and T2T-CHM13.
Strand-seq read-coverage profiles over the Xq28 region summarized as binned (bin size: 10 kbp step size: 1 kbp) read counts
represented as bars above (teal; Crick read counts) and below (orange; Watson read counts) the midline. Equal coverage of
Watson and Crick counts represents a heterozygous inversion as only one homologue is inverted with respect to the reference
while reads aligned only in Watson orientation represent a homozygous inversion. There is a novel inversion in sample
HG01358 with respect to T2T-CHM13. A horizontal line shows a region where there is a minor allele in GRCh38.



Figure S15: Diverse structural haplotypes at the Xq28 region.
Left: An UPGMA tree grouping complete assemblies (n=76) of the Xq28 region into structurally similar groups based on
their alignment to T2T-CHM13 (Methods). Superpopulation of origin for each sample is marked by colored dots.
Right: Visualization of alignment directionality (plus - green, minus - orange) of each assembly with respect to T2T-CHM13.
Positions of SD blocks in the Xq28 region are highlighted by vertical dotted lines. Each alignment is plotted with 0.5 level of
transparency such that overlapping alignments are visible as boxes with a darker color or a mixed green and orange color.

Figure S16: Structural differences at 16p12.2 between GRCh38 and T2T-CHM13.
Structural differences in the 16p12.2 region are visualized as read-coverage profiles of Strand-seq reads mapped separately
to GRCh38 (right plot) and T2T-CHM13 (left plot) references. Strand-seq reads are summarized as binned (bin size: 10 kbp,
step size: 1 kbp) read counts represented as bars above (teal; Crick read counts) and below (orange; Watson read counts) the
midline. The region with roughly equal coverage of Watson and Crick counts represents a heterozygous inversion as only
one homologue is inverted with respect to the reference while the region with reads aligned only in Watson orientation
represents a homozygous inversion. Each inverted region is highlighted on a chromosome-specific ideogram by a red
rectangle.



Figure S17: Topological differences at 16p12.2 between GRCh38 and T2T-CHM13.
Contact matrices deduced based on Hi-C data mapped to GRCh38 and T2T-CHM13 reference are shown on the left and
right side, respectively. We present contact matrices constructed for two samples (HG02011 and GM20847) with short and
long versions of the inversion over the selected chromosome 16 region (black bar at the bottom). Intensity of contacts
between proximal regions of the genome is represented by a heatmap colors from low level of contacts (blue) to high level of
contacts (red). Regions with different levels of contact between two matrices are highlighted by black rectangles.



Figure S18: Rare inversions at disease relevant loci.
Two disease-associated regions mapping to chromosomes 16p11.2 and 22q11.21 are depicted within chromosome-specific
ideograms (red rectangle) with a zoom into the region flanked by segmental duplications (colored horizontal bars) and
pathogenic duplication and deletion breakpoints highlighted in blue and red horizontal lines, respectively. Strand-seq data
highlights rare heterozygous inversions (see Fig. 1C for detailed description) discovered in a human sample with respect to
the status in different nonhuman primate species. Homozygous inversions are orange while homozygous teal represent
homozygous direct orientations.



Figure S19: Diverse structural haplotypes at 15q25.2 region.
From left to right: (i) An UPGMA tree grouping complete assemblies (n=101) of 15q25.2 region into structurally similar
groups based on their alignment to T2T-CHM13 (Methods). Superpopulation of origin for each sample is marked by colored
dots. (ii) Visualization of alignment directionality (plus - green, minus - orange) of each assembly with respect to
T2T-CHM13. (iii) Summary of the total number of base pairs for direct and reverse orientated SD pairs. (iv) Summary of the
fraction of base pairs for direct and reverse orientated SD pairs.



Figure S20: Assembled inversion breakpoints at 15q25.2 and inversion breakpoint mapping.
A) Dotplot of the alignment directionality (yellow - reverse, green - forward) for the HG02257 assembly of 15q25.2 region
(x-axis) against the T2T-CHM13 reference (y-axis). The reported inversion in T2T-CHM13 coordinates is highlighted by
horizontal dashed lines. The position where one contig ends and another starts is marked by a solid vertical line.
B) Visualization of multiple sequence alignment (MSA) between inversion flanking SDs from direct (T2T-CHM13) and
inverted (HG02257) haplotypes. Only paralog-specific variants (PSVs) from the proximal (bright green) and distal (dark
yellow) SDs are colored separately. Gaps in the MSA are colored white and alleles not present in the proximal and distal
SDs are shown in black and red, respectively. Vertical solid lines depict detected change points, with numbers showing the
change point position within flanking SDs. We predict that the inversion breakpoints lie between the 59,689 and 64,695 bp
of flanking SDs. Below we zoom into a ~5 kbp wide breakpoint region of high homology shown by almost perfect
consensus across inversion flanking SDs.



Figure S21: Example of long-lasting misorientation errors in previous human genome
references.
Here, we show a comparison of the FASTA sequences extracted from four misoriented regions (Additional file 2: Table S4)
across four versions of human genome reference assemblies (from top to bottom: T2T-CHM13 v1.1, GRCh38, GRCh37 and
GRCh36). Alignment directionality is highlighted by direct (‘+’, green) and reverse (‘-’, orange) oriented flows between
pairs of FASTA sequences.



SUPPLEMENTARY NOTES:
Rationale for focusing on balanced inversions:
We focused on balanced inversions primarily because balanced inversions are more amenable to
genotyping using Strand-seq data and phased genome assemblies and, as such, we can estimate more
accurate inversion population frequencies. In contrast, regions classified as inverted duplications are
only telling us that a given region is duplicated and inverted in a given genome with respect to the
reference. However, this is not conclusive as to where this duplicated region is positioned in the
genome in question. Similarly, complex events are difficult to genotype using Strand-seq due to the
insufficient mappability of short Strand-seq reads and, thus, we can only tell that there might be a
change in orientation in a given region but the full extent of complexity is difficult to resolve.
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