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SUMMARY
Inter-patient variability and the similarity of healthy and leukemic stem cells (LSCs) have impeded the char-
acterization of LSCs in acute myeloid leukemia (AML) and their differentiation landscape. Here, we introduce
CloneTracer, a novel method that adds clonal resolution to single-cell RNA-seq datasets. Applied to samples
from 19 AML patients, CloneTracer revealed routes of leukemic differentiation. Although residual healthy and
preleukemic cells dominated the dormant stem cell compartment, active LSCs resembled their healthy coun-
terpart and retained erythroid capacity. By contrast, downstream myeloid progenitors constituted a highly
aberrant, disease-defining compartment: their gene expression and differentiation state affected both the
chemotherapy response and leukemia’s ability to differentiate into transcriptomically normal monocytes.
Finally, we demonstrated the potential of CloneTracer to identify surface markers misregulated specifically
in leukemic cells. Taken together, CloneTracer reveals a differentiation landscape that mimics its healthy
counterpart and may determine biology and therapy response in AML.
INTRODUCTION

Our understanding of blood formation has fundamentally

changed in the last decade. Single-cell RNA sequencing

(scRNA-seq)-based studies have demonstrated that hematopoi-

etic stem cells acquire priming early, at phenotypically immature

stages.1 The oligopotent progenitor types that were previously
706 Cell Stem Cell 30, 706–721, May 4, 2023 ª 2023 The Authors. Pu
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thought to drive hematopoiesis, such as common myeloid pro-

genitors (CMPs), consist of mixtures of fully lineage committed

cells.2 Rather than passing through a CMP stage, lineage differ-

entiation occurs along two major branches, a lymphomyeloid

and an erythromyeloid branch.3,4 These results are supported

by various functional assays.5–7 By contrast, the aberrations

that characterize the differentiation landscape in myeloid
blished by Elsevier Inc.
commons.org/licenses/by/4.0/).
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Figure 1. CloneTracer and Optimized 10x enable clonal tracking in droplet-based scRNA-seq

(A) Scheme of Optimized 10x.

(B) Normalized coverage across the mitochondrial genome obtained by default and Optimized 10x.

(legend continued on next page)
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malignancies remain unknown. In particular, many diseases

were thought to affect, or originate from, CMPs, which do not

represent a defined cell type.

Since the healthy and diseased hematopoietic systems

co-exist in myeloid malignancies, investigating malignant differ-

entiation landscapes requires clonally resolved scRNA-seq

methods. Recent studies have profiled CALR-mutant8

and JAK2-mutant9 myeloproliferative neoplasm, as well as

DNMT3A-mutant clonal hematopoiesis10,11 and revealed the

expansion of particular differentiation states at the expense of

others.12 However, the shape of the cellular differentiation land-

scape in full-blown acute myeloid leukemia (AML) remains

unknown: Are healthy routes of lineage differentiation co-opted

in this disease, or are novel, aberrant cellular identities created?

In addition, more specifically, are leukemic stem cells (LSCs) a

consistent cell type resembling healthy HSCs, or are they hetero-

geneous groups of leukemic cells that possess stemness prop-

erties? Answering these questions is of key importance to

prioritize cellular targets for therapies and identify novel prog-

nostic factors.

Here, we have developed a new strategy to add clonal reso-

lution to high-throughput (droplet-based) scRNA-seq data that

robustly work across many of the heterogeneous AML geno-

types. Existing approaches use single nucleotide variants

(SNVs) or mitochondrial SNVs (mtSNVs) as qualitative markers

to identify healthy and malignant cells from scRNA-seq

data.8–10,13,14 However, these measurements are noisy, and

methods for quantitative analyses are lacking. Copy-number

variants (CNVs) can be inferred from scRNA-seq data15–17 but

are not always present. Our new computational method,

CloneTracer, integrates information from SNVs, mtSNVs, and

infers CNVs (when present) through a statistical model appro-

priate for noisy single-cell data. CloneTracer thereby identifies

clonal hierarchies and probabilistically assigns single cells to

clones.

We applied CloneTracer to bone marrow samples from 19

AML patients. We showed that CloneTracer could unanimously

identify most healthy and leukemic cells in 14 of these patients.

By integrating data across all patients, we identified a population

of HSCs expressing a dormancy gene signature that was domi-

nated by residual healthy and preleukemic cells, as well as

leukemic cells resembling active HSCs (active leukemic stem

cells [aLSCs]) that often retained erythroid capacity. Down-

stream of aLSCs, differentiation-blocked, aberrant myeloid

progenitors affected chemotherapy responses and fed into qual-

itatively normal myeloid differentiation. Together, our data estab-

lished a healthy-like differentiation landscape that may deter-

mine biology and therapy response in leukemia.
(C) Coverage of nuclear mutations from various AML patients. Only immature an

(D) Illustration of the statistical challenge addressed by CloneTracer.

(E) Overview of two AML cohorts, see also Methods S1.

(F) Overview of longitudinal sampling in cohort B. Pie charts indicate clinical blas

Azacitidine, respectively.

(G) Top row: inferred clonal hierarchy for patient A.8. Middle row: stacked bar cha

top panel. Bottom rows: heatmap depicting the variant allele frequency of all clo

(H) Like (G), except that data from patient A.6 is shown.

(I) Clonal hierarchy of patient A.6 identified from sequencing of single-cell-derive

(J) Like (G), except that data from patient B.2 is shown. For CNVs, the scaled nu
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RESULTS

Improving coverage of nuclear and mitochondrial SNVs
in droplet-based scRNA-seq
Conventional droplet-based scRNA-seq protocols exhibit low

coverage of nuclear and mitochondrial mutations. We mitigated

this issue by splitting the cDNA pool after amplification and con-

structing sequencing libraries specifically covering RNA expres-

sion, surface antigen expression, nuclear SNVs, and mitochon-

drial genomes (Figure 1A; STAR Methods). In particular, we

constructed libraries that unlike default 10x Genomics cover

the mitochondrial genome full length, similar to a recent report14

(Figures 1B and S1A–S1C). In addition, 55%–85% of these li-

braries mapped to the mitochondrial genome, allowing for a

cost-effective deep sequencing of mitochondrial genomes.

False positive observations of mitochondrial genetic variants

occurred at negligible background rates (Figures S1D–S1G).

For genotyping of nuclear SNVs, we utilized a modified version

of TAP-seq (targeted Perturb-seq)18 with nested, mutation-spe-

cific primers (Figures S1H–S1J and https://github.com/veltenlab/

CloneTracer/tree/master/primer_design for primer design soft-

ware that also assists with identifyingmutations suitable for ampli-

fication). Thereby, coverage on relevant mutations was substan-

tially improved, compared with default 10x Genomics 30

(Figures 1C and S1K) and similar to results from related ap-

proaches.8,9,19 Mitochondrial and nuclear SNV-targeted

sequencing libraries can be constructed from existing (e.g.,

already sequenced) full-length cDNA libraries from 10x Genomics

30, making this method (‘‘Optimized 10x’’) applicable to charac-

terize existing samples in more depth. Sequencing depth require-

ments, as well as a comparison of long-read20 and short-read

sequencing, are presented in the Methods S1. Libraries included

in the final dataset were analyzed with short-read sequencing.

We compared the performance of Optimized 10x with a plate-

based RNA-seq protocol (MutaSeq, a modified Smart-Seq2

protocol21) and a droplet-based assay for transposase-acces-

sible chromatin with sequencing (ATAC-seq) method focused

on tracking mitochondrial mutations (sc-mito-ATAC-seq22)

(Figures S2A–S2C). Optimized 10x maximized the mutational in-

formation available from default 10x Genomics libraries, and, un-

like low-throughput high-confidence plate-based methods,21,23

it displayed the throughput required for ambitious scRNA-seq

oncology projects (Figure S2C).

CloneTracer, a statistical model to infer clonal
hierarchies and identities from scRNA-seq data
Despite the improved coverage of leukemic point mutations and

mtSNVs in Optimized 10x, data from scRNA-seq-based
d early myeloid cells are included. See also Figure S1K.

t counts. DA/VA indicate treatment with Daunorubicin/Ara-C and Venetoclax/

rt illustrating each cell’s probability to derive from the different clones shown in

nal markers in all cells.

d colonies, see STAR Methods.

mber of counts on the specified chromosome are shown.

https://github.com/veltenlab/CloneTracer/tree/master/primer_design
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protocols are inherently noisy, as illustrated by frequent allelic

dropout even of highly expressed genes such as NPM1 (see

Figures 1C and S1K). For a confident interpretation of the data

and quantitative analyses, statistical methods are needed that

identify the most likely hierarchy among the mutations and

thereby, for example, clarify whether a mitochondrial mutation

or CNV is present in all cancer cells or demarcates a sub-clone.

Furthermore, dropout and false positive rates (FPRs) need to be

systematically accounted for when assigning cells to (sub-)

clones.

We therefore developed CloneTracer, a Bayesian model that

identifies the hierarchical relationship between mutations and

assigns the cells to the clones. Our model considers previous

information, such as allele frequencies from exome sequencing

(exome-seq), and most importantly, it accounts for the tech-

nical noise associated with single-cell measurements of

CNVs, SNVs, and mtSNVs (Figure 1D; see Methods S1 for

detail). Thereby, it first compares possible clonal hierarchies.

Second, for the mutational hierarchy with the highest evidence,

it computes the posterior probability of each cell to belong to

any particular clone.

We applied CloneTracer to 19 AML patients from two cohorts

(Figures 1E and 1F; Table S3). Cohort A consisted of diagnostic

bone marrow samples that were subjected to a CD34 enrich-

ment before single-cell CITE-seq (cellular indexing of transcrip-

tomes and epitopes by sequencing); a median of 2,232 single

cells per patient passed stringent quality control filters. Somatic

variants were identified a priori by ATAC-seq (for mitochondrial

variants) and exome-seq (for nuclear variants) of myeloid and

T cells (Figure S1G; Tables S3 and S5). Cohort B included paired

longitudinal samples from four individual patients at the time of

diagnosis, after therapy, and (in one case) at the time of relapse.

A median of 12,034 single cells per patient passed quality filters.

Somatic variants were identified a priori by panel sequencing. In

both cohorts, cells were stained with CITE-seq surface anti-

bodies (see Table S1). Overall, we analyzed 88,602 single cells

from 25 specimens.

To demonstrate the performance of CloneTracer, we chose to

highlight three representative patients (A.8, A.6, and B.2).

Detailed analyses of all patients are described in Methods S1.

Patient A.8 represents the performance of CloneTracer in

cases with well-covered leukemic mutations:

Here, a mutation in NPM1 was covered in 94% of the cells.

Mutations in RPS29 and a mitochondrial gene co-occurred

with this mutation. A preleukemic DNMT3A mutation occurred

upstream of NPM1 but displayed a higher dropout rate.

CloneTracer confidently assigned cells as part of the leukemic

clone if any of the downstream (NPM1, RPS29, or the mtSNV)

mutations were observed (Figure 1G). In their absence, there

was often no conclusive evidence if the cell was healthy or pre-

leukemic, due to the dropout of DNMT3A. We grouped these

cells as ‘healthy’ in downstream analyses and followed up on

preleukemia for selected patients (below, see Figures 4 and

S5). Similar results were obtained for 11 further patients with a

well-covered mutation (mostly NPM1 or a CNV) on top of the

clonal hierarchy.

Patient A.6 represents the behavior of CloneTracer in cases

with moderately covered leukemic mutations and co-occurring

mitochondrial markers:
Here, a nuclear SNV with a high allele frequency in bulk

exome-seq was located in MPO, which was covered in 22.8%

of cells. The mutant MPO allele was only observed in cells car-

rying a mitochondrial mutation (3019G>C) (Figure 1H). The mito-

chondrial mutation was a suitable clonal marker, as it had likely

occurred before the nuclear mutation or there were only cells

carrying both mutations. To verify these results, we grew sin-

gle-cell-derived colonies and genotyped MPO and the mito-

chondrial mutations, confirming that the mitochondrial mutation

is a high-confidence clonal leukemiamarker (Figure 1I). Similar to

patient A.6, mitochondrial mutations drove the assignment of

leukemic and healthy cells in patient B.3.

In the case of patient B.2, we observed several sub-clonal

mitochondrial mutations downstream of the co-occurring IDH2

and DNMT3A mutations that, when occurring together, likely

constitute a leukemic, and not preleukemic, event24 (Figure 1J).

Since these genes displayed high dropout and no reliable clonal

marker was identified, there was often considerable uncertainty

regarding the assignment of healthy vs. leukemic cells. Hence,

this patient was excluded from the clonal analysis. In the remain-

ing 4 patients, there were no well-covered clonal markers (i.e.,

mtSNVs, CNVs, or well-covered SNVs).

Together, these examples illustrate the importance of using

statistical models when interpreting single-cell genotyping

data. All subsequent analyses involving clonal identities pertain

to the 14 patients with high-confidence healthy/leukemic assign-

ments. Importantly, ‘‘leukemic’’ is here defined purely by the

presence of a mutation not observed in the T cell lineage (usually

NPM1 or a CNV, and in some cases, a mitochondrial marker mu-

tation) and not by a functional ability to induce leukemia. Recent

work has used clonal tracking to demonstrate that not all stem

cells carrying a leukemic driver are functionally leukemogenic.25

Validation of CloneTracer
Overall, 91% of the cells from the 14 patients could be assigned

as healthy or leukemic with high confidence (Figure 2A; STAR

Methods). We validated these assignments using established

parameters for AML diagnosis: In AML, most myeloid cells are

leukemic, whereas lymphoid cells are usually healthy.26,27 We

identify lymphoid and myeloid cells from scRNA-seq data and

used this assignment as an indicator for healthy and leukemic,

respectively. Under this assumption, the median area under

the receiver-operating characteristics curve (AUROC) of

CloneTracer was 0.96 (range 0.88–1). The discretized

CloneTracer assignments had a median FPR across patients of

9% (range 0.1%–20%) and a median false negative rate (FNR)

of 1% (range 0%–20%, Figures 2B and 2C). For patients with

SNVs as clonal markers, statistically naive assignments8,28 that

classify a cell as leukemic if at least onemutant allele is observed

and otherwise as healthy if at least one healthy allele is observed,

sub-optimally balanced between FPR and FNR (Figure 2C).

Notably, not all myeloid cells in AML patients are leukemic. We

therefore considered leukemia-associated immunophenotypes

(LAIPs) to distinguish leukemic vs. healthy myeloid cells. LAIPs

are cell state-specific, aberrantly expressed markers identified

during the routine clinical flow cytometric analysis of AML diag-

nostic samples.29,30 Three patients carried a significant number

of residual healthy cells along the full myeloid differentiation

spectrum, as well as a clinically described LAIP. In these
Cell Stem Cell 30, 706–721, May 4, 2023 709
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Figure 2. Validation of CloneTracer clonal assignments
(A) Pie chart summarizing the assignment of cells as healthy or leukemic.

(B) Barchart depicting the fraction of cells assigned as healthy (blue), leukemic (red), or indeterminate (gray), stratified by cell type. Cell typeswith less than 50 cells

covered are excluded.

(C) ROC curves computed from CloneTracer leukemia probabilities, assuming that lymphoid cells are healthy and myeloid cells are leukemic. Dots depict

statistically naive point estimates for the patients without CNVs.

(D) Gene expression data were projected to a healthy reference,4 and for myeloid progenitors, a pseudotimewas computed. Plots depict smoothened expression

of LAIP markers over pseudotime, stratified by the clone. Points indicate mean expression within 20 equally sized bins, and point size indicates number of cells

per bin. Asterisks indicate significance of differential expression. *** FDR < 0.001, ** FDR < 0.01, * FDR < 0.1. p values are from a Wilcoxon test of library-size

normalized ADT counts.

(E) As in (D), but for patient B.1.

(F) Scatterplot depicting p values from statistical tests comparing surface marker expression between healthy and leukemic immature cells. x axis shows es-

timates obtained using a statistically naive assignment, and y axis shows estimates obtained using CloneTracer assignments.
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patients, we projected each cell to a pseudotime of myeloid dif-

ferentiation (see also below) and plotted the protein expression

of clinically identified LAIP markers over differentiation pseudo-

time separately for leukemic and healthy cells. As expected,

leukemic, but not residual healthy cells, expressed LAIP in a dif-

ferentiation state-dependent manner (Figures 2D and 2E). For

example, CD7 was only expressed by leukemic stem-like cells

in patient B.1. The statistical power for identifying LAIP markers

was increased by using CloneTracer, compared with the statis-

tically naive assignment (Figure 2F).

Together, these analyses demonstrate that CloneTracer

correctly assigned cells as healthy and leukemic and outper-

formed statistically naive assignments.

Differentiation hierarchies in leukemia
To identify differentiation landscapes, we integrated gene

expression data from all 19 patients with data from two healthy

individuals (A.0 from this study and C.3 from Triana et al.4). The

integration strategy was selected to preserve real biological dif-

ferences between samples (Figure S2D) while accounting for

technical batch effects (Figure S2E; see STAR Methods). This

analysis showed that cells from the healthy individuals arrange
710 Cell Stem Cell 30, 706–721, May 4, 2023
according to the known differentiation trajectories (Figures 3A

and S3A, points in color). By contrast, cells from leukemic pa-

tients abundantly existed in cell states not observed in healthy

patients (Figure 3A, gray points). Many of these cell states

were observed in single or few patients, highlighting inter-patient

heterogeneity (Figures 3B, 3C, and S3B).

Highlighting CloneTracer assignments on the uMAP showed

that most lymphoid cells from AML patients were healthy and

myeloid cells were leukemic (Figure 3D; see also Figure 2B).

Few lymphoid cells assigned as leukemic likely constituted

false positive calls. By contrast, significant numbers of healthy

monocytes and healthy HSC/MPP (multipotent progenitor)-like

cells occurred in 6 and 5 patients, respectively (Figures 3D

and S3B).

We next aimed to identify leukemic and healthy stem cells. We

observed a cluster, C6 (see Figure S4A for exact cluster labels),

that contained HSCs from the healthy reference individuals (Fig-

ure 3A), as well as both healthy and leukemic cells from the

different AML patients (Figures 3B and 3D). Interestingly, C6

contained cells from 16 of 19 AML patients, whereas most other

progenitor clusters were dominated by cells from only one

patient each (Figures 3B and 3C). Other progenitor populations
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Figure 3. Differentiation landscapes in AML
(A) Uniformmanifold approximation and projection (uMAP) depicting integrated data from both cohorts. Color: cell type for cells from healthy individuals (A.0 and

C.34), see also Figure S3A. Gray: cells from leukemia patients.

(B) Same uMAP highlighting patient identity.

(C) Bar chart summarizing the number of patients represented in each cluster with at least 5 cells. Inset: histogram depicting the size of C6 as a fraction of total

bone marrow. n = 16 patients with cells in C6 are included.

(D) uMAP highlighting CloneTracer leukemia probabilities for 14/19 AML patients. Gray: cells from remaining individuals.

(E) Volcano plot highlighting the number of patients where a given surface marker was significantly (p < 0.05) differentially expressed between cells from C6 and

other immature myeloid cells from the same patient, vs. the average log2-fold change across patients. n = 16 patients with C6 represented and n = 2 healthy

individuals were analyzed.

(F) Volcano plot as in (E), but for RNA expression. To avoid overplotting, a score from 0 to 1 that depended on the log sum of p values was added to the patient

number on the y axis. 30Color: number of patients where the gene appeared as significant in label-retaining (LRC) vs. non-LRC AML cells.31

(legend continued on next page)
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appeared to ‘‘emerge’’ from cluster C6, which was more evident

in a 3D uMAP (see https://veltenlab.crg.eu/clonetracer/ ).

Compared with other progenitor cells, cells from cluster C6

tended to express stem cell surface markers (Figure 3E: expres-

sions of CD34, CD90, and CD49f and lower expressions of CD38

and CD45RA). Interestingly, C6 overexpressed genes that were

identified as upregulated in label-retaining AML cells (LRCs) dur-

ing xenotransplant assays, compared with the non-label-retain-

ing fraction31 (Figure 3F; Table S2). LRCs were characterized as

the population responsible for causing disease in xenotrans-

plants and for drug resistance.31 Across the different AML pa-

tients, cluster C6 contained a median of 1% (range 0.1%–

17%) of the total bone marrow (Figure 3C, inset), which is higher

than the LSC number estimated from xenotransplants.35

To evaluate the similarity of cells fromC6 to healthy stem cells,

we projected all cells to a healthy reference4 and assigned each

cell to the most similar healthy cell state (see STAR Methods;

Figure 3G) and a score that quantifies the similarity (Figure 3H).

Leukemic cells from cluster C6 were very similar to healthy

HSCs, whereas leukemic cells outside of C6 mapped to HSCs

or downstream myeloid progenitor states but displayed lower

similarity. At the level of monocytes and dendritic cells, the tran-

scriptomic similarity between leukemic cells and healthy cells

increased (Figure 3H, inset). We therefore conceptually structure

leukemic differentiation in three stages, putative healthy-like

stem cells (‘‘C6’’), highly heterogeneous and aberrant progeni-

tors, and mature, healthy-like monocytes/dendritic cells. Impor-

tantly, most leukemic cells in cluster C6 were marked by muta-

tions in NPM1 or CNVs, which are typically associated with

leukemia and not preleukemia27 (Figures S3C and S3D).

The dormant stem cell compartment is healthy or
preleukemic
To further characterize the putative stem cell cluster C6, we

focused on the six patients for whom both healthy and leukemic

cells occurred within this cluster. Healthy and leukemic cells in

C6 were generally separated by the principal component anal-

ysis based on gene expression (Figure 4A). Healthy cells ex-

pressed genes characterized as ‘‘dormant HSC’’ genes in (1) a

recent scRNA-seq study of highly purified human HSCs,32 (2) la-

bel retention assays in mice,33 and (3) ‘‘low-output HSC’’ genes

identified using clonal tracking36 (Figures 4B and S4B; Table S2).

A dormant HSC gene expression signature robustly separated

healthy from the large majority of leukemic C6 cells across pa-

tients (Figure 4C); cells expressing the dormant signature were

consistently CD34+CD38� (Figure S4C). These results suggest

that in AML, the dormant stem cell compartment, where present

or observed, contains healthy stem cells (dHSCs). By contrast,

the active stem cell compartment was predominantly leukemic:

these cells were predominantly healthy only in 2 of the 14 inves-

tigated patients (A.9, A.13) (Figure 4C). Of note, five of the seven

patients where we observe dormant healthy HSCs belong to the

karyotypically normal, NPM1 mutant subtype (Figure 4C).
(G) Cells from leukemia patients were projected to the healthy reference4. Color: m

color legend.

(H) uMAP highlighting the similarity score, i.e., similarity to the 5 most similar healt

score over pseudotime.
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To evaluate the potential leukemic and preleukemic content of

the dormant stem cell population, we increased the numbers of

analyzed cells.

First, we focused on 3 patients with NPM1 mutations where

CD34 expression was rare and nearly exclusive to the dormant

stem cell population (Figure 4C: patients A.10, A.11, and A.12).

We sorted CD34+ cells and performed MutaSeq,21 a well-based

single-cell method that allows us to efficiently capture mutations

in lowly expressed genes such asDNMT3A. The sorting strategy

resulted in a significant number of cells expressing the dormancy

gene signature (Figure 4D). For all of these dormant stem cells,

genotype data indicated that they were healthy or preleukemic

(Figure 4E).

To follow up on dormant stem cells in two patients where

CD34 expression was not exclusive to the dormant stem cell

compartment, we sequenced 23,110 additional CD34+ and total

BM cells from two patients, A.2 and A.9 (Figure S5A). In the case

of A.9, we thereby identified 267 C6 cells, a subset of which ex-

pressed the dormancy signature (Figures S5B and S5D). All but

two C6 cells here were healthy or preleukemic (i.e., DNMT3A-

mutant). In the case of A.2, we identified 1,109 cluster C6 cells

that were mostly leukemic and lacked the expression of the

dormancy score (Figures S5B and S5C). These data further al-

lowed us to demonstrate that the main dataset was sufficiently

powered to detect all cell states (Figures S5C and S5D).

Taken together, our data suggest that the dormant stem cell

compartment is predominantly healthy or preleukemic. By

contrast, the active stem cell compartment was leukemic in 12

of the 14 patients. Our results cannot rule out the existence of

rare leukemic dormant stem cells that might be relevant for

relapse.

LSCs retain erythroid capacity
Wenext investigated the leukemic fraction of C6 and its routes of

differentiation. In some patients, leukemic cells from C6 ex-

pressed ‘‘active HSC’’ genes32,33 or ‘‘high-output HSC’’ genes36

relative to healthy cells from C6 (Figures 4B and S4B; Table S2).

To identify whether these cells are truly distinct from other

leukemic progenitors, we performed differential expression

testing, contrasting leukemic C6 cells to other leukemic myeloid

progenitor cells from the same patient. Although most leukemic

cells expressed genes associated with lymphomyeloid priming,

leukemic C6 cells highly expressed genes associated with early

erythromyeloid (erythroid, megakaryocytic, and eosinophilic/

basophilic) priming,1 AP-1 transcription factors, and genes asso-

ciated with LRCs31 (Figures 5A, S4D, and S4E; Table S2). In line

with this observation, in 10 of the 14 patients with confident

CloneTracer assignments, we observed erythroid progenitors

carrying leukemic mutations (Figure 5B). Typically, these cells

carried NPM1 mutations and/or CNVs and were hence derived

from the leukemic clone, and not from a preleukemic clone

(Figures S3C and S3D). The abundance of mutation-carrying

erythroid progenitor cells correlated with the abundance of C6
ost similar healthy cell type for each cell (STAR Methods). See Figure S3A for

hy reference cells (STARMethods). Inset: smoothened average of the similarity

https://veltenlab.crg.eu/clonetracer/
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Figure 4. Characterization of LSCs

(A) PCA of RNA expression data of cells from C6 was performed separately for each patient. Score plots from n = 6 patients with both healthy and leukemic cells

represented in C6 are shown.

(legend continued on next page)
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(Figure 5B). These results indicate that most leukemias, specif-

ically C6, can differentiate into the erythroid lineage at low rates.

Together, these results allowed us to designate leukemic cells

from C6 as aLSCs, a rare population of stem-like cells that exists

in most AML patients and that often retain erythroid capacity.

The state and extent of the differentiation block
determine the phenotypic manifestation of AML
We next focused on the leukemic progenitors downstream of

LSCs. To determine the healthy cell state most strongly resem-

bling these cells, their transcriptome was projected onto healthy

progenitor cells, ranging from early MPPs to promyelocytes4

(see also Figures 3G and 3H). We thereby obtained an average

pseudotime (i.e., a value describing each cell’s progression

along the stem cell to monocyte trajectory). The average

projected pseudotime was associated with therapy response

(Figure 5C; only n = 14 patients treated with anthracycline and

cytarabine induction therapies were included here). We found

that patients with the most immature leukemic progenitors had

blast persistence or died during the first induction therapy,

whereas patients with LMPP (lymphomyeloid primed progeni-

tors)-like leukemic progenitors went into complete remission

(p = 0.04, Wilcoxon test). Although the cohort size underlying

these analyses was small, the results are consistent with a recent

report studying the relationship between differentiation arrest

and survival in a large bulk RNA-seq cohort.37 The presence or

size of the C6 stem cell population was not correlated with

chemotherapy response. Taken together, these results suggest

that the stage of the differentiation blockmay play a role in deter-

mining chemotherapy response.

We next investigated the ability of the leukemic progenitors to

give rise to mature monocytes, which was highly variable be-

tween patients. As expected, the genotype (e.g., NPM1 mutant)

only partly explained the degree of monocytic differentiation. We

hypothesized that leukemic progenitors with a larger resem-

blance to their healthy equivalent might display a weaker differ-

entiation block.We computed for each progenitor cell a similarity

score, describing how close it resembled the most similar

healthy cell (see Figure 3H). We found that this score, after ac-

counting for the genotype, correlated closely with the fraction

of mature monocytes or dendritic cells in the bone marrow (Fig-

ure 5D). Patients with aberrant progenitor cells had a fewmature

myeloid cells. By contrast, patients with progenitors more

closely resembling their healthy counterparts had large numbers

of mature cells. Taken together, these results suggest that the

‘‘degree’’ of the differentiation block, together with leukemia’s

genotype, determines the fraction of monocytes in the bone

marrow.

Of note, we observed patients with mostly healthy monocytes

and other patients with mostly leukemic monocytes (see Fig-
(B) Volcano plot as in Figure 3F, comparing healthy and leukemic cells from C6. n

signatures.32 phyper: hypergeometric test for enrichment.

(C) PCA of cells from cluster 6 performed jointly across all patients but using exclus

putative dormant stem cells.

(D) Rare putatively healthy dormant CD34+ stem cells from three patients were sor

to right, show: (i) Projection on original uMAP from Figure 3, (ii) uMAP of Smart-Se

computed from the gene list in.32,33

(E) uMAPs as in (D), highlighting the variant allele frequency of relevant preleukem
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ure S3B). The fraction of healthy monocytes correlated inversely

with the overall number of monocytes (Figure 5E): in leukemia

cells with a few monocytes (e.g., FAB [French-American-British

AML classification] M0,M1), these monocytes were derived

from residual healthy stem cells. An unsupervised analysis of

gene expressions revealed that monocytes exist in two cell

states. Leukemia-derived monocytes were enriched in a cell

state with higher expressions of MHC-II and interferon response

genes (IFITM1 and IFITM3) (Figure 5F; Table S2). A similar signa-

ture was recently described for monocytes in clonal

hematopoiesis.38

Together, these results suggest that leukemia-derived mono-

cytes originated from incomplete differentiation blocks at the

progenitor level and matured along normal differentiation path-

ways. The stage of the differentiation block at MPP, LMPP, or

promyelocyte stages was linked to the first-line chemotherapy

response. Furthermore, the strength of the differentiation block

was also encoded at the progenitor level and determined the de-

gree of monocytic differentiation. The stage and the degree of

the differentiation block are independent properties.

Our results suggested that the stage of the differentiation

block was an important feature of the AML and thus may be

subject to clonal selection. To investigate this hypothesis, we

focused on three patients with co-existing sub-clones marked

by relevant driver mutations (Figure S6). In these patients,

sub-clones shifted toward more immature differentiation

blocks, compared with the parental clones, possibly because

evolutionary pressures may favor differentiation blocks at

more immature states. Given the small patient number available

for the analyses of sub-clones, we cannot rule out that other

properties or genetic drift led to the expansion of the sub-

clones.

CloneTracer enables the discovery of leukemia and
healthy specific markers
Our results indicated that LSCs, as well as leukemia-derived

monocytes, are rather healthy like and difficult to distinguish

from their healthy counterparts. This raised the question of

whether specific markers can be used to identify healthy vs.

leukemic cells of various differentiation stages, including stem

cells and monocytes. Such markers can possibly be identified

by comparing healthy and leukemic cells from the same pa-

tient, thereby avoiding batch effects, genetic background,

and other variables typically confounding healthy-cancer com-

parisons. To investigate this idea, we first used the CITE-seq

data of cohort B, since a larger number of surface markers

and cells per patient were covered. We asked whether there

are markers that are overexpressed or depleted in leukemic

cells of various differentiation stages, compared with healthy

cells of the same stage. These comparisons identified CD11c
= 6 patients were analyzed, as in (A). Genes are colored by human HSC gene

ively genes from the dHSC signature.32,33 Cells to the right of the dotted line are

ted and subjected to awell-based scRNA-seq protocol.21 uMAP plots, from left

q2 data, (iii) CD34 expression, (iv) HLF34 expression, and (v) a dormancy score

ic and leukemic mutations.
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Figure 5. Differentiation pathways downstream of LSCs

(A) Volcano plot as in Figure 3F, comparing leukemic cells from C6 to leukemic immature myeloid cells from the same patient. n = 14 patients were analyzed.

Color: priming gene signatures.1

(B) Left panel: zoom-in on Figure 3D, displaying only clusters 6, 15, and 29. C15 is a patient-specific cluster displaying aberrant expression of hemoglobins. Right

panel: scatterplot depicting the size of cluster 6 and cluster 29 as a fraction of immature leukemic cells.

(C) Left panel: uMAP highlighting myeloid pseudotime obtained from projection to a healthy reference4. Right panel: boxplot contrasting the therapy response of

each patient with the average pseudotime of the patients’ immature leukemic cells.

(D) Scatterplot depicting the fraction of mature myeloid cells in diagnostic bone marrow samples across n=19 leukemic and one healthy individual (A.0) as a

function of the average similarity score of the immature myeloid progenitors, see also Figure 3H. Genotype is color coded. For patient B.4, the fraction of mature

myeloid cells was computed separately for the two sub-clones.

(E) Scatterplot depicting the fraction of monocytes in total bone marrow (x axis) and the fraction of monocytes that are healthy (y axis) in n = 14 patients.

(F) Left panel: CloneTracer assignments on the uMAP of cluster 1 and 2 (monocytes). Right panel: volcano plot as in Figure 3F, comparing cluster C1 to cluster C2

from the same patient across n = 19 patients and n = 2 healthy individuals.
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Figure 6. Discovery of leukemia and healthy specific markers

(A) Scatterplots of the expression of CD49f and CD11c highlighting the clonal identity for patients B.1 and B.4. Only CD14- cells are shown. Numbers indicate the

percentage of leukemic cells in each of the four quadrants. p values are from a Fisher test for the association of quadrant with clonal identity.

(B) Like (A), except that only CD14+ cells are shown.

(C) Validation of CD11c and CD49f as leukemia/healthy markers by FACS sorting followed by FISH analysis. See STAR Methods. Gates were arbitrarily set to

achieve sufficient cell numbers. p values were calculated using a Fisher test. Right panel: representative images show hybridization of FISH probes.

(D) Schematic overview of the xenotransplantation experiments.

(E) Engraftment and lineage potential of CD34+CD14�CD11c+CD49f� (CG), CD34+CD14�CD11c�CD49f+ (HG), and CD34+CD14� peripheral blood and bone

marrow cells isolated from three de novo AML patients. Numbers indicate the quantity of mice with engraftment versus the total number of mice. Scale bars

indicate the standard deviation.

(F) Scheme illustrating the use of TMAs.

(G) TMA data from n = 86 patients. Ratio between the healthy and cancer gate was calculated as a function of FAB classification. p value was calculated using a

Wilcoxon test.

(legend continued on next page)
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as overexpressed by leukemic cells and CD49f as enriched in

healthy cells (Figure S7A). Accordingly, we observed an enrich-

ment of leukemic and healthy cells in the CD11c+CD49f� and

CD11c�CD49f+ fraction, respectively (Figures 6A and 6B).

Since CD11c expression changed as a function of differentia-

tion (Figure S7B), enrichment analyses of leukemic and healthy

cells were performed for the immature (CD14�) and mature

(CD14+) compartments separately (Figures 6A and 6B).

We next confirmed the specificity of the CD11c/CD49f marker

combination by FACS sorting followed by fluorescent in situ hy-

bridization (FISH). In patient B.4, leukemic cells carrying the

monosomy 7 were enriched in the CD11c+CD49f� fraction,

whereas healthy cells diploid for chromosome 7 were enriched

in the CD11c�CD49f+ fraction (Figures 6C and S7C) (p =

10�10). Similar enrichments were demonstrated in an indepen-

dent patient with trisomy 8 (Figure S7D).

To further demonstrate that CD11c and CD49f can be used to

enrich for functionally healthy cells, we performed xenotrans-

plantation assays. We sorted CD34+CD14� peripheral blood

and bone marrow cells from three de novo AML patients into

CD11c+CD49f� and CD11c�CD49f+ fractions and trans-

planted each fraction into two immunocompromised mice. We

observed that the putatively healthy CD11c�CD49f+ fractions

gave rise to both myeloid and lymphoid engraftment in 8/10

NSGmice from 3 of the 3 patients, indicating healthy hematopoi-

esis (Figures 6D and 6E). The putatively leukemic CD11c+

CD49f� fractions did not engraft (Figures 6D and 6E), as is

frequently observed for de novo AML samples.39

Thus, the marker combination CD11c and CD49f identified

CD34+ progenitor populations in AML specimens, which repo-

pulate NSG mice with healthy cells. In the samples studied, the

marker combination could not be used to enrich rare LSCs.

Finally, we evaluated these markers in two larger cohorts with

different techniques:

We used immunohistochemistry for tissue microarrays (TMAs)

from 86 AML patients and analyzed expression of CD14, CD34,

CD11c, and CD49f (Figures 6F–6H and S7E). A distinct cohort of

87 AML patients was analyzed by flow cytometry for expression

of CD14, CD34, and CD11c (Figures 6I and 6J). Together, these

results allowed us to provide a perspective on the specificity of

CD11c and CD49f and their potential relevance as markers for

healthy vs. leukemic cells. In particular, we observed that in

more differentiated leukemias (FAB M2–M5), the putatively leu-

kemia-derived CD14+ cells were predominantly CD11c+

CD49f�. In undifferentiated leukemias (M0), which contain only

a small number of monocytes, however, residual, putatively

healthy CD14+ cells showed a CD11c�CD49f+ phenotype

(TMA data, Figures 6F–6H and S7E) and decreased CD11c

expression (Figures 6I and 6J). Thus, at the level of monocytes,

CD11c and CD49f constituted a robust combination of markers

to quantitate the fraction of leukemia content. This might be
(H) Representative mid-optical sections of a CD14, CD11c, and CD49f stained tis

Arrows, upper row: CD14+/CD11c�/CD49f+ cell. Arrow, lower row: CD14+/CD1

(I) Scheme illustrating the flow cytometry experiment.

(J) Scatterplot relating the CD11cmean fluorescent intensity on CD14+ cells to the

from n = 59 individuals of selected genotypes is shown.

(K) Boxplot comparing the expression of CD49f in healthy and leukemic cells fro

(L) Bar chart relating the expression of CD11c on CD34+ cells to genotype acros
particularly helpful in AML diagnosis if large numbers of mono-

cytes are present.

In stem cells, the CD11c+/CD49f� combination was informa-

tive in a subset of patients. In 5 of the 6 patients analyzed by

CloneTracer who contained healthy and leukemic cells in cluster

C6, CD49f was more highly expressed by healthy (i.e., dormant)

stem cells40 (Figure 6K). The expression of CD11c on CD34+

cells was variable across and within genotypes (Figures 6L and

S7F). Accordingly, data integration by single-cell transcriptomics

was overall superior in identifying the multipotent leukemia stem

cell cluster, as well as stem-like progenitor cells, compared with

flow cytometry.

DISCUSSION

To investigate routes of cellular differentiation in AML, we have

introduced CloneTracer, a computational method for adding

clonal resolution and identifying leukemic and healthy cells in

scRNA-seq data. Tailored to scRNA-seq, CloneTracer extends

on DNA-seq-specific error models,40–42 as well as models that

require previous knowledge of the clonal hierarchy.43 In the

AML context, CloneTracer confidently identified healthy and

leukemic cells in 14/19 patients. CloneTracer assignments

relied on the presence of a clonal CNV (observed in 5 patients),

a clonal mutation in a highly expressed nuclear gene (observed

in 7 patients), and/or a clonal mitochondrial mutation (observed

in 6 patients; full detail for all patients is provided in the

Methods S1). By combining the three layers of information,

CloneTracer outperformed methods that look at individual

layers only.8,14,17 Previous knowledge of the mutations is

required to run CloneTracer, and we recommend calling these

mutations from bulk data (e.g., exome sequencing, bulk ATAC-

seq for mitochondrial variants, and karyotyping), although mito-

chondrial variants and CNVs can also be called de novo from

single-cell data.14,17

The availability of clonal information enabled us to clarify routes

of leukemic differentiation. Of note, through the integration of data

from all patients, we identified a cluster of stem cells that con-

sisted of dormant, healthy, or preleukemic stem cells and pre-

dominantly leukemic, active SCs with retained erythroid potential

and a gene expression signature resembling label-retaining cells

in xenotransplants.31 Since both dHSCs/dpre (dormant preleuke-

mic cells)-LSCs and aLSCs exhibited relatively consistent gene

expression signatures across patients and healthy individuals,

data integration of scRNA-seq datasets represented a robust

strategy for their identification. By contrast, these cells are difficult

to enrich through flow sorting strategies: the large degree of inter-

patient heterogeneity at the level of progenitors renders it difficult

to develop universal purification schemes.

Downstream of LSCs, we observed a highly heterogeneous

and aberrant compartment of immature myeloid cells. The
sue micro array used for quantification in (G) (see also Figure S7E for scale bar).

1c+/CD49f� cell.

fraction of bonemarrow that is CD14+, and the genotype. Flow cytometry data

m cluster C6.

s n = 87 patients profiled by flow cytometry.
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Figure 7. Model of leukemia differentiation

Adapted from a model of healthy hematopoietic differentiation.1
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patient-specific stage of the differentiation arrest observed in

this compartment determined the initial chemotherapy response

of the patient. The strength of the block independently deter-

mined the overall degree of monocytic differentiation. Unlike

cellular hierarchies identified from bulk data,37 the availability

of single-cell resolution allowed us to distinguish stem cells

(C6) from various immature, ‘‘stem-like’’ progenitors and

pinpoint a poor first-line chemotherapy response to the latter.

Figure 7 summarizes our model of leukemic differentiation

pathways and suggests overall similarities to healthy hematopoi-

etic differentiation, but with an aberrant myeloid progenitor

compartment. Our model suggests that leukemic mutations,

although present in stem cells and monocytes, may prominently

exert their effect in the cellular context of progenitors: Seven of

the ten most commonly mutated AML driver genes44 were

more strongly expressed in progenitors, compared with stem

cells and monocytes (Figure S7G). Differences in expression

levels might lead to specific effects of the mutated gene in

each cellular compartment.

This implies that AML evolution requires mutations in slowly

dividing stem cells, although selection occurs at the level of pro-

genitors. Such a model would be in line with the low number of

genetic aberrations observed in most AMLs. Of note, our data

are static and cannot exclude the possibility that progenitor cells

in AML might also de-differentiate to give rise to stem cells.

In sum, these data may carry implications for the future devel-

opment of therapeutic strategies: our results indicate that in

most if not all AML patients, there is a stem cell compartment

distinct from the most immature progenitor cells. Hence, tar-

geted therapies aimed at immature progenitors may increase

the initial therapeutic response, but unless these therapies also

target the actual stem cell compartment, the effect on relapse

and long-term survival might be limited.

Limitations of the study
At the level of the specific single-cell methodology employed for

clonal tracking, a limitation is that in droplet-based scRNA-seq

protocols, SNVs in lowly expressed genes such as TET2 are diffi-
718 Cell Stem Cell 30, 706–721, May 4, 2023
cult to amplify and large chromosomal inversions or transloca-

tions in non-coding regions cannot be mapped. For DNMT3A,

coverage was obtained in approximately 20% of the CD34+

cells; hence, preleukemic cells were difficult to distinguish from

healthy cells with high confidence. Preleukemic cells were there-

fore followed up on with well-based protocols (Figures 4D and

4E) or simply by sequencing larger numbers of cells (Figure S5).

In the future, methods that combine DNA-based genotyping45

with RNA-seq in droplets might overcome the limitations of

CloneTracer but might initially suffer from worse quality of the

RNA-seq data.

At the level of the cohort analyzed, a limitation of the study is

that statements are drawn from only 19 patients (14 of whom

have clonal tracking information). Hence, the results may not

be entirely representative of the large heterogeneity of AML

genotypes and phenotypes observed, and studies with larger

cohorts are going to systematically link genotypes and scRNA-

seq phenotypes.
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For a complete list of the antibodies used

in this study, see Table S1.

N/A N/A

Biological samples

For a list of the biological samples used

in this study, see Table S3.

N/A N/A

Chemicals, peptides, and recombinant proteins

DBCO-PEG5-NHS Ester Jena Bioscience CLK-CSTM

Cell Staining buffer Biolegend 420201

Human TrueStain FcX Biolegend 422302

TrueStain Monocyte Blocker Biolegend 426102

UltraPure BSA Thermo Fisher AM2616

DRAQ7 Biolegend 424001

Incucyte Caspase3/7 Red VWR International MSPP-4704

Homemade Tn546 CRG Protein

Technologies Unit

N/A

N,N Dimethylformamide Sigma Aldrich D4551-250ML

Betain Lösung Sigma Aldrich B0300-5VL

Recombinant RNase Inhibitor TaKaRa 2313B

Maxima H Minus Reverse Transcriptase ThermoFisher EP0752

KAPA HiFi HotStart ReadyMix Roche KK2602

SCF Peprotech 300-07

Flt3-L Peprotech 300-19

TPO Peprotech 300-18

IL-3 Peprotech 200-03

IL-6 Peprotech 200-06

UM729 Stem Cell Technologies 72332

Critical commercial assays

Chromium Next GEM Single Cell 3’ GEM,

Library & Gel Bead Kit v3.1

10x genomics PN-1000121

Chromium Next GEM Single Cell 3ʹ Kit v3.1 10x genomics PN-1000268

Chromium Next GEM Chip G Single Cell Kit 10x genomics PN-1000120

Single Index Kit T Set A 10x genomics PN-1000213

Dual Index Kit TT Set A 10x genomics PN-1000215

CleanPCR beads CleanNA CPCR-0050

AmpureXP Beads Beckman Coulter A63881

SPRIselect beads Beckman Coulter B23318

Qubit High Sensitivity dsDNA Assay ThermoFisher Q32851

Agilent Bioanalyzer High Sensitivity Agilent 5067-4626

Opal seven-color IHC kit Akoya Biosciences NEL811001KT

Deposited data

Count tables and metadata Figshare Figshare: https://doi.org/10.6084/m9.figshare.20291628

Full input and output of CloneTracer model Figshare Figshare: https://doi.org/10.6084/m9.figshare.21982496

Additional data: Patient A.9 follow up (Figure S5) Figshare Figshare: https://doi.org/10.6084/m9.figshare.21982490

Additional data: Patient A.2 follow up (Figure S5) Figshare Figshare: https://doi.org/10.6084/m9.figshare.21982454

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Additional data: MutaSeq data (Figures 4D and 4E) Figshare Figshare: https://doi.org/10.6084/m9.figshare.21982424

All single cell RNA-seq datasets, raw data EGA EGA: EGAS00001007078

Reference data4 Figshare Figshare: https://doi.org/10.6084/m9.

figshare.13397987.v3

Reference data31 Zenodo Zenodo: https://doi.org/10.5281/zenodo.6496279

Experimental models: Organisms/strains

NOD.Prkdcscid.Il2rgnull (NSG) mice Jackson Laboratory 005557

Oligonucleotides

For a complete list of oligonucleotides

used in this study, see Table S4.

N/A N/A

FISH probes: 6q21/8q24 MetaSystems D-5802-100-OG

FISH probes: 7cen/7q22/7q36 MetaSystems D-5043-100-TC

Software and algorithms

CloneTracer and Primer Design code Zenodo Zenodo:

ComplexHeatmap CRAN v. 2.6.2

FlowJo FlowJo, LLC v. 10.8.1, 10.6.1

ggplot2 CRAN v. 3.3.5

Htseq (https://pypi.org/project/HTSeq/) PyPI v. 2.02

mitoClone Zenodo Zenodo: https://doi.org/10.5281/zenodo.4443074

Mgatk (https://github.com/caleblareau/mgatk) Github v. 0.1.1

Pheatmap CRAN v. 1.0.12

PhISCS (https://github.com/sfu-compbio/PhISCS) Github v. 1.0.0

R CRAN v. 4.0.2

Seurat CRAN v. 4.3.0

Scrublet (https://github.com/swolock/scrublet) Github v. 0.2.3

Scmap Bioconductor https://doi.org/10.18129/B9.bioc.scmap

Scanorama (https://github.com/brianhie/scanorama) Github v. 1.7.3

Spectre (https://github.com/ImmuneDynamics/Spectre) Github v. 1.0.0

STAR (https://github.com/alexdobin/STAR) Github v. 2.5.4

Other

StemSpan SFEM media Stem Cell Technologies 09650
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RESOURCE AVAILABILITY

Lead contact
Requests for further information, resources and reagents should be directed to and will be fulfilled by the lead contact, Lars Velten

(lars.velten@crg.eu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d Datasets including processed and integrated gene expression data, cell type annotation, clonal assignments, metadata and

dimensionality reduction are publicly available as Seurat v3 objects through figshare. The DOI is listed in the key resources ta-

ble. To protect patient privacy and as requested by the relevant ethics boards, raw sequencing data is available from the Eu-

ropean Genome-Phenome Archive upon submitting a data access agreement. To obtain these data, contact the lead contact.

All accession numbers of data analyzed in this manuscript are listed in the key resources table.

d The implementation of the model and code for primer design and data processing of Optimized 10x libraries is deposited at

Zenodo and publicly accessible. The DOI is listed in the key resources table. Code can also be found at https://github.com/

veltenlab/CloneTracer.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human subjects
Bone marrow samples from AML patients were obtained at the Heidelberg University Hospital after informed written consent using

ethic application number S-169/2017. For demographic characteristics of sample donors, see Table S3. All experiments involving

human samples were approved by the ethics committee of the University Hospital Heidelberg and were in accordance with the

Declaration of Helsinki.

Animals
NOD.Prkdcscid.Il2rgnull (NSG) mice were bred and housed under specific pathogen-free conditions in the central animal facility of

the German Cancer Research Center (DKFZ). Animal experiments were approved and performed in accordance with all regulatory

guidelines of the official committee (Regierungspr€asidium Karlsruhe). Immune compromised, healthy, female NSG mice 8-12 weeks

of age and an average weight of 18-25 g were sublethally irradiated (175 cGy) 24 h before xenotransplantation assays.

METHOD DETAILS

Collection of bone marrow
Bone marrow aspirates were collected from iliac crest. Mononuclear cells were isolated by Ficoll (GE Healthcare, Chicago, Illinois,

USA) density gradient centrifugation and stored in liquid nitrogen until further use.

Panel, exome, and bulk ATAC sequencing
For bone marrow samples form cohort A, CD3- and CD3+ cells were sorted by FACS and subjected to exome sequencing as

described before.21 GATK best practices were followed. Mutect2 with Tumor with match normal option was used for the identifica-

tion nuclear mutations specific for each patient. We considered CD3- cells as tumor and CD3+ as normal. Results are summarized in

Table S3.

Additionally, samples A.1, A.3, A.5, A.6, A.7, A.11, A.12, A.13, A.15 were subjected to bulk ATAC sequencing to identify mitochon-

drial mutations. Again, Mutect2 with Tumor with match normal option was used to identify variants in the mitochondrial genome.

Results are summarized in Table S5.

Bonemarrow samples from cohort B were sequenced at diagnosis time point with the Illumina TruSight Myeloid Sequencing Panel

(Illumina, San Diego, USA) to determine the mutation status of leukemia driver mutations.

Antibody-oligo conjugation
For markers where no commercial conjugates were available, azide-modified oligonucleotides were conjugated to purified anti-

bodies (anti-human CD166, Clone 3A6 (Biolegend, 343902); anti-human GPR56, Clone 4C3 (Biolegend, 391902)) by the use of a

DBCO-PEG5-NHS Ester (Santa Cruz Biotechnology, Dallas, USA) in a copper-free click reaction.47

In brief, azide-containing storage buffer of purified antibodies was exchanged to PBS (pH 8.5) using the Amicon Ultra-0.5 NMWL

30 kDa Centrifugal Filter (EMD Millipore, Billerica, USA).

100 mg of PBS-buffered antibody was incubated with 2mMDBCO-PEG5-NHS in a final reaction volume of 100mL for 30 minutes at

room temperature. The reaction was stopped by the addition of 100mM Tris HCl (pH 8) for 5 minutes at room temperature and non-

reactive DBCO-PEG5-NHS was removed using the Amicon Ultra-0.5 NMWL 30 kDa Centrifugal Filter.

Azide-modified oligonucleotides were reconstituted in PBS before adding 30pmol per 1mg DBCO-functionalized antibody. The

click reaction was conducted at 4�C for 18 hours. Unreacted oligonucleotides were removed using the Amicon Ultra-0.5 NMWL

50 kDa Centrifugal Filter and the final volume was adjusted to 100mL using PBS (pH 8.5).

Conjugation products were confirmed on Ethidiumbromide (EtBr) stained 2% agarose gels, Coomassie brilliant blue (CBB) stained

4-12% polyacrylamide gels and by absorbance spectroscopy.

Azide-modified oligonucleotides were purchased fromBiolegio (Biolegio, Nijmegen, Netherlands) and contained an antibody-spe-

cific barcode (bold), a PCR handle (italic) and a capture sequence (underlined). * indicates a phosphorothioated bond to prevent

nuclease degradation:

CD166: 5’/Azide/CCTTGGCACCCGAGAATTCCACATTAACAGCGCCAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA*A*A

GPR56: 5’/Azide/CCTTGGCACCCGAGAATTCCATCATATCCGTTGTCCCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA*A*A

CITEseq surface labeling and FACS sorting
Human bone marrow samples were thawed and stained using the CITEseq antibody pool (Table S1), as well as sorting antibodies

according to the BioLegend protocol https://www.biolegend.com/en-us/protocols/totalseq-a-antibodies-and-cell-hashing-with-

10x-single-cell-3-reagent-kit-v3-3-1-protocol

In cohort A, sorting was done using fluorophore-tagged antibodies from BioLegend (San Diego, USA) against human CD3 (clone

UCHT; 1:30), CD34 (clone 581; 1:100), and GPR56 (clone CG4; 1:20). FACS sorting of live bone marrow cells was performed on a BD

FACSAria equipped with a 70 mm nozzle to enrich for the following populations: CD3+, CD3-CD34+, CD3-CD34-, while aiming for a

representation of 25%, 50%, 25%.When insufficient CD34+ were available, a maximum of CD34+ cells were sorted and GPR56 was
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used as a second sorting marker to enrich stem cells from the CD34- fraction. Population frequencies were recorded and accounted

for in quantitative analysis of the single-cell RNA-seq data set. Sorted cells were loaded onto the Next GEMChip G for a targeted cell

recovery of 5000 cells following the manufacturer’s instructions (10x Genomics, CG000206 Rev D).

In cohort B, fluorophore-tagged antibodies against human CD34 (clone 581) and CD45 (clone HI30) (patients B.1, B.2, B.3), or

CD56 (clone QA17A16) and CD45 (patient B.4) were used to enrich for following populations:
B.1 B.2 B.3 B.4

d0 d15 d0 d15 d0 d15 d0 d21 d105

total BM/CD45+ 85% 99.6% 100% 100% 92% 100% 100% 100% 98%

CD45dim/CD34+ 15% 0.4% 0% 0% 8% 0% - - -

CD45dim/CD56+ - - - - - - 0% 0% 2%
Population frequencies were recorded and accounted for in quantitative analysis of the single-cell RNA-seq data set. In particular,

in analyses that investigate the absolute frequencies of cell types in bone marrow (Figure 5D) the frequency of the cell type was

computed per sorted population, and multiplied with the frequency of the sorting gates in the bone marrow sample.

In cases where different biological samples were combined in the same GEM generation run, cells were labeled additionally with

oligonucleotide coupled cell hashing antibodies (Biolegend, San Diego, USA). FACS sorting of live bonemarrow cells was performed

using DRAQ7 (1:1000; Biolegend, San Diego, USA) and Incucyte Caspase3/7 Red (1:5000; VWR International, Radnor, Pennsylvania,

USA) on a BD FACSAriaTM Fusion equipped with a 100mm nozzle. Sorted cells were loaded onto the Next GEM Chip G for a targeted

cell recovery of 8000 cells following the manufacturer’s instruction (10x Genomics, CG000206 Rev D).

Single-cell RNA sequencing
cDNA libraries were generated using the 10x Genomics 3’ gene expression kit version 3.1 according to the manufacturer’s instruc-

tions (10x Genomics, CG000206 Rev D). At the cDNA amplification step (step 2.2 of the 10x Genomics protocol), additive primers for

amplification of the ADT and HTO libraries were added according to the manufacturer’s instructions (Biolegend protocol:

TotalSeqTM-A Antibodies and Cell hashing with 10x Single Cell 3’ Reagent Kit v3 or v3.1 (Single Index) Protocol, Step II).

Following cDNA amplification (10x Genomics protocol: step 2.3A), cDNA was split: 10 mL were used for generating Gene Expression

(GEX) libraries and 5mL were used for generating antibody-derived tags (ADT) and hashtag oligo (HTO) libraries, respectively, accord-

ing to manufacturer’s instructions (GEX: 10x Genomics protocol: CG000206 Rev D, Step 3; ADT and HTO: Biolegend protocol:

TotalSeqTM-A Antibodies and Cell hashing with 10X Single Cell 3’ Reagent Kit v3 or v3.1 (Single Index) Protocol, Step III). The remain-

ing material was used to construct mitochondrial and targeted mutation libraries.

Final GEX, ADT and HTO libraries were quantified by Qubit and QC’ed on the Bioanalyzer.

Final GEX and ADT libraries were sequenced on separate lanes on a NovaSeq (Cohort A) or HiSeq4000 (Cohort B) with a targeted

sequencing depth of 50,000-100,000 reads/cell (GEX) and 300 reads/antibody/cell (ADT), respectively. HTO libraries were

sequenced with a targeted sequencing depth of 4000 reads/cell on a NextSeq500.

Optimized 10x: Mitochondrial libraries
For the full-length amplification of mitochondrial cDNA, mitochondrial primers were pooled so that each mitochondrial primer is pre-

sent at a final concentration of 0.9mM (mito primermix). See Table S4 for all primer sequences used in this protocol. 10 ng of amplified

cDNA was added to a PCR master mix containing 50 ml 2X KAPA HiFi HotStart ReadyMix (Roche), 4 ml 10 uM PartialRead1 primer,

2.5 ml mito primermix, in a total volume of 100mL. PCRwas run as follows: 1 cycle of 95C for 3mins, 11 cycles of [98C for 20 secs, 67C

for 1min, 72C for 1min], and 1 cycle of 72C for 5mins followed by a 4C hold. PCRproduct was then cleanedwith 1.5X (v/v) CleanPCR

beads (CleanNA), followed by two washes of 80% ethanol, and eluted in 30 ml EB (Qiagen), after which it was quantified by Qubit and

QC’ed by running 1-2 ng of DNA on an Agilent Bioanalyzer High Sensitivity chip. Sample bioanalyzer traces after this step are shown

in Figure S1A.

Mitochondrial mutation libraries were then generated by tagmentation with an in-house produced wild-type transposase (Tn5).46

Briefly, transposome assembly and linker loading was carried out by adding 1 ml of 2 mg/ml Tn5 and 1 ml of annealed linker Tn5ME-B/

Tn5MErev to 9 ml of water followed by incubation at 23C whilst shaking at 300 RPM for 30 mins. Assembled transposome was then

diluted 1:100 with water. In our experience, it typically required four parallel tagmentation reactions to generate adequate yield for

sequencing for a given sample. In a single tagmentation reaction, 1.5 ng of cDNA were added to 10 ml of diluted Tn5 and 10 ml of

4X tagmentation buffer (40 mM Tris-HCl, pH 7.4; 40 mM MgCl2), 10mL DMF for a total of 40 mL. Tagmentation reaction in the PCR

was run as follows: 1 cycle of 55C for 3 mins, then a 10C hold. It is important that the PCR is already at 55C when the PCR tubes

are placed in the instrument. After tagmentation, 10 ml of 0.2% SDS was added to the tagmented mixture and incubated at room

temperature for 5 mins to neutralize the reaction. Once the transposase has been neutralized, the tagmented sample was added

to a PCR master mix of 54 ml 2X KAPA HiFi HotStart ReadyMix, 6 ml of 100% DMSO (Thermo Scientific), 10 ml of 10 mM Targeted

10X primer, and 10 ml of 10 mM N7XX primer. This reaction mix was split into two PCR tubes and PCR was run as follows: 1 cycle

of 72C for 3 mins, 1 cycle of 95C for 30 secs, 12 cycles of [98C for 20 secs, 60C for 15 secs, 72C for 30 secs], and 1 cycle of 72C
Cell Stem Cell 30, 706–721.e1–e8, May 4, 2023 e4
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for 3mins followed by a 10C hold. After the PCR, all reactions were pooled and underwent two rounds of successive bead cleanup. In

the first bead cleanup, 0.6X (v/v) CleanPCR beads were used, followed by two 80% ethanol washes and eluted in 50 ml EB. In the

second cleanup, 0.6X (v/v) CleanPCR beads were again used, followed by two 80% ethanol washes and eluted in 15 ml EB. The final

library was then quantified by Qubit and QC’ed on the Bioanalyzer. Representative bioanalyzer traces are shown in Figure S1B.

Optimized 10x: Targeted genotyping libraries
Nuclear mutations were selected from panel or exome sequencing data by choosing non-synonymous variants in expressed genes,

located < 1.5kb away from the end of the gene. Primers targeting mutations of interest were designed using a customized version of

the TAPseq Bioconductor package,18 https://github.com/veltenlab/CloneTracer/tree/master/primer_design

Four rounds of PCRs were then used to generate nuclear mutation libraries. The first three rounds of PCRs are gene-specific

nested PCRs and sequencing adaptors and indices were added in the last PCR.

In the first round of PCR (PCR1), 10 ng of amplified cDNA from10xwas added to a PCRmastermix containing 2.5 ml of pooled outer

gene-specific primers (final concentration of each individual primer in the final pool 10 mM-100 mM), 5 ml of 1 mMPartial_Read1 primer,

20 ml of 5 M Betaine, 50 ml of 2X KAPA HiFi HotStart ReadyMix, and topped up to 100 ml with nuclease-free water. PCR with a heated

lid was run as follows: 1 cycle of 95C for 3 mins, 11 cycles of [98C for 20 secs, 67C for 1 min, 72C for 1 min], and 1 cycle of 72C for

5 mins followed by a 4C hold. PCR product was then cleaned with 1.5X (v/v) CleanPCR beads (CleanNA), followed by two washes of

80% ethanol, and eluted in 15 ml EB (Qiagen). After each round of post-PCR cleanups, PCR products were quantified by Qubit and

QC’ed by running 1-2 ng of DNA on an Agilent Bioanalyzer High Sensitivity chip. Example bioanalyzer traces are shown in Figure S1H.

In the second round of PCR (PCR2), 10 ng from PCR1 was added to a PCR master mix containing 2.5 ml of pooled middle gene-

specific primers, 5 ml of 1 mMPartial_Read1 primer, 20 ml of 5 M Betaine, 50 ml of 2X KAPA HiFi HotStart ReadyMix (Roche), and top-

ped up to 100 ml with nuclease-free water. PCR was run as follows: 1 cycle of 95C for 3 mins, 10 cycles of [98C for 20 secs, 67C for

1 min, 72C for 1 min], and 1 cycle of 72C for 5 mins followed by a 4C hold. Again, PCR product was cleaned with 1.5X (v/v) CleanPCR

beads (CleanNA), followed by two washes of 80% ethanol, and eluted in 30 ml EB (Qiagen). Example bioanalyzer traces are shown in

Figure S1I.

The third round of PCR (PCR3) was run separately for each target gene. 10 ng from PCR2 was added to a PCR master mix con-

taining 2.5 ml of pooled staggered gene-specific primers (concentration of each primer in the final pool: 25 mM), 5 ml of 1 mM

Partial_Read1 primer, 20 ml of 5 M Betaine, 50 ml of 2X KAPA HiFi HotStart ReadyMix (Roche), and topped up to 100 ml with

nuclease-free water. PCR was run as follows: 1 cycle of 95C for 3 mins, 10 cycles of [98C for 20 secs, 67C for 1 min, 72C for

1 min], and 1 cycle of 72C for 5 mins followed by a 4C hold. PCR product was cleaned with 1.5X (v/v) CleanPCR beads

(CleanNA), followed by two washes of 80% ethanol, and eluted in 30 ml EB (Qiagen).

Finally, libraries were uniquely indexed for each sample. To this end, 10 ng from PCR3 was added to a PCRmaster mix containing

2.5 ml of 10 mM SI primer, 2.5 ml of 10 mM RPI-N7XX primer (see Table S1), 50 ml of 2X KAPA HiFi HotStart ReadyMix (Roche), and

topped up to 100 ml with nuclease-free water. PCR was run as follows: 1 cycle of 95C for 3 mins, 8 cycles of [98C for 20 secs,

52C for 15 sec, 72C for 45 sec], and 1 cycle of 72C for 5 mins followed by a 4C hold. PCR product was cleaned with 1.5X (v/v)

CleanPCR beads (CleanNA), followed by two washes of 80% ethanol, and eluted in 15 ml EB (Qiagen). Example bioanalyzer traces

are shown in Figure S1J.

Plate-based single-cell RNA-seq (MutaSeq)
Defrosted bone marrow mononuclear cells were stained with following antibodies: Lineage antibodies (CD3, CD19, CD20, CD235a)

and additional antibodies (CD34, CD38, CD36, CD45RA, CD90, CD49f, NKG2DL48). The single cell index sort was performed on a BD

FACSAria Fusion (BD Biosciences) equipped with 355, 405, 488, 561, and 640 nm lasers and Lin- CD34+ cells were sorted into single

wells containing lysis buffer to enrich the stem cell compartment except for 3 rows per 384-well plate, in which CD34- cell populations

were sorted. After the sort plates were flash frozen and stored at -80�C until library preparation.

Primer design and single-cell RNA-seq was performed as described.21 See Table S4 for all primers used. Cells were sorted into

384-well instead of 96-well plates and therefore the reaction volumes were downscaled by a factor 2.5-5 depending on the reaction.

Lysis volume was 1.2 ml per well. For reverse transcription 2 ml of a buffer containing 0.1 ml Maxima H Minus Reverse Transcriptase

(200 U/ml), 0.6 ml 5x RT buffer (both Thermo Scientific), 0.07 ml Recombinant RNase Inhibitor (TaKaRa), 0.45 ml PEG 50%, 0.09 ml

100 mMSmart-seq2 TSO (Eurogentec) and 0.69 ml nuclease-free H2Owere added and RTwas performed for 90min at 42 �C followed

by enzyme inactivation at 70 �C for 15min. The PCR reaction was downscaled to 3 ml. The cDNAwas cleaned up using a 0.9x volume

(5 ml) of AmpureXP Beads (Beckman Coulter) and tagmented using homemade Tn546 at a dilution of 1:50. cDNA was used at a con-

centration of 1-3 ng/ml and 0.4 ml was tagmented by addition of 1.2 ml of Tn5 dilution mixed 1:1 with 2x tagmentation buffer (20 mM

Tris-HCl pH7.5, 20 mM MgCl2, 50% DMF) at 55 �C for 10 min and afterwards shifted to ice. 0.4 ml 0.1% SDS was added for inac-

tivation and incubated for 5 min on ice. PCR was performed by adding 2.7 ml of KAPA HiFi HS mastermix, 0.3 mL of DMSO and

0.4 mL each of the forward i5 and reverse i7 library primer at 3 mM. The PCR program was 72 �C 3 min, 98�C 30 sec, 12 cycles of

[98�C, 20s ec, 63�C, 15 sec, 72�C 30 sec], and 72� C, 3 min. Libraries were pooled and purified with 0.9x AmpureXP Beads.

Genotyping of single cell derived cultures
Single cell cultures and genotypingwere performed as described 21 with the followingmodifications: BoneMarrowmononuclear cells

from patient A.6 were stained with following antibodies (CD3, CD45RA, CD33, CD98, CD49f, CD38, CD11c, CD371 and HLA-DR).
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Lin- or Lin-CD34 + single cells were index-sorted into U-bottom 96-well plates (Sarstedt) containing 100 ml StemSpan SFEM media

(StemCell Technologies). Media was supplemented with penicillin/streptomycin (100 ng/mL), UM729 (1 mM, StemCell Technologies)

and the following human cytokines (all from Peprotech): SCF (20 ng/mL), Flt3-L (20 ng/mL), TPO (50 ng/mL), IL-3 (20 ng/mL), IL-6

(20 ng/mL). After two weeks at 5% CO2 and 37 �C, colonies were imaged by microscopy, and harvested in 12 ml buffer RLT (Qiagen)

for subsequent DNA isolation.

Raw 10x Genomics data processing
Gene expression data was processed using cellranger version 4.0.0 with default parameters for feature barcoding. Doublets were

removed using scrublet (v. 0.2.3).49 For cohort A, cells with <1800 genes detected or >10% mitochondrial reads were removed.

For cohort B, cells with <1000 genes detected or >40 % mitochondrial reads were removed. The data from the healthy reference

individual (C.3) was downloaded from https://doi.org/10.6084/m9.figshare.13397987.v3 and not subjected to further quality filters.

Mitochondrial libraries were processed following the DropSeq standard workflow50 except that reads were aligned to the mito-

chondrial genome (GRCh38). Consensus mitochondrial reads were called using the fgbio tool CallMolecularConsensusReads (v.

1.3.0). Only reads from cell barcodes which were detected in the gene expression dataset were used for the downstream analysis.

Nucleotide counts were extracted for each single cell using pysam (v. 0.15.3). The final output of the workflow is a list of single-cell

matrices in which for each position of themitochondrial genome the number of A,T,C and Gs UMIs are stored. Mitochondrial variants

were identified as previously described,21 and using bulk ATAC sequencing, where available (most of cohort A). The workflow was

implemented in snakemake51 and can be found in https://github.com/veltenlab/CloneTracer/tree/master/library_processing/

mitochondria

Nuclear SNV libraries were processed similarly to themitochondrial libraries with the difference that reads were aligned to the com-

plete human genome (GRCh38). Only reference and alternative alleles (identified by exome or panel sequencing) were considered for

the final count table. Due to the high number of PCR amplification steps, only UMIs supported by at least two reads were included in

the analysis. The final count table contains the number of reference and alternative UMIs for each single cell and targeted mutation.

The workflow to process nuclear SNVs libraries was written in snakemake and can be found in https://github.com/veltenlab/

CloneTracer/tree/master/library_processing/nuclear-snv

Analysis of single cell gene expression data
For projecting single cell data onto a reference atlas of healthy bone marrow, we used a workflow based on scmap52 as described.4

Sample code for reference atlas projection is available at https://git.embl.de/triana/nrn/-/tree/master/Projection_Vignette. Thereby,

we obtained uMAP coordinates, cell type labels, and myelocyte pseudotime, where applicable.

For unsupervised integration of all data sets, scanorama53 was used with default parameters to integrate across the three cohorts

A, B and C, using the cohort as the batch. Scanorama components were then imported into Seurat and uMAP, nearest neighbor

graphs, and clustering were computed using the default Seurat pipeline with default parameters.54 scanorama was selected based

on a systematic comparison study,55 where it was described as a method that maintains biologically true difference between sam-

ples, which we considered relevant in the context of a highly heterogeneous disease such as AML.

To illustrate this, in Figure S2D, cluster C15, C16 and C32 all resemble HSCs/MPPs when projected to a healthy reference.

Compared to other immature myeloid clusters all cells from these clusters express stem cell markers (CD34, MHC class II) and

lack markers of myeloid commitment (MPO, AZU1); but they also differ in the expression of genes that are usually co-expressed

in HSCs1 such as MECOM (exclusive to cluster C16), HOX genes (strongly overexpressed in cluster C32), or, in the case of cluster

C15, displayed a strong interferon response signature. Since these are real biological, and not technical differences, we think it is

important that they are represented in the uMAP and unsupervised clustering. Thereby data integration by scanorama is highly com-

plementary to the projection to a healthy reference, that we employ e.g. in the context of Figures 3A, 3G, and 3H: This two-tiered

approach (projection and weak batch integration) allows us to identify biologically different cell states that all resemble e.g.

MPPs, but vastly differ in the (aberrant) expression of key genes.

As a further validation of the integration strategy employed, we included a healthy control individual in each cohort. We then inte-

grated all three healthy individuals (A.0, B.0 and the Reference individual from4) using the same unsupervised data integration steps

used to generate the main figures of the manuscript, with identical parameters. The resulting uMAP (Figure S2E) demonstrates that

our data integration strategy effectively accounts for technical differences between cohorts.

Dormancy score calculation
To compute a dormancy score for each individual cell, we first selected genes differentially expressed in Zhang et al.32 (adjusted

p-value <0.01) and the dHSC gene list from Cabezas-Wallscheid et al.33 (adjusted p-value <0.05). We then normalized the gene

expression count matrix by library size and centered and scaled the data. We computed principal components for cluster C6 cells

from all patients with <100 of cells in this population using the prcomp() function in R. The dormancy score corresponded to the first

principal component. To compute the score in other cells we used the function predict() with the principal component loadings

computed as described above as a model and the scaled gene expression data as new input.
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Analysis of DNAseq from single-cell derived colonies
Raw sequencing reads were aligned to the human genome using STAR (v. 2.5.4). Nucleotide count tables were generated from sin-

gle-colony BAM files using the function baseCountsFromBamList from the package mitoClone (v.1.0). For each mutation, colonies

were labelled as mutant when > 5% of the reads were mutant and healthy otherwise. If the mutation was not covered it was labelled

as dropout. The binarized table (colonies x mutations) was the input to PhISCS41 which was ran with default parameters to infer the

clonal hierarchy.

Processing of MutaSeq scRNAseq data
Raw gene expression data was aligned using STAR (v. 2.5.4) and count matrices were generated using htseq (v. 2.02) with default

parameters. Only cells with > 2000 genes detected and <10%mitochondrial reads were kept for downstream analysis. Gene expres-

sion data for all patients was integrated using scanorama.53 The 5000 most variable genes were included. Genes which were ampli-

fied with mutation-specific primers were also excluded from the integration process. Each patient was used as batch key. The first

100 scanorama components were used to compute the integrated uMAP following the default Seurat pipeline. Reference andmutant

counts for SNVs and mtSNVs were obtained using the function baseCountFromBamList from the mitoClone package (v.1.0)21

Raw data processing of MAESTER data
Raw fastq files from theMAESTER library of a human clonal hematopoiesis sample were downloaded from SRA (SRR15598777) and

processed as described.14 In brief, 24bp primer sequences were trimmed from the 5’ of read2 fastq file using homertools (v. 4.11).

Read 2 was tagged with cell and umi barcodes and aligned to the complete human genome using STAR (v.2.5.4). Only reads from

cells present in the final Seurat object (downloaded from https://www.dropbox.com/s/vna1k3k7khazd7j/BPDCN712_Seurat_Final.

rds?dl=0) were kept for downstream analysis. mgatk (v. 0.1.1) was used to obtain single-cell nucleotide count matrices with default

parameters and –mr = 3.

Fluorescent In Situ Hybridization
Human bone marrow samples were thawed and stained with fluorophore-tagged antibodies against CD45, CD3, CD49f, CD11c,

CD14 and CD34 as described above (CITEseq surface labeling, FACS sorting and GEM generation). For antibody clones and titrated

amounts, see Table S1. Cells were collected by FACS sorting on a BD FACSAriaTM,or BD FACSAriaTM Fusion, respectively, each

equipped with a 100mmnozzle. Sorted cells were fixed on glass slides in methanol/acetic acid. Hybridization was performed accord-

ing to the manufacturer’s instructions by using FISH probes for chromosome regions 6q21/8q24 and 7cen/7q22/7q36

(MetaSystems, Altlussheim, Germany), respectively. Interphase nuclei were validated using an automated scanning system (Applied

Spectral Imaging, Edingen/Neckarhausen, Germany).

Tissue microarrays
The frequency of different cell subsets in the bone marrowmicroenvironment in AML patients was analyzed bymultispectral imaging

(MSI). Formalin-fixed and paraffin embedded (FFPE), decalcified bone marrow samples were stained as described elsewhere.56 The

marker panel used for staining included antibodies directed against CD34, CD14, CD11c, CD49f. For antibody clones and dilutions,

see Table S1. All primary antibodies were incubated for 30min. Tyramide signal amplification (TSA) visualization was performed using

theOpal seven-color IHC kit containing fluorophores Opal 520, Opal 540, Opal 570, Opal 690 (AkoyaBiosciences., Marlborough,MA,

USA), and DAPI. Stained slides were imaged employing the PerkinElmer Vectra Polaris platform. To unify the spatial distribution

analysis, 3 20 MSI fields (1872 3 1404 pixel, 0.5 mm/pixel) were analyzed. Cell segmentation and phenotyping of the cell subpop-

ulations were performed using the inForm software (PerkinElmer Inc., USA). The frequency of all immune cell populations analyzed

and the cartographic coordinates of each stained cell type were obtained.

Large cohort flow cytometry analysis
Human BM samples were stained as described above and analyzed using the BD Symphony (see Table S1 for a list of antibodies

used). Cells were pre-analyzed using FlowJo v10.8.1. Doublets and dead cells were excluded, as well as artefacts using a time

gate. Remaining cells were exported using the channel values and imported into R. Further, the package Spectre v1.0.0 was

used for batch correction, clustering, dimension reduction and visualization following the ‘‘discovery workflow with batch alignment

using CytoNorm’’. Using the summary table of the package, CD11c expression was investigated on CD34+ and CD14+ cell clusters.

Xenotransplantations
Female NSG mice 8-12 weeks of age were sublethally irradiated (175 cGy) 24 h before xenotransplantation assays. FACS sorted

primary AML samples were injected into the femoral BM cavity of sublethally irradiated mice. Mice were daily monitored, and femur

bone marrow aspirates were taken at 16 weeks to determine engraftment and lineage potential. Human leukemic engraftment in

mouse BM was evaluated by flow cytometry using anti-human-CD45-FITC (clone HI30), anti-human-CD34-BUV395 (clone 581),

anti-human-CD19-FITC (clone HIB19), anti-human-CD33-PE-Cy7 (clone WM53), CD3-BV510 (clone OKT3), and anti-mouse-

CD45-Alexa700 (clone 30-F11).
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QUANTIFICATION AND STATISTICAL ANALYSIS

CloneTracer model
SeeMethods S1 for a full description of the CloneTracer model. Posterior predictive checks57 were used to determine if the data met

the assumptions of the statistical model, as detailed in the Methods S1.

Differential expression testing
For differential expression testing of surface antigens, we used Wilcoxon tests following library size normalization. For differential

expression testing of RNA, we used MAST.58 In all cases, comparisons were performed separately by patients, and the number

of patients where the change was significant was used as an overall measure of significance and consistency.

Data visualization
All plots were generated using the ggplot2 (v. 3.3.5), ComplexHeatmap (v. 2.6.2) and pheatmap (v. 1.0.12) packages in R 4.0.2 or

FlowJo (v. 10.6.1, BD). Boxplots are defined as follows: themiddle line corresponds to themedian; the lower and upper hinges corre-

spond to first and third quartiles, respectively; the upper whisker extends from the hinge to the largest value no further than 1.5X the

inter-quartile range (or the distance between the first and third quartiles) from the hinge and the lower whisker extends from the hinge

to the smallest value atmost 1.5X the inter-quartile range of the hinge. Data beyond the end of thewhiskers are called ‘outlying’ points

and are plotted individually.

Detail on statistical tests used in the different figures and definition of relevant summary statistics are included in the figure legends.

ADDITIONAL RESOURCES

Interactive 2D and 3D versions of most uMAPs from this paper are available at https://veltenlab.crg.eu/clonetracer/.
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