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Abstract: Adoptive T cell-receptor therapy (ACT) could represent a promising approach in the
targeted treatment of epithelial ovarian cancer (EOC). However, the identification of suitable tumor-
associated antigens (TAAs) as targets is challenging. We identified and prioritized TAAs for ACT and
other immunotherapeutic interventions in EOC. A comprehensive list of pre-described TAAs was
created and candidates were prioritized, using predefined weighted criteria. Highly ranked TAAs
were immunohistochemically stained in a tissue microarray of 58 EOC samples to identify associations
of TAA expression with grade, stage, response to platinum, and prognosis. Preselection based on
expression data resulted in 38 TAAs, which were prioritized. Along with already published Cyclin
A1, the TAAs KIF20A, CT45, and LY6K emerged as most promising targets, with high expression
in EOC samples and several identified peptides in ligandome analysis. Expression of these TAAs
showed prognostic relevance independent of molecular subtypes. By using a systematic vetting
algorithm, we identified KIF20A, CT45, and LY6K to be promising candidates for immunotherapy
in EOC. Results are supported by IHC and HLA-ligandome data. The described method might be
helpful for the prioritization of TAAs in other tumor entities.

Keywords: immunotherapy; tumor associated antigen; ovarian cancer; cytotoxic T lymphocytes;
KIF20A; CT45; LY6K; Cyclin A1

1. Introduction

According to estimates by the International agency for research of cancer, ovarian
cancer appears to be the most lethal malignancy of the female reproductive system with
roughly 295,000 new cases causing over 185,000 cases of death in 2018 worldwide [1,2] with
epithelial ovarian carcinomas (EOC) being responsible for the majority of cases (~90%) [3].
Due to the lack of symptoms in early stages, its common peritoneal spread, and insufficient
measures of early detection, about 60% of patients are diagnosed with EOC in a metastatic
stage [4]. Although the outcome of first-line therapy, consisting of cytoreductive surgery
followed by chemotherapy with platinum and taxane, has improved by the addition of
PARP and angiogenesis inhibitors [5–7], the overall survival (OS) remains dismal with a
5-year survival rate between 40–49% [4]. Modern unspecific immune therapies in form of
modulation of checkpoint molecules showed limited activity and did not improve OS. In
this scenario, one promising alternative is the field of targeted T cell-based immunotherapy.
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The development and clinical application of targeted T cell therapies of cancer, which
can be applied in form of adoptive cell therapy (ACT) or vaccination strategies, often com-
bined with an unspecific immunotherapy, have made immense progress. The majority of
ACT approaches are conducted as adoptive transfer of autologous T cells with a transgenic,
tumor associated antigen (TAA)-specific T cell receptor (TCR), a strategy, which is consid-
ered the most effective option to apply a targeted T cell therapy in cancer [8,9]. For this
purpose, autologous T cells are collected, in vitro transfected with a TCR that specifically
recognize an epitope against a predefined TAA in context with a common HLA molecule,
expanded in vitro, and transferred back to the patient to elicit a pseudomonoclonal T cell
response [10–12]. Further targeted T cell strategies include vaccination and TCR-based
bispecific T cell engagers [13,14]. Compared to strategies targeting structures on the cell
surface such as chimeric antigen receptor (CAR) T cells or antibody-based approaches, the
use of TCR-based strategies poses the advantage that it can target intracellular TAA. A
clear disadvantage is the limitation in patient elegibility to such a treatment by the HLA
restriction [15]. The clinical effectiveness of ADT is not determined by inflammation or
spontaneous T cell infiltrates, but mostly by the selective expression of the respective TAA
in the tumor.

EOC is a tumor entity potentially highly amenable for a targeted T cell therapy
because (1) a multitude of TAA, especially cancer testis antigens (CTA) are expressed
in high frequencies by the tumor, and (2) the course of the disease with several lines of
palliative chemotherapy and subsequent episodes of follow-up offers the opportunity
to either introduce an ACT approach as an additional treatment line to the therapeutic
algorithm or to add ACT as a consolidation after a successful line of cytotoxic therapy. In
recent years, many ACT trials targeting different TAAs such as NY-ESO1 or mesothelin
in EOC have provided promising results, such as partial remission or prolonged disease
stabilization [16–21]. However, some TAAs are only expressed in a small fraction of EOCs
(e.g., ERBB2, GAGE) [22,23], while others (e.g., NY-ESO1) show intrapatient heterogeneous
or unstable expression patterns [24,25] or are expressed in healthy tissue (e.g., WT1, MMP7),
which can limit the therapeutic applicability or even hold the risk of adverse events in form
of on target/off tumor toxicity [26].

The identification and selection of the TAA is a crucial step in the development of
any targeted T cell therapy strategy. Features of a suitable TAA include the high and
selective expression in the tumor in a high percentage of patients, the stable expression in a
high percentage of tumor cells, functional relevance for the maintenance of the malignant
phenotype, expression in the stem cell compartment as far as such a tumor-initiating cell
population is defined for the respective tumor type, T cell immunogenicity, and a sufficient
number of T cell epitopes. To facilitate this complex selection process, Cheever et al. created
a list of criteria for the prioritization of available TAA even though no differentiation
between TCR and antibody-based antigens was made [27]. These criteria were broken
down into subcriteria and weighted, according to their relative importance as defined by
a board of experts in the field of immunotherapy of cancer. This vetting algorithm not
only resulted in a prioritization of all relevant TAA at that point in time, it also allowed to
evaluate and contextualize new TAA candidates applying the weighted criteria.

The goal of this study is to systematically identify and prioritize TAAs for targeted
T cell therapy of EOC. To achieve this, a comprehensive list of previously described TAAs
is created by compiling the self-antigens of two cancer antigen databases. Neoantigens
or virus-associated antigens were excluded, the first because in EOC neoantigens are
highly patient specific and not widely clinically applicable, the latter because EOC has no
association to oncogenic viruses. After exclusion of TAAs with high expression in healthy
adult tissues and/or low expression in a TCGA-dataset of EOCs, we applied a modified
version of the Cheever prioritization criteria on the remining candidates and applied
additional data including IHC, clinical data, and published ligandome data. With this
approach we identified top targets for T cell-based therapy in EOC and provide guidance
for reevaluation as soon as sufficient clinical data will become available.
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2. Results
2.1. Identification of Potential TAAs for EOC Therapy

The identification process of potential TAAs for EOCs constituted of three steps, as
illustrated in Figure 1. The first step was the creation of a comprehensive list of previously
described TAAs. A total of 237 previously described targets for immunotherapeutic ap-
proaches were identified, out of which 70 neoantigens were excluded. In order to evaluate
the expression of TAA in healthy tissues, the remaining 167 candidates were then entered
in the GTEx-portal and sorted into three groups dependent on median expression, ranging
from low over medium to high expression. A total of 60 TAAs were sorted into the high
group, deemed unsuitable for immunotherapy and were excluded. The 107 TAAs in the low
and medium group, n = 60 and n = 47, respectively, were investigated for their expression
in a TCGA-dataset of EOCs (n = 373). Median and average fragments per kilobase of
transcript per million (FPKM) values of RNA-expression were used for evaluation. This
selection step led to the exclusion of n = 69 candidates, which have either shown a lower
expression in EOC samples than their respective cut-off value (n = 66) or there was no data
on the expression in EOC available (n = 3). Out of the remaining 38 TAAs, n = 21 belonged
to the low group, while n = 17 belonged to the medium group. These TAAs formed the set
of the most promising candidates with negative or low expression in healthy tissues and
relevant expression in EOC samples and were selected for the following evaluation process
(Table S1).
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Figure 1. Flow Chart illustrating the process of TAA selection: after exclusion of TAAs with high
expression in healthy tissue or low expression in EOC, 38 self-antigens were included in evaluation
and prioritization, 6 targets were chosen for IHC.

2.2. Evaluation and Prioritization of TAAs

To paint a more comprehensive picture of the 38 TAAs identified, MEDLINE database
was searched via PubMed in May 2020, with the goal of gathering additional information on
each TAA’s suitability for immunotherapy. In total, 117 [18,21–23,25,26,28–138] references
from 1998 to 2020 were identified. Studies are composed of expression analyses by IHC or
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RNA sequencing (41), research into the TAAs’ role in oncogenesis (33), generation of specific
T cells (31) clinical trials of T cell-based immunotherapy (6) and systematic reviews (6).
Table S2 gives an overview of the studies identified for each TAA. Based on the information
from the identified publications, as well as the expression data mentioned above, the TAAs
were evaluated according to the weighted Cheever criteria and subcriteria [27], which
were modified by exclusion of criteria targeting on clinical efficacy, in order to reduce
bias towards clinically proven candidates. A total of ten points were available in the
seven evaluation categories Immunogenicity (2.5), Oncogenicity (2.25), Specificity (2.25),
Level of Expression (1), Expression on tumor Stem Cells (SCs) (0.8), Patients with TAA-
positive tumors (0.6), and Number of Epitopes (0.6). Results are shown in Figure 2 and
Table S1. Most TAAs could be given a score in every category. There were 17 candidates
where no information was found about their role in oncogenic processes, which lead to
significantly lower scores, since 2.25 points could be obtained in this category. In 16 TAAs,
the Expression on tumor Stem Cells could not be evaluated. Five TAAs were not allocated
a score at all because the data in the literature were insufficient for evaluation, with four of
them belonging to the group with medium expression in healthy tissue. Out of the 38 TAAs
evaluated, eight candidates have reached a score of eight points and above (Figure 2).
Seven of them were from the group of TAAs with low expression in healthy tissue and are
cancer testis antigens.
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Figure 2. Bar chart depicting the results of TAA prioritization with weighted criteria for each TAA,
modified after Cheever et al. [27]. A maximum score of 10 points was attainable. Legend shows
color coded evaluation criteria and the maximum points attainable in brackets; Bottom bar shows a
reference with the maximum points in each of the seven categories; Dotted line marks the ten highest
rated targets.

CTAs CCNA1, for which an expression analysis in EOC was already performed by
our group [25] and LY6K have shared the highest total score of 8.34 points, with maximum
scores in all categories, except “Specificity” and “Level of Expression”. The other five
top-rated CTAs CT45, IMP3, KIF20A, PRAME, and SP17 were similarly promising, and
reached 8.07 points, due to a lower tier in “Expression on tumor Stem Cells”. Placed in third,



Int. J. Mol. Sci. 2023, 24, 2292 5 of 22

MUC1 is the only TAA to reach over eight points in the medium-group and exclusively
gets the maximum score in “Level of Expression”.

Medium-group antigen Survivin (7.91 points), alongside with low-group CTA MAGEA4
(7.7) complete the top-ten of highest rated TAAs, out of which only two antigens belong
to the medium group. When compared to the low group TAAs, they collectively have a
reduced “Specificity” Score because of their higher expression in healthy tissue. It is also
noticeable that none of the candidates show absolute specificity to tumors, therefore the full
points in this category were not attained by any of them. As we have already performed an
in-depth analysis about CCNA1 expression and correlation to clinical features in EOC [25],
in which we have identified CCNA1 to be a highly suitable TAA in EOC, we decided not to
include CCNA1 in the following analyses. Because of promiscuous expression in healthy
tissue, TAAs from the medium group pose an increased risk of on-target/off-tumor toxicity.
As an additional safeguard for the identification of applicable targets, we have chosen only
to include TAAs from the low expression group in IHC-analysis.

2.3. TAA Protein Expression in Clinical Specimen

To further analyze expression pattern of the TAAs on protein level and to validate
the findings from the evaluation, the six highest ranked candidates out of the low group,
namely LY6K, CT45, KIF20A, SP17, PRAME, and MAGEA4 were immunohistochemically
stained in a clinically annotated tissue micro array of n = 58 EOC samples. Detailed results
are provided in Table S3. In the KIF20A TMA, five samples could not be assessed and
were omitted from analysis. Staining intensity and homogeneity were independently
evaluated by two pathologists. Representative IHC stainings are depicted in Figure 3a,b.
There was a strong correlation between staining intensity and the percentage of positive
cells for every TAA tested (p < 0.001). KIF20A emerged as an especially promising target,
with positive staining in 53/53 samples, and 42/53 showing moderate (22/53) to strong
(20/53) staining intensity. All samples presented a homogenous staining pattern with
100 percent conformity (Figure 3c). LY6K showed comparably strong results, with low
to high staining in 54/58 samples. In total, 30/58 samples showed moderate staining
intensity. One tumor was strongly stained. A total of 28 LY6K-positive samples showed
a 100 percent staining, and only 5 were positive in fewer than 50 percent of the tumor
cells (Figure 3c). IHC results for LY6K differed significantly from mRNA expression in the
TGCA dataset, where over a third of samples were negative for LY6K. CT45 expression
was observed in a third of the tumors (21/58), with nine samples showing high staining
intensity. A total of 12/21 CT45-expressing tumors showed a 100 percent staining pattern,
three samples were stained in under 50 percent of tumor (Figure 3c). To evaluate the
combination of staining intensity (0–3 points from no staining to strong staining) and
percentage of stained tissue, a Q-Score was calculated for each sample by multiplying the
two factors (range 0–300). KIF20A, CT45, and LY6K achieved Q-Scores of 150 or above
in 42, 14, and 20 samples, respectively. A Q-Score ≥ 150 shows that staining intensity
for the tumor was moderate to high and at least 50% of cells displayed positive staining,
making it a suitable surrogate parameter to differentiate between low-heterogenous and
high-homogenous TAA expression. Expression results for MAGEA4 were similar to CT45.
A total of 24/58 tumors were positive, with five EOCs presenting high intensity staining.
However, only 11 tumor probes have shown positivity in under 50 percent of the cells,
depicting a less homogenous staining pattern. A Q-Score ≥ 150 was reached in seven
samples (Table S3). The antigen PRAME was expressed in 38/58 EOCs but was showing
low intensity staining in the majority of positive samples (26/38). Compared to the TAAs
above, the staining pattern was less homogenous, with 24/38 tumors positive in fewer than
50 percent of the cells and only two samples with positivity in 80 percent or above. PRAME
was the TAA with highest expression the TGCA dataset (Table S1). For SP17, IHC-staining
laid out a more restrictive expression with 5/58 positive tumors, with staining in fewer
than 50 percent of the cells in 4/58 cases (Table S3).
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2.4. KIF20A Has a Wide Array of MHC-Presented Epitopes

We used the immune epitope database (IEDB) [139] to identify HLA-restricted epitopes
of the seven TAAs that were identified to bind the MHC complex by mass spectrometry.
An overview is provided in Table S4. A total of 133 epitopes were identified for KIF20A,
followed by PRAME, MAGEA4, and SP17 with 97, 36, and 12 epitopes, respectively. A
total of 75 KIF20A epitopes have specifically been identified on cancer cells, with 4 epitopes
described on EOC [140]. A total of 16 different KIF20A peptides were found to be presented
in the context of HLA A*02:01, the MHC-class I protein with the highest prevalence of
about 50% in the Caucasian population. The query for CT45 led to nine entries, with two
epitopes being HLA-A2*01 restricted. For LY6K only one epitope was described, but that
originating from an EOC sample [140].

2.5. KIF20A, CT45, and LY6K Are Prognostic Markers in EOC

In an exploratory analysis, expression of KIF20A, CT45, and LY6K as measured by
IHC was correlated to clinical features to identify a potential prognostic or tumor biological
relevance of the TAA in EOC. All patients had received cytoreductive surgery followed
by carboplatin/paclitaxel in a palliative setting. Median age of patients was 60.5 years.
Further patient characteristics are provided in Table 1. Clinical parameters assessed were
overall survival (OS), progression free survival (PFS), time to progression (TTP) grade, age,
and tumor stage at first diagnosis, presence of peritoneal carcinomatosis, lymph node or
distant metastases, platinum sensitivity, and PDL1 expression. An overview of results
is provided in Table S5. For KIF20A there were no statistically significant differences in
staining intensity or Q-Score in regard to the parameters (Table S5). For tumors with
CT45 Q-Scores of 0 and 1–149, we noticed a difference in the rate of platinum sensitivity,
compared to tumors with Q-Scores ≥ 150 (Fisher’s Exact p = 0.039, Figure 3d). We also
found a relation between higher T stage at first diagnosis with lower CT45 staining intensity
(Fisher’s Exact p = 0.025, Table S5) and lower Q-Score (Fisher’s Exact p = 0.004, Figure 3e) as
well as the presence of peritoneal carcinomatosis (Fisher’s Exact p = 0.046, Table S5). While
there was no significant association between CT45 staining intensity and PFS (p = 0.16,
Figure 4a), a CT45 Q-Score ≥ 150 was associated with prolonged PFS (p = 0.049; median
14.4 vs. 29.7 months, Figure 4b). We observed an association between lower LY6K Q-Scores
and tumors in progressed T stages (Fisher’s exact p = 0.016, Figure 3e). Patients with
tumors that showed moderate to high LY6K staining intensity also displayed an increased
PFS (p = 0.041; median 12.6 vs. 27.5 months, Figure 4c). No association between KIF20A
expression and PFS could be observed (Figure S1).

Given that the number of EOC patients analyzed by IHC was too low to produce
reliable survival results, we additionally analyzed OS and progression-free survival (PFS) in
dependent on KIF20A and LY6K expression in a dataset of Affymetrix HG-U133 microarrays
deposited as online tool in KMplot [141]. CT45 was not represented by the dataset and
could therefore not be analyzed. All calculations were based on EOC patients in stadium
II-IV and dichotomized TAA expression data. High KIF20A expression was associated
with reduced OS in all patients (n = 1074; p = 0.013) as well as only regarding patients
with suboptimal debulking (n = 349; p = 0.034). PFS showed no significant difference.
For LY6K expression, no significant difference could be observed in OS. However, high
LY6K expression was correlated to prolonged PFS in EOC, after optimal debulking surgery
(n = 177; p = 0.034). These data suggest that KIF20A and LY6K have an impact on tumor
biology of EOC, reflected by their prognostic value independent of the clinical and tumor
biological parameters correlated to the IHC data (Figures S2–S4).
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Table 1. Clinico-pathological patient characteristics.

n %

Age
≤60 years
>60 years

28
30

48.3
51.7

Histology
serous 58 100

Grade
2
3

6
52

10.3
89.7

Stage (FIGO)
II
III
IV

3
46
9

5.2
79.3
15.5

Peritoneal Carcinomatosis
no
yes

7
51

12.1
87.9

Residual macroscopic tumor
no
yes

43
15

74.1
25.9

Primary Platinum response
no
yes

unknown

20
37
1

34.5
63.8
1.7

2.6. LY6K Is Differentially Expressed in EOCs with Mesenchymal Molecular Subtype

To further investigate a tumor biological relevance of the candidates in EOC, in an
exploratory analysis we correlated KIF20A, CT45, and LY6K (Figure 3f) to the molecular
ovarian cancer subtypes defined by Tothill et al. [142]. For this, the microarray data of the
285 tumors investigated in the original publication was assessed to extract RNA expression
data of every TAA in the subtypes c1, c2, c4, and c5 (all cluster representing true malignant
neoplasia). We tested statistically, whether the TAA were expressed differentially in the
respective clusters. While no differential expression could be detected for KIF20A and CT45,
we found that LY6K expression differed between the clusters (Kruskal-Wallis p = 0.0075,
Figure 3f). Using multiple comparison, it was shown that LY6K expression was significantly
higher in mesenchymal subtype c5, when compared to subtype c1 (Bonferroni-corrected
p = 0.007) and subtype c2 (Bonferroni-corrected p = 0.017), but not to subtype c4 (Bonferroni-
corrected p = 0.163).



Int. J. Mol. Sci. 2023, 24, 2292 8 of 22Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 8 of 25 
 

 

. 

Figure 3. Results of IHC staining and clinicopathological analysis for KIF20A (left), CT45 (middle),
and LY6K (right column): (a,b) representative stainings in tissue micro array of EOC, showing an
example of weak (a) and strong (b) staining intensity; (c) results of IHC, showing number of samples
with negative, weak, moderate or strong staining intensity (left) and percentage of tumor cells with
positive staining for each sample (right); dotted lines mark median value (d) platinum sensitivity of
KIF20A, CT45, and LY6K in relation to Q-Score of 0, 1–149 or 150–300; (e) Comparison of Q-Score
values with T-stage of EOC at first diagnosis; dotted lines mark median value; (f) box plots depicting
expression of KIF20A, CT45 and LY6K in different molecular subtypes c1 (high stromal response),
c2 (high immune signature), c4 (low stromal response), and c5 (mesenchymal) of EOC, as defined
by Tothill et al. [142]; boxes show interquartile range, median is marked by line inside the box,
whiskers range from minimum to maximum value, p-values show results of Kruskal–Wallis test for
differential expression.
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Figure 4. (a) Difference in Progression free survival in relation to staining intensity of CT45: blue
CT45low (negative to weak staining) vs. green CT45high (moderate to high staining), median PFS
CT45low 14.39 months, CT45high 27.76 months (p = 0.16); (b) Difference in PFS in relation to Q-Score of
CT45: blue CT45 Q-Score < 150 vs. green CT45 Q-Score ≥ 150, median PFS CT45Q < 150 14.39 months,
CT45Q≥150 29.7 months (p = 0.049); (c) Difference in PFS in relation to staining intensity of LY6K:
blue LY6Klow (negative to weak staining) vs. green LY6Khigh (moderate to high staining), median
PFS LY6Klow 12.58 months, CT45high 27.53 months (p = 0.041); (d) Difference in PFS in relation to
Q-Score of LY6K: blue LY6K Q-Score < 150 vs. green LY6K Q-Score ≥ 150, median PFS LY6KQ<150

13.18 months, LY6KQ≥150 20.07 months (p = 0.616).

3. Discussion

In this study, we provided a systematic identification and prioritization process for
TAAs as targets for ACT in ovarian cancer. We identified several promising TAAs by in
silico analysis and verified their suitability by IHC. With high scores during evaluation as
well as high expression in a TMA of EOC samples, KIF20a, CT45, and LY6K emerged with
the predescribed CCNA1 as the most suitable immunotherapeutic targets in EOC.

The identification of the TAA is the first and most crucial step in the development
of any targeted T cell therapy. For selection of suitable TAAs in EOC, we focused on
self-antigens. Using self-antigens as therapeutic targets poses the advantage of high inter-
individual applicability, since their expression is observed in a high percentage of tumors.
This allows the implementation of vetted and adapted therapeutic regimens that could
be broadly used in a large number of patients. Neoantigens on the other hand, would
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allow the construction of a TCR that is specifically adapted to target the individual patients’
tumor and could thereby increase the anti-neoplastic effect of the therapy. However, this
‘personalized medicine’ approach has the limitation that each new intervention against a
neoantigen has to be developed individually, which is not feasible in the majority of cases,
given that neoatigen-specific TCRs have to developed and vetted not only with regard of
functional avidity but also of potential TCR-specific toxicity.

We pursued a strategy of comprehensively collecting prediscribed TAAs and then
analyzed expression databases as preselection mechanism to remove candidates that were
deemed unsuitable for immunotherapy in EOC, either by high expression in healthy tissue,
which leads to a increased risk for on-target/off-tumor toxicity or by low expression in
EOC, as high expression of the TAA in target cells is one of the key predictors for clinical
efficacy of TCR therapy. The preselection of TAAs also made a detailed literature search
into the remaining candidates feasible. Upon this information, we then evaluated candi-
dates regarding additional properties of “ideal TAAs” with predefined weighted criteria,
thereby creating a reasonably objective ranking. The original evaluation criteria, defined
by Cheever et al. [27] were established for the identification of TAAs as cancer vaccination
targets. We modified the criteria to suit our approach of evaluaton for TCR-based treatment
in EOC better. TCRs only recognize TAA epitopes that have been intracellularly processed
are presented on MHC on the surface of the target cell. As this is the limiting factor for
the TCR cascade to work, we decided not to evaluate the cellular location of expression of
the unprocessed antigen. Further, we chose to omit the criterion of ‘therapeutic function’.
As already discussed by the authors of the original prioritization study, there has been a
bias towards clinically tested TAA candidates. In this project, we tried to prioritize candi-
dates according to their expression features, their immunogenicity, and their oncogenic
functionality in EOC to offer a guideline towards TAAs that are suitable for future im-
montherapeutic interventions. When more clinical data of in vivo immunogenicity and/or
effectiveness of said interventions are available, we aim to reintroduce this criterion in the
evaluation to filter out candidates that combine the cellular features of ideal TAAs with
functionality as therapeutic targets.

Limitations of the selection approach are the restriction on predescribed TAAs, not
allowing the identification of new therapeutic targets for tumor therapy, and the subjectivity
in the evaluation process. Although criteria for evaluation were established in consensus by
a panel of experts [27], they were applied to TAAs in EOC by different people, which could
lead to varying scores, depending on the person performing the evaluation. By defining
objective cut-offs e.g. for expression in healthy tissue, we tried to reduce inter-individual
differences in evaluation. Furthermore, a TAA’s score still was afflicted by the literature
provided. If a TAA was not investigated for its role in oncogenic and/or immunogenic
processes, a high score would not be possible. This poses the risk of overseeing potentially
suitable TAAs that have not been investigated as thoroughly and on the other hand could
elicit selection bias towards candidates that are more established in immunotherapeutic
research. Reviewing the results of the ranking, it was shown that cancer testis antigens
(CTAs) form the group of the most encouraging candidates for an immunotherapeutic
approach. CTA expression is generally silenced by promoter hypermethylation in normal
tissue, with the exception of testis, which is considered an immunoprivileged site [143,144].
The expression pattern of a TAA, that is detectable in malignant but not in healthy tissue,
reduces the probability of adverse events of ACT such as on-target/off-tumor toxicity.
The risk reduction was the reason behind choosing only CTAs for the IHC staining after
evaluation. Despite the higher scores, the TAAs MUC1 and Survivin have shown moderate
expression in several healthy tissues, such as the stomach, lungs, or lymphocytes. We
concluded that the slightly better performance in other evaluation criteria did not outweigh
the risk of an immune response against non-tumorous tissue.

During the initial selection process, expression analysis of TAAs in healthy tissue and
EOC was based on RNA sequencing data. Although mRNA and protein levels generally
correspond, and the term ‘gene expression’ is often used in the context of measuring
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mRNA, there can be differences between mRNA and protein levels, caused by differences
in post-translational or post-transcriptional regulation or protein degradation [145,146].
We included IHC data in cancer samples during the literature search and performed IHC
ourselves on EOC probes, understanding protein expression as a key parameter. IHC
staining showed negative or weak expression of three highly ranked TAAs (MAGEA4,
PRAME, and SP17) resulting in their exclusion from further analyses. In this context, the
question will have to be addressed whether the used antibodies against these candidates
were the most suitable in terms of sensitivity. It can also be asked whether a thin slice
of a tumor probe in the TMA sufficiently represents the tumors constitution, which is
necessary to make qualified judgement on expression. RNA-based expression analysis may
be able to better reflect a tumor’s heterogenicity. Further limitations of the IHC analysis
may lie in the small sample size of the TMA. The remaining TAAs KIF20A, CT45, and LY6K
emerged as promising candidates, alongside Cyclin A1, which our group has previously
described as a suitable TAA in EOC [25,96,122]. Positive staining was found in all samples
for KIF20A, 52/57 for LY6K, and over a third of probes for CT45. In our analysis, CT45
expression was lower compared to KIF20a and LY6K, with positivity in around one third of
samples. This rate is consistent with IHC analyses from other authors [42,46,110]. KIF20A
has shown high expression in EOC in the TGCA dataset on mRNA level, which was also
the case in the IHC staining on protein level. For KIF20A, high expression is underlined
by the large number of epitopes that have been identified to be processed and bound
to MHC complexes in a wide array of different tumor cells. Interestingly, we observed
differences between relatively low mRNA expression of LY6K in the ovarian cancer dataset
and detectable LY6K in nearly all tumor samples investigated on protein level by IHC.
This discrepancy can orginate from the fact that LY6K might have a long turn-over time,
i.e. minimal transcription and translation is necessary to maintain a high concentration
of the protein in the cells. However, degradation is correlated to both translation and
presentation of respective epitopes, as reflected by low numbers of detected LY6K peptides
in the ligandome analysis. This implies that protein expression is not necessarily the better
marker to quatify visibility of the TAA to the TCR, while also indicating that the processing
and presentation of a TAA could be observed as an independent quality criterion, which
should be investigated more thoroughly in the future.

Expression of TAA in a high percentage of tumor cells ensures that a large amount
of tumor mass can directly be affected by a specific TCR. This reduces the risk of cells
escaping the immune response, creating a different tumor constitution, altering the tumor’s
oncogenic capacities. The specific mechanisms of T cell-mediated tumor elimination are
now studied in greater detail, and although a bystander effect of T cell killing of antigen
negative tumor calls has been reported [147], the amount such effects in in vivo applications
remains elusive. Therefore a high intensity and homogenous expression of TAA in tumor
cells there is considered an important hallmark for the identification of suitable targets.
In our IHC staining, KIF20A, LY6K, and CT45 have shown homogenous staining in a
high number of tumors, thereby complying with the features mentioned above. The last
limiting factor is the immunogenicity of potential targets. A noticeable discrepancy has
been described between identified TAAs on the one hand and functional immunogenic
candidates on the other [148]. Immunogenic potential of KIF20a has been proven by
the creation of HLA-A2 restricted TCRs against pancreatic cancer [68]. For CT45, one
study has also identified five HLA-class I specific epitopes of CT45 on EOC samples by
immunoproteomics and has generated specific T cells for different peptides in a HLA-A3
and HLA-A11 specific manner [46]. Using such an approach, in which immunopeptidome
of target cells is analyzed to identify peptides that are presented and processed by the
tumor in vivo, could lead to highly effective and immunogenic TCRs.

The expression of TAAs can be an idependent prognostic factor of OS and PFS, and an
association with unfavorable prognosis is a favorable feature for a TAA candidate, given
that in case the TAA is relevant for maintenance of the malignant phenotype this impedes
immunological selection of negative cell populations. We identified CT45 expression as
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a beneficial prognostic parameter for PFS as well as increased platinum sensitivity. The
large-scale study from Coscia et al. reached similar findings. In our analysis of IHC stain-
ing and clinical data, we found no correlation between KIF20A expression and clinical
or tumorbiological features. However, studies have shown that high KIF20A expression
has been linked to reduced OS and high tumor grade, indicating a role in oncogenic pro-
cesses [68,75,83,105]. We then used the Online Tool KMplot to correlate KIF20A expression
to PFS and OS in a larger sample size, where KIF20A was significantly associated with
reduced OS. As it was further shown that KIF20a knockout inhibits tumor proliferation in
ovarian clear cell carcinoma [75], we concluded that KIF20A is a tumorbiological marker,
associated with unfavorable prognosis. LY6K has shown a similarly high expression in
EOC and we identified high LY6K expression as a prognostic marker for prolonged PFS.
We also found an association between increased LY6K expression and the EOC molecular
subtype C5, defined by Tothill et al. [142]. Mesenchymal subtype C5 has generally been
characterized by lower expression of EOC differentiation markers and reduced OS [142],
implying that LY6K represents a beneficial marker independent of molecular subtypes. As
we have mentioned discrepancies between gene expression on mRNA and protein level,
an analysis of molecular subtypes based on protein expression would be desirable for
future research.

In conclusion, by using a systematic approach of evaluating and prioritizing TAAs,
we have identified KIF20a, CT45, and LY6K to be highly suitable targets for targeted T cell
therapy in ovarian cancer. To our knowledge, this research is the first systematic vetting
of TAAs for EOC. Additionally, we are the first group to adapt the evaluation system of
Cheever et al. and apply it to a specific tumor entity and modality of immunotherapy.
KIF20A, CT45, and LY6K have reached high scores in the evaluation. We then validated
these results by showing high expression of TAAs in a TMA of EOC samples. All three
TAAs have been described as immunogenic, fulfilling the major hallmarks set for promising
targets. We have shown that expression of the three TAAs was tied to clinical characteristics
such as OS, PFS, stage, and platinum sensitivity. Especially KIF20a has stood out as a
highly expressed protein in EOC with a vast number of epitopes that have been identified
to bind the MHC. By identifying HLA-A2*01-specific peptides and generating specific T
cells, immunogenicity of these TAAs should be further investigated for clinical application
in the following steps. Furthermore, the systematic vetting approach can be utilized for the
identification of TAAs in different tumor entities.

4. Materials and Methods
4.1. Identification of Candidate TAAs

A comprehensive list of predescribed TAAs was created by compiling entries of the
databases “TANTIGEN 2.0” [149,150] and “Cancer Antigenic Peptide Database” [151],
after exclusion of neoantigens. GTEx-Portal (accessed May 2020) was used to evaluate the
candidates’ RNA expression in healthy tissue samples. For better visibility, TAAs were
allocated in three groups with high, medium, and low expression. A low and medium level
of expression was defined as <40 transcripts per million (TPM) and <400 TPM, respectively,
in all analyzed tissue categories. Candidates with higher expression were excluded. In
the next step, a TCGA dataset was used to examine TAA expression in n = 373 EOC
samples via Human Protein Atlas (version 19.2, proteinatlas.org, accessed on 22 December
2022) [152,153]. Since TAAs in the medium group show higher expression in non-tumorous
tissues and thus pose a higher risk for on-target/off-tumor toxicity than the restrictively
expressed TAAs in the low group, different cutoffs were chosen. Using a detection threshold
defined by the database, a TAA with a median FPKM value > 0.5 or average FPKM > 1
was as expressed in EOC [154–156]. TAAs with FPKM values under this threshold were
omitted. Cutoffs in the medium group were median FPKM < 5 or average FPKM < 10,
since expression above this threshold signifies robust expression [157]. A search of the
MEDLINE Database via PubMed was conducted for each remaining antigen in May 2020.
Search terms used were “x AND Ovarian Cancer” and “x AND Immunotherapy”, with

proteinatlas.org
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x being substituted for each antigen. Studies with additional information on the suitability
as cancer therapy targets such as expression analyses, previously conducted TCR-, CAR-,
or vaccination trials as well as data on adverse events during trials were assessed.

4.2. Prioritization of Candidate TAAs

Prioritization of candidate TAAs was performed using weighted criteria and subcrite-
ria as defined by Cheever et al. [27]. The criteria were modified, to better suit the evaluation
of TAAs for TCR therapy in EOCs. TCRs can only recognize TAAs that have been intra-
cellularly processed and presented in association with an HLA-molecule on the target
cell’s surface, rendering the criterion ‘cellular location’ obsolete. To minimize bias due to
differences in availability and/or mode of function of applied immunotherapy, categories
based on clinical efficacy targeting the respective TAA were also excluded. The modified
vetting criteria were normalized in a way that a maximum of ten points was attainable.
The modified criteria and subcriteria with corresponding values are listed in Table 2.

Table 2. Evaluation criteria and subcriteria for the TAAs, modified after Cheever et al. [27] A total of
ten points could be obtained in seven categories.

Criteria and Subcriteria Definition Pts.

Immunogenicity 2.5
HLA-restricted
T Cell-Immunity verifiable Experimental generation of HLA-restricted T cells, specific for a TAA is possible 2.5

T Cell-Immunity detectable in humans Spontaneous T cell-Immunity against specific TAA is detectable in humans 2
Immunogenicity in animal models Immunogenic in animal models observed, with similar antigen expression to humans 0.28
Antibodies detectable in humans Antibody observed in humans (humoral response) 0.25
not applicable 0

Oncogenicity 2.25
oncogenic self-protein TAA is associated with oncogenic process 2.25
persistent viral AG persistently expressed viral antigen 0.77

Correlation with unfavorable outcome Function of TAA unknown/uncertain, but expression correlates with unfavorable
prognosis/decreased survival 0.56

tissue-differentiation, not oncogenic TAA not oncogenic, but associated with tissue differentiation 0.27
stromal-Expression Expression on tumor related stroma, but not on malignant cells 0.27
not applicable 0

Specificity 2.25
absolute Specificity TAA is absolutely specific (e.g., mutated Oncogene, viral protein) 2.25

oncofetal AG TAA is expressed in fetus with no or little expression in healthy adult tissues
(e.g., cancer-testis-antigens) 1.22

overexpressed in Tumors overexpressed in cancer, but expressed in some healthy tissues 0.79

abnormal posttranslational modifications TAA expressed in normal tissues, but expressed in cancer with unique posttranslational
changes (e.g., glycosy-, phosphorylation) 0.52

Tissue specific (expendable tissue) Tissue specific expression in tissue relatively expendable for survival
(e.g., prostate, ovaries) 0.47

Tumor stroma AG normal TAA expressed on tumor-stroma 0.23
not applicable 0

Level of Expression 1
high, all cancer cells Highly expressed on all cancer cells 1
high, most cancer cells Highly expressed on most cancer cells 0.37
lower, all cancer cells Lower level of expression on all cancer cells 0.23
lower, most cancer cells Lower level of expression on most cancer cells 0.08
not applicable 0

Tumor Stem Cell Expression 0.8
Stem Cell Expression, presumptive Evidence for expression on tumor stem cells 0.8

No info about SCs, but on all stages Present at all stages of tumor development, from premalignant to metastatic lesions, but
no info about stem cell expression 0.53

No info about SCs, but most cancer cells Expression on most cancer cells, but no info about stem cell expression 0.16
not applicable 0
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Table 2. Cont.

Criteria and Subcriteria Definition Pts.

Patients with TAA-pos. Tumors 0.6
many Patients, high level High level of expression in high fraction of patients in a tumor type 0.6
many Patients, lower level Lower level of expression in high fraction of patients in a tumor type 0.1
fewer Patients, high level High level of expression in lower fraction of patients in a tumor type 0.07
not applicable 0

No. of Epitopes 0.6
longer Antigen Longer antigen with multiple (potential) immunogenic epitopes 0.6

short antigenic segment Short antigenic segment with fewer (potential) immunogenic epitopes and potential to
only bind to selected MHC-molecules 0.08

4.3. HLA-Ligandome Data

Analysis of HLA-ligandome data was performed by searching the immune epitope
database (IEDB) [139] for described epitopes of TAAs of interest. Only epitopes that were
identified to bind the MHC-complex by mass spectrometry were included. Described
epitopes were broken down by the tumor entities, where they were identified as well as
association with HLA-subtypes.

4.4. Patients and Clinicopathological Features

A total of 58 female patients were selected from the ‘Tumor Bank Ovarian Cancer
Network (TOC)’ tumor bank based on histology and initial treatment. All tumor specimens
were collected before start of chemotherapy. All patients suffered from serous EOC and
received cytoreductive surgery followed by platinum-based chemotherapy. Patients pro-
vided written informed consent for use of their biomaterial samples in biomarker studies.
Consent was obtained using the standardized informed consent forms of the participating
institutions. The project and consent process was approved by the ethic board of the Charité
Hospital, Berlin (reference number EA2/005/14). All clinical and pathological features
were extracted from the TOC data bank.

4.5. Analysis of TAA Expression by IHC

Top candidates were chosen for immunohistochemistry (IHC) in a tissue micro array
of n = 58 EOC samples from the TOC tumor bank. Tumor specimens were cut in 4 µm
sections and mounted on glass slides. After paraffin removal, hydration, heat-activated
antigen retrieval in the DAKO-PTlink module (DAKO Glostrup, Denmark), and blocking of
endogenous peroxidase activity by exposure to 3% hydrogen peroxide for 20 min, the slides
were incubated at 4 ◦C overnight with corresponding antibody. Antibodies used were
Anti-LY6K (ab224402), Anti-PRAME (ab219650), Anti-MAGEA4 (ab139297) (all Abcam,
Cambridge, United Kingdom), Anti SPA17 (# PA5-58013, Invitrogen, Waltham, MA, USA),
Anti-CT45 (HPA044757, Atlas Antibodies, Bromma, Sweden), and Anti-KIF20a (sc-374508,
Santa Cruz Biotechnology, Dallas, TX, USA). Sections were processed with a Polymer
HRP detection system (PV-9000, Zhongsam Company, Beijing, China). The slides were
than stained with 3,3′-Diaminobenzidine and counterstained in hematoxylin. Healthy
liver tissue was used as a normal tissue control for each antibody. Negative controls were
carried out as above, omitting the primary antibodies. Staining intensity (0—negative,
1—weak, 2—moderate, 3—strong) and homogeneity (percentage of stained tumor cells)
were evaluated at 400× magnification by two blinded pathologists independently. A
Q-Score was calculated by multiplying the intensity with the percentage of stained tissue
(Q-Score range from 0–300).

4.6. Molecular Subtype Analysis

For the exploratory analysis of potential association of the TAA candidates to a re-
spective molecular subtype as described by Tothill et al. [142], the annotated Affymetrix
HG-U133 Plus 2.0 microarray panel of that analysis was downloaded from the NCBI GEO
database (accession GSE9899). Samples were normalized using invariant set method, ex-



Int. J. Mol. Sci. 2023, 24, 2292 15 of 22

pression data was exported as model-based expression equivalents (dChip 2.0 software) [1].
In case a TAA was represented by more than one probe set, the probe set with the highest
average expression was chosen: 218755_at for KIF20A, 235700_at for CT45, and 223688_s_at
for LY6K.

4.7. Statistics

The corresponding clinical data of samples in the tissue microarray was used to study
relations of TAA expression with grade, stage, response to platinum, time to progression,
and overall survival. Fisher’s exact test or Pearson’s chi-squared test were used to analyze
contingency tables. Bivariate correlation was performed by calculating Spearman’s ρ.
Survival analysis was calculated, using a log-rank test. The Kruskal–Wallis test was
performed to evaluate differential expression in molecular subtypes. For post-hoc analysis,
the Dunn–Bonferroni test was performed for multiple comparisons. All statistical analysis
was performed in SPSS 28 (SPSS Inc., Chicago, IL, USA). All Figures were created using
GraphPad PRISM (GraphPad Software, San Diego, CA, USA).
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