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Abstract

Enhancers play a vital role in gene regulation and are critical in
mediating the impact of noncoding genetic variants associated
with complex traits. Enhancer activity is a cell-type-specific pro-
cess regulated by transcription factors (TFs), epigenetic mecha-
nisms and genetic variants. Despite the strong mechanistic link
between TFs and enhancers, we currently lack a framework for
jointly analysing them in cell-type-specific gene regulatory net-
works (GRN). Equally important, we lack an unbiased way of asses-
sing the biological significance of inferred GRNs since no complete
ground truth exists. To address these gaps, we present GRaNIE
(Gene Regulatory Network Inference including Enhancers) and
GRaNPA (Gene Regulatory Network Performance Analysis). GRaNIE
(https://git.embl.de/grp-zaugg/GRaNIE) builds enhancer-mediated
GRNs based on covariation of chromatin accessibility and RNA-seq
across samples (e.g. individuals), while GRaNPA (https://git.embl.
de/grp-zaugg/GRaNPA) assesses the performance of GRNs for
predicting cell-type-specific differential expression. We demon-
strate their power by investigating gene regulatory mechanisms
underlying the response of macrophages to infection, cancer and
common genetic traits including autoimmune diseases. Finally, our
methods identify the TF PURA as a putative regulator of pro-
inflammatory macrophage polarisation.
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Introduction

Enhancers are genomic locations that play an important role in cell-

type-specific gene regulation, and impaired enhancer function has

been linked to an increasing number of diseases (Karnuta &

Scacheri, 2018; Claringbould & Zaugg, 2021). In particular, genome-

wide association studies (GWAS) have linked over 200,000 common

genetic variants with over 40,000 traits and diseases. Since the vast

majority of these disease-associated genetic variants lie in noncod-

ing regions far from promoters (Claringbould & Zaugg, 2021), they

are likely affecting enhancers and having a regulatory role.

A big challenge in the post-GWAS era is the interpretation of

these disease-associated genetic variants in noncoding genomic

regions because it is often still unclear what genes they target, and

in what cell types. The cell-type-specific activity of gene regulatory

elements is likely conferred by transcription factors (TFs). And

indeed, a recent study points at the importance of studying TFs for

understanding genetic variants associated with autoimmune dis-

eases (Freimer et al, 2022). The importance of TFs was confirmed

by another study, which found that trans-expression quantitative

trait loci (eQTLs), which likely act via TFs, are more enriched in

disease-associated genes than cis-eQTLs (Võsa et al, 2021). How-

ever, to predict the function of TFs, for example in cell-fate determi-

nation, it is crucial to include putative enhancers (preprint: Janssens

et al, 2021; Xu et al, 2021). Enhancer-mediated gene regulatory net-

works reconstructed from single-cell RNA and ATAC-seq profiling in

the fly brain have led to a better understanding of the regulatory

diversity across different neuronal cell types (preprint: Janssens

et al, 2021). We previously used enhancer-based analyses to under-

stand disease mechanisms in pulmonary arterial hypertension

(Reyes-Palomares et al, 2020). Thus, for interpreting disease-

associated genetic variants, or enhancers in general, it is crucial to
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jointly investigate TF activity, enhancers and gene expression in a

cell-type-specific manner.

Several approaches have been proposed to infer bipartite TF-gene

networks, for example based on co-expression in bulk (Huynh-Thu

et al, 2010; Haynes et al, 2013), or single-cell expression data (Aibar

et al, 2017; Moerman et al, 2019; preprint: Kamimoto et al, 2020),

based on partial information decomposition (Chan et al, 2017),

time-course data (Huynh-Thu & Geurts, 2018) or data curation

(Liu et al, 2015; Han et al, 2018; Garcia-Alonso et al, 2019; Keenan

et al, 2019). At the same time, methods for inferring enhancer-gene

links exist, for example using co-variation of peaks (Pliner et al, 2018;

Fulco et al, 2019), or targeted perturbations of enhancers followed by

sequencing (Schraivogel et al, 2020). Only few approaches jointly

infer TF-enhancer and enhancer-gene links (Marbach et al, 2016)

mostly from single-cell data (preprint: Gonz�alez-Blas et al, 2022;

Fleck et al, 2022) and we currently lack methods to infer cell-type-

specific networks that enable the study of context-specific interaction

between TFs, regulatory elements and genes.

An important step in regulatory network reconstruction is to

evaluate their biological significance. Common approaches for

assessing regulatory interactions include benchmarking against net-

works from simulated data or against known biological networks

(Chen & Mar, 2018; Pratapa et al, 2020). Each of these has their

own drawback: simulated networks are based on many assumptions

about the network structure which may not reflect the “true” biolog-

ical network while known biological networks typically suffer from

a strong literature bias (Weidemüller et al, 2021), low complexity

and a limited range of connections and cell types, and are thus not

well-suited for an unbiased evaluation of GRNs. In general, each

network inference method will have its own bias and shortcomings,

and performance will depend on the benchmarking data set (Chen &

Mar, 2018; Pratapa et al, 2020). Thus, there is a need for an unbi-

ased approach to assess the biological relevance of inferred and

curated regulatory interactions as well as individual TF regulons

(defined as all genes connected to a TF).

Here, we present a tool-suite for building and evaluating enhancer-

based gene regulatory networks (eGRNs) called GRaNIE (Gene Regu-

latory Network Inference including Enhancers - https://grp-zaugg.

embl-community.io/GRaNIE and https://bioconductor.org/packages/

GRaNIE) and GRaNPA (Gene Regulatory Network Performance Analy-

sis - https://git.embl.de/grp-zaugg/GRaNPA), respectively. GRaNIE

jointly infers TF-enhancer and enhancer-gene interactions based on

covariation of bulk RNA-seq expression and chromatin accessibility

(ATAC-seq) or ChIP-seq for active histone marks (e.g. H3K27ac)

across biological samples. GRaNPA assesses the biological relevance

—of any TF-gene-based GRN—using a machine learning framework,

and identifies TFs that predict cell-type-specific expression response to

perturbations. We demonstrate that GRaNIE infers biologically mean-

ingful eGRNs using macrophages as example, and validate TF-

enhancer links with ChIP-seq and enhancer-gene links with eQTL

data. We further demonstrate the cell-type-specific nature of GRaNIE-

inferred eGRNs for macrophages, T-cells and acute myeloid leukaemia

(AML) cells using GRaNPA evaluation, and by predicting cell-type-

specific TF knockout (K/O) data. Using GRaNIE followed by GRaNPA,

we identify PURA as putative TF driving the pro-inflammatory polari-

sation of macrophages, which we corroborate with orthogonal phos-

phoproteomics data, and we confirm earlier observations from mice

that MBD2 drives the anti-inflammatory program in macrophages.

Furthermore, we find enhancers in the macrophage eGRNs enriched

for autoimmune disease variants, which GRaNIE links to upstream

TFs and putative target genes. Finally, we provide a comprehensive

resource of cell-type-specific GRNs for three other cell types (https://

apps.embl.de/grn/).

Results

Overview and conceptual description of the GRaNIE algorithm

We developed GRaNIE to interpret genetic and epigenetic variation

in regulatory (enhancer and promoter) regions, here defined by

ATAC-seq peaks and hereafter referred to as “peaks”. GRaNIE is an

R/Bioconductor package and jointly infers TF-enhancer/promoter

and enhancer/promoter-gene interactions from the same data in a

context-specific manner. Conceptually, the software is based on an

approach we have devised for a recent study in which we investi-

gated enhancer-mediated disease mechanisms of pulmonary arterial

hypertension (Reyes-Palomares et al, 2020). Briefly, GRaNIE sepa-

rately identifies TF-peak and peak-gene links, and then integrates

them into an eGRN.

The TF-peak links are based on statistically significant co-

variation of TF expression and peak accessibility across samples

(e.g. individuals, recommended minimum number ~10–15), taking
into account predicted TF binding sites. To obtain them, GRaNIE

calculates all pairwise correlations between TF expression levels

(RNA-seq) and peak signal (ATAC/ChIP-seq), stratified by whether

the peak overlaps a predicted binding site of the TF. For each TF, it

then uses the distribution of all peaks that do not contain its

predicted binding site as background to calculate an empirical FDR

for assessing the significance of TF-peak links (Appendix Fig S1). In

our previous work, we have demonstrated that negative TF-peak

correlations indicate the TF acts as transcriptional repressor while

positive correlations indicate an activator role, thus allowing the

classification of TFs into activators and repressors (Berest

et al, 2019). As a quality control (QC), we recommend comparing

the number of real TF-peak links to those obtained from a back-

ground set of links inferred from randomised data (see Materials

and Methods).

Peak-gene links are based on significant co-variation of peak

accessibility and gene expression across samples (Fig 1A, Appendix

Fig S1). For this, GRaNIE calculates the correlation between the

expression of a gene and signals of all peaks within an adjustable,

defined distance of its transcription start site (TSS, default is 250

kb). GRaNIE also allows the use of chromatin conformation data,

such as Hi-C, to define which peak-gene pairs will be tested within a

3D proximity (Appendix Fig S1). Since chromatin accessibility in

regulatory elements is generally associated with active gene regula-

tion and transcription, we only expect positive correlations for func-

tional peak-gene links. Notably, this is still true for repressor-bound

elements, where binding of most repressors leads to loss of both

accessibility and transcription (Berest et al, 2019). Negative peak-

gene correlations have no clear biological meaning and may indicate

remaining batch effects or random noise. Therefore, one can judge

the signal-to-noise ratio by assessing positive versus negative peak-

gene correlations and we implemented this as a QC metric in

GRaNIE. We recommend comparing these QC metrics with a
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corresponding background set (implemented in GRaNIE, see Mate-

rials and Methods).

GRaNIE then combines TF-peak and peak-gene links to create a

tripartite TF-enhancer-gene eGRN, based on three user-defined

thresholds: FDR of TF-enhancer edges, FDR of enhancer-gene edges

and maximum distance between enhancer and TSS.

The whole framework is implemented in a user-friendly R/

Bioconductor package. In addition to the eGRN reconstruction func-

tion, GRaNIE comprises a set of easy-to-use functions for generating

and visualising network statistics, identifying network communities,

performing subnetwork-specific Gene Ontology (GO) enrichment

analysis and various QC plots. An extensive documentation is avail-

able at (https://grp-zaugg.embl-community.io/GRaNIE).

Application of GRaNIE for generating cell-type-specific eGRN in
macrophages

Macrophages are large white blood cells of the innate immune sys-

tem that can be found in essentially all tissues. They play a role in

inflammatory disorders and genetic variants associated with several

autoimmune and other diseases are enriched for enhancers active in

macrophages (Alasoo et al, 2018; Novikova et al, 2021). Given that

inflammatory conditions are underlying many common diseases,

macrophages are an important cell type within which disease-

associated variants manifest their effect. Thus, macrophages present

an ideal cell type to apply and test the eGRN framework.

We obtained paired RNA- and ATAC-seq data for induced plurip-

otent stem cell (iPSC) derived macrophages from 31 to 45 individ-

uals in four conditions (naive, interferon gamma (IFN-γ)-primed,

infected (with Salmonella), and IFN-γ-primed-infected) (Alasoo

et al, 2018) (Fig 1B). For each of these, we run GRaNIE using TF-

binding sites predictions based on HOCOMOCO v11 and PWMScan

as described previously (Berest et al, 2019).

We next assessed the GRaNIE-inferred eGRNs using independent

molecular evidence, and used this to define reasonable default

values for the TF-peak and peak-gene FDR thresholds. Since molec-

ular ground truth data for TF-peak-gene links does not exist, we

evaluated each type of link independently using cell-type-specific

ChIP-seq data for the TF-peak links and cell-type-specific eQTL data

for the peak-gene links. Specifically, we obtained macrophage-

specific ChIP-seq data from ReMap 2022 (Hammal et al, 2022), and

quantified the enrichment of GRaNIE-inferred TF-bound peaks

among ChIP-seq peaks using ATAC-peaks that contain the TF motif

as background (see Materials and Methods). For the naive, the

primed and the infected macrophage eGRNs, this revealed a signifi-

cant enrichment for ChIP-seq signal at FDR 0.2 that steadily

decreased with increasing FDR (Fig 1C, Appendix Fig S2). The

primed-infected eGRN did not show any significant enrichment, so

we excluded this eGRN from further analyses. For the peak-gene

links, we used macrophage-specific cis-eQTLs to assess the enrich-

ment of eQTL links in the GRaNIE links over a distance-matched set

of control links at various FDRs. This revealed a steady decrease in

the odds ratio with increasing FDR for all three remaining eGRNs

(Fig 1D, Appendix Fig S3). Based on these results, we chose 0.2 as

default for TF-peak FDR and 0.1 as default for peak-gene FDR.

Using these default parameters, we obtained an eGRN for each of

the three conditions comprising 92–126 TFs, 1,411–6,742 enhancers,

and 1,454–3,869 genes (Fig 1E, Appendix Fig S4A–C; Table 1 and

Datasets EV1–EV3). For all eGRNs, we observed much fewer signifi-

cant connections when running GRaNIE on randomised data (per-

muted sample labels, peak labels and motif labels; Appendix

Fig S5A–D), signifying that their TF-peak links pass QC. Similarly,

for the peak-gene links, we find that all eGRNs show more signal for

positive (expected signal) than negative (noise) correlations, and

that the signal-to-noise ratio decreases with peak-gene distance until

no signal is left for random peak-gene pairs (Appendix Fig S6A–D).
In addition, we observed a significant enrichment for the TF-peak-

gene links among cell-type-specific active enhancers based on CAGE

data (Andersson et al, 2014) (Fig 1F), further corroborating that

GRaNIE infers biologically meaningful eGRNs.

We observed a slightly larger number of TFs classified as activa-

tors than as repressors (1.5–2-fold), yet activators were connected

with more peaks resulting in over 10-fold more peaks being linked

to an activator than to a repressor (Appendix Fig S5A–D; Table 1).

◀ Figure 1. Overview, application and validation of GRaNIE.

A Schematic of the eGRN construction by GRaNIE, including the TF to peak (left) and peak to gene (right) links (detailed workflow in Appendix Fig S1).
B Datasets used for macrophage eGRN construction and evaluation.
C Validation of the eGRN TF-peak links with ChIP-seq data. Enrichment of ChIP-seq peaks overlapping a GRaNIE-inferred TF-bound peak (same TF) are shown for dif-

ferent TF-peak FDRs in the naive macrophage eGRN. Statistical significance was determined using Fishers Exact test; test set: all TF-peak pairs where the peak con-
tains the motif for the respective TF (n = 25,205, 39,408, 78,971, 109,228, 142,548, 147,226 for TF-peak FDR 0.05, 0.1, 0.2, 0.3, 0.4, 0.5 respectively), categories: overlap
with ChIP-seq signal, part of GRaNIE-infer network. Only TFs for which ChIP-seq data was available are considered (see Appendix Fig S2 for other eGRNs).

D Validation of the eGRN peak-gene links with macrophage eQTLs. Plots show the enrichment of eGRN links overlapping an eQTL over randomly sampled distance-
matched peak-gene links for different peak-gene FDRs in the naive macrophage eGRN (see Appendix Fig S3 for other eGRNs). Boxplots: central band: 50% quantile,
box: interquartile range (25–75%); whiskers: max/min are 1.5 IQR above/below the box.

E Force-directed visualisation of the naive macrophage eGRN (see Appendix Fig S4 for the other eGRNs). The colours correspond to the identified communities.
F Enrichment of macrophage-specific FANTOM5 CAGE enhancers among the macrophage eGRN peaks. Statistical significance was determined with Fisher’s exact test;

test set: all peaks that were considered for peak-gene connections (ATAC consensus peaks located within 250 kb of a TSS of a gene with mean normalised expression
across samples > 1) in each eGRN (n= 210,083, 227,035, 227,120 and 219,823 peaks for the naive, infected, primed and primed-infected eGRN, respectively), catego-
ries: overlap with CAGE enhancer, part of GRaNIE network.

G Fraction of eGRN peaks connected to the closest gene (black) versus other (grey) genes for the macrophage eGRNs.
H Number of peaks linked to a gene shown as histogram for eGRN peaks (top) and all peaks (including non-TF bound; bottom) for the naive macrophage data (see

Appendix Fig S7 for other eGRNs). Mean number of peaks indicated in the panels.
I Number of genes connected to each TF for the naive macrophage eGRN (top 10 TFs are labelled).
J, K GO enrichment and associated P-values for selected communities from the naive (J) and infected (K) macrophage eGRN (see Dataset EV7 for the full table of enrich-

ments across communities for all macrophage eGRNs).
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Notably, in all eGRNs, only about 20–30% of the peaks are linked to

their closest gene TSS (Fig 1G), an observation that is consistent

with previous observations in pulmonary arterial endothelial cells

(Reyes-Palomares et al, 2020) and iPSC-derived cardiomyocytes

(preprint: Bunina et al, 2021).

On average, a gene is linked to 4.4 (naive), 2.9 (infected) and 5.9

(primed) peaks, of which 1.8 (naive), 1.5 (infected) and 5.7

(primed) are TF-bound and thus part of a GRaNIE eGRN (Fig 1H,

Appendix Fig S7). This discrepancy suggests that we are still miss-

ing some TF-peak interactions (see Box 1). The majority of TFs are

connected to very few genes, yet a handful of TFs are connected to

over 50 genes, as exemplified for the eGRN from naive and the

infected macrophages (Fig 1I), which is in line with the typically

scale-free structure of GRNs (Ouma et al, 2018). The most

connected TFs in the infected and the naive eGRNs include many

well-established macrophage TFs such as IRF8, NFKB2 and RELB

(Grigoriadis et al, 1996; Langlais et al, 2016), as well as noncano-

nical macrophage TFs MBD2, FOSL1 and NRF1. The latter have only

recently been implicated in macrophage biology in mouse studies

(Morishita et al, 2009; An et al, 2020; Jones et al, 2020).

To dive into the biological processes captured by eGRNs, GRaNIE

provides functionalities for identifying subnetworks, or communities

(using Louvain clustering by default, as implemented in the igraph

package in R; Blondel et al, 2008), and performing GO term enrich-

ment on them. In line with a scale-free architecture of the networks,

we typically observe a few large communities and a long tail of very

small and isolated nodes for each eGRN (Appendix Fig S8). Among

the communities (Appendix Fig S8A) of the naive macrophage

eGRN, one is enriched for GO terms related to pro-inflammatory pro-

cesses (response to IL-1, chemotaxis, response to IFN-γ) and one for

anti-inflammatory processes (angiogenesis, cytoskeleton reorganisa-

tion, positive regulation of osteoblast differentiation; Fig 1J), recapit-

ulating the potential of naive macrophages to polarise into either M1

(pro-inflammatory) or M2 (anti-inflammatory) cell states (Mur-

ray, 2017). We find the M1-phenotype cluster regulated by NFKB1/2

and REL, while the M2-phenotype cluster is regulated by TEAD1/2

and GATA4. Among the communities of the infected macrophage

eGRN (Appendix Fig S8D), one was enriched for pro-inflammatory

processes, one for phagocytosis-related processes, and one for che-

motaxis (Fig 1K), thus recapitulating the most important facets of

macrophage function (Nathan et al, 1983; Parameswaran &

Patial, 2010; Meng et al, 2014). Notably, each of these functional

communities was regulated by a specific set of TFs: IRF8 for the pro-

inflammatory community, MBD2, NFR1 and ETV1 for the phagocy-

tosis, and MECP2 for the chemotaxis.

As utility evaluation of the GRaNIE eGRNs, we compared real

versus permuted eGRNs in terms of number and biological specific-

ity of GO terms enriched in the TF regulons. Notably, the regulons

of the permuted networks had the same degree distribution and thus

the size distribution of the regulons (see Materials and Methods).

The regulons from the permuted networks were enriched in less

specific GO terms unrelated to macrophage biology compared with

the regulons of the real eGRN (Appendix Fig S9).

Table 1. Summary of the eGRNs described in the main text.

eGRN # TFs (activators, repressors) # peaks # genes
# connections
TF-enhancer-genes

Macrophage naive (naive) 114 (52, 28) 1,802 1,793 3,209

Macrophage IFN-γ primed (primed) 126 (65, 31) 6,742 3,869 22,082

Macrophage infected with Salmonella (infected) 92 (35, 26) 1,411 1,454 2,128

Macrophage IFN-γ-primed and infected (primed-infected) 78 (30, 22) 5,184 2,732 14,697

AML 53 (30, 4) 2,896 2,525 5,466

Primary CD4+ T-cells 94 (20, 16) 3,469 3,258 8,920

Network statistics for the various eGRNs based on default parameters (TF-peak FDR= 0.2, peak-gene FDR= 0.1, peak-gene distance ≤ 250 kb, activator/repressor
stringency threshold based on the 10th percentile).

Box 1. Limitations of GRaNIE

i As with all network inference tools, it is important to keep in
mind what an edge means. In the case of GRaNIE, the TF-peak
and peak-gene links are based on co-variation across biological
samples (in this study variation across individuals). Therefore, it
will miss links when either of the nodes (TF expression, peak
accessibility, or gene expression) is not variable across samples.
For instance, if samples are individuals, GRaNIE may miss
house-keeping and dosage-sensitive genes, TFs, and enhancers
if they are equally active between individuals.

ii If GRaNIE is run with ATAC-seq data, the limitations of ATAC-
seq apply: i.e. accessibility may not always reflect activity. Spe-
cifically, promoter accessibility is not necessarily correlated with
gene expression. Therefore, GRaNIE will likely miss some
promoter-gene connections. Furthermore, it will not detect TFs
that do not affect accessibility.

iii As with most TF-inference based tools, GRaNIE relies on the
availability of a TF binding site within a peak. Therefore, it will
miss TFs for which binding sites are unknown, and TFs binding
events that do not rely on the TF motif (e.g. cooperative
binding).

iv TF expression is not always predictive of a TF’s role in transcrip-
tional regulation. To circumvent this, GRaNIE offers the option
of using TF motif accessibility as an estimate of TF activity. This
in turn has the caveat that connections will be based on TF
motifs, which can be very similar across TFs.

v Since GRaNIE is association-based, it cannot per se distinguish
direct from indirect effects. This is particularly important when
running it on samples that are very different (e.g. different cell
types). It may then become difficult to assess whether the varia-
tion in peak accessibility is driven by the TF for which it has a
motif, or by some other mechanism. We refer the users to the
QC implemented in GRaNIE to judge the extent of such an
existing batch effect.
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In summary, these results demonstrate that GRaNIE-inferred

eGRNs capture molecular evidence from eQTLs, ChIP-seq and CAGE

data, and are useful for investigating TF-driven biological processes

in a cell type/state-specific manner. Limitations of GRaNIE are

outlined in Box 1.

Conceptual description of GRaNPA, an approach for evaluating
the biological relevance of GRNs and TFs

The premise of our proposed GRN evaluation framework is that

cell-type-specific GRNs should capture cell-type-specific changes in

gene expression patterns that are driven by TFs. For this, we

devised a machine learning approach, GRaNPA (Gene Regulatory

Network Performance Analysis), which evaluates how well the

bipartite TF-gene connections of an eGRN can predict cell-type-

specific differential gene expression. At the same time, this frame-

work identifies the TFs that are important for the prediction.

GRaNPA requires differential RNA expression data for a pertur-

bation in the cell type for which the GRN was constructed, and that

is independent from the data used to generate the GRN. It then

trains a random forest regression model to predict a differential

expression value per gene, based on the TF-target gene connections

from the GRN in a 10-fold cross validation setting (see Materials and

Methods; Fig 2A), using R2, area under the precision-recall, and

receiver operating curves (AUPRC and AUROC) to measure perfor-

mance. To ensure the prediction is specific to the real GRN, it also

trains a separate random forest model based on a permuted GRN,

constructed from the same TFs and genes by permuting the edges

(thus conserving the degree distribution of the real GRN). A good

performance of the permuted GRN indicates that even unspecific

TF-gene connections can predict differential expression, invalidating

the real network’s specificity. Lastly, to assess overfitting, GRaNPA

trains the same permuted network on completely random differen-

tial expression data (uniform distribution between −10 and 10; see

Materials and Methods). If GRaNPA performs well on this random

data, the model is likely overfitting. Notably, GRaNPA can be

applied to assess any GRN that contains TF-gene connections and

may be used to benchmark GRNs constructed using various

methods (see below). Furthermore, given a predictive GRN and spe-

cific differential expression data, GRaNPA estimates the importance

of each TF towards the prediction, which provides candidate driver

TFs for a specific expression response. The calculation of TF impor-

tance is based on the built-in importance function in the R package

ranger that quantifies importance of features in random forest

models based on how much their exclusion affects prediction

accuracy.

In short, the GRaNPA strategy is based on the following steps:

i Obtain differential expression data for the cell type matching the

GRN.

ii For each cell type, train a random forest regression model (10-

fold cross-validation) to predict a differential expression value

per gene based on TF-gene links from the GRN.

iii Compare the performance of models learned on real and per-

muted TF-gene links, and TF-gene links from other cell types

(cross-validation R2).

iv Identify important TFs for the given differential expression

response.

GRaNPA is implemented as a user-friendly R-package (https://

git.embl.de/grp-zaugg/GRaNPA) and documentation is available at

(https://grp-zaugg.embl-community.io/GRaNPA/). Limitations of

GRaNPA are outlined in Box 2.

GRaNPA evaluation of the macrophage eGRNs

To evaluate the predictive power of the macrophage eGRNs and

identify the TFs driving a specific expression response, we obtained

RNA-seq data for naive and Salmonella-infected macrophages from

(Alasoo et al, 2018), and calculated the differential expression

using DESeq2 (Love et al, 2014; Materials and Methods). For evalu-

ations, we excluded samples that were used for the eGRN

reconstruction.

The three macrophage eGRNs performed well with GRaNPA,

predicting differential expression values (random forest regression)

with R2 of 0.15–0.25 (Fig 2B and C, Appendix Figs S10 and S11) and

direction of change (classification) with AUPRC of 0.71–0.88 and

AUROC of 0.65–75 (Appendix Figs S12 and S13). The performance

of the corresponding permuted networks was significantly lower

(t-test P-value< 1e-6 for all; Fig 2B and C, Appendix Figs S11–S13).
Notably, the eGRN for primed-infected macrophages that we

excluded above due to failed ChIP-seq validation (Appendix Fig S2)

was unable to predict any differential expression (Appendix

Figs S10–S13), which highlights the concordance of GRaNPA evalu-

ation with molecular evidence. The significant difference between

the permuted and the actual networks shows that the eGRNs indeed

capture biologically relevant links between TFs and genes.

eGRNs built from single cell types show cell-type-specific
predictions

We next assessed the cell-type specificity of GRaNIE-inferred

eGRNs. To this end, we obtained data sets in different cell types

with matched RNA and chromatin accessibility data for primary

human CD4+ T-cells (Freimer et al, 2022) and from AML (Garg

et al, 2019) and (He et al, 2022). We ran GRaNIE using the same

parameters as described above and obtained additional eGRNs for

primary CD4+ T-cells (Dataset EV5) and AML (Dataset EV6).

Box 2. Limitations of GRaNPA

i GRaNPA is based on the assumption that differential gene
expression, which is always based on steady-state RNA expres-
sion levels, is explained solely by the action of TFs. This is a sim-
plification and other processes, such as RNA stability, also affect
RNA expression levels.

ii The performance values from GRaNPA are often low, even if
they are better than those for permuted networks, suggesting
that the GRNs are not picking up all the signal in the data.
Adding gene-specific features e.g. from (Sigalova et al, 2020)
may substantially improve performance if desired.

iii GRaNPA cannot resolve cooperative TF binding.
iv GRaNPA fails for datasets in which only a small number of dif-

ferentially expressed genes overlap with the tested GRN.
v TFs with few connections in the GRN are less likely to be identi-

fied as important TFs with GRaNPA, simply because they do not
affect many genes.
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To assess their cell-type-specific prediction power, we ran

GRaNPA on the naive macrophage, T-cell, and AML eGRNs, and

compared their performance to predict differential expression in

each of the three cell types. Specifically, we quantified differential

expression between resting and lipopolysaccharide (LPS) stimulated

follicular CD4+ T-cells (data from Calderon et al, 2019), between

two subtypes of AML (GPR56-high vs. GPR56-low; data from Garg

et al, 2019), and between naive and Salmonella-infected

macrophages (data from Alasoo et al, 2018). We found that the

eGRN that matches the respective cell type led to the best prediction

(Fig 2D). While T-cells and macrophages were only predictive in

their own cell type, the AML eGRN was to a smaller extent also pre-

dictive for the macrophage response. Since AML cells and macro-

phages are both from the myeloid lineage, this could indicate some

shared regulatory architecture between them. Notably, we found

that the R2 values can be boosted by adding gene specific features,
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such as expression variation across individuals, in line with our

previous work (Sigalova et al, 2020) (Appendix Fig S14). We are pri-

marily interested in evaluating TF-gene links and eGRN cell-type

specificity, so GRaNPA does not use these gene-specific features by

default.

Using the TF-importance estimation implemented in GRaNPA,

we observed that among the top five important TFs, most are

unique for one cell type (Fig 2E) with the exceptions of IRF8, which

was important in AML and macrophages, and SP4, important for

AML and T-cells. Notably, the IRF8 regulons in AML and macro-

phages had only 22 genes (and no single enhancer) in common,

while each cell-type specific regulon included hundreds of nonover-

lapping genes (Fig 2F). Similarly, the SP4 regulons of T-cells and

AML were almost mutually exclusive. This suggests a highly cell-

type-specific regulon composition of IRF8 and SP4.

As an orthogonal validation of the cell-type specificity of the TF

regulons from GRaNIE eGRNs, we compared the regulons with differ-

ential expression data upon TF knockout (K/O) in the same cell type.

We obtained data for one or two of the top five important TFs in each

cell type: NFKB1 in macrophages (Somma et al, 2021), IRF8 in AML

(Liss et al, 2021) and IRF1 and IRF2 in T-cells (Freimer et al, 2022).

The genes downregulated upon TF K/O were significantly enriched

in the TF regulons of the respective cell types (Fig 2G). Notably,

genes downregulated upon IRF8 K/O in AML were specifically

enriched for the IRF8 regulon in AML, despite the fact that IRF8 also

has a large regulon and is an important TF in macrophages (Fig 2E).

This suggests that the cell-type specificity of the GRaNPA predictions

is not only dependent on distinct sets of TFs driving the response, but

also on the genes the TF regulates in that cell type, highlighting the

importance of cell type-specific eGRNs.

To validate the cell-type specificity of enhancers in GRaNIE, we

obtained cell-type-specific enhancer maps from FANTOM5 using

CAGE data for T-cells and macrophages (Andersson et al, 2014).

Quantifying their overlap with enhancers from T-cell and macro-

phage eGRNs revealed a stronger significant enrichment among the

enhancers from the same cell type as compared with opposite cell

types (Fig 2H).

The eGRNs connect TFs to genes through active regulatory regions,

comprising both promoters and enhancers. The predictive evaluation

set-up allowed us to compare the relative importance of promoter (i.e.

< 10 kb from TSS) and enhancer links (> 10 kb from TSS) in different

eGRNs. To do so, we divided the gene-peak pairs into 10 groups based

on their distance to the TSS and ran GRaNPA for each group sepa-

rately. The promoter-only eGRNs from infected and primed macro-

phages showed limited or no predictive power (Appendix Fig S15).

This highlights the importance of enhancers and is in line with a recent

study that demonstrated the importance of considering enhancers for

predicting the cell-fate potential of TFs (Xu et al, 2021).

Application of GRaNPA to compare GRaNIE eGRNs with other
GRN methods

Notably, GRaNPA is applicable to assess any type of bipartite TF-

gene network and can be used more generally to assess the utility of

a GRN for understanding cellular response to specific perturbations.

Here, we used it to evaluate the performance of several previously

published TF-gene GRNs that draw links between TFs and genes

based on different approaches: DoRothEA, which uses manual cura-

tion combined with a data-driven approach including co-expression

to draw TF-gene links (Garcia-Alonso et al, 2019; Holland

et al, 2020a, 2020b), ChEA3, which uses ChIP-seq experiments from

ENCODE, ReMap, or literature to draw TF-gene links (Keenan

et al, 2019), RegNet, a curated network integrating TFs and miRNAs

(Liu et al, 2015), and TRRUST, which is a curation of TF-gene links

based on PubMed indexed articles (Han et al, 2018). We also

included an enhancer-based GRN inferred with ANANSE (Xu et al,

2021) from macrophage data.

The cell-type-matched GRaNIE eGRNs and DoRothEA ABC

showed good prediction for all datasets tested. The TRRUST, RegNet

and ChEA3 networks showed slight predictive power for macro-

phages, while the only other enhancer-based network ANANSE

showed very poor performance across all cell types (Fig 3A). Thus,

GRaNIE networks outperformed most other networks and was on

par with the highly curated DoRothEA.

◀ Figure 2. Overview and application of GRaNPA.

A Schematic of the general GRN evaluation approach GRaNPA.
B Output of GRaNPA is shown as true versus predicted log2 fold-changes for the macrophage expression response to Salmonella infection. Predictions are based on the

naive macrophage eGRN (see Appendix Fig S10 for the other macrophage eGRNs).
C Output of GRaNPA is shown as density distribution of R2 for 10 random forest runs for the naive macrophage eGRN predicting differential expression upon

Salmonella infection, along with the two permuted controls.
D GRaNPA evaluation of eGRNs for naive macrophages (left), AML (middle) and T-Cells (right) of differential expression from macrophages infected with Salmonella ver-

sus naive (top), two subtypes of AML (middle), and resting versus stimulated T-cells (bottom). Red lines indicate the log2 fold-change (vertical line) and P-value (hori-
zontal line) thresholds for genes included in the GRaNPA analysis. Distributions of R2 from distinct random forest runs (n = 10) are shown as boxplots; t-tests were
performed to compare GRaNPA performance between the permuted and real networks (***P< 0.001). Boxplots: central band: 50% quantile, box: interquartile range
(25–75%); whiskers: max/min are 1.5 IQR above/below the box.

E Top 5 most important TFs (0.0 and 0.1 indicate distinct TF motifs as defined by the HOCOMOCO database) for each of the eGRNs in (D) based on prediction in the
same cell-type.

F Overlap of SP4 (left) and IRF8 (right) regulons between eGRNs from different cell types (only eGRNs with at least one connection to the respective TF are shown).
G Enrichment (odds ratio - OR) of NFKB1, IRF8, IRF1 and IRF2 target genes identified in cell-type specific knockouts (K/O, rows) in the matching macrophage, AML and

T-cell eGRN regulons (columns). Numbers in cells indicate: (# genes in regulon and down in TF K/O)/(# genes in regulon). Asterisks indicate significance using Fisher’s
exact test; test set: all protein-coding genes; categories: gene in regulon, gene down in TF K/O (NS: non-significant, *P-adj.< 0.05, ****: < 0.001). White squares indi-
cate empty regulons.

H Enrichment of T-cell and macrophage-specific FANTOM5 CAGE enhancers among the T-cell and macrophage eGRN peaks. The numbers inside the tiles are BH-
adjusted P-values based on Fisher’s exact test; test set: all peaks in the respective cell types (102,141 and 248,844 for T-cells and macrophage eGRNs, respectively);
categories: peak in eGRN, peak overlap with CAGE enhancer. The macrophage eGRN is the union between the infected, naive and primed eGRNs.
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To further compare cell-type specificity, we assessed the overlap

between the TF-regulons identified in the networks with reasonable

predictive power and the genes downregulated upon K/O of the

same TF (data introduced in Fig 2G). Overall, the cell-type-matched

GRaNIE eGRNs outperformed all other networks in terms of recall

(Fig 3B). Of note, the absolute recall was rather small, likely owing

to the fact that TF K/O induces many indirect downstream effects

that are not captured by the direct mechanistic links of eGRNs.

GRaNIE also outperformed all other networks in terms of precision

in AML. While DoRoThEA achieved the highest precision for IRF1

and IRF2 K/O in T-cells, the recall was smaller. Overall, this cell-

type-specific TF K/O evaluation highlights the importance of unbi-

ased and cell-type-specific eGRNs.

Macrophage eGRNs reveal distinct set of TFs driving response to
different types of infection

GRaNIE and GRaNPA can also provide biological insights. Specifi-

cally, we employed them for studying different types of pro-

inflammatory M1-like responses of macrophages to bacterial infec-

tions as well as the anti-inflammatory M2-like response of breast

cancer associated macrophages. We obtained data from previously

published studies (Table 2) that measured the expression response

of macrophages infected with Mycobacterium Tuberculosis (MTB)

(Giraud-Gatineau et al, 2020), Listeria monocytogenes (Pai

et al, 2016), Salmonella Typhimurium (Pai et al, 2016; Alasoo

et al, 2018), stimulation with IFN-γ (Alasoo et al, 2018) and a study

that compared tumour associated macrophages with tissue-resident

macrophages from breast cancer tissue (Cassetta et al, 2019).

To understand how macrophages respond to these distinct per-

turbations, we employed GRaNPA using the union of the naive and

infected eGRNs (Appendix Fig S16; Dataset EV4), which showed

good predictions for all conditions (Fig 4A), and determined the

important TFs for each response. One of the well-understood

responses of macrophages is the IFN-γ-mediated activation of the

NFKB family of TFs (Medzhitov & Horng, 2009). In line with this,

we find NFKB2 as one of the most important TFs upon IFN-γ stimu-

lation (Fig 4B). The NFKB2 regulon was enriched for GO terms

related to chemokine signalling and taxis (Appendix Fig S17) and

strongly upregulated in response to IFN-γ (Fig 4C). This demon-

strates the ability of GRaNPA to identify biologically meaningful

TFs. To assess the robustness of GRaNPA, we compared the TF

importance predictions across two independent data sets from

Salmonella-infected macrophages, which revealed very similar pro-

files despite differences in the experimental set-up (Fig 4B; iPSC-

derived vs. monocyte-derived macrophages) and time points (5h

and 2h post infection, respectively), thus highlighting the robustness

of GRaNPA and the biological congruence between the experiments.

In contrast, across conditions, TF-importance profiles were highly

variable (Fig 4B), likely reflecting different roles of macrophages

A

B

Figure 3. Evaluation of GRaNIE eGRNs and other GRN approaches.

A GRaNPA evaluation of five GRaNIE eGRNs (macrophage naive/primed/infected, AML, and T-cells), another enhancer-based eGRN inferred with ANANSE (Xu et al, 2021),
and publicly available TF-gene networks based on data curation (DoRothEA ABC and all (Holland et al, 2020a)), ChIP-seq data (ChEA3 encode, literature, and ReMap
(Keenan et al, 2019)), manual curation (TRRUST (Han et al, 2018) and REGNET (Liu et al, 2015)). GRNs are evaluated by GRaNPA for their performance in predicting the
differential expression of resting versus stimulated follicular T-cells, GPR56 high versus low AML, and naive versus Salmonella-infected macrophages. Numbers in
squares indicate R2 values.

B Precision-Recall evaluation of the NFKB1, IRF8, IRF1 and IRF2 regulon from the networks in (A) for identifying genes down-regulated upon K/O of the respective TF.
For GRaNIE eGRNs (purple), the performance of cell-type matching networks is shown, other networks are the same across all analyses.
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(M1 vs. M2) and their variable defence mechanisms triggered by the

pathogens (Leseigneur et al, 2020). Breast-cancer associated macro-

phages showed the most distinct profile with TEAD1/TEAD2 as

important TFs. GO analysis of the TEAD1/2 regulon revealed a

strong enrichment for angiogenesis, osteoblast differentiation and

ERK signalling among others (Fig 4D), in line with a more M2-like

phenotype (Corliss et al, 2016; Chen et al, 2020).

The most important TF for predicting the response to Salmonella

infection was IRF8, followed by MBD2 and ZBT14 (Fig 4B). IRF8 is a

known pro-inflammatory interferon response factor, associated with

the pro-inflammatory (M1) polarisation of macrophages (Chistiakov

et al, 2018), which we confirmed in our data using gene set enrich-

ment analysis (GSEA) of the IRF8 regulon (Appendix Fig S18). Less

is known about MBD2 and ZBT14 in macrophages, although MBD2

has been linked to intestinal inflammation in mice (Jones et al, 2020)

and with an M2 macrophage programme in pulmonary fibrosis

(Wang et al, 2021). In line with this, the MBD2 regulon was downre-

gulated in response to infection (Fig 4E, Appendix Fig S13) but upre-

gulated in breast cancer-associated macrophages (Fig 4F), showing

the opposite pattern to the IRF8 regulon (Fig 4E and F). We further

find an enrichment of the M2 gene set among the MBD2 regulon in

breast cancer associated macrophages (Appendix Fig S18).

The MBD2 and ZBT14 regulons show significant overlap (Fig 4F, P

= 3.3e-13, hypergeometric test) and genes jointly regulated by them

are enriched for terms related to response to metal ions (Fig 4G). The

use of zinc and copper ions in macrophage defence strategies is well-

documented (Festa & Thiele, 2012; Stafford et al, 2013). Given that

ZBT14 and MBD2 are important for predicting response to patho-

gens, but not to IFN-γ stimulation (Fig 4B), we speculate that ZBT14

and MBD2 may jointly induce a macrophage-intrinsic mechanism to

counteract toxic metal ions, potentially aimed at overcoming the

toxic effects of its own weapons.

GRaNPA identifies PURA as putative proinflammatory TF
in macrophages

Among the TFs that are less well known for their role in macro-

phages, we find PURA for many of the infection settings. In line

with a pro-inflammatory role of PURA, we found GO terms associ-

ated with chemotaxis and IFN-γ response enriched among genes in

its regulon (Fig 4H). GSEA found the M1 gene set significantly

enriched among the PURA-regulated differentially expressed genes

upon Salmonella infection (Appendix Fig S18). Furthermore, the

expression of genes in the PURA regulon were upregulated upon

Salmonella infection to a similar extent as the genes in the NFKB2

regulon, which is a known pro-inflammatory TF (Fig 4I).

To follow-up on a potential role of PURA in M1 polarisation, we

obtained phosphoproteomics data that were collected upon stimulat-

ing macrophages with LPS and IFN-γ towards the M1 phenotype (He

et al, 2021). This revealed a specific increase in phosphorylation of

Thr187 upon LPS/IFN-γ stimulation (Fig 4J), following a similar pat-

tern of increasing phosphorylation over time as for phosphosites on

NFKB2 (Fig 4K). Notably, this stimulation-induced phosphosite in

PURA is located in the Purα repeats region, which is implicated in

DNA binding and crucial for PURA function (Weber et al, 2016).

Phosphorylation of DNA-binding regions has been associated with

activation of other TFs (Hirata et al, 1993), suggesting that activation

of PURA is perhaps important for M1 polarisation, providing further

evidence for its role in macrophages’ pro-inflammatory response.

Overall, these results highlight the use of GRaNPA in conjunction

with cell-type-specific eGRNs for investigating the biological func-

tions that are regulated by a TF in a specific cell type.

Macrophage-specific eGRNs are enriched in fine-mapped GWAS
variants and immune-related traits

The strength of the eGRN framework is that we can specifically

investigate the role of gene regulatory elements such as enhancers,

which are enriched for disease-associated genetic variants (Claring-

bould & Zaugg, 2021). We therefore sought to explore the macro-

phage eGRNs to learn about gene regulatory mechanisms

underlying associations of genetic variants with common complex

traits and diseases.

First, we tested whether the peak regions specific to the three

macrophage eGRNs that GRaNPA identified as predictive in at least

one infection setting (naive, primed, infected) were enriched in heri-

tability for 442 GWAS traits (Dataset EV9). We applied stratified link-

age disequilibrium score regression (S-LDSC; Finucane et al, 2015)

and compared the eGRN peaks to all peaks identified in macrophages

(see Materials and Methods). Notable enrichments include HbA1c

measurement (a measure for diabetes severity), large artery stroke

and heart failure for the naive eGRN; adolescent idiopathic scoliosis

Table 2. Differential expression experiments for the different infection settings.

Cell types Treatment Comparison Reference

Monocyte-derived macrophages from healthy
donors

Listeria monocytogenes Uninfected versus 2 h post infection Pai et al (2016)

Salmonella Typhimurium

Mycobacterium Tuberculosis strain
resistant to BDQ treatment

Uninfected versus 18 h post infection Giraud-Gatineau
et al (2020)

Uninfected versus 36 h post infection

iPSC-derived macrophages Salmonella typhimurium Uninfected versus 5 h post infection Alasoo
et al (2018)

18 h IFN-γ-primed versus 18 h IFN-γ-
primed +5 h post infection

Interferon-gamma stimulation Naive versus 18 h IFN-γ treatment

Tumour-associated and tissue resident
macrophages from human breast tissue

Tumour versus tissue-resident Tumour versus respective tissue resident
macrophages

Cassetta
et al (2019)

Differential expression summary for the different infection datasets/cell types, their treatments and the comparisons used for the differential expression analyses.
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and nonischemic cardiomyopathy for the primed eGRN and rheuma-

toid arthritis (RA) and systemic lupus erythematosus (SLE) for the

infected eGRN (Fig 5A). SLE and RA are both driven by activated

macrophages (Udalova et al, 2016; Ma et al, 2019) as a result of

known (for SLE) or hypothesised (RA) upregulation of IFN-γ signal-

ling (Harigai et al, 2008; Rönnblom & Leonard, 2019; Kato, 2020).

Interestingly, we find enriched heritability for these traits in the

peaks for the IFN-γ primed eGRN, but not for either naive or infected

eGRNs. Given this association, we also assessed the heritability

enrichment of the regulatory elements and genes connected to the

TFs that are particularly important for predicting the response of

macrophages to IFN-γ (NFKB1/2, RELB, IRF8). Inflammatory bowel

disease (specifically ulcerative colitis) comes out as the top enriched

trait (Appendix Fig S19), which is in line with the known role of IFN-

γ in this disease (Andreou et al, 2020). Literature evidence for other

traits is summarised in Dataset EV10.

Next, we zoomed in to a specific set of fine-mapped GWAS vari-

ants associated with autoimmune diseases with a known link to

A B C D

E F

G

H

I J K

Figure 4.
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macrophages. Across all three macrophage eGRNs, we found in

total 11 unique fine-mapped variants that were located in the regula-

tory regions (2 in the naive, 2 in infected and 8 in the primed

eGRN). The infected and primed eGRNs were significantly enriched

in fine-mapped variants (Fig 5B). Investigating the TFs regulating

the fine-mapped autoimmune disease enhancers, we find the known

immune response TFs NFKB1/2, RELB and IRF8, but also MBD2,

ZBT14 and PURA (Fig 5C), which we identified as important TFs for

predicting response to infection. One of the enhancers overlapping

with an RA-associated SNP, regulated by MBD2 and ZBT14, is

linked to FAM49B as a target gene. Inspection of FAM49B expression

in synovial tissue in a cohort of RA patients compared with healthy

controls (Guo et al, 2017) revealed a misregulation upon disease

onset, providing additional evidence that FAM49B is indeed the gene

targeted by the fine-mapped SNP (Fig 5D).

One of the fine-mapped SNPs for SLE, rs9893132, is located in an

enhancer regulated by SP1 and NFKB2 and linked to the noncoding

RNA MALAT1 and the gene cathepsin W (CTSW) in the primed

macrophage eGRN. Both genes are over 50 kb from the fine-mapped

SNP and there are several other genes in the locus that are not

linked to the enhancer in question (Fig 5E). MALAT1 has been

implicated in SLE through several studies (reviewed in Zhao et al,

2018), suggesting that rs9893132 may target MALAT1. While CTSW

expression in lymphocytes has been linked to autoimmune diseases

(e.g. Buhling et al, 2002), its role in macrophages is much less stud-

ied. Yet, CTSW knockdown in macrophages reportedly increased

Mycobacterium tuberculosis survival in macrophages (Pires

et al, 2016), suggesting it does play an important function in the

pro-inflammatory macrophage response. Overall, the macrophage

eGRNs provide the putative target genes of 11 fine-mapped GWAS

loci, often linking to genes that are over 50 kb away from the SNP

(Table 3; Appendix Fig S20).

Discussion

Phenotypic variation across individuals has two major sources:

genetic variation and external influences that can be long-lived

(epigenetics) or short-lived (signalling). Both can lead to variation

in molecular phenotypes that impact on complex traits. Thus, to

understand mechanisms underlying phenotypic variation, including

disease phenotypes, it is crucial to study the interplay between

genetic variants, epigenetic marks and extrinsic cellular signalling.

Here, we present GRaNIE and GRaNPA, a tool-suite that provides a

framework for jointly analysing these layers and investigating their

biological relevance.

GRaNIE is a flexible and user-friendly R/Bioconductor package

for building enhancer-based GRNs. It requires RNA-Seq and open

chromatin data such as ATAC-Seq or ChIP-Seq for histone modifica-

tions (e.g. H3K27ac) across a range of samples (mostly tested in a

cohort of at least 10–15 individuals), along with TFBS data (that can

either be obtained from the package or provided by the user) to gen-

erate cell-type-specific eGRNs. It provides a range of quality control

plots and functionalities for downstream analyses such as identifica-

tion of communities within the network, and GO enrichment ana-

lyses. A dedicated website accompanies the package and is

automatically updated whenever a new package version becomes

available.

GRaNPA is an independent R package for evaluating the biologi-

cal relevance (i.e. predictive power) of any TF-gene network. It

requires a bipartite TF-gene network and genome-wide differential

expression values as input, and assesses the network’s predictive

power. In addition, it quantifies the importance of each TF for driv-

ing a specific differential expression response. Notably, the predic-

tion performance of GRaNPA can be improved by adding gene-

specific features, for example those shown in (Sigalova et al, 2020);

however, this would not help in the assessment of GRNs and is

therefore not the main purpose of this study. One attractive use case

of GRaNPA is that it can quantitatively compare the performance of

different GRNs for predicting a perturbation of interest. It can thus

help select the best-suited network for a given dataset without the

need for a “ground truth” network to evaluate their edges and

connectivities.

Compared to most of the available GRN reconstruction

approaches, GRaNIE infers enhancer-based regulatory networks that

only captures TF-gene links mediated by enhancers. This has

◀ Figure 4. Application of GRaNIE and GRaNPA to investigate macrophage biology.

A GRaNPA evaluation of the union of the naive and infected macrophage eGRNs (naive+infected eGRN; real links) and the corresponding permuted control network
(random links) across eight experimental settings of macrophage perturbations. Distributions of R2 from distinct random forest runs (n= 10) are shown as boxplots
and two sided t-tests were performed to compare GRaNPA performance between the permuted and real networks (***P< 0.001). Boxplots: central band: 50% quan-
tile, box: interquartile range (25–75%); whiskers: max/min are 1.5 IQR above/below the box.

B TF importance profiles for each of the eight infection settings from (A). The top 5 most predictive TFs in any of the settings are displayed. TFs discussed in the text
are individually labelled and coloured.

C Distribution of log2 fold-changes for genes in the NFKB2 regulons from the naive+infected eGRN (n= 85; dark blue) are shown for IFN-γ stimulation versus naive
macrophages alongside the response of all genes (n = 2,976; grey). Central band of the violin plot: median.

D GO enrichment of the TEAD1 regulon.
E, F Distribution of log2 fold-changes of Salmonella infection versus naive macrophages (E) and for breast-cancer associated macrophages (F) are shown for genes in

the IRF8 (n= 830; blue) and MBD2 (n= 779; orange) regulons alongside the response of all genes (n = 2,976; grey). Central band of the violin plot: median.
G The overlap between the MBD2 and ZBT14 regulons are shown as Venn Diagram (left). Enriched GO terms for the genes in the intersection are shown as a lollipop

plot (right).
H GO enrichment of the PURA regulon.
I Distribution of log2 fold-changes of Salmonella infection versus naive macrophages for genes in the NFKB2 (n= 85; blue) and PURA (n = 258; green) regulon along-

side the response of all genes (n = 2,976; grey). Central band of the violin plot: median.
J, K Normalised mass spectrometry intensity values (y-axis) for phosphosites detected on PURA (green, J) and NFKB2 (blue, K) in macrophages cultured in the presence

of M1 polarising stimuli (IFN-γ and LPS) for indicated time points (x-axis). Lines show individual phosphosites detected on each respective TF.

Data information: Two-sided t-test was used to determine statistical significance in (C, E, F, and I); data points correspond to genes in tested regulons (numbers given in
panels). ***P-value< 0.001.
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Figure 5. Application of GRaNIE for investigating trait-associated SNPs.

A Heritability enrichment is shown for the naive, primed and infected macrophage eGRNs. The P-value is adjusted within each trait.
B The enrichment of fine-mapped GWAS SNPs within the naive, primed, and infected eGRNs is shown as odds ratios; *P-value< 0.05 (Fisher’s exact test, test set: all

ATAC-seq peaks in macrophages – 296,220; categories: peak in eGRN, peak overlap with finemapped SNP); n: number of finemapped SNPs.
C The tripartite TF-enhancer-gene network involving all fine-mapped GWAS variants for autoimmune diseases.
D Normalised expression level of FAM49B is shown as a boxplot for synovial tissue from healthy controls (n= 28) and patients suffering from early (n= 57; green) and

established (n = 95; yellow) rheumatoid arthritis (RA). Data from (Guo et al, 2017). Boxplots: central band: 50% quantile, box: interquartile range (25–75%); whiskers:
max/min are 1.5 IQR above/below the box. Black dots indicate outliers. Adjusted P-values were calculated according to the Wald test implemented in DESeq2; repli-
cates are individual donors.

E The genomic context of the fine-mapped, SLE-associated variant rs931127 in an ATAC-seq peak (red box) as gene tracks, including other peaks present in the infected
macrophage eGRN (blue boxes), and peak-gene links from the infected macrophage eGRN (arcs). Genes targeted by the peak overlapping with rs931127 (red) are
coloured in red.
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several advantages: first, we showed that for macrophages, parts of

their expression response to infection could only be predicted when

using enhancer connections. Second, including enhancers in TF-

driven GRNs allows the investigation of mechanisms underlying

GWAS traits that are driven by specific TFs, and facilitates interpre-

tation of (fine-mapped) trait-associated SNPs. Third, since

enhancers tend to be highly cell-type specific (Roadmap Epige-

nomics Consortium et al, 2015), eGRNs are likely more cell-type

specific than TF-gene networks. Finally, by requiring a correlation

between the expression level of a TF and the accessibility of the

peak, in addition to the motif presence, GRaNIE circumvents the

inherent limitation of TF-binding site predictions, which cannot dis-

tinguish between TFs with similar binding motifs (Zeitlinger, 2020).

This will exclude many TF-enhancer links that have the TF motif

yet show no correlation with the TF expression level and are thus

likely not bound by that TF in the given cell type. GRaNIE bears

conceptual similarity with a method published previously (Marbach

et al, 2016); however, the data of this work are not available any-

more, and the software is neither maintained nor can be down-

loaded/used.

Enhancer-based gene regulatory networks consist of TFs and

their respective downstream enhancer/promoter and gene targets,

which means we can zoom into network communities that capture

specific pathways or functions. For example, we showed that when

we divide the network into communities, each community is

enriched in distinct TF-driven biological processes. The modularity

of the eGRN also showed that NFKB1, NFKB2, RELB and IRF8, the

TFs important for predicting the macrophage response to IFN-γ
priming, and their connected regulatory elements and genes were

specifically enriched for heritability of GWAS traits that are com-

monly linked to IFN-γ signalling. In contrast to other approaches for

interpreting trait-associated variants that are solely based on epige-

netics such as the activity by contact model (Nasser et al, 2021),

purely based on genetics, such as eQTLs (Võsa et al, 2021) or vari-

able chromatin domains (Waszak et al, 2015), eGRNs by GRaNIE

capture TF-peak-gene links based on variation due to genetic, epige-

netic, or TF-activity differences across individuals, thus integrating

these three layers in one framework. In sum, eGRNs can be used to

identify the target genes of individual TFs, to pinpoint the cell-type-

specific regulatory regions that connect to a TF, and to investigate

genetic variation in the tripartite TF-regulatory element-gene

graphs.

Comparing eGRNs across cell types revealed that for some TFs

(e.g. IRF8), the regulons are highly cell-type specific. Cell-type-specific

Table 3. Predicted target genes of fine-mapped GWAS autoimmune variants using macrophage eGRNs.

Peak TF
Gene
name FM.gwas rsid Disease Network

chr8:129939305-
129940672

KLF13.0.D, MBD2.0.B, ZBT14.0.C FAM49B chr8:129939865 rs11785995 Rheumatoid arthritis Naive

chr17:40598595-
40599644

PURA.0.D SMARCE1 chr17:40598769 rs9893132 Asthma Naive

chr19:3135922-
3136231

KLF13.0.D, NFKB1.1.B, NFKB2.0.B,
RELB.0.C, SP1.0.A, SP1.1.A

GNA15 chr19:3136093 rs117552144 Asthma Primed

chr16:31265059-
31265802

NFKB1.1.B, NFKB2.0.B, RELB.0.C,
TF65.0.A, THAP1.0.C, ZEP1.0.D

STX4,
AC135050.3,
ITGAX

chr16:31265490 rs1143679 Systemic lupus erythematosus Primed

chr6:30006131-
30007036

NFKB1.1.B, NFKB2.0.B, TF65.0.A HLA-A chr6:30006148 rs4313034 Graves’ disease Primed

chr11:65637802-
65638765

NFKB2.0.B, SP1.0.A, SP1.1.A MALAT1,
CTSW

chr11:65637829 rs931127 Systemic lupus erythematosus Primed

chr11:118883323-
118883647

NFKB2.0.B, TF65.0.A, ZEP1.0.D CXCR5,
HINFP

chr11:118883644 rs630923 Multiple sclerosis,
Inflammatory bowel disease,
Crohn’s disease

Primed

chr6:111605185-
111606373

SP1.0.A TRAF3IP2 chr6:111605706 rs7769061 Psoriasis Primed

chr9:34709959-
34710335

SP1.0.A, SP1.1.A ENHO chr9:34710263 rs2812378 Rheumatoid arthritis, Celiac
disease

Primed

chr10:79285352-
79285717

SP1.1.A ZMIZ1 chr10:79285450 rs1250569 Crohn’s disease Primed

chr10:79285352-
79285717

SP1.1.A ZMIZ1 chr10:79285523 rs1250568 Celiac disease Primed

chr17:40598595-
40599644

IRF8.0.B CCR7 chr17:40598769 rs9893132 Asthma Infected

chr3:159929439-
159930124

IRF8.0.B IL12A chr3:159929885 rs17753641 Celiac disease Infected

Fine-mapped GWAS variants for autoimmune diseases generated using probabilistic identification of causal SNPs (PICS; see Materials and Methods) for hg38
build overlapping with the peaks of macrophage eGRNs. TF names refer to specific motifs, some TFs have multiple motifs and thus occur multiple times.
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TF functions may be driven by different co-binding TF partners

depending on the cell type. Indeed, in our previous work, we found

that TFs regulate distinct biological processes depending on their co-

binding partners (Bunina et al, 2020; Ibarra et al, 2020). An alternative

explanation for cell-type-specific regulons is that different cell types

may differ in their chromatin potential (Ma et al, 2020).

Among the notable observations from applying GRaNIE and

GRaNPA to study the gene expression response in macrophages

was that some TFs, including MBD2, were specifically important

only for predicting response to bacterial infection, and not for IFN-γ
stimulation. Since IRF transcriptional programs are generally more

related to a virus response, MBD2 may be required for the

bacterial-specific response, indicating that we can use these net-

works to identify TFs important for responses to different types of

pathogens. The observation that GRaNPA identified distinct sets of

important TFs for the different responses may reflect that

macrophages use several strategies to fight infections, including

phagocytosis followed by degradation mechanisms, starvation of

pathogens, and recruiting other players in the immune system

(Leseigneur et al, 2020). Another observation is that three TFs

important for predicting the response to infection but not to IFN-γ,
are known to bind methylated DNA: MBD2 (Hainer et al, 2016),

MECP2 (Lewis et al, 1992) and NRF1 (Domcke et al, 2015). Recent

reports provide evidence for a pathogen-induced global DNA meth-

ylation alteration (Qin et al, 2021) downstream of NFKB-signalling,

and it was shown that MBD2 inhibits IFN-γ by selectively binding

to methylated regions in the Stat1 promoter in other cell types (Yue

et al, 2021). Our results are consistent with a pathogen-response

mechanism that is partially mediated by DNA methylation, which

may modulate the impact of DNA-methylation sensitive TFs and

demonstrates the level of novel biological insights that can be

gained with GRaNIE and GRaNPA.

Materials and Methods

Reagents and Tools table

Reagent/Resource Reference or source Identifier or catalogue number

Software

GRaNIE R package https://bioconductor.org/packages/GRaNIE/

GRaNPA R package https://git.embl.de/grp-zaugg/GRaNPA

Gephi 0.10.1 https://gephi.org/

DESeq2 R package https://bioconductor.org/packages/DESeq2/

GeneOverlap R package https://bioconductor.org/packages/GeneOverlap

fgsea R package https://bioconductor.org/packages/fgsea

UCSC liftOver web interface https://genome.ucsc.edu/cgi-bin/hgLiftOver

External gene regulatory networks

Dorothea Garcia-Alonso et al (2019)

TRRUST Han et al (2018)

ChEA3 Keenan et al (2019)

ANANSE Xu et al (2021)

Other databases and resources

ReMap 2022 Hammal et al (2022)

FANTOM5 Human Enhancer Tracks https://slidebase.binf.ku.dk/human_enhancers/presets
Andersson et al (2014).

https://slidebase.binf.ku.dk/human_enhancers/
presets/serve/macrophage

eQTL catalogue https://www.ebi.ac.uk/eqtl/

LDSC Github repository https://github.com/bulik/ldsc

General genomic features dataset https://alkesgroup.broadinstitute.org/LDSCORE/

Fine-mapped GWAS variants for
autoimmune diseases

“PICS2-GWAScat-2020-05-22.txt.gz” from https://pics2.
ucsf.edu

Methods and Protocols

Data sets used in this study
For all data sets, we performed PCA along with metadata inspection

in the PCA space to evaluate whether samples should be discarded

as outliers. If we did, we give details in the respective paragraph.

Expression and chromatin accessibility data for iPSC-derived

macrophages

We used a publicly available data set (ERP020977) for naive and

primed macrophages (iPSC-derived) in two conditions, uninfected and

5-h infected with Salmonella from (Alasoo et al, 2018). In total, we

obtained 304 RNA-seq profiles from 86 different individuals, of which
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145 also had ATACseq data available (https://zenodo.org/record/

1188300#.X370PXUzaSN). The samples are split into four groups:

primed, primed-infected, naive and naive-infected for which 41 (43),

31 (55), 42 (42), 31 (55) paired RNA/ATAC (only RNA-seq) samples

were available, respectively. The data also contained metadata and

peak coordinates. The paired samples were used to reconstruct the

eGRNs with GRaNIE (see below). The unpaired RNA-seq data were

used for evaluation of the eGRNs with GRaNPA (see below).

Expression data for macrophages infected with Listeria & Salmonella

(GEO accession number: GSE73502)

Pai et al (2016) generated expression data on cultured monocytes

obtained from PBMCs of healthy donors, for which we downloaded

the raw counts data. Matured macrophages were divided into three

groups: (i) controls and infected by the (ii) Listeria and (iii) Salmo-

nella bacteria, respectively. We used the RNA-seq data collected 2 h

after infection with Listeria and Salmonella, respectively, for each of

the 57 samples.

Expression data for macrophages infected with Tuberculosis (GEO

accession numbers: GSE133145, GSE143731)

Giraud-Gatineau et al (2020) collected two data sets on the effect of

bedaquiline (GSE133145) and five other drugs (GSE143731) treatment

for Mycobacterium tuberculosis infection in Monocyte-derived macro-

phages from healthy donors. The GSE133145 series consists of 16 con-

trol and 16M. tuberculosis-infected samples, which are later divided

into four groups: untreated/DMSO treatment (control)/two variants of

bedaquiline treatment (0.5 or 5 μg/ml). Differential expression analysis

revealed that differences caused by treatment are not substantial, so

we considered the treatment as a controlling variable. The GSE143731

series consists of 28 control and 28M. tuberculosis-infected samples,

which are later divided into groups corresponding to the treatment

with isoniazid (INH), rifampicin (RIF), ethambutol, pyrazinamide

(PZA) or amikacin (AMK), and control group. We considered treat-

ment as a controlling variable for the differential expression analysis.

Expression and chromatin accessibility data for CD4+ T-cells

Paired RNA- and ATAC-seq data were obtained from (Freimer

et al, 2022). For RNA-seq, processed count files were obtained from

GSE171737. For ATAC-seq, raw sequencing files were obtained from

GSE171737 and processed and quality-controlled with an in-house

Snakemake pipeline as previously described (Berest et al, 2019).

Expression data for resting versus LPS-stimulated CD4+ T-cells

(GSE118165)

RNA-seq was obtained from (Calderon et al, 2019), which measured

expression in resting and stimulated subsets of CD4+ T-cells. We

used the T-follicular helper cells for differential expression analyses.

Expression and chromatin accessibility for AML

We obtained raw RNA-seq data for 23 AML patients from (Garg

et al, 2019). Processed and quality-controlled ATAC-seq data and

peaks for the same patients was obtained from (He et al, 2022).

Expression data for TF K/Os

We obtained cell-type-specific knockout (K/O) data for THP1-derived

macrophages (NFKB1) (Somma et al, 2021), the human AML cell line

MV4-11 (IRF8) (Liss et al, 2021), and processed differential expression

data from primary human CD4+ T cells (IRF1 and IRF2) (Freimer

et al, 2022). For the NFKB1 and IRF8 data sets, raw sequencing files

were obtained from GSE162015 and GSE163275, respectively, and

data processing and quality control was performed with an in-house

Snakemake pipeline as described previously (Berest et al, 2019).

Macrophage phosphoproteomics data

Processed quantitative phosphoproteomics data from polarising

THP1-derived macrophages was obtained from (He et al, 2022).

Differential expression analyses
Differential expression analysis was performed with DESeq2 (Love

et al, 2014) for all data sets, typically using the contrast between

treatment and no treatment or disease and control (see also Table 2).

The design formula generally used was therefore “~condition,”
unless otherwise stated. Dataset-specific details of the differential

expression analysis datasets are described below. As input for

GRaNPA, we generally used shrunken log2 fold-changes as imple-

mented in lfcShrink from DESeq2 with the apeglm method (Zhu

et al, 2019) unless otherwise indicated, even though it is not a strict

requirement of GRaNPA to use any particular transformation.

iPSC-derived macrophages infected with Salmonella from

Differential expression was calculated using only the RNA-seq data

that were not used for eGRN reconstruction (Alasoo et al 2018). We

quantified differential expression for the following contrasts: naive

versus infected, naive versus IFN-γ primed, IFN-γ primed versus IFN-γ
primed-infected. The formula used in DESeq2 was “~condition.”

Macrophages infected with Listeria and Salmonella from

We analysed the differential expression between control samples,

listeria-infected samples and salmonella-infected samples separately

(Pai et al 2016). No samples were removed. Information on the

donor was used as a covariate, using the design formula: “~patient+
condition.”

Macrophages infected with Tuberculosis from

We calculated differential expression between monocyte-derived

macrophages from healthy donors infected with tuberculosis versus

control samples (Giraud-Gatineau et al 2020). Data sets GSE133145

and GSE143731 were analysed separately, but with a common

design formula. Although there were also multiple treatments, the

expression variance was almost exclusively driven by the difference

in disease status. We therefore added the treatment as a covariate to

the design formula (“~patient+ treatment+ condition”), but only

investigated differential expression between infected macrophages

and controls. One control and one infected sample from the

GSE143731 series were removed from the analysis, as they were

clear outliers in the PCA plot.

CD4+ follicular T-cells resting versus LPS-stimulated

We quantified differential expression between CD4-positive follicu-

lar T-cells in resting versus stimulated condition (Calderon

et al, 2019). The design formula used in DESeq2 is “~condition.”

AML subtypes

Differential expression was calculated using data from (Garg

et al, 2019) and comparing samples with high leukaemia stem cell
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burden (GPR56-high) versus low leukaemia stem cell burden

(GPR56-low samples) based on immunophenotyping as defined in

(Garg et al, 2019). The design formula was: “~GPR56status.” We

did not use shrunken log fold-changes as input for GRaNPA but we

verified that results are qualitatively unchanged when doing so.

Tumour-associated and tissue resident macrophages from human

breast tissue

Raw RNA-sequencing data were obtained from GSE117970 (Cassetta

et al, 2019), and processed in the same way as described for expres-

sion data for TF K/Os. We obtained differentially expressed genes

between tissue resident and tumour associated macrophages using

the design formula “~condition.”

GRaNIE: Construction of eGRNs
The following is needed as input for GRaNIE:

i Raw or prenormalised chromatin accessibility data (e.g. ATAC-

seq, DNase-Seq or histone modification ChIP-seq data such as

H3K27ac);

ii Raw or prenormalised RNA-seq counts;

iii Precompiled lists of TFBS predictions per TF (we provide predic-

tions for human and mouse TFBS that were derived as described

in Berest et al, 2019); and

iv TAD domains (optional).

For all data sets in this study, we used the same default parame-

ters when constructing the eGRNs as described below.

GRaNIE is conceptually based on the procedure described in

(Reyes-Palomares et al, 2020) and has the following main steps:

(i) Process chromatin accessibility and RNA-seq data

Both ATAC-seq and RNA-seq may be raw counts or prenormalised

counts. If raw counts are provided for RNA-seq, by default we quan-

tile normalised the RNA-Seq count data in order to minimise the

effects of outlier values that may otherwise have a large influence

on the resulting correlations. For chromatin accessibility data, we

employ a size factor normalisation as implemented in DESeq2 (Love

et al, 2014). However, the user can define which type of normalisa-

tion shall be used for either data. Additional filters for excluding

particular chromosomes (e.g. sex chromosomes) or genes/peaks

with low counts can optionally be used. The latter is implemented

by removing genes/peaks if the average counts across all samples

are below a specified threshold (5 by default).

(ii) Overlap TF binding sites with ATAC-Seq peaks

Based on the provided list of putative TFBS per TF (see Berest

et al, 2019 for details), we overlap all TFBS from all TF with the

open chromatin peaks and record for each peak and TF whether at

least one putative TFBS is located within the peak. This binary TF-

peak binding matrix is used in subsequent steps.

(iii) Identify statistically significant TF - peak connections

To identify statistically significant TF-peak connections, we imple-

ment a cell-type-specific data-driven approach. In brief, we first cal-

culate the Pearson’s correlation coefficients between the expression

level of each TF and the open chromatin signal of each peak across

all samples.

We then use an empirical FDR procedure to identify statistically

significant TF-peak connections. For this, for each TF, we split the

peaks into two sets: a foreground set containing the peaks with a

predicted TFBS and a corresponding background set consisting of

peaks without predicted TFBS based on the TF-peak binding matrix

calculated above. We then discretize the TF-peak correlation r into

40 bins in steps of 0.05 ranging from −1, −0.95, . . ., 0, . . ., 1 and cal-

culate a bin-specific FDR value using two different directions (posi-

tive: left to right from −1 to 1, negative: right to left from 1 to −1).
For each bin (correlation threshold) k, we calculate the empirical

FDR according to the formula efdrk ¼ nfpk
nfpkþntpk

, with nfpk and ntpk

denoting the total number of TF-peaks in the background and fore-

ground, respectively, for which r ≥ k (direction positive) and r<k

(direction negative). To make the numbers from foreground and

background compatible, we normalise nfpk beforehand by their

ratio (i.e. nfpk ¼ nfpk � ntp
nfp, with ntp and nfp denoting the total

number of TF-peaks in the foreground and background,

respectively).

(iv) Activator-repressor TF classification (optional)

Optionally, the TF classification as described in (Berest et al, 2019)

can be run and is fully integrated in GRaNIE. It produces a classifi-

cation of TFs into putative activators, repressors or undetermined.

Briefly, it compares the distribution of correlations for peaks with

putative binding sites (foreground) against all other peaks (i.e. back-

ground) and classifies TFs depending on whether the correlations of

putative targets are significantly more positive than (activator),

more negative than (repressor) or indistinguishable from (undeter-

mined) the background.

(v) Identify statistically significant peak-gene connections

Next, we add peak-gene connections to our network. We identify

highly correlated peak-gene pairs based on their Pearson’s correla-

tion and the associated P-value (using cor.test in R) between the

normalised RNA-seq for the expression of a gene and the corre-

sponding open chromatin peak.

GRaNIE offers two options to decide which peak-gene pairs to

test for correlation: in absence of additional topologically associating

domain (TADs) data from Hi-C or similar approaches it uses a local

neighbourhood-based approach with a custom neighbourhood size

(default: 250 kb up- and downstream of the peak) to select peak-

gene pairs to test. In the presence of TAD data, only peak-gene pairs

within a TAD are tested. The user has furthermore the choice to

specify whether overlapping TADs should be merged or not. We

offer two options of where in the gene the overlap with the extended

peak may occur: at the 50 end of the gene (the default) or anywhere

in the gene.

GRaNIE also records additional properties for each peak-gene pair

such as their distance as well as gene type & status as annotated by

Gencode. By default, only protein-coding and lincRNA genes are kept

in the eGRN, but this can be customised to include other gene types.

(vi) Filter GRN connections and calculate peak-gene FDR
Lastly, we offer a variety of options to combine and filter TF-peaks

and peak-genes to derive the full GRN for subsequent analyses. For

example, both types of connections can be filtered by their FDRs or
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by their correlation, peak-gene links can further be filtered by their

distance, gene type, and other criteria. By default, we retain only

peak-gene pairs that are positively correlated. After applying all fil-

ters for the peak-gene links, multiple testing adjustment is

performed using Benjamini–Hochberg. The default thresholds for

TF-peak and peak-gene links are FDR< 0.2 and FDR< 0.1,

respectively.

Lastly, we provide heatmaps and boxplots that compare the con-

nectivity for the real and random eGRNs.

GRaNIE quality controls
The package optionally offers PCA plots for both the RNA-seq and

open chromatin data, and upon availability of additional metadata

that can be provided, the PCA data can also be coloured accord-

ingly. This facilitates the detection of batch effects and outlier sam-

ples that may introduce unwanted variation.

In addition, we implemented a range of quality controls for the

different steps to assess both the number as well as signal-to-noise

for both TF-enhancer and enhancer-gene links.

For assessing TF-enhancer links, we compare the number of links

obtained from the real data to a background set of links that we

obtain with randomised data using a twofold randomisation scheme

(permuting the TF-peak overlap matrix and sample labels for the

RNA counts) by applying the same methods as described before.

For assessing the true enhancer-gene links, we similarly con-

struct a set of background links. First, after creating the real table

for the peak-gene pairs that fulfill the user-specified requirements

for being tested for correlation, the peaks are shuffled. Notably, this

preserves the degree distribution for both peaks and genes. Second,

we shuffle the sample labels for the RNA data.

We then base our quality controls on the assumption that peak

accessibility and gene expression are positively correlated. Thus,

assessing the amount of signal (i.e. small P-values) of positive versus

negative correlations in the real versus the background enhancer-

gene links serves as a proxy for the signal to noise ratio. Specifically,

we expect that positive correlations outnumber negative ones for the

real enhancer-gene links, which should not be the case for the back-

ground. Lastly, we have a number of additional QC plots that include

the enhancer-gene distance, for which we similarly expect a signal

difference for the real but not the background links.

GRaNIE: Downstream analyses implemented in the package
The following functionalities are available within the GRaNIE

package:

i Descriptive statistics pertaining to the structure of the graph,

such as the number of nodes and edges and their types, the dis-

tribution of node degrees and the top nodes with regard to

degree centrality and eigenvector centrality.

ii Community identification, for which the package supports mul-

tiple algorithms (louvain, walktrap, leading eigenvector, fast

greedy and optimal). The communities can be supplemented

with descriptive statistics similar to those previously described,

but specific to each individual community.

iii Enrichment analyses in three different flavours; a general

enrichment analysis for the whole network, a community-based

enrichment analysis, or a TF-based enrichment analysis.

Molecular evaluation of GRaNIE-inferred TF-peak links using
ChIP-seq
We obtained macrophage-specific ChIP-seq data from ReMap 2022

(Hammal et al, 2022) for all TFs that were present in any of the

GRaNIE inferred eGRNs (CEBPA, CEBPB, FOS, GABPA, GFI1, IRF8,

IRF9, LYL1, MYB, NR1H3, PPARG, RUNX1, STAT1, STAT2, VDR).

For these TFs we determined the overlap of GRaNIE inferred TF-

linked peaks (independent of whether they also are linked to a gene)

with the respective ChIP-seq peaks (within 50 bp) and calculated

the enrichment over the background set of ATAC-seq peaks that just

contained the TF motif using Fisher’s exact test. We excluded two

TFs (SPI1 and CTCF) that had more than 10 k connections in

GRaNIE at 0.4 or 0.5 FDR thresholds but no connections at lower

FDR thresholds.

Molecular evaluation of GRaNIE-inferred peak-gene links using
eQTL data
We downloaded cis-eQTL data from the eQTL catalogue (https://

www.ebi.ac.uk/eqtl/, accessed on May 5th 2022), selecting all six

data sets with eQTLs in monocytes or macrophages. We combined

the eQTLs from all data sets and filtered the associations to have a

permutation-based FDR< 0.3. Only GRN peaks that harbour at least

one eQTL SNP in these data sets can be evaluated. For every peak, we

overlapped the eQTL SNPs, and counted a peak-gene link as validated

if any eQTL SNP affected the same gene as present in the GRN. To test

whether the overlap between peak-gene links and eQTL is enriched

as compared to a random background, we also validated links

between the GRN peaks and randomly sampled distance-matched

genes based on 50 kb bins. We repeated the random background sam-

pling 20 times and calculated the odds ratio between validated GRN

links and validated background links. We calculated the enrichment

of validated links by eQTL overlap for a range of peak-gene FDR

thresholds in each of the four macrophage GRNs. We did not add any

extra eQTLs from SNPs that were in high linkage disequilibrium with

the eQTLs from the six data sets in our link validation. This means we

could have missed some eQTL overlaps, but since we used eQTLs

from six different datasets, we did include several variants per peak.

Molecular evaluation of GRaNIE-inferred TF-peak-gene links
We obtained the tracks of human enhancers identified using CAGE

data from FANTOM5 that were differentially expressed in T-cells

and macrophages (Andersson et al, 2014). Track coordinates were

translated to GRCh38 using UCSC liftOver tool (Hinrichs

et al, 2006). We quantified the overlap of GRaNIE eGRN enhancers

(peaks linked to a TF and a gene) and the respective cell-type spe-

cific (macrophage in Figs 1F and 2H and T-cell in Fig 2H) CAGE

peaks and tested for the association of eGRN peaks (vs. all other

peaks within 250 kb of a TSS) and cell-type-specific CAGE enhancers

using Fisher’s exact test.

Utility evaluation of GRaNIE-inferred eGRN regulons using GO-
term specificity
To assess the specificity of the top GO terms enriched for the predic-

tive TFs (Appendix Fig S9A), we randomised the TF-gene connec-

tions and recalculated the enrichment. Manual inspection suggested

that the returned terms for the random network are more general

and often unrelated to macrophage biology. To quantify the
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specificity, we plotted the distribution of the number of genes anno-

tated to each returned GO term for the real network, and for five

permuted networks (Appendix Fig S9B), following the rationale that

more general terms would have more genes associated with them in

the database.

GRaNPA: Prediction model
For the prediction model we do the following:

i Compute the differential expression resulting from a perturbation

between two different conditions, for which we used DESeq2. We

define DE(j) as the differential expression value for the jth Gene.

ii Define the GRN as a mathematical function:

grn gene; tfð Þ ¼ 1 tf and gene connected in the GRN
0 otherwise

n o

Based on this, we construct a matrix X, a relation matrix between

genes and TFs where each row is a gene and each column is a

TFs. There is a 1 in the cell for a gene and TF if and only if they

are connected through the GRN.

ii Running a Random Forest (RF) Regression based on the following

formula to predict a differential expression value for each gene i

based on its connected TFs Xi;tf :

DE ∼ F̂ XTFsð Þ

Random Forest has been implemented using the “ranger” package

in R. To avoid overfitting we use 10-fold cross validation; no

hyper-parameter tuning on the random forest was performed. We

measure performance by assessing the cross-validation R2.

GRaNPA: Construction of the permuted network to assess
edge-specificity
To assess the edge-specificity of our network during the random for-

est regression, we constructed a permuted control network based on

the structure of the actual GRN. It has the same number of edges

with the same degree distribution for TFs with only the gene labels

permutated so the connection between TFs and genes are random-

ised. The differential expression values are unchanged. In case we

use any weighing method for the edges, the same method will be

applied for each edge of the permuted version to recalculate weight

if needed.

GRaNPA: Random signal generation to assess overfitting
To control for over-fitting in the random forest regression, we used

the real network structure and assigned randomly generated values

to genes instead of their differential expression value. The random

values are chosen from a uniform distribution with minimum and

maximum of −5 and 5, respectively. Any prediction for this net-

work is a consequence of overfitting. The reason we used a uni-

form distribution is that we want to check overfitting and we do

not want the distribution to be like any differential expression

distribution.

GRaNPA: Calculating variable importance measures
We used the permutation approach to measure variable importance

using the “ranger” package in R. This accuracy-based approach uses

the out-of-bag sample to calculate the importance of a specific vari-

able. The importance is based on the difference in the prediction

accuracy of out-of-bag sample and the prediction accuracy of out-of-

bag sample while its variables have been randomly shuffled while

all other variables kept the same.

GRN benchmarking against other networks/tools
Dorothea (Garcia-Alonso et al, 2019; Holland et al, 2020a, 2020b): a

resource containing TF-target interactions. The connections are

tagged by a confidence level based on the number of supporting evi-

dence. The confidence levels range from A: highly reliable to B–D:
curated and/or ChIP-seq interactions to the lowest confidence level

E: only computational support.

TRRUST (Han et al, 2018): a database of transcriptional regula-

tory networks for humans and mice. It has been constructed using

text-mining followed by manual curation. TRRUST v2 regulatory

network for humans contains 795 TFs, 2,067 genes and 8,427 regu-

latory links. We did not use any weighing for the edges as it was not

provided by TRRUST v2.

ChEA3 (Keenan et al, 2019): TF-target gene libraries containing

targets determined by ChIP-seq experiments from ENCODE, ReMap

and publications. It also contains co-expression connections based

on RNA-seq data from resources like GREx and ARCHs4.

ANANSE (Xu et al, 2021): an enhancer-based cell-type-specific

network that can predict key transcription factors in cell fate deter-

mination. We used ANANSE macrophage-specific network filtered

by 0.8 probability for its links.

Assessing the cell-type specificity of network models
To assess the cell-type specificity of network models, we checked

their performance on DE data from other cell-types. In this analysis,

we used naive macrophages, naive T-cell and AML and evaluated

their performance for DE data from GPR56-positive versus GPR56-

negative AML, resting versus stimulated CD4-positive follicular T-

cell (in 10 different subcell-types) and naive-macrophages versus 5-

h infected with Salmonella. We filtered genes using 0.1 adjusted P-

value and 1 absolute log fold change thresholds.

Enrichment of regulons among TF K/O data
We obtained cell-type-specific knockout (K/O) data for NFKB1 in

THP1-derived macrophages (Somma et al, 2021), for IRF8 in the

human AML cell line MV4-11 (Liss et al, 2021), and for IRF1 and

IRF2 in primary human CD4+ T cells (Freimer et al, 2022). Differen-

tial expression analysis was performed using DESeq2 (Love

et al, 2014), comparing all K/O conditions to their nontargeting con-

trols. All genes significantly downregulated upon TF K/O (adjusted

P-value< 0.05 and fold-change < 0), were considered as TF K/O

affected genes. For each TF, we then quantified the enrichment of

TF K/O affected genes among GRaNIE-inferred target genes in the

respective cell type using Fisher’s exact test as implemented in the

GeneOverlap package in R. Enrichments with at least five overlap-

ping genes and Fisher’s exact P-value< 0.05 were considered

significant.

Visualisation (Shiny App)
We provide a web application based on a Shiny App for interactive

visualisation of the eGRNs for different cell types (https://apps.

embl.de/grn/).
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Gene set enrichment analysis
Preranked gene set enrichment analysis (GSEA, ranking based on

log2 fold-change) was performed using the Bioconductor/R package

fgsea (preprint: Korotkevich et al, 2016). The M1 macrophage signa-

ture gene set was obtained from (Orecchioni et al, 2019).

GWAS enrichment
We tested whether the macrophage GRNs were enriched for genetic

heritability of GWAS traits using stratified linkage disequilibrium

score regression (S-LDSC) (Finucane et al, 2015). 806 GWAS sum-

mary statistics that included participants of European descent were

downloaded from the GWAS Catalogue (Buniello et al, 2019), harmo-

nised and converted to the LDSC format as described on the LDSC

Github repository (https://github.com/bulik/ldsc). We removed

summary statistics with fewer than 10,000 individuals and fewer

than 100,000 SNPs, because those studies were likely underpowered,

leaving 442 traits. We created peak sets for each of the three macro-

phage GRNs by extracting the enhancer regions that were present in

the GRNs after filtering for peak-gene distance, TF-peak false discov-

ery rate (FDR) and gene differential expression effect size. We used

54 sets of general genomic features (downloaded from https://

alkesgroup.broadinstitute.org/LDSCORE/, following Finucane et al,

2018) and a peak set based on all macrophage enhancers within 250

kb of genes as background regions. Adding these regions as a back-

ground ensures that the identified enrichments are not due to the

general enrichment of heritability in (macrophage) enhancers near

genes, but specifically in the enhancers that are part of the GRNs. We

calculated the heritability enrichment P-values and corrected them

for multiple testing within each trait.

GRaNIE: GO enrichment of GRNs
The general enrichment analysis was run using topGO (v2.42.0) as

part of the standard GRaNIE workflow, with the foreground being

the genes in the filtered GRN, and the background being the genes

within a predefined 250 kb neighbourhood of the peaks in the GRN.

In more specific enrichment analyses such as those for the top tran-

scription factors, which are ranked by their predictive capacity, the

foreground is selected based on the genes a given TF is connected to

within the network. Similarly, in community-based enrichment ana-

lyses, the foreground is simply the genes that are classified to a

given community. To calculate the enrichment, a Fisher test is used

alongside the weight01 algorithm, which is a mixture of the “elim”

and the “weight” algorithms introduced by (Alexa et al, 2006), to

account for the GO hierarchy. Additionally, terms with less than 4

significantly annotated genes were omitted from the results in the

figures. For the sake of better visualising the enriched terms, the fig-

ures are limited to the top 10 enriched terms per category. The full

list of enriched terms can be found in Datasets EV7 and EV8.

Identifying targets for fine-mapped GWAS-SNPs using eGRNs
Fine-mapped GWAS variants for autoimmune diseases were gener-

ated using probabilistic identification of causal SNPs (PICS) algo-

rithm. These variants were downloaded from (i) previously

published list and lifted to the hg38 build (Farh et al, 2015) and (ii)

data portal under the filename “PICS2-GWAScat-2020-05-22.txt.gz”

from https://pics2.ucsf.edu for the hg38 build. We kept all variants

with a PICS probability of greater than 50%. We identified their tar-

get genes by overlapping these variants with the peaks from

different macrophage eGRNs and then using the peak-gene links

from the respective eGRNs to assign the target genes (Fig 5C). The

full list can be found in Table 3.

Data availability

The methods implementation codes are available in the following

GitLab repositories: (i) GRaNIE: https://git.embl.de/grp-zaugg/

GRaNIE; (ii) GRaNPA: https://git.embl.de/grp-zaugg/GRaNPA.

Expanded View for this article is available online.
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