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SUMMARY
Mouse embryonic development is a canonical model system for studying mammalian cell fate acquisition.
Recently, single-cell atlases comprehensively charted embryonic transcriptional landscapes, yet inference
of the coordinated dynamics of cells over such atlases remains challenging. Here, we introduce a temporal
model for mouse gastrulation, consisting of data from 153 individually sampled embryos spanning 36 h of
molecular diversification. Using algorithms and precise timing, we infer differentiation flows and lineage
specification dynamics over the embryonic transcriptional manifold. Rapid transcriptional bifurcations char-
acterize the commitment of early specialized node and blood cells. However, for most lineages, we observe
combinatorial multi-furcation dynamics rather than hierarchical transcriptional transitions. In the mesoderm,
dozens of transcription factors combinatorially regulatemultifurcations, aswe exemplify using time-matched
chimeric embryos of Foxc1/Foxc2 mutants. Our study rejects the notion of differentiation being governed by
a series of binary choices, providing an alternative quantitative model for cell fate acquisition.
INTRODUCTION

Early embryonic development in mammals proceeds through

robust acquisition of specialized cellular properties by individual

cells that specify the basic embryonic lineages, which, in turn,

form the first organs. Decades of research using model organ-

isms have provided tremendous insight into the activity of genes

and pathways driving this process and ensuring its robustness

(Arnold and Robertson, 2009; Bedzhov et al., 2014; Ebisuya

and Briscoe, 2018; Tam and Ho, 2020). This had far-reaching im-

plications for other fields such as cancer and regenerative med-

icine (Ben-Porath et al., 2008; Spagnoli and Hemmati-Brivanlou,

2006). Advances in single-cell technologies recently enabled

high-resolution charting of mouse embryonic development,

mapping comprehensively the transcriptional states of devel-

oping embryos during gastrulation (Argelaguet et al., 2019;

Chan et al., 2019; Cheng et al., 2019; Grosswendt et al., 2020;

Ibarra-Soria et al., 2018; Lescroart et al., 2018; Mohammed

et al., 2017; Nowotschin et al., 2019; Pijuan-Sala et al., 2019;

Scialdone et al., 2016) and organogenesis (Cao et al., 2019;

Chan et al., 2019; de Soysa et al., 2019; Han et al., 2018; Now-

otschin et al., 2019; Tam andHo, 2020). Yet, moving from atlases
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toward the inference of quantitative dynamics during cell state

transitions represents a major open challenge in the field. Pseu-

dotemporal ordering defines the progression of cell trajectories

based on computational inference of transcriptional similarities

(Tanay and Regev, 2017). However, the rapid nature of develop-

ment, characterized by a continuous flux of intracellular molecu-

lar changes within a short time frame, poses unique challenges

for this approach (Tritschler et al., 2019) (e.g., when bifurcation

points are fuzzy or when distinct differentiating populations

converge by activating common gene modules in a non-hierar-

chical manner). Similarly, pseudo-temporal ordering is difficult

when differentiation to a specific cell type occurs over a wide

range of time during development. Alternative approaches that

aim at merging single-cell analysis with lineage relationships

are rapidly evolving, using the estimation of transcriptional deriv-

atives (RNA velocity) (La Manno et al., 2018), time series exper-

iments (Fischer et al., 2019; Schiebinger et al., 2019), or by simul-

taneous direct recording of cell histories, with promising but still

partial coverage (Bowling et al., 2020; Chan et al., 2019; Kalhor

et al., 2018; Raj et al., 2018; Spanjaard et al., 2018). In principle,

atlases can be constructed from samples that are staged using

traditional methods (Cao et al., 2019; Pijuan-Sala et al., 2019),
ay 27, 2021 ª 2021 The Author(s). Published by Elsevier Inc. 2825
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thus facilitating coarse-grained temporal modeling of inferred

transcriptional states. However, refining such classical staging

and augmenting it with quantitative kineticmodeling of transcrip-

tional regulation remains to be addressed.

Precise staging of developmental progression is critical in

order to describe sequences of developmental events in a

consistent and comparable fashion, in particular when studying

multiple strains, genetic perturbations, and other interventions.

In the mouse, timing of development using ‘‘days postcoitum’’

(dpc) provides only a nominal estimate of progression for each

embryo. This is because litters are often highly heterogeneous,

frequently constituting embryos from several morphologically

distinct embryonic stages (Figure 1A) (Downs and Davies,

1993). Another unique challenge of studying viviparous develop-

ment is that up to the point of extraction, the embryo is largely

concealed. To address this, methods for staging embryos using

morphological features, such as those proposed by Theiler

(1989) and later elaborated on by Downs and Davies (1993),

are still considered the gold-standard in the field. However,

morphology-based approaches are limited by the resolution pro-

vided by the number of such distinguishable stages and the qual-

itative nature of such classification.

In the current study, wewished tomove further toward an ideal

representation of mammalian embryonic development as a

continuous process. We reasoned that single-cell RNA

sequencing (scRNA-seq) of individual embryos, in correlation

with morphological measures obtained from microscopy, will

allow placing the embryos on a continuum of transcriptional

transformation. Assigning a singular developmental time to cells

originating from the same embryo provided a timestamp to each

cell in our dataset. This enabled the construction of a flowmodel

(Ahuja et al., 1993) for the transition of cells on the transcriptional

manifold. Flow analysis distinguished early specialization of few

embryonic cell types, identified their stepwise acquisition of

transcriptional identity and linked it with the hierarchical activity

of fate-specific transcription factors (TFs). However, for most

of the cells in the embryo, the data suggest complex transcrip-

tional dynamics in multipotent progenitor states and complex

combinatorial activity of TFs that drive multi-furcation rather

than the classical tree-like bifurcation. The temporal atlas and

associated flow model form the foundations for elucidating
Figure 1. Resolving time and gene expression in single cells and singl

(A) Natural variation among litters and littermates (left panel) is harnessed to gen

schematic representation of the workflow. Image of a single litter isolated at 7.75 d

(B) Embryo-embryo similarity matrix ranking the embryos according to their intrin

(C) Comparison between intrinsic transcriptional rank and ranking based on mor

(D) Comparison of intrinsic versus external ordering using projection on a referen

(E) Comparison between transcriptional rank and size estimate of embryo cro

7.1 3 10�3).

(F) Projection of cells following binning of embryos into 13 time groups, over 2DMC

marked by dashed ovals).

(G) Metacells (MCs) represent a transcriptional state shared by cells from numer

(columns) for cells included in each MC (each represented by a single row). Row

highlighted rank distributions of individual MCs from different lineages, and the e

mean expression over all MCs).

(H) Four representative embryos are shown alongside the time distribution of th

#Embryo rank; in brackets, calculated time (Et).

See also Figure S1 and Table S1.
intrinsic and extrinsic effects shaping cell fate decisions in vivo.

This is illustrated by studying mesoderm gene regulation by

Foxc1 and Foxc2, using single-cell chimera knockout experi-

ments with tight single-embryo time control.

RESULTS

Quantification of morphology and scRNA-seq data from
153 E6.5–E8.25 embryos
To generate a continuous fate map of mouse gastrulation up to

somitogenesis, we performed scRNA-seq on dissociated cells

from individual embryos representing early post-implantation

up to pre-somitic stages, corresponding to embryonic day (E)

�E6.5–E8.25 (Figure 1A; Table S1). Each embryo was handled

and imaged separately for subsequent assessment of morpho-

logical features and size measurements. To focus on tissues

that contribute to the embryo proper, the ectoplacental cone,

parietal endoderm, and much of the extraembryonic ectoderm,

were removed prior to dissociation. To allow sequencing of sin-

gle cells separately from each embryo, we used MARS-seq (Jai-

tin et al., 2014), where single cells are index-sorted directly into

multi-well plates using a flow cytometer, in which they are bar-

coded prior to pooling. In this manner, 33,700 cells from 153 em-

bryos were sequenced at a median coverage of 4,100 unique

molecular identifiers (UMIs) per cell (Figure S1A). A sufficient rep-

resentation of the various developmental stages was ensured by

morphological assessment. Due to the inherent sparsity of

scRNA-seq data, metacell analysis (Baran et al., 2019) was em-

ployed on the entire dataset, by which transcriptionally similar

single cells are aggregated to form more cohesive and distinct

transcriptional states termed metacells (MCs). In this manner,

we robustly mapped all transcriptional states and generated

their similarity graph.

Projection of single embryos over an absolute
developmental timescale
To place the embryos on a sequential time axis, we first ranked

themusingmorphology alone (Figure S1B).We then developed a

strategy for ranking embryos by K-nn similarities among single-

cell profiles (Figure 1B). This resulted in remarkably high compa-

rability between the two independent ranking schemes (r = 0.97)
e embryos

erate a temporal transcriptional model of embryonic development. Shown is a

pc. Scale bar, 200 mm. LS, late streak; OB, no bud; EB, early bud; LB, late bud.

sic transcriptional makeup.

phological feature analysis.

ce atlas (Pijuan-Sala et al., 2019).

ss-section (log2, mm2, fitted line using smooth spline interpolation with l =

projections, separately for each of the three embryonic germ layers (epiblast is

ous embryos, spanning a time range. Right panel: distribution of embryo rank

s are normalized to reflect the temporal heterogeneity of each MC. Left panel:

xpression of selected marker genes from each MC (bar plots; log2, relative to

eir comprising cells (calculated from the MCs mean age). Scale bar, 100 mm.
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(Figures 1C and S1C). For external validation, we projected cells

from each embryo onto a recently published mouse single-cell

gastrulation atlas (Pijuan-Sala et al., 2019) and re-timed our sin-

gle cells using this reference atlas consisting of pooled embryos

from 6-h time intervals. We averaged the external cell timing for

each embryo, deriving again a high degree of concordance with

our internal ranking strategy (r = 0.98) (Figure 1D). Finally, com-

parison of embryo ranking to the estimation of embryos’ physical

growth rate (approximated by the physical area under the micro-

scope) provided alignment of our ranks to an absolute size scale

(r = 0.91) (Figure 1E). Single-embryo sampling also facilitated

controlled analysis of male and female embryos (genotyped

based on Y chromosome RNA) (Figure S1D), demonstrating

comparable size and transcriptional distributions between the

sexes at these stages (Figures 1C–1E, red versus blue dots).

For older embryos, we observed more precise ordering, consis-

tent with the less accurate assignment of morphology and size at

early stages, and with acceleration in transcriptional diversifica-

tion from mid/late streak stage onward. To synthesize all obser-

vations, each embryo was assigned a calculated timestamp

based on size and transcription (hereinafter designated as Et).

To reduce possible sampling noise and facilitate downstream

statistical analysis, we formed thirteen temporal groups labeled

Et6.5–Et8.1 corresponding to the mean approximated develop-

mental time of embryos within them (3–36 embryos and 884–

6,442 cells for each group) (Figures S1A and S1E).

Embryo time and transcriptional states cannot be
approximated by one pseudotime
For initial visualization of differentiation dynamics, we separated

the dataset using canonical markers into three transcriptional

manifolds describing development from the epiblast toward

the three germ layers (ectoderm, mesoderm, and endoderm)

(Figure 1F). Projection of the thirteen groups of timed embryos

on these manifolds showed clear directional transition from the

epiblast ground state and subsequent differentiation and diversi-

fication, supporting the notion that pseudotime can approximate

embryonic development over the manifold. Because each MC is

made up of cells from different embryos corresponding to the

same transcriptional state, we could estimate a pseudotime for

each MC using the calculated ages of the embryos contributing

to them (Figure 1G). In a pseudotime representation of a highly

synchronous process, MCs are expected to consist of cells

from a narrow range of embryonic times. However, the variation
Figure 2. A network flow model for gastrulation

(A) Color coded 2-D projection of themetacell (MC) graph (numbered nodes conne

the entire transcriptional manifold. Single cells indicated by small dots are colore

(B) Growth rate during gastrulation was estimated by counting DAPI stained nucle

per embryo are shown for four representative examples. ES, early streak; LS, late

of embryos’ (n = 19) cell count and estimated embryonic time. For each embryo,

(C) Single cells with low S-phase and M-phase gene expression (black dots) are h

are colored according to the fraction of such cells they contain. Boxplots (right) de

cycling cell types (legend below) and all other cells (Rest). Boxes show interquart

IQR, or distance to the extremal value if within 1.5 IQR.

(D) The gastrulation network flowmodel consists of MCs (nodes in rows) distribute

The first time point represents a common source for all MCs. Annotation (color-c

(E) Heatmap showing relative expression (log fold change) of key lineage-specifi

See also Figures S2 and S3 and Table S2.
in embryonic times for eachMCwas generally high (SD 1.1–12 h)

(Figure 1G, left panel). Conversely, individual embryos consisted

of cells belonging toMCswith varied pseudotimes (SD 1.4–6.5 h)

(Figure 1H). This demonstrates that dynamics of transcriptional

states are far from coherent and synchronous and accentuates

the need for models that represent embryonic development as

concurrent and unsynchronized collections of single cells that

transition through the transcriptional manifold.

The embryo transcriptional manifold and its growth
dynamics
To infer developmental dynamics from the series of acquired sin-

gle-embryo maps, we made two assumptions: (1) embryos that

are similarly timed will include cells that are similarly distributed

over the transcriptional manifold, such that progression in time

will involve a gradual change in states over manifold links; and

(2) progression in time involves rapid cell proliferation, with rates

that may change depending on cell type or position on the mani-

fold. To derive quantitative models supporting the first assump-

tion, we represented the transcriptional space of embryonic

development using 461MC states. These states are linked using

a logistic metric function to form amanifold structure (Figure 2A).

In this manner, the likelihood of cells to exhibit transcriptional

changes between any two states over time is estimated by a

probabilistic (i.e., Markovian) manifold distance over the MC

graph (STAR Methods). Because MC linkage is not (in practice,

cannot be) fully captured by the 2D model representation, we

explicitly visualize neighboring MCs using edges on top of the

standard 2D embedding of the model (i.e., links on Figure 2A),

even if these edges are not well accommodated by the 2D

embedding.

To provide quantitative support to the second assumption

regarding proliferation rates, we first estimated the average em-

bryonic growth rate, using image analysis to count nuclei in

DAPI-stained embryos that were timed by morphology (Fig-

ure 2B). This analysis confirmed the remarkably rapid exponen-

tial growth from 900–1,300 cells at E7.0 to 10,000–13,000 cells at

E8.0 (average calculated doubling time �7 h), consistent with

previously reported histology and dissociated cell-based count-

ing (Palis et al., 1999; Snow, 1977). This is also in alignment with

studies demonstrating that apoptosis levels in early post-implan-

tation embryos are low and randomly distributed among the

embryonic germ layers (Tam and Behringer, 1997). To estimate

proliferation rate biases over the manifold, we noted that a
cted by edges depicting themost similar neighbors for eachMC), representing

d according to the MC they comprise. See color annotation legend below.

i. Left: cell counts of the embryonic compartment out of the total counted cells

streak; OB, no bud; EHF, early head-fold. Scale bar, 100 mm. Right: comparison

time was assigned based on morphological similarity to sequenced embryos.

ighlighted on the 2D projection (left, see Figure S1F and STAR Methods). MCs

picting the distribution of S-phase/M-phase expression for the identified slower

ile range (IQR) with median of the data. Length of whiskers corresponds to 1.5

d in time (x axis), and flows (edges) that linkMCs between adjacent time points.

oded) relies on both marker expression and flow-based fate mapping.

c genes.
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distinct and small 10% sub-population of the single cells showed

low expression of both M- and S-phase-related genes (Fig-

ure S1F), whereas the remaining 90% of the single-cell popula-

tion showed a distinctive smooth transition between M- and

S-stereotypic expression. Initial annotation of MCs using known

markers showed that states linked with the embryonic

endoderm, node/notochord, visceral endoderm (VE), and extra-

embryonic endoderm (ExEn) transcriptional programs were

enriched for the low proliferation population, in agreement with

previous reports (Bellomo et al., 1996; Snow, 1977) (Figures

2C, S1G, and S1H). Tracking of cell-type frequencies over in-

ferred embryonic time allowed estimation of the relative (lower)

growth for these populations compared with the rest of the em-

bryo (r = 0.88, 0.83 for embryonic endoderm, VE/ExEn, respec-

tively) (Figure S1I). In summary, the inferred manifold model

and estimated cell-type-specific growth rates together set the

stage for amodel accommodating the two forces that shape em-

bryo cell-state composition over time: the transition between

transcriptional states (i.e., differentiation) and the massive

growth and proliferation enabling it.

A network flows model infers embryonic differentiation
dynamics
To progress toward a fully resolvedmodel of embryonic differen-

tiation dynamics, we developed a network flow model connect-

ing the manifold distributions of the 13 groups of timed embryos,

based on ourmodel for differentiation and growth dynamics (Fig-

ure 2D). In this representation, MCs are depicted as nodes

distributed horizontally over time, and edges denote their pre-

dicted transition to the next time point. The flow model uses an

approximated mass-conservation strategy (or optimal transport)

(Schiebinger et al., 2019) to track cellular differentiation along the

manifold links in time. This is implemented via a mincost-max-

flow algorithm with convex costs that accommodates uncer-

tainty in sampling cell types at each time point, while considering

the variation in cell-type growth rates over time (Figures S2A and

S2B; see also STAR Methods, sensitivity and bootstrap anal-

ysis). We next used the flow model to refine marker-based

cell-type annotation over the transcriptional manifold using the

computationally inferred cell fate of MCs representing early

differentiating states (Figures 2E and S3; Table S2). This resulted

in the annotation of embryonic MCs into 29 cell types (extending

annotations in Pijuan-Sala et al. [2019]). We note that annotation

assisted by the flow model effectively refines and resolves

weakly differentiated and transcriptionally ambiguous groups.

For example, we distinguish between two phases of noncom-

mitted nascent mesoderm (early and late) that display differ-

ences in differentiation potential and define the first ectodermal

cells arising from the epiblast as definitive ectoderm due to their

potential to contribute to both surface ectoderm and neural plate

fates (Figure 2D) (Harvey et al., 2010).
Figure 3. Traceback of differentiation fates and their expression kinet

(A–C) Flow tracebacks were performed from (A) erythroid 2 (MC#1), (B) node/noto

traced-back flows color-coded by annotated cell types and labeled (roman n

expression kinetics for genes with the highest variance over the trajectories. Colo

point (combining the trajectories). Line graphs show the absolute expression lev

trajectories shown in the respective network plot.
Tracing back the kinetics of committed developmental
trajectories
Network flows provide a framework for understanding how

strongly committed cell states emerge over time. The flowmodel

defines different possible timed trajectories leading to any

strongly specified transcriptional state, which can be depicted

as paths over the network diagram (Figure 3, top panels). The ki-

netics of genes participating in a differentiation program can be

estimated as the mean expression per absolute time (Figure 3,

heatmaps) and can also be decomposed into the main temporal

regimes composing it (Figure 3, line graphs). These tools provide

a quantitative view into the differentiation of blood, node, and

cardiomyocyte cells, the first highly specialized cell types in

the early embryo. Early blood progenitors are among the first

functional cells to be specified. Consistent with previous studies

that identified the origins of the extra-embryonic mesoderm,

including primitive hematopoiesis, to the proximal primitive

streak (Huber et al., 2004; Lawson and Pedersen, 1992), our

model predicts that primitive erythroid cells originate from prim-

itive streak (PS) cells at the earliest time point (Figure 3A). In fact,

according to our model, PS cells from Et6.7 onward are unlikely

to contribute to the blood lineage (Figure 3A). These cells, pass-

ing through a transient nascentmesoderm (NM) state (character-

ized by genes such as T, Mixl1, and Mesp1), rapidly lose the

epiblast gene signature and begin expressing sequential waves

of key regulatory genes. Notably, Tal1, Kdr, and Etv2 are

observed to be expressed at appreciable levels by Et6.9, closely

followed by a combination of factors restricting the cells to the

hematopoietic fate, such as Runx1 and Lmo2 (Figure 3A).

The node is a distinct structure that arises from the anterior PS

at the distal tip of the late streak embryo (Figure 3B). The node

constitutes a major signaling center and is critical for correct

patterning of the embryo and determination of the left-right

axis. This is achieved by directional flow of extracellular fluid

driven by clockwise rotation of specialized cilia (Hirokawa

et al., 2006). The ciliated node cells observed in our manifold

are identified as cells expressing high levels of Foxj1, a TF known

to be critical for ciliary development (Chen et al., 1998), and

numerous genes directly relating to cilia structure and function

such as Tppp3, Fam183b, and Nek1 (Figure 3B). A small number

of Foxj1+ cells can be identified as early as Et6.9 and begin ex-

pressing cilia genes closely thereafter. These cells are predicted

to arise from anterior PS progenitors, consistent with previous

reports (Balmer et al., 2016; Tam and Beddington, 1987). Foxj1

expression correlates to the expression of additional TFs critical

for node morphogenesis such as Noto (Beckers et al., 2007),

Rfx3, and T. These are preceded by the expression of TFs char-

acteristic of the anterior PS, Gsc, Mixl1, Eomes, and Foxa2 and

anti-correlated with the canonical epiblast gene signature (Fig-

ure 3B). Similar analysis illustrates transcriptional kinetics in early

progenitors of the embryonic heart (Figure 3C). In summary, the
ics

chord (MC#367), and (C) cardiomyocyte (MC#57) states. Network plots depict

umerals) according to key temporal trajectories. Heatmaps show average

red polygons represent the cell type composition of the traceback at each time

el (log2 of UMI frequency, y axis) for select marker genes, along each of the
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model allows reconstituting the rapid and precise establishment

of specialized transcriptional programs toward the blood, node,

and heart. Such specialized cells, however, comprise only a

small fraction (�10%) of the embryo by Et8.1, whereas for

the majority of embryonic cell states, differentiation appears

more complex, involving more gradual commitment and

specialization.

Prototypical dynamics of cell fate transitions in the
epiblast, primitive streak, and nascent mesoderm
After validating the flow model via analysis of differentiation to-

ward highly specialized fates, we focused our analysis on

complex fate decision dynamics, which may involve selection

between two fates or more (bifurcation and multi-furcation,

respectively). One early example of such process is the segrega-

tion of the epiblast to the mesoderm and endoderm lineages

through the PS and the restriction of this potential by the forma-

tion of definitive ectoderm. This process is shown in our model to

span a prolonged period of time between Et6.5–Et7.6. To repre-

sent the continuous dynamics of transitions, we introduce the

‘‘vein plot’’ (Figure 4A). This plot displays the relative abundance

of transcriptional states over time and the differentiation flux be-

tween them, as indicated by the relative width of the diagonal

connections that span the time points. In this manner, it is clear

that epiblast differentiation is dynamic and largely biphasic: 88%

of the flow toward the PS fate occurs by Et7.1, whereas 89% of

the ectoderm restriction takes place at Et7.3 or later (Figures 4A

and 4B). Throughout this extended period, epiblast cells main-

tain robust expression of the core pluripotency factors Utf1,

Pou3f1, Dnmt3b, and Pim2 (Figures 4C, left, and S4A). Interest-

ingly, we discovered major expression changes occur over time

even within the seemingly homogeneous epiblast because it

continuously supplies cells to the PS and definitive ectoderm

(Figure 4C, right). Most notably, downregulation of Nodal

signaling genes (Nodal and Tdgf1) happens in parallel to PS dif-

ferentiation and precedes the induction of definitive ectoderm

markers Sox9, Irx3, and Irx5 (Figures 4D and S4A). Interestingly,

distinct rostral and caudal signatures are evident in the definitive

ectoderm already in Et7.5 (Figure S4B). Activation of the defini-

tive ectoderm program is largely considered to be achieved by

secreted antagonists emanating from the distal and anterior
Figure 4. Temporal dynamics during epiblast, primitive streak, and na

(A) Vein plots describe the continuous transition of cell types to their direct desce

relative frequencies of these cell types in the embryo over time (vein width on the y

streak (PS) and definitive ectoderm (DEc). Vein connection width represents flow

(here, F).

(B) Bars represent the composition of direct differentiation targets of epiblast ce

(C) Row-normalized heatmaps of expression in the epiblast per time. Genes with h

on right.

(D) Gene-flow plots in which nodes represent MCs, and edges link each MC t

expression versus MC mean time is depicted for Eomes, Tdgf1, and Irx5 genes.

(E) Expression of members of TGF-b superfamily signaling modulators over ti

mesoderm for each age group.

(F) Vein plot (as in A) describing the flow model emanating from PS to its predict

(G) Predicted fate composition of early/late NM cells at each age group. Columns r

into hematoendothelial and extraembryonic lineages (negative values), and emb

(H and I) Vein plots illustrating the flow emanating from early and late NM (respe

See also Figure S4.
VE, protecting the overlying epiblast from differentiation to PS,

and further patterned by signals from the endoderm and axial

mesoderm (Arkell and Tam, 2012; Balmer et al., 2016; Hem-

mati-Brivanlou and Melton, 1997), such as bone morphogenetic

protein (BMP) and Nodal agonist-antagonist gradients (Li et al.,

2013; Liu et al., 2018; McMahon et al., 1998). Using the flow

model absolute timescale, we show that, concomitant with nodal

signaling repression in the anterior epiblast, transforming growth

factor b (TGF-b) superfamily modulators Cer1 and Lefty1 are ex-

pressed in the VE, while interestingly, Lefty2 is transiently

induced in the nascent and early rostral mesoderm (Figure 4E).

Biphasic differentiation over a prolonged period of massive

proliferation as shown for the epiblast is in marked contrast to

the developmental dynamics of the PS (Figures 4F). Flows

demonstrate the continuous replenishment of the PS by the

epiblast to compensate for the massive egress toward the NM

and anterior PS. This process is accompanied by the activation

of early endoderm and mesoderm markers such as Eomes,

Foxa2, Mixl1, and T (Figure S4C), representing the potential of

the PS to differentiate to both lineages (Figure S4D). However,

calculating a commitment score for each MC identified only a

few MCs with such potential (Figure S4E). Furthermore, unlike

epiblast and NM, cells quickly transition through the PS without

stabilizing their state thus forming a sharp bifurcation (Figures 4F

and S4F). This lack of PS stability implies that the mesoderm/

endoderm bifurcation occurs very rapidly on exit from the plurip-

otent state, such that no stable self-renewing mesendodermal

progenitor cell state can be defined.

Differentiation from the NM defines a third type of prototypic

developmental dynamics that differs from both the epiblast

and the PS. NM differentiation occurs gradually and continu-

ously through Et6.7–Et8.0, during which the intrinsic uncommit-

ted state is continuously produced (Figure S4F). Using the flow

model, we depict NM multi-furcation into 10 mesodermal pro-

grams by computing the relative NM fraction contributing to

each of these fates over time (Figure 4G). Up to Et6.9, NM cells

are heavily biased toward the hematoendothelial and extraem-

bryonic mesoderm lineages. Cardiac progenitors and rostral

mesoderm then emerge, trailed by an increased dominance for

caudal mesoderm fates, starting at Et7.4. During this period

(Et6.7–Et7.8), NM cells are continuously marked by high levels
scent mesoderm commitment

ndants (represented by diagonal flows spanning time points), and the dynamic

axis). This panel shows transitions emanating from the epiblast to the primitive

flux at each time point. Dashed arrow represents a link to a subsequent panel

lls at each time group.

omogeneous expression are shown on the left, clusters of variable expression,

o the source MC with the highest contributing flow in the network. MC level

Only MCs from Epiblast and related cell types are shown.

me. Line graphs represent total transcript levels for the entire endoderm or

ed direct descendants.

epresent fraction of cells committing to each of themesoderm fates, separated

ryonic mesoderm (positive values).

ctively) and gene-flow plots for key NM markers.
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of Mesp1, T, Mixl1, Lefty2, and Snai1 (Figures 4H and S4G).

Concomitantly, temporal activation of key mesodermal factors

such as Tal1, Etv2 (hematoendothelial fate), Hand1/2 (extraem-

bryonic mesoderm and cardiac fates), and Foxc1 and Dll3

(rostral and caudal mesoderm, respectively) marks initial

commitment toward more specified mesodermal programs (Fig-

ures 4H, 4I, and S4G). In conclusion, these data support an

extended notion of developmental fate acquisition that can go

through phased fate determination (as in the epiblast), rapid tran-

sitional bifurcation (as in the PS), or complex and time-depen-

dent multi-furcation (as observed for the NM).

Evidence for combinatorial regulation of mesodermal
multifurcation
The classical stepwise differentiation model for development de-

scribes a series of specific gene expression signatures, each

defining a direct transition between a progenitor state and a

more specialized progeny state. We searched for such specific

steps by identifying genes whose activation was unique to only

one of themajor fate transitions predicted by the flowmodel (Fig-

ure 5A). Interestingly, this analysis demonstrated that transitions

toward the node, cardiomyocytes, and the hematoendothelial

lineages are characterized by highly specific gene programs, in

line with their early specification and specialized molecular func-

tions. However, most transitions involved gene expression domi-

nated by combinatorial signatures and lacking unique regulator

genes or other specific makers. This was most evident in the

complex repertoire of mesodermal fates, which, as shown

above, represent temporally dynamic multi-furcation from the

NM toward extraembryonic, rostral, and caudal programs. To

model the regulation of this complex process, we focused on

the combinatorial expression of 63 TFs with variable expression

within the mesoderm (Figure 5B). TFs dominate the mesodermal

transcriptional programs (59 out of the 256 most variable genes

in the mesoderm are TFs), however, only some are likely to drive

initial NM differentiation. Distinguishing between driver TFs and

‘‘responder’’ TFs can be achieved by analysis of their temporal

kinetics (Figure 5C) and absolute expression level (Figure S5A).

TFs expression reflected the overall high-level organization of

themesoderm into 4main regimes: progenitor states (marked by

Eomes, Mixl1, and Mesp1), extraembryonic fates (Msx1/2,

Hand1), and a spectrum of rostral (Foxc1/2, Twist1) and caudal

(Cdx1, Hoxb1, Hoxa1) programs (Figure 5C). However, none of

these TFs define a precise bifurcation pattern. For example,

characteristic high expression of Hand1 in extraembryonic

mesoderm is also observed in some rostral mesoderm MCs.
Figure 5. Combinatorial rather than hierarchical TF expression and reg

(A) Identification of genes specifically associated with one of the major cell type

comparing between the source cell population and its progeny (columns). Dash

genes: (1) minimal gap of 0.5 between largest and second-largest log fold-chang

(B) Absolute expression of highly variable TFs in the mesoderm. Columns repres

(C) Temporal expression of key TFs within the mesoderm. For each TF, we identifi

The inferred TF expression kinetics along trajectories leading to suchMCs are sho

y axis, absolute expression.

(D) R2 values for the best regression model using a pair of mesodermal TFs versus

in the mesoderm, and validated using permutation tests (see Figure S5).

(E and F) Prominent examples of target genes that can be accurately fitted in the m

Each dot represents a MC, axes represent absolute expression of TFs and pred
Similarly, although Foxc1/2 are not expressed in most of the

extraembryonic mesoderm lineages, they otherwise show only

quantitative preferences to some (e.g., rostral, paraxial) meso-

dermal fates. The complex combinatorics of the mesoderm

TFs is likely to have a major regulatory impact on target genes.

To start and quantify this effect, for each mesoderm gene we

compared the attainable fit by a regression model using one or

two input TFs (Figures 5D and S5B). For a few genes, we observe

very tight linkage with the expression of a single TF (e.g., Tdgf1

and Eomes). However, for most genes, we gain significant

(compared to shuffled controls) predictive power when using

two TFs as regulatory inputs (e.g., Pdch19, Bmp2, Dll3, and

Vim) (Figures 5E, 5F, and S5C). The data suggest that although

a cascade of master regulators expression can drive bifurcation

and differentiation of specialized cell types, multifurcation in the

mesoderm depends on complex combinations of many TFs

rather than hierarchical TF expression. The correlation-based

analysis presented here can use temporally resolved data to

derive an initial understanding of such combinatorial schemes.

Yet, such analysis is limited in its specificity as models become

more complex and must therefore be combined with perturba-

tions of candidate TFs.

Studying the temporal effects of Foxc1 and Foxc2 on
mesoderm specification
Forkhead box C1 and C2 genes (Foxc1 and Foxc2) exhibit broad

and largely overlapping expression patterns in non-axial

mesoderm. Mice harboring deletions of both genes die at mid-

gestation with notable phenotypes in somites, intermediate

mesoderm derivatives, blood vessels, heart, and neural crest

(Fatima et al., 2016; Kume, 2009; Winnier et al., 1997). In our

data, Foxc1/Foxc2 are expressed in rostral and caudal meso-

derm, as well as weakly in subpopulations of hematoendothelial

progenitors and the foregut (Figures 5B and S6A). Furthermore,

Foxc1 expression peaks in early paraxial mesoderm, suggesting

that it may play an instructive role in its specification. To this end,

we adapted the chimeric embryo approach for use with precise

single-embryo quantification (Figure 6A). We generated isogenic

pairs of fluorescently tagged Foxc1/2 double knockout (DKO)

and control mouse embryonic stem cells (mESCs), which were

subsequently injected into host blastocysts followed by index

sorting of single-embryo cells and MARS-seq (Figures 6B and

S6B). In this manner, we could separately project injected and

host cells from the same embryo onto the wild-type model.

Generating seven such paired single-cell profiles, together with

four isogenic control injected chimeras, provided a robust
ulation in the mesoderm

transitions during gastrulation. Shown are relative expression levels of genes,

ed boxes mark the enriched, early-specialized lineages. Selection criteria for

e along a transition, and (2) second-largest fold-change smaller than 1.

ent individual MCs following hierarchical clustering.

ed the MCs with maximum expression in the mesoderm (see STAR Methods).

wn. Error bars reflect SD of expression for traced-backMCs at each time point.

the best model using only one TF, trained on non-TFs with the highest variance

esoderm (R2 > 0.8) using a single TF (E) or a linear combination of two TFs (F).

icted gene (x and y, respectively).
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internally controlled platform to assess cell-autonomous effects

of Foxc1/2 DKO over time. We then tested the impact of Foxc1/2

loss on the temporal dynamics within the embryo. We further

performed in silico analysis to control for loss of imprinting and

chromosomal abnormalities that are frequently associated with

mESC cultures (Figure S6C). Overall, host and DKO cells consis-

tently match in terms of embryonic time (as quantified by anal-

ysis of K-nn similarities between knockout or host cells and the

reference temporal model) (Figures 6C and S7A). However, in 4

of 7 chimeras, DKO cells matched embryonic mesoderm of

significantly younger reference embryos relative to the host cells.

This phenotype, indicating retarded differentiation, is specific to

the embryonic mesoderm, as timing based on ectoderm/endo-

derm cells was similar to the host (D = 0.21, p = 3.8e�11 ; D =

0.06, p = 0.17, Kolmogorov-Smirnov D statistic and p value for

the mesoderm and combined endoderm/ectoderm, respec-

tively) (Figures 6C and S7A). Specificity was further substanti-

ated by directly comparing DKO cells to their isogenic controls

(Figure S7B).

We next asked whether the observed delay in mesoderm dif-

ferentiation is driven by specific cell types as a function of time.

Time-matched comparison of cell type frequencies indeed

showed a reduction in paraxial mesoderm cells in the DKO,

together with increased abundance of extraembryonic meso-

derm cells (Figure 6D). To search for the most promising direct

regulatory targets of Foxc1/2 in the embryonic mesoderm, we

performed differential expression analysis comparing pooled

expression on timed single cells classified as host or knockout

embryonic mesoderm. This showed consistently that the

expression of key paraxial and rostral mesoderm TFs (e.g.,

Tcf15, Prrx2, and Twist1) and regulators (e.g., Ppp1r1a and

Cer1), was markedly reduced in knockout cells (Figures 6E and

6F). Differential expression between isogenic unmanipulated

cells and their corresponding host cells provided strong valida-

tion for the specificity of these genes as potential targets of

Foxc1/2 (Figure S7C). Yet, this analysis also stressed the neces-

sity of including isogenic control cells because a noticeable

reduction in Pkdcc in the control cells suggested that, for this

gene, perturbations may originate already in the parental mESCs

(Figure S7C).

To further control for non-cell-autonomous effects, we utilized

a tetraploid complementation assay. We injected Foxc1/2 DKO,
Figure 6. Foxc1/Foxc2 loss delays embryonic mesoderm and inhibits

(A) Experimental scheme for the generation and analysis of Foxc1/2 double knoc

(B) Gene targeting design and validation for Foxc1/2 DKO, both are single-exon

(C) DKOmesoderm (meso) cells are developmentally retarded as compared to the

intrinsic ranks was calculated separately for DKO and host cells (green and blac

nificant delay in the ectoderm (ecto) and endoderm (endo) cells. Shown are two

highlighted for each (see also Figure S7).

(D) Fractions of cell types per embryo. Black, blue, and green symbols, represent h

for each chimera embryo. Embryos were assigned a transcriptional rank accord

represent individual embryos of the wild-type model, and shaded area represent

(E) Relative expression of the most significant differentially expressed genes in t

shown either per embryo (numbered 1–7 according to transcriptional rank from

selection criteria).

(F) Absolute expression of key genes per embryo, for injected mESC-derived vers

(black line, moving average length = 11). Shaded area corresponds to moving SD

million UMIs.

See also Figure S6.
or isogenic control cells into 4N host blastocysts and dissected

the resulting embryos at E8 (dpc). In this manner, the embryonic

compartment was solely contributed by the injected cells, allow-

ing evaluating the non-cell-autonomous effects on gastrulation

(Figure S6B). Interestingly, knockout embryos generated by 4N

complementation assay were significantly younger compared

to their isogenic control counterparts, dissected at the same

time (Figures S6B and S7D). Yet, unlike in the case of the 2N

chimeric embryos, bothmesoderm and non-mesoderm lineages

were significantly delayed in these embryos (Figure S7E). Sur-

prisingly, however, directly comparing 4N individual knockout

or control embryos to time-matched embryos identified only mi-

nor changes in gene expression (Figure S7F). Together, these re-

sults suggest that the global delay in 4N knockout embryos is

due to a failure to correctly execute mesoderm differentiation

programs in the absence of Foxc1/2. This may affect key

signaling required for the synchronous maturation of mesoderm

and non-mesoderm lineages (e.g., Lefty2) (Figure S7F). This ef-

fect is compensated in 2N chimeric embryos, most likely due

to the ability of host cells to correctly activate mesoderm pro-

grams. Taken together, the data highlight Foxc1 and Foxc2 as

key early mesodermal regulators and strongly implicates them

in the regulation of multiple secondary TFs that lead toward the

paraxial mesoderm fate.

DISCUSSION

Fertilization triggers the course of development, whereby indi-

vidual embryos progress in time toward maturation. To achieve

rapid diversification after implantation, gastrulating embryos

undergo massive cell proliferation that involves a continuous

flux of parallel intracellular molecular changes that break tran-

scriptional and structural symmetry (Bedzhov et al., 2014; Ros-

sant and Tam, 2009). The complexity of modeling this process

is best manifested when aiming to assign time to embryos and

cells. Unlike individual embryos that can be assigned with ab-

solute time, cells comprising an embryo may represent

transcriptional states that exist at multiple time points in devel-

opment. Therefore, faithfully charting cell state transitions

during embryonic development requires unified models that

synthesize quantitative transcriptional kinetics of individual

cells and embryos.
paraxial program

kout (DKO) chimera embryos.

genes and the entire coding sequence was deleted in a biallelic manner.

ir matched host cells. The cumulative distribution of nearest neighbor wild-type

k lines, respectively) in each chimeric embryo. Similar analysis shows no sig-

representative embryos, with Kolmogorov-Smirnov D statistics and p value

ost, isogenic control, and DKO cells (respectively), connected by a vertical line

ing to the most similar wild-type embryo based on host cells only. Grey dots

s the moving average for wild-type embryos and moving SD (window size = 9).

he embryonic mesoderm between DKO and matched wild-type embryo cells,

‘‘youngest’’ to ‘‘oldest’’), or across cells per cell type (see STAR Methods for

us host embryonic mesoderm cells, relative to smoothed wild-type expression

across neighboring embryos (window length = 11). Units represent UMIs per
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To address this challenge, we conducted a phenomenological

characterization of mouse gastrulation at the resolution of single

embryos and the single cells comprising them. Ordering em-

bryos on a transcriptional continuum allowed us to assign a

unique time-stamp to each embryo that is based on the tran-

scriptional profile of its comprising cells (denoted Et). Comparing

transcription time with classical morphology-based staging

showed an overall high correlation between the two approaches.

However, morphology was able to capture only part of the

variation in the transcriptional landscape between embryos (Fig-

ure 7A). In part, this is due to the limited number of distinguish-

able morphological changes and the qualitative nature of such

classification. In many cases, molecular specification precedes

the appearance of an appreciated morphological structure as

evident, for example, in the cases of the allantois, cardiomyo-

cytes, and early blood specification (Figure 7B). Our data provide

a synthesis between transcription and morphology, thus signifi-

cantly refining classical embryo staging approaches.

To infer differentiation flows and lineage specification dy-

namics over the embryonic transcriptional manifold, we

developed algorithms that integrate single-embryo time, tran-

scriptional identity of single cells, and estimation of the growth

rates for key embryonic lineages. The ability to chart simulta-

neous programs in the embryo at high temporal resolution pro-

vides a holistic view across cell types, thus allowing suggesting

co-dependence between them. A notable example of such an

interaction is the significant reduction in Nodal signaling genes

in the otherwise largely homogeneous epiblast, situated juxta-

posed to the source of high levels of the Nodal inhibitors Lefty1

and Cer1 from the VE (Costello et al., 2015; Perea-Gomez et al.,

2002) and temporally correlated with the onset of Lefty2 expres-

sion by the emerging mesoderm. This transcriptional switch co-

incides with a shift in the differentiation potential of the epiblast:

from early predominant contribution to mesoderm and endo-

derm fates through the PS, to enmasse commitment to definitive

ectoderm commencing Et7.0. Interestingly, the watershed-like

switch in epiblast commitment correlates with the previously

described sharp reduction in the efficiency to isolate epiblast

stem cells from late streak embryos (Brons et al., 2007; Kojima

et al., 2014; Tesar et al., 2007).

Consistent with previous findings in Xenopus (Hemmati-Bri-

vanlou and Melton, 1997), our model predicts that epiblast

commitment to ectoderm initiates through a common progenitor

cell population termed definitive ectoderm. These cells are pre-

dicted by the flows to differentiate to either neural plate or sur-

face ectoderm (epidermis) fates. Indeed, such cells have been

previously identified in the mouse (Cajal et al., 2012) and further

isolated in vitro (Harvey et al., 2010; Li et al., 2013; Liu et al.,

2018). Yet, the transient nature of definitive ectoderm (retention

time 4.8 ± 0.8 h) (Figure S4F), the lack of distinctive markers,
Figure 7. Acquisition of morphological and transcriptional traits during

(A) Staged traces of representative embryos highlighting the major phenotypical

distribution of calculated developmental time (Et) per embryo according to mor

Boxes show interquartile range (IQR) with median. Whisker length corresponds to

(B) Cell type distribution per embryo, arranged according to intrinsic rank and se

(C) Complete flow model showing all cell types and major predicted transitions.

shallow ‘‘basins’’ (e.g., epiblast and NM) to deep ‘‘canyons’’ (e.g., ExEn and bloo
and difficulty in tracing their fate in vivomake elucidating the po-

tential of these cells a challenging task. Our data suggest that

early distinct spatial expression within this population may pre-

dict anterior/posterior patterning (Figure S4B). This potentially

extends recent findings demonstrating regionalization of the spi-

nal cord prior to neural differentiation (Metzis et al., 2018), in

contrast to the long-standing initiation transformation model

(for review, see Stern et al., 2006).

The flow model clearly uncovered prototypic rapidly bifur-

cating cell state transitions associated with the first specialized

cells of the embryo: blood, node/notochord, and cardiomyo-

cytes. Nevertheless, gastrulation appeared to be dominated by

enduring progenitor populations that gradually multifurcate to

give rise to distinct cell fates. Regulation of such regimes seems

combinatorial and nuanced with no single major TF or clear hier-

archical stepwise program driving transitions. We propose an

approach that focuses on the multi-faceted regulation within

such states, combining temporal and kinetic modeling with

experimental systems that integrate reporters, perturbations,

and single-cell readout for in-depth analysis in vivo. We show

that single chimeric embryos, harboring gene-specific muta-

tions, allow separation of the effect of key regulators on develop-

mental timing from their effect on direct target genes. Specif-

ically, in the case of Foxc1/Foxc2 mutants, we could

reproduce the previously described loss of paraxial mesoderm,

but in the same experiment also trace back this phenotype to

gene expression changes in its progenitors. Our data show

that knockout cells that were destined toward rostral and para-

xial fates are developmentally delayed and may later compen-

sate by elevating alternative programs (e.g., those involving ex-

tra-embryonic mesoderm fates). Multi-furcation in the

mesoderm, therefore, emerges as a process involving a delicate

balance between differentiation programs within a multipotent

mesodermal progenitor state.

Continuous commitment over time represents a key limitation

of pseudotime methods that inherently forces a rigid tree-like

structure on inferred cell state transitions. Similarly, conver-

gence of distinct states into the same program is not easily

modeled using pseudotemporal ordering. One such example

is the contribution of the VE to the embryonic endoderm

recently demonstrated during early mouse gastrulation (Kwon

et al., 2008; Nowotschin et al., 2019; Peng et al., 2019). Our

work provides a unified model of mouse gastrulation that con-

siders continuous, parallel, and converged differentiation to-

ward multiple lineages (Figure 7C). In such a ‘‘basin-like’’ repre-

sentation of development, rapid bifurcations into highly

functional cells are depicted as ‘‘canyons,’’ whereas progenitor

states that gradually multifurcate over several time points are

depicted as basins (Figure 7C). Collectively, our work intro-

duces a quantitative temporal model of embryonic
gastrulation

alterations during gastrulation and up to somitogenesis. Boxplot indicating the

phological classification (see Figure S1B for complete embryo compendium).

1.5 IQR or the distance to the extremal value of the distribution if within 1.5 IQR.

parated into the 13 age groups.

Map ‘‘altitude’’ represents the degree of specification of each cell type, from

d).
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development, holding great promise for elucidating the roles of

multiple regulatory layers in shaping and memorizing functional

programs. Nevertheless, moving forward toward a complete

realization of these processes will require integrating spatial in-

formation into the model, creating spatiotemporal models that

represent development as a concurrent, and interacting collec-

tion of intra-cellular processes with progressively specialized

and robust transcriptional and spatial identities.

Limitations of study
Limitations of our study are related first to our model resolution

and accuracy. Model accuracy is defined by the number of em-

bryos sampled and the uniformity of their absolute (a priori un-

known) temporal distribution. Resolution in our model is directly

affected by cellular diversity. Indeed, current sampling depth

allows more precise tracking for embryonic times showing

extensive cellular diversity (at Et6.9 and thereafter) but provides

lower resolution for the earlier, inherently less-diverse, time

bins. In addition, dissection of extra-embryonic tissues may

have variable efficiency and can affect inference of flows for

these lineages. These issues can be improved on by

sequencing additional embryos up to the noise limits of sam-

pling and scRNA-seq. More fundamental limitations relate to

the use and interpretation of the model. The flow model makes

assumptions on proliferation rates of different cell types over

time, which were extrapolated from bulk measurements and

cell-cycle-related gene expression. Measurements involving

specific cell type isolation or monitoring lineage dynamics using

time-lapse microscopy will allow a more precise evaluation of

cell proliferation rates. Finally, the precision of the estimated

breakdown of embryonic cells into types per time point is

based on thresholding a continuous space of differentiation,

and when visualizing the flow model, we must use it as is

(e.g., for color-coding).
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Experimental models: Cell lines

Mouse: V6.5 mouse embryonic stem cells Jaenisch lab, MIT RRID:CVCL_C865

Mouse: Foxc1/2 dKO mESCs This paper N/A

Mouse: isogenic control mESCs This paper N/A
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Mouse: C57BL/6JRccHsd Envigo RRID: MGI:6151402

Mouse: Hsd:ICR(CD-1) Envigo RRID: MGI:5649797

Mouse: B6D2F1 Envigo RRID: MGI:5651959

Oligonucleotides

FoxC1 50 gRNA: gTTGATCCGAACGTTCCTCCG This paper N/A

FoxC1 30 gRNA: gAGTCTCTGTACCGCACGTCG This paper N/A

FoxC2 50 gRNA: GGCGCTCGGGTTCAGCCGAC This paper N/A

FoxC2 30 gRNA: gAGGGACGGCGTAGCTCGATA This paper N/A

Recombinant DNA

Cas9 targeting plasmid: px330 Wu et al., 2013 Addgene plasmid: #98750

HTNC expression plasmid: pTriEx-HTNC Peitz et al., 2002 Addgene plasmid: #13763

Software and algorithms

Metacell Baran et al., 2019 PMID: 31604482

Network flow inference algorithm This paper https://github.com/tanaylab/embflow

https://doi.org/10.5281/zenodo.4646177

MARS-seq pipe mapping/UMI pipeline Keren-Shaul et al., 2019 PMID: 31101904
RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Yonatan

Stelzer (Yonatan.stelzer@weizmann.ac.il).

Materials availability
Plasmids and cell lines generated in this study will be made available by the Lead Contact upon request.

Data and code availability
The accession number for the raw and processed data reported in this paper is GEO: GSE169210.

Code has been deposited at https://github.com/tanaylab/embflow, https://doi.org/10.5281/zenodo.4646177.

Interactive independent analysis can be performed at https://tanaylab.weizmann.ac.il/embflow.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell culture and genetic manipulation
Mouse embryonic stem cells (mESCs, v6.5) were cultured under standard conditions on a feeder layer of X-ray irradiated mouse em-

bryonic fibroblasts (MEF, DR4). Standard mESC medium: DMEM (High glucose, GIBCO), 20% FBS (US certified, Biological Indus-

tries), 20mg/lit recombinant leukemia inhibitory factor (LIF), 0.1mM 2-mercaptoethanol (GIBCO), Penicillin/streptomycin (Biological
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Industries), 1mM L-glutamine (Biological Industries), 1% non-essential amino acids (Biological Industries). For chimera assays me-

dium was supplemented with 1mM PD0325901 (Sigma, 1 mM), and 3mM CHIR99021 (Sigma), 48hrs prior to blastocyst injection.

Embryo Collection and Documentation
All animal procedures were approved by the Institutional Animal Care and Use Committee and were performed in strict adherence to

Weizmann Institute guidelines. Mice were monitored for health and activity and were given ad libitum access to water and standard

mouse chow with 12-hr light/dark cycles. Embryos were collected from timed pregnant immune competent C57BL/6JRccHsd or

Hsd:ICR(CD-1) females (obtained from Envigo and mated in house with males of the same strain), between E6.5-8.25 (see Fig-

ure S1F). Pregnant mice were not involved in previous studies. Embryos were removed from their implantation sites using fine for-

ceps, in PBS, and Reichert’s membrane and ectoplacental cone removed. Embryos were then washed in fresh PBS and transferred

to chilled DMEM (Phenol-red free, GIBCO) supplemented with 10% FBS (Biological Industries) for imaging prior to dissociation.

Phase contrast images were taken with an Eclipse Ti2 inverted microscope (Nikon) and Zyla sCMOS camera (Andor). Size measure-

ment of the embryonic component of each embryo was performed as previously described (Downs and Davies, 1993). Embryo

staging was performed according to (Downs and Davies, 1993) and EMAP (eMouse Atlas Project; http://www.emouseatlas.org/

emap/home.html) (Richardson et al., 2014).

The same single investigator performed both staging and measurements for consistency.

Generation of Foxc1/Foxc2 double knock out cells
mESCs expressing constitutive GFP were generated by integration of a Lox-DsRed-Lox-GFP cassette (based on Addgene plasmid

#32702) into acceptor attP sites integrated in the H11 locus (using Addgene plasmid #52544), followed by Cre recombination using

recombinant His-TAT-NLS-Cre (HTNC) protein (Addgene plasmid #13763), as previously described (Peitz et al., 2002). Cells were

then co-transfected using TransIT-X2 (Mirus, according to manufacturers protocol) with four SpCas9 vectors (px330, Addgene

plasmid #98750) (Wu et al., 2013), each expressing a single gRNA designed to remove the entire protein coding sequence of either

Foxc1 or Foxc2. gRNAs were selected for minimal off targets using CCTop - CRISPR/Cas9 target online predictor (https://cctop.cos.

uni-heidelberg.de:8043/) (Stemmer et al., 2015). For genotyping, individual clones were grown for two passages on gelatin-coated

plates to eliminate residual MEF, and genomic DNA extracted with PCR compatible lysis buffer (10mM Tris, PH = 8, 0.45% Triton X-

100, 0.45% tween-20, 0.2mg/ml Proteinase-K). Validation by genomic PCR used a set of primers flanking the expected deletions,

and internal primers, as well as by Sanger sequencing.

METHOD DETAILS

Flow Cytometry
Prior to dissociation, to focus on tissues that contribute to the embryo proper, the ectoplacental cone, parietal endoderm, and much

of the extraembryonic ectoderm, were removed using fine forceps. For isolation of single cells for scRNA-seq, embryos were disso-

ciated with 0.25% Trypsin-A, 0.02% EDTA (Biological Industries) solution for 50 at 37�C, and resuspended in DMEM w/o phenol red

(GIBCO) supplemented with 10% FBS (Biological Industries). Samples were run on a FACSAria-III flow cytometer (BD Biosciences)

using the ‘index sort’ option to retain the spectral properties of each individual sorted cell.

Single-cell RNA-sequencing
Single-cell cDNA libraries were prepared using the MARS-Seq method, as described (Jaitin et al., 2014; Keren-Shaul et al., 2019),

with the following modifications: The final concentration of the RT1 primers was 2nM, and pooling was done via centrifugation to

VBLOCK200 reservoir (Clickbio). Klenow reaction was not followed by heat inactivation. The volume of the first RT and Exonuclease

I reactions mix were scaled down to 1 and 0.5 ul, respectively, and dispensed by MANTIS liquid handler (FORMULATRIX). In brief,

single cells were sorted using flow cytometer directly lysis solution containing well identifying poly-T barcodes. mRNA from cell cap-

ture plates was then converted into cDNA and pooled. Pooled samples were amplified by T7 in vitro transcription, and the resulting

RNA was fragmented and converted into a sequencing-ready library by tagging the samples with pool barcodes and Illumina se-

quences during ligation, reverse transcription, and PCR.

Estimation of total nuclei counts in E6.25 – E8.0 embryos
To estimate total cell counts in embryos of different developmental stages, we harvested 19 embryos from E6.25 to E8.0 and fixed

them overnight using 4% PFA. The embryos were subsequently washed with PBS-0.1% tween (PBST), nuclear-stained using DAPI

(Sigma-Aldrich D9564) diluted to 1.0 mg/mL in PBS and incubated overnight in 70% glycerol-PBS on a tilting platform to clarify the

tissue. The embryos weremounted on a Cellvis 35mm glass-bottom dish and imaged using a Zeiss LSM-880 confocal with automat-

ically optimized Z-interval. The raw images were next processed using Bitplane Imaris software. E6.25-E7.0 embryos were pro-

cessed along the entire span of the confocal stack, while embryos from later stages were cropped to half of the span along the

lateral-to-medial extent, discarding dimmer Z sections distal to the lens. We used the Imaris ‘‘surface’’ feature to manually segment

the image stack into embryonic and extra-embryonic domains. We next used the ‘‘spots’’ feature with optimized parameters to
e2 Cell 184, 2825–2842.e1–e8, May 27, 2021
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assess the distribution of cell nuclei in each domain separately. For embryos older than E7.0, the nuclei counts were multiplied by a

factor of two to account for the entire left-right axis of each embryo.

Blastocyst Injections
Blastocyst injections were performed using (C57BL/6xDBA) B6D2F1 (Envigo) host embryos. In brief, 3-4-week old B6D2F1 females

were hormone primed by an intraperitoneal (i.p.) injection of pregnant mare serum gonadotropin (PMSG, Vetmarket) followed 46 hr

later by an injection of human chorionic gonadotropin (hCG, Sigma). Embryos were harvested at the zygote stage, and cultured in a

CO2 incubator until blastocyst stage. On the day of the injection, groups of embryos were placed in drops of M2 medium using a 16-

um diameter injection pipet (Biomedical Instruments). Approximately ten cells were injected into the blastocoel of each embryo using

a Piezo micromanipulator (Prime Tech). For tetraploid complementation, 2-cell embryos were fused to one cell using a CF150/F in-

strument (BLS), by 2 DC square pulses of 30V 40ms and 1-2V AC, in 0.3M Manitol solution with BSA. An average of 15 cells were

injected to the blastocoel of such embryos. Approximately 20 blastocysts were transferred to each recipient female (CD1 female

mice, Envigo); the day of injection was considered as 2.5dpc. Mice were handled in accordance with institutional guidelines and

approved by the Institutional Animal Care and Use Committee (IACUC).

MARS-seq and other scRNA-seq processing
MARS-seq reads were processed using the MARS-seq2.0 pipeline (Keren-Shaul et al., 2019). In Brief, After removing plate barcodes

(4 base pairs) from Read 1, reads were mapped to the mm9 genome using bowtie2. Demultiplexing of the reads and construction of

the single-cell UMImatrix was based on thewell barcodes (7 base pairs) andUMI barcodes (8 base pairs) fromRead 2.To demultiplex

single-cell datasets into individual embryos, we recorded embryo identity per well during sorting and mapped well barcodes to em-

bryo IDs as part of the MARS-seq post-processing stage. We removed mitochondrial transcripts from all cells in the UMI matrix.

Overall we processed 40868 wells, out of which we retained 33,900 well-covered cells for further analysis. In particular, cells with

the less than 1000 UMIs were filtered out. To analyze chimeric embryos, we used FACS index sorting to record GFP fluorescence

per cell in addition to embryo identity per well. We then distinguished knockout and host single cells using thresholding of the green

channel bimodal distribution. To allow comparison of our temporal atlas to the published gastrulation atlas we used 116,312 QC pos-

itive cells and mapped 10x gene names to MARS-seq gene names using naive matching of gene symbols.

QUANTIFICATION AND STATISTICAL ANALYSIS

Experimental design
Replication in this study is based on collecting individual embryos. All analyses were validated to be robust to subsets of the embryos

acquired. Data collection involved sampling embryos at different estimated times, in several iterations given temporal analysis to

insure complete coverage (See Table S1). For scaling embryos in time bins we corroborated scRNA-seq data with estimation of em-

bryo size, thereby preventing bias or skewing of the timescale. We used blinding for staging embryos using two independent

methods (scRNA-seq and morphology-based). The study did not involve a-priori determination of required sample size since the

robustness of single-embryo sampling was not known in advance. However we did determine temporal bin size (based on the total

number of cells from embryos in the bin, aiming at a minimum of 1000). There were no formal inclusion/exclusion criteria in this study.

Metacell analysis
To select feature genes for MC analysis we followed standard practice and identified 804 high variance genes in the UMI matrix

downloaded to 1,653 UMIs (Baran et al., 2019). We then filtered cell-cycle and stress-related genes using manual annotation of

80 gene clusters. This resulted in a set of 665 feature genes. MCs were derived as described (Baran et al., 2019) using K = 100

and standard bootstrapping, MC splitting and outlier filtering. To avoid potential bias due to sometimes incomplete removal of extra-

embryonic tissues, residual MCs corresponding to extraembryonic ectoderm and parietal endoderm were removed prior to further

analysis. The derived reference model included 461 MCs on 33,700 cells, leaving 200 outlier cells.

For a representation of temporal trends in Figure 1, we split the MC partition into separate endoderm, mesoderm and ectoderm

graphs using known germ layer marker. This classification was not used in subsequent modeling and annotation, which are all based

on flows described in Figure 2.

Embryo timing algorithms - K-nn ordering
Intrinsic temporal ordering of embryos is inferred using analysis of the cell-cell similarities and optimization of the linear ordering of

embryos minimizing the temporal distance between similar cells. This analysis is done after excluding cells from the extraembryonic

endoderm (defined by marker expression of Ttr and Apoe, Figure S1G) and the hematopoietic lineage (defined by expression of

Cited4, Figure S3), since sampling of these tissues is variable between embryos. Given the filtered UMI matrix, we construct the ad-

jacency matrix Euv encoding the balanced K-nn graph as defined by the MC pipeline for K = 50. We marginalize over embryos to

compute raw embryo similarity: Nij =
P

u˛Ci ;v˛Cj

Euv, where Ci represent the cells of embryo i. We then normalize raw similarities in two

steps. First, we normalize columns given the number of cells in each embryo Spre
ij = ð��Cj

��Þ�1Nij: We next normalize rows while also
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considering embryo sampling batch effect. To do this, assume the sampling batch of each embryo is bðiÞ and assume some initial

embryo ordering ordðiÞ (e.g., based on morphology alone). We compute the embryo batch effect by estimating the increase in sim-

ilarity only among embryos that are within the same approximated time range (to avoid computing large batch effects due to differ-

ences in scheduled embryo harvesting)

bi =
X

jordðiÞ�ordðjÞ�%10;bðiÞ=bðjÞ
Spre
ij

, X
jordðiÞ�ordðjÞ�%10;bðiÞsbðjÞ

Spre
ij :
We correct similarities between embryos within the same batch
 and jordðiÞ�ordðjÞj%10 by setting Spre;b
ij = ðbiÞ�1Spre

ij (keeping all

other Spre values unchanged), and then define:

Sij = Spre;b
ij

,X
k

Spre;b
ik
We can now define the ordering optimization problem
t = argmintð$Þ
X
ij

SijjtðiÞ� tðjÞj
among all possible orderings tð $Þ of the embryos. We solve the p
roblem using a sorting heuristic. We initialize embryo ordering by

their annotated Theiler stage (randomly ordering within each stage). Embryos for which Theiler staging was not possible (9 embryos),

were assigned to the most abundant Theiler stage of their litter. We then run a bubble-sort-like algorithm by iteratively switching the

position of neighboring embryos if this lowers the goal function until a local minimum is reached. We found that this simple heuristic is

sufficiently powerful given that the initial Theiler ordering already defines the correct coarse-grained solution.

Defining absolute developmental time using size measurements
To transform embryo ordering into physical developmental times (in units of hours) we had to consider non-uniform embryo sampling

and correct it using some independent physical measurement. We used areameasurement Ai for a subset of the embryos (using only

C57BL/6 data to minimize strain-effects). Given the embryos exponential growth dynamics, we fit logðAiÞ as a function of the intrinsic

rank of each embryo i using a smoothing spline interpolation (R function smooth.spline with parameter spar = 0:9, Figure 1E). To

extend the boundaries, the interpolation function was linearly extrapolated. To derive absolute time, the log area scale logðAÞ was

transformed into a developmental timescale Et by assuming a linear relationship t � logðAÞ and setting the median time of the first

age group to 6.5 and the median time of the last age group to 8.1.

Comparison of inferred time to reference gastrulation atlas
We constructed a reference MC object for the mouse gastrulation atlas published in Pijuan-Sala et al. (2019). Most atlas cells are

labeled by collection time tc into 6h intervals between e6.5 and e8.5. Using these labels, we computed the mean atlas age for

each reference MC. We then computed for each of our embryos a projected mean age as follow:

i) we matched MARS-seq and 10X gene symbols and used only feature genes as defined by the MC pipeline

ii) for each embryo cell, we identified the atlas MCwith maximal correlation (using log scaled single-cell UMI counts correlation to

log scale gene frequency in MCs).

iii) we computed the mean reference MC time matching all cells within each embryo. This is then defined as the projected atlas

time of the embryo. Comparisons of these times to the intrinsic embryo ordering is shown in Figure 1.
Manifold construction and distance metrics
Given aMC solution over all embryos’ cells, we define first the gene expression distributionwithin eachMCusing the fraction of UMI’s

per gene g inMC i, denoted egi (computed by theMC package). EachMC consists of cells from different time groups, represented by

vectors nti specifying the number of cells from time group t and MC i. We assume analysis is done using a set of feature genes F

including genes that involve significant transcriptional variance and are filtered so as not to include batch-affected genes or genes

linked with the cell cycle.

To compute manifold distances between MCs we perform the following steps:

i) define parametric pairwise distances: we use a logistic function on the regularized egi values over the set of features genes F:

dij =
X
g˛F

plogis
�
log2

�
ε + egi

�� log2
�
ε + egj

�
; loc; scale

�
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where loc (default 1) and scale (default 0.2) are parameters for a
 standard logistic function and ε (default 5e-4) is a regularization

parameter.

ii) defined manifold neighborhoods. We only trust the above parametric pairwise distances over highly related transcriptional

states (e.g., for egi vectors that are generally similar). We therefore identify pairs of MCs Epre such that ði;
jÞ˛ Epre if dij <a �minðTi;TjÞ, where Ti is the distance between MC I and its second most similar neighbor, and a is a tolerance

parameter (default 3). We further filter Epre such that each MC include at most 5 neighbors (those with the smallest distances),

and construct amanifold graphM = (I, E) over MCs, with edge weights that equal the original dij values for the retained edges.

This graph is visualized in Figure 2A.

iii) We next define a rate matrix Q= ðrijÞ where rij = ðD =dijÞ for ði; jÞ˛E and 0 otherwise, setting the diagonal as rii = � P
fisjg

rij and

using D=mediani

�
max

j
dij

�
for scaling distances. The manifold transition probabilities are now computed as:

pij = e�tQ, i.e., assuming a Markov process over the manifold with the rate matrix Q and timescale t (we use t = 1 to derive the flow

models as discussed below). The manifold costs are derived from the probabilities by scaling each row and taking the inverse:

cij = max
j

�
pij

��
pij

Cell cycle modules and growth loss constant estimation
For each cell, we computed a mitosis and synthesis phase score by counting the number of UMIs from mitosis (M) and replication

(S) genes and normalizing this count by the total number of UMIs per cell. The group of M-phase genes includes Mki67, Cenpf,

Top2a, Smc4;SMC4, Ube2c, Ccnb1, Cdk1, Arl6ip1, Ankrd11, Hmmr;IHABP, Cenpa;Cenp-a, Tpx2, Aurka, Kif4, Kif2c, Bub1b,

Ccna2, Kif23, Kif20a, Sgol2, Smc2, Kif11, Cdca2, Incenp, Cenpe. The group of S-phase genes includes Pcna, Rrm2, Mcm5,

Mcm6, Mcm4, Ung, Mcm7, Mcm2, Uhrf1, Orc6, Tipin. We detected reduced S phase and M phase scores for cells from extra-

embryonic and embryonic endoderm (Figure 2C). We also observed exponential decay of the fraction of cells per embryo as a

function of inferred embryo time, fitting in log space a global trend of decrease in their relative frequency with coefficients of

0.83 and 0.88 for extraembryonic and embryonic endoderm respectively (Figure S1I). We did not observe significant evidence

for differential growth rates in other cell types. We therefore assume a growth loss constant of ltexeendo = 1� 0:83 = 0.17 for extra-

embryonic endoderm at all time groups, and of ltembendo = 1� 0:88 = 0:12. for all embryonic endoderm types. We set the loss

constant to 0 for all other cell types. We note that these estimations are only approximating a much more complex and dynam-

ically changing process, but within the time window studied here, these estimations provide sufficient compensation with minimal

additional parameter fitting.

Network flow inference and modeling
Recall each MC consists of cells from different time groups, represented by vectors nti . We normalize these count vectors and

generate a probability distribution per time point pit = nti=
P
i

nti . We define a flow model over this time resolved MC model using a

flow matrix f tij for every time point t < T (T being the last time point), describing the fraction of cells from time t at MC i transitioning

to MC j at time t+1.

The ideal ‘‘mass conservation’’ constraint in the model ensures the total flow in and out of each MC at each time point equals the

observed frequency of single cells within it – specifically:X
j

f tij =pt
i ðforwardÞ;

X
j

f t�1
ji =pt

i ðbackwardÞ
where the boundary constraints (forward at the t = T, backward a
t t = 1), are ignored.

In practice however, we must relax these constraints given two considerations – First, we must consider differential growth rates

between MCs. Second, uncertainty on our estimations of pt
i (which are a result of a single cell sampling process with considerable

variance) must be considered.

To account for differential growth rates we use the growth loss constants lti (as described in the previous section). We assume that

at each time step, MCs with lti > 0 emit ‘‘dilution’’ flow proportionally to their frequency - lti p
t
i . The total lost flow at time t, lt =

P
i

lti p
t
i is

being redistributed proportionally among all MCs toward time t+1, adding gt
i =pt + 1

i lt to the flows going into each MC at time t+1. To

define the resulted generalized conservation of mass, we introduce the flow constraints for each MC and time point:

CNSTRflow h
X
j

f tij +pt
il

t
i =

X
j

f t�1
ji +pt

il
t�1 = f ti
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We can now consider the uncertainty on the estimation of pt
i by computing relative total flow error per MC and time point dt

i =

ðf ti �pt
i Þ=pt

i and using a cost function to penalize flows with large d magnitude –

costcap =
X
i;t

flow error
�
dt
i

�

where the flow error is a piecewise linear convex function with a
 minimum at 0 (shown in the right panels in Figure S2A).

Given the relaxed formulation of themass conservation and growth constraints, we can next write down a general optimization goal

function for flows, which consider also the transcriptional manifold and the MC-MC distances defined by it – in simple terms:

costmanif =
X
i;j;t

cijf
t
ij
The resulted combined optimization problem:
minðcostmanif ðFÞ + costcapðFÞÞ
Subject to the constraint CNSTR and the global flow constrai
flow nts
P
i

f1i = 1. In fact, these constraints and cost function define a

classical network min-cost max-flow problem with convex costs. This problem is polynomial, and we derive an optimal solution

the highly efficient simplex algorithm (Ahuja et al., 1993).

Annotation of metacells using flows
To annotate MCs, we added to the analysis of marker gene expression in each MC an examination of the inferred flow from (and to)

them. MCs. In some cases, these supported identification of progenitor states that are already primed toward specific fates despite

having only mild marker expression specificity. Let Fij =
P12
t = 1

f tij be the averageMCMC flow, F3 = F$F$F (matrix multiplication) and letG

be the concatenation of F3 and the transpose ðF3ÞT containing the third-order ingoing and outgoingMC flows for eachMC (rows). For

G we compute the first-order correlation matrix

C1
ij = corkðGik ;GjkÞ
with the diagonal set to zero and the second-order correlation ma
trix C2
ij = corkðC1

ik ;C
1
jkÞ. The diagonal ofC2

ij is again set to zero. MCs

are then clustered into 65 groups using hierarchical clustering (Ward.D method) of Euclidean distances between columns of C2
ij . The

second-order correlation matrix is shown in Figure S3A. Clusters were manually annotated based on selected markers shown in Fig-

ure S3B. In cases where intra-cluster gene expression was not sufficiently homogeneous, single MCs were reannotated accordingly.

Flow robustness and sensitivity analysis
For the analysis in Figure S2A, we used a fixed MC solution and recomputed flows while changing only one parameter at a time. To

generate Figure S2B, 153 replica single-cell UMImatrices where generated leaving out the cells of one of the 153 embryos each time.

MC partitions, manifold distances and flows were recomputed for each replica using the same parameters as in the original analysis.

MCs were annotated with cell types by projecting each replica MC to the best correlated original MC using log transformed mean

gene UMI fractions on feature genes. Intrinsic ranks of embryos as well as the age group partitioning was kept unchanged.

Flow propagation
Using the flow matrices f tij that are the solutions of the mincost flow problem, we define forward and backward probability transition

matrices between MCs via

Pt;fw
ij =

f tijP
kf

t
ik

Pt;bw
ij =

f tijP
kf

t
kj

:

Given a distribution pt over MCs at time t, we can iteratively forw
i ard and backward propagate it through

pt + 1 =
�
Pt;fw

�T
pt pt�1 =Pt�1;bw pt:

Vein plots
To summarize flows as shown in the ‘‘vein plots’’ of Figures 4 and 7, we group cells based on their annotated cell type and time-bin.

We then summarize flows between cell types at each time point (where total flows between subsequent time points is 1). We are

smoothing total frequency of each cell type per time using local polynomial regression and create ‘‘veins’’ with changing width
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that is proportional to cell type frequency. Flows between cell types are simplified by eliminating low magnitude flows between cell

types (using a threshold of 0.005), and we visualize each edge with a width that is proportional to flow magnitude.

Unique genes specific to only one cell type transition
To generate Figure 5A, we selected for each cell type the ancestral cell type mostly contributing to it according to the flows. For each

pair of cell type transitions T1/T2 we calculated gene expression profiles

e1
g =

P
i˛T1 ;j˛T2egiFijP
i˛T1 ;j˛T2Fij

; e2
g =

P
i˛T1 ;j˛T2egjFijP
i˛T1 ;j˛T2Fij
corresponding to bulk expression of cells before and after the trans
ition T1/T2. Denote by lfðg; T1 /T2Þ= log 2ðε + e2gÞ � log 2ðε + e1gÞ
the fold change corresponding to that transition ðε = 10�5Þ. We then selected genes that are differentially expressed along a transition,

i.e., that satisfy ���log 2

�
ε + e2

g

	
� log 2

�
ε + e1

g

	��� > 1; log 2

�
10�5 + max

�
e1
g; e

2
g

		
_� 15
for at least one transition T1/T2. Among these genes, we filtere
d genes, that are uniquely differentially expressed along one tran-

sition, i.e., that (i) have a gap

maxðT1/T2Þlfðg;T1 /T2Þ > 0:5+ lfðg; T1 /T2Þ
for all transition pairs ðT1 /T2Þ not equal to the maximizing pair
 and (ii) for which the second largest fold change along a transition

ðT1 /T2Þ is smaller than 1. Figure 5A shows lfðg;T1 /T2Þ for all included genes and included pairs T1;T2.

Mesoderm combinatorial TF expression and kinetic analysis
We filtered 63 mesodermal transcription factors that display high absolute expression as well as high variance within the mesoderm,

i.e., (ε = 3$10�5)

log2

�
ε + max

i˛meso
egi

�
_12; DmaxðgÞ> 2:
� � � �

with DmaxðgÞ = log2 ε + max

i˛meso
egi � log2 ε + min

i˛meso
egi These factors were visualized on a heatmap over all mesoderm MCs.

To estimate the kinetics of a TF g over time, we selected the mesodermal MCs, where it is highly expressed,�
log2

�
ε + egi

�� log2

�
ε + min

i˛meso
egi

��
> 0:8$DmaxðgÞ:
Flows were then propagated through theseMCs. The kinetics of s
elected transcription factors along their propagated flows is shown

in Figure 5C.

TF linear regression models
We identified genes that have at least an 8-fold difference between minimal and maximal gene expression within the mesoderm. Gene

expression levels of highly variable genes (that are not transcription factors) were predicted in terms of transcription factor levels using

standard linear regression. For eachvariable gene, themostpredictive single transcription factor and themost predictive pair of transcrip-

tion factorswas reported (Figure5D).BecauseR2̂ valuesof linear regressionsalways increasewhen increasing thenumberofexplanatory

variables,weperformedapermutation test forcomparinggeneexpressionpredictions fromtwotranscription factorswithpredictions from

one transcription factor. To this end,wefirst shuffled theTFexpressionmatrix.We thenused thebestfitting single TF in theoriginaldataas

afixedanchorandestimated the improvement in R̂2derivedwhenadding to thisanchor thebest fittingshuffledTFvector.Acomparisonof

the gain in R̂2 in the unshuffled matrix and shuffled matrix provided control for the over-fitting we perform when extending the model.

Cell type annotation of chimera cells
We constructed a common balanced K-nn graph consisting of 33.889 cells from thewild-type atlas and 4284 cells from seven Foxc1/

2 KO chimera embryos. Using the common K-nn graph, we associate to each cell i a probability vector pi counting the fraction of cells

from each cell type among its 50 nearest neighbor cells, i.e.

piðcell type AÞ = #wildtype neighbor cells from cell type A

#wildtype neighbor cells
:

Note that we can calculate pi for both wild-type and chimera cells
, while only wild-type cells come with a cell type tag. Using pi, we

then assigned each chimera cell to a cell type by projecting it on that wild-type cell j, whose pj is most correlated with pi. A MC 2d
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projection of the combined single-cell graph is shown in Figure S6C. Chimera cells are colored according to their inferred cell type,

wild-type cells are plotted in gray.

Timing of KO and host cells within chimera embryos
We used the balanced K-nn graph of the combined chimera and wildetype embryo dataset to time host and KO cells from each

chimera embryo separately. More precisely, for each cell i let NNðiÞ be the nearest neighbor wild-type cell that is not from the

same embryo as cell i. We then attach to each cell i the intrinsic rank (between 1 and 153) of the embryo of its nearest neighbor

cell NNðiÞ,
ti = RNNðiÞ:
We noted that simply computing the mean embryo time of NN c
ells as the representation of chimera cell population timing would

introduce biases at the boundaries of the analyzed time interval (e.g., very early embryos cannot have neighbors in embryos even

more early). We therefore refined the analysis of NN times per knockout and host cells as follows. For a selection S of cell types,

for instance, embryonic mesoderm or ectoderm, we define for each chimera embryo E the cumulative distributions qS;KO
E ðtÞ and

qS;host
E ðtÞ of nearest neighbor time stamps ti for all KO/host cells i from the chimera embryo E and selected cell types S. For each

wild-type embryo E we can compute an analogous nearest neighbor cumulative distribution pS
EðtÞ. By finding for each qS;KO

E ðtÞ or
qS;host
E ðtÞ the best correlated wild-type pS;

E ðtÞ, we can match each chimera embryo E with a wild-type embryo E0, separately for

KO and host cells. This procedure is used to independently time KO and host cells from ecto-/endoderm, embryonic mesoderm

and extraembryonic mesoderm. The group of ecto-/endoderm contains foregut, definitive endoderm, primitive node, definitive ecto-

derm, surface ectoderm, rostral neural plate, caudal neural plate and caudal epiblast. Embryonic mesoderm contains early nascent,

late nascent, caudal, lateral & intermediate, paraxial, and rostral mesoderm as well as cardiac crescent and cardiomyocyte cells.

Extraembryonic mesoderm consists of allantois, amnion/chorion, and extraembryonic mesoderm cells.

Differential expression analysis
We calculated bulk expression profiles eKOg;+ and eWT

g;+ for all KO chimera and WT cells from cell types with high Foxc1/2 expression

(rostral, paraxial and caudal mesoderm) and defined the log fold change d+
g = log 2ðeKOg;+ + εÞ � log 2ðeWT

g;+ + εÞ for ε = 5$ 10�5. As a

negative control, we averaged bulk expression profiles eKOg;i and eWT
g;i per cell type i and gene g over all cell types not expressing

Foxc1/2 (Amnion/Chorion, Allantois, Caudal epiblast, Caudal neural plate, Definitive ectoderm, Definitive endoderm, Epiblast, ExE

mesoderm, Node/Notochord, PS, Rostral neural plate and Surface ectoderm) and calculated the log fold change d� between the two:

d�g = log 2

�
meani

�
eKO
g;i

	
+ ε

	
� log 2

�
meani

�
eWT
g;i

	
+ ε

	
:

To identify candidate differentially expressed gene, we filtered ge
nes satisfying���d+
g

���> 0:7
���d+

g � d�g

���> 0:5;
i.e., genes with sufficiently high differential expression among Foxc
1/2 expressing cell types that was absent among the non-Foxc1/2

expressing cells. From the remaining list of 27 genes we further removed Igf2 and H19 whose opposite differential expression was

attributed to loss of parental imprinting.

Additional resources
To make the data accessible to all users, we have developed an online interactive data exploration interface (https://tanaylab.

weizmann.ac.il/embflow).
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Figure S1. Sampling single embryos, related to Figures 1 and 2

(A) Distribution of unique reads (UMI) per cell in the manifold. Cells with less than 1000 UMIs were filtered out of the analysis (left panel), Number of cells from each

embryo represented in the manifold, sorted according to intrinsic rank (middle panel), and sampled number of cells per age group relative to the estimated

number of cells (Figure 2B) (right panel).

(B) Pictures of embryos sampled in the study, ranked and sorted according to morphology. Images are uniformly scaled, scale bar = 100um.

(C) Classification of embryos according to parental strain used in this study (ICR and C57BL/6), demonstrating coordinated correlation between morphology and

transcriptional ranks between strains.

(D) Sexing of individual embryos according to the expression of Xist and Y- chromosome genes. Number of UMIs are normalized by total number of UMIs per

embryo.

(E) Age group allocation of embryos: Embryos are partitioned into 13 age groups. Intrinsic ranks are translated into a developmental timescale using transcription

and size measurements of embryos (Figure 1E).

(F) Density plot of single-cell calculated cell-cycle scores according to combinedM- and S- phase UMI counts. Cutoff line represents cells having a low cell-cycle

score. These cells are highlighted in the 2D projection in Figure 2C. Black dots represent endoderm cell types (definitive endoderm, foregut, node/notochord, VE,

ExEn), that are enriched for low score cells.

(G) Classification of embryonic and extraembryonic endoderm (ExEn) in the flowmodel: All MCs above the cutoff line in the left panel (Ttr versus Apoe expression)

were classified as ExEn. All MCs not classified as ExEn that exhibit high Foxa2 and Foxa1 expression, were assigned to the group of embryonic endoderm. For

both groups, growth loss constants lt > 0 were used in the flow model (see I).

(H) Boxplot distribution of single-cell cell-cycle score according to cell type.

(I) Estimation of growth loss constants lt for embryonic endoderm and ExEn/VE. Shown is the fraction of these cells over time (log scale). Lines correspond to

growth loss constants lt =0:17 for ExEn/VE, and lt = 0:12 for embryonic endoderm, as used in the network flow model.
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Figure S2. Robustness and parameter sensitivity analysis of the mincost flow model, related to Figure 2

(A) Parameter sensitivity of cell type transitions. For each parameter examined, flows were re-computed and the mean transition frequency over all time points

between pairs of cell types was reported (left panel for each shown parameter). Capacity variance and capacity costs 1 and 2 are the three parameters defining

the convex capacity cost (cost functions are depicted in the right panel of each parameter). Logistic loc and scale aswell asMarkov process time t are parameters

used to define manifold distances between MCs. For the parameters logistic loc and logistic scale, the different shapes of the resulting logistic distance are

plotted on the right (see STARMethods for complete description of themincost flowmodel). The values used to derive the flowmodel in Figure 2 aremarked in red

in all panels.

(B) Robustness analysis of the mincost flow model: For each replica MCmodel (one embryo left out per iteration), manifold distances and flows are recomputed.

Boxplots show for each transition t/t + 1 the 20 most frequent flow transitions between two cell types. Boxes represent values of the 153 replica flows, and the

transition frequencies of the original flow model are marked as red dots.
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Figure S3. Expression of marker genes and fate map correlation matrix, related to Figure 2

(A) Annotation of MCs using flows. Shown is the second-order correlation matrix of time-averaged incoming and outgoing flows per MC. Correlation matrix was

hierarchically clustered into 65 groups. See STAR Methods for additional information.

(B) Canonical marker genes expression supporting the clusters annotation.MCs are sorted and separated according to the hierarchical cluster tree fromA (log2 of

UMI frequency, y axis).
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Figure S4. Dynamics of cell fate transitions, related to Figure 4

(A) Similar to Figure 3, for flows traced back from MC#397 (rostral neural plate).

(B) Gene-flow plots in which nodes represent MCs, and edges link each MC to the source MC with the highest contributing flow in the network. MC level

expression versus MC mean time is depicted for key genes correlated with rostral and caudal neural ectoderm.

(C) Gene-flow plots of key genes associated with PS and caudal epiblast.

(D) Mesoderm and endoderm commitment per MC. Panels show the fraction of the flow passing through eachMC that contributes to mesoderm or endoderm at

the final time point. The remaining fraction contributes to ectoderm (not shown).

(E) The PS is predicted to be the only bi-potential cell type which significantly contributes to both mesoderm and endoderm (other than the pluripotent epiblast,

and a single APS MC) (left). MC expression of key endoderm (Foxa2) and mesoderm (Mesp1) TFs (right).

(F) Retention time of progenitor cell types: Shown is the median length of time a cell spends in each cell type according to the flows. Boxes represent distribution

of retention times computed for the 153 iterated MC models (see Figure S2B).

(G) Gene-flow plots of genes characteristic for specific mesodermal fates.
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Figure S5. Supporting information, related to Figure 5

(A) Maximal log2 base expression within the mesoderm for most variable TFs

(B) Permutation test to control for overfitting in linear regression analysis. Shown in red is the maximal gain in R2 when using two TFs instead of one TF to predict

target gene expression. Boxes represent themaximal gain inR2 after fixing for each target the best-fitting single TF and using randomly shuffled TF vectors for the

second variable. Random shuffling was repeated 100 times.

(C) Examples of highly variable mesodermal genes with poor predictability based on linear regression with one TF, but strongly improved R2 values when using

two TFs as explanatory variables. Shown is gene expression of target versus either one of the two TFs, or the combination of both.
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Figure S6. Supporting information, related to Figure 6

(A) Color coded expression for Foxc1 and Foxc2 per time and MC, plotted along inferred flows.

(B) Images of representative chimera and tetraploid embryos (GFP, phase contrast and overlay). Scale bar = 200um (except DKO chimera, where 100um). On the

right, flow cytometry side-scatter width (SSC-W) plotted against GFP fluorescence intensity for each cell (after applying logical transformation from R flowcore

package) (Ellis et al., 2020). Cells above the upper GFP threshold were classified as mESC derived, and cells below the lower threshold as host cells. Cells in

between the thresholds (classified as unclear) were excluded from further analysis.

(C) Chimera DKO versus host differential expression karyogram. Shown is fold-change between all DKO and host cells organized by chromosome position

ðð10�5 + egðKOÞÞ =ð10�5 + egðhostÞÞÞ. On the right, chromosomes 1, 7 and 8 are highlighted. Injected embryonic stem cells display (i) loss of imprinting of the Igf2/

H19 locus (chromosome 7), (ii) a trisomy chromosome 8 and (iii) possible monosomy of the distal part of chromosome 1.
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Figure S7. Analysis of tetraploid complemented embryos and supporting information, related to Figure 6

(A) Cumulative distribution of nearest neighbor wild-type intrinsic ranks calculated separately for DKO and host cells (green and black lines, respectively) for each

chimeric embryo, with Kolmogorov-Smirnov D statistic and p value.

(B) Scatterplot of Kolmogorov-Smirnov D statistics for DKO and control isogenic chimeras demonstratingmesoderm specific temporal retardation in the Foxc1/2

chimeras.

(C) Relative expression between control isogenic mESC and host in chimeric embryos of genes associated with the DKO phenotype (as in Figure 6E), shown

either per embryo (numbered 1-4 according to transcriptional rank, from ‘youngest’ to ‘oldest’), or across cells per cell type.

(D) Cumulative distribution of nearest neighbor wild-type intrinsic ranks calculated for the embryonic compartment of DKO and isogenic control tetraploid

embryos (4N; green and blue, respectively).

(E) Relative cell type distributions for each embryo calculated for the tetraploid (4N) complemented embryos (arranged from left to right according to

intrinsic rank).

(F) Comparison of gene expression of bulk epiblast and early NM between Foxc1/2 DKO cells and host cells (or wild-type embryo cells in the case of tetraploid

embryos) demonstrating only minor changes in the DKO derived cells in these populations. Highlighted are genes with high differential expression between DKO

cells and host/wt cells (log2 fold change > 1.5, red) as well as differentially expressed genes in the embryonic mesoderm as shown in Figure 6E (purple).
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