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Objectives: The UK Biobank (UKBB) and German National Cohort (NAKO)
are among the largest cohort studies, capturing awide range of health-related data
from the general population, including comprehensive magnetic resonance imag-
ing (MRI) examinations. The purpose of this study was to demonstrate howMRI
data from these large-scale studies can be jointly analyzed and to derive compre-
hensive quantitative image-based phenotypes across the general adult population.
Materials and Methods: Image-derived features of abdominal organs (volumes
of liver, spleen, kidneys, and pancreas; volumes of kidney hilum adipose tissue;
and fat fractions of liver and pancreas) were extracted from T1-weighted Dixon
MRI data of 17,996 participants of UKBB and NAKO based on quality-controlled
deep learning generated organ segmentations. To enable valid cross-study analysis,
we first analyzed the data generating process using methods of causal discovery.
We subsequently harmonized data from UKBB and NAKO using the ComBat ap-
proach for batch effect correction.We finally performed quantile regression on har-
monized data across studies providing quantitative models for the variation of
image-derived features stratified for sex and dependent on age, height, and weight.
Results:Data from 8791 UKBB participants (49.9% female; age, 63 ± 7.5 years)
and 9205 NAKO participants (49.1% female, age: 51.8 ± 11.4 years) were ana-
lyzed. Analysis of the data generating process revealed direct effects of age,
sex, height, weight, and the data source (UKBB vs NAKO) on image-derived fea-
tures. Correction of data source-related effects resulted in markedly improved
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alignment of image-derived features between UKBB and NAKO. Cross-study
analysis on harmonized data revealed comprehensive quantitative models for
the phenotypic variation of abdominal organs across the general adult population.
Conclusions: Cross-study analysis of MRI data from UKBB and NAKO as pro-
posed in this work can be helpful for future joint data analyses across cohorts linking
genetic, environmental, and behavioral risk factors to MRI-derived phenotypes
and provide reference values for clinical diagnostics.

Key Words: cohort study, MRI, deep learning, causality, cross-study analysis,
abdomen, segmentation, age, NAKO, UK Biobank
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T he UKBiobank (UKBB)1 conducted in the United Kingdom and the
German National Cohort (NAKO)2 conducted in Germany are 2 of

the largest ongoing population-scale cohort studies. Collecting awide ar-
ray of health-related information, includingMR imaging data, these stud-
ies provide a unique level of individual phenotypic characterization
of participants.3

UKBB enrolls adults between ages 50 and 80 years, whereas NAKO
enrolls participants between ages 20 and 70 years.1,2 This restriction naturally
limits the generalizability of study results for each of these single studies.
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TABLE 1. Demographic Characteristics of Study Populations
Included in This Analysis

UKBB NAKO Combined

No. participants 8791 9205 17,996
Sex (F/M) % 49.9% / 50.1% 48.4% / 51.6% 49.1% / 50.9%
Age (SD), y 63.0 (7.5) 51.8 (11.4) 57.3 (11.2)
Weight (SD), kg 77.1 (15.1) 79.5 (16.2) 78.3 (15.7)
Height (SD), cm 169.4 (9.4) 171.8 (9.5) 170.7 (9.5)
BMI (SD), kg/m2 26.7 (4.3) 26.8 (4.7) 26.8 (4.5)

UKBB, UK Biobank; NAKO, German National Cohort; F, female; M, male;
SD, standard deviation.
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Merging study data performing cross-study analyses may potentially
overcome such limitations and in addition yield higher statistical
power, the opportunity to independently replicate results and improve
resource efficiency.4,5

Data compatibility among different studies however poses chal-
lenges for proper merging. Recorded parameters and data structures might
be substantially different with little overlap. From a statistical point of view,
the presence of distribution shifts, or biases, in the observed data due to
differences in the data-generating processes can result in data misinter-
pretation when data from different sources are merged.

Cross-study analyses of imaging data are particularly challeng-
ing due to additional sources of variation regarding the image acquisi-
tion process such as different scanner types, varying imaging protocols,
and study-specific image processing algorithms. These factors can influ-
ence image-derived biomarkers, especially whenmagnetic resonance im-
aging (MRI) is used—a modality that is inherently difficult to standard-
ize.6 The practical relevance of such biases has previously been reported
on different medical image data sets.7,8

In the case of UKBB and NAKO, image acquisition protocols
are partially aligned with the strategic intention to potentially enable
cross-study analyses. Similarities cover an overall agreement on anatomic
coverage and partial agreement on MRI sequences.9 Still, central aspects of
MR acquisition protocols vary significantly including scanner models, mag-
netic field strengths, sequence parameters,1,2 or the occurrence of artifacts.10

Thus, it is unclear whether image-derived features from UKBB and NAKO
can be pooled in a meaningful way for subsequent combined analyses.

Aiming to overcome such challenges, several techniques for data
harmonization across studies have been proposed including model-based
approaches (eg, batch effect correction using ComBat11 [“Combining
Batches”] and its modifications7,12–14). The advantage of model-based
data harmonization is the possibility to selectively correct for undesired
bias while preserving informative factors of variation.7 This has recently
been demonstrated also in a medical imaging context, mainly in a neuro-
imaging and oncological imaging context.7,12,13

The effective and valid application of such model-based data cor-
rection techniques requires detailed understanding of the data generating
process. Usually, prior (common sense) knowledge about causal interac-
tions among observed variables is used to harmonize data. As an exten-
sion, methods of causal discovery15 may provide complementary infor-
mation about the data generating process and thus inform the application
of data harmonization techniques. This can be of particular relevance in
large-scale studies with complex data interactions.16

The purpose of this study is to demonstrate how imaging data
from large-scale studies such as UKBB and NAKO can be jointly ana-
lyzed and to derive comprehensive quantitative image-based organ phe-
notypes across the general adult population.
MATERIALS AND METHODS

Population Characteristics and Imaging Data
Datawere obtained fromUKBB andNAKO,which obtainedwrit-

ten informed consents from all subjects and approved our data analysis.
Analysis of anonymized data from these studies was approved by the
local institutional ethics committee.

This study reports findings from the first 20,000 data sets includ-
ing MRI data available to us from the 2 study cohorts (10,000 data sets
per study). After exclusion of data samples withMRI acquisition artifacts
and erroneous automated organ segmentations (see below), image data
and related demographic information (age, sex, body weight, and height)
from 17,996 participants (8791 from UKBB and 9205 from NAKO)
were used for further analysis. Summary statistics describing the study
cohorts are provided in Table 1 and visualized in Figure 1. All image data
analyzed in this work have been part of a previously reported technical
work on deep learning–based abdominal organ segmentation,17 which
© 2022 The Author(s). Published by Wolters Kluwer Health, Inc.
was the technical foundation for this present work. There is no overlap
in data analysis or reported results between these 2 studies.

Both UKBB andNAKO acquire whole-bodyMRI data on a sub-
set of participants using clinical MR scanners (UKBB: 1.5 T Siemens
Magnetom Avanto; NAKO: 3 T Siemens Magnetom Skyra, Siemens
Healthineers, Erlangen, Germany). In this study, whole-body T1-weighted
images obtained from dual-echo gradient echo imaging—which is available
in UKBB and NAKO—were used. This includes 4 tissue contrasts per
participant and image volume (fat, water, in-phase, and opposed-phase).
Although these image contrasts are comparable between the 2 studies,
other acquisition parameters vary markedly. Notably, voxel size is higher
in UKBB (2.23� 2.23� 3 mm3 to 2.23 � 2.23� 4.5 mm3) compared
with NAKO (1.2 � 1.2 � 3 mm3), which has a direct impact on spatial
resolution, image signal, and image noise.2,9

Extraction of Image-Derived Features
This study focuses on the phenotypic characterization of abdominal

organs (liver, spleen, left and right kidneys, and pancreas). These target or-
gans were automatically segmented on MRI scans of 10,000 data samples
per study using a pretrained and publicly available deep learning model
based on a 3D full resolution convolutional architecture (nnUNet9,18). Re-
sulting organ segmentation masks were visually inspected for the purpose
of quality control, and data samples with severeMR image artifacts or sub-
stantial automated segmentation errorswere excluded. This resulted in a to-
tal of 17,996 data sets (8791 fromUKBBand 9205 fromNAKO) that were
used for further analysis in this study. This entire process of organ segmen-
tation and quality control is described in detail in previous work17 and was
the technical basis for this work.

In a subsequent postprocessing step, the segmentation masks of
the kidneys were split into a parenchymal kidney mask and a kidney hi-
lum adipose tissue (AT) mask by applying a threshold of 0.5 to the rel-
ative signal of the fat image (=fat/[fat + water]). Thus, 7 segmentation
masks were obtained per data set (5 organs + right and left kidney hilum
AT). The corresponding organ and tissue volumes were calculated from
these segmentation masks by multiplying the respective voxel count
with the voxel volume. In addition to volume features, proton density
fat fractions (PDFFs) of liver and pancreas were estimated. To this end,
mean fat-image and water-image voxel signal intensities were extracted
from liver and the pancreas segmentation masks, and relative fat signal in-
tensities (=fat/[fat + water]) were computed as a measure for the relative or-
gan fat content.19 Thus, 9 image-derived featureswere extracted in total (or-
ganvolumes, kidney hilumATvolumes, and PDFFs of liver and pancreas).

Analysis of the Data Generating Process
To acquire a comprehensive understanding of the data-generating

process—a prerequisite for subsequent data harmonization—we com-
bined prior knowledge with methods of causal discovery. Specifically,
we used the knowledge that age was causally dependent on the data
www.investigativeradiology.com 347
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source (UKBB vs NAKO) due to different inclusion criteria among these
studies. Based on common medical knowledge, we assumed that age
and sex have a direct effect on height and weight, and that height has
a direct effect on weight.20 Finally, based on scientific literature, it is
well-established that age impacts at least a subset of the observed image
features, for example, organ sizes of individuals decrease with age.21–23

Beyond these causal relations established by prior knowledge,
we aimed to investigate further potential causal relations among
image-derived features, observed demographic features, and the data
source. To this end, we used conditional independence testing as a method
of causal discovery combined with the knowledge about the direc-
tion of potential causal relation. Specifically, we assumed that ob-
served image features are purely children of a parent-child connection
in the causal sense, whereas the data source has only a parent role in
the causal sense.

To identify the causal graph,we performed nonparametric nonlinear
conditional independence testing by Invariant Environment Prediction pre-
viously described by Heinze-Deml et al.24 Concretely, we implemented In-
variant Environment Prediction using random forest classifiers/regressors
(depending on the type of target variable) that were trained with 100 trees
and 5-fold cross-validation. The predictive accuracies on the respective val-
idation setswere statistically compared using nonparametricWilcoxon test-
ing with a significance value of 0.01 with Holm-Bonferroni correction as
previously suggested for Invariant Environment Prediction.24 The null hy-
pothesis of statistical independence was rejected below this threshold.
Data Harmonization
Before cross-study analysis, we aimed to reduce undesired bias

caused by differences in imaging protocols while preserving informative
variation due to, for example, age-dependent biological effects. To this
end, we used the ComBat technique initially described by Johnson et al.11

In summary, ComBat achieves batch effect correction by fitting a model
to the observed data predicting the features that are to be corrected from
the data source (in this case UKBB vs NAKO) and from observed covar-
iates. Subsequently, the contribution of the data source is eliminated
obtaining corrected features.
FIGURE 1. Epidemiological cohort characteristics. Upper left, Different age dis
of height andweight in UKBB andNAKO separated by sex. Bottom left, Empiric
Bottom right, Empirical joint densities of age and weight in UKBB and NAKO
NAKO + female; green, NAKO + male).
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Formally, the value Yijf of a feature f of a participant j at site i
is modeled as:

Y ijf ¼ α f þ γif þ bTf k j þ δif εijf

with αf being the feature mean, γif the site-specific deviation from the
mean, bf and kj regression coefficients and input variables of which the
(linear) effect should be preserved, and δif a site- and feature-dependent
scaling factor for the residue εijf accounting for scaling effects. Harmo-
nized feature values are then computed as:

Y corr
ijf ¼ Y ijf − ba f −bγif − bb

T

f k j

bδif
þ bα f þ bb

T

f k j

preserving the influence of the input variables kj. As suggested in previ-
ous studies,7,25 we used a quadratic age-term to also account for nonlin-
ear age-dependent feature variation.

We applied ComBat for harmonization of image features using
the data source (UKBB vs NAKO) as the batch variable (of which the
effect should be corrected) and based on the previous analysis of the
data generating process using age, sex, height, and weight as covariates
(of which the effects should be preserved). For ComBat harmonization,
we chose UKBB as the reference data set in this study (ie, γ̂if ¼ 0 and
δif = 1 for all image features from UKBB).

Cross-Study Analyses
Finally, we merged harmonized data fromUKBB and NAKO for

subsequent large-scale cross-study analyses. Specifically, we investigated
age-dependent changes in extracted imaging features and performed
multilinear quantile regression (with an additional quadratic age term ac-
counting for nonlinear effects of age) describing the impact of available
demographic parameters on image-derived abdominal phenotypes.

Software
All analyses were performed in Python 3 using the packages

Scikit-learn (for random forest implementation, quantile regression,
and statistical testing) and neuroCombat (ComBat implementation,
tributions between UKBB and NAKO. Upper right, Empirical joint densities
al joint densities of age and height in UKBB andNAKO separated by sex.
separated by sex (red, UKBB + female; orange, UKBB + male; blue,

© 2022 The Author(s). Published by Wolters Kluwer Health, Inc.
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FIGURE 2. Histograms of observed marginal distributions of image-derived features from UKBB (red) and NAKO (blue) before (A) and after (B) ComBat
feature harmonization.

Investigative Radiology • Volume 58, Number 5, May 2023 Cross-Study Analysis of Imaging Data
https://github.com/Jfortin1/neuroCombat). Graphs were created using
the Seaborn package.

RESULTS

Demographic Data
Image data and related demographic information from a total of

17,996 participants (8791 fromUKBB and 9205 fromNAKO) were in-
cluded. Notably, due to different prospective inclusion criteria, partici-
pants of UKBB were on average significantly older than NAKO partic-
ipants with peaks between ages 60 and 70 years in UKBB and around
the age of 50 years in NAKO (Table 1, Fig. 1). Participant sex was
FIGURE 3. Causal view on the data generating process. ds indicates data sourc
imaging protocol; c, unknown confounder. Solid lines represent established c
circles represent observed variables. Dashed circles represent unobserved varia
exactly one image protocol, which is different from the other study. A, Causal g
Causal graph based on prior knowledge and with additional results from causa
direct effect of the data source (the imaging protocol) on image features and
through an unknown confounder. However, the existence of an additional, un
excluded in principle.

© 2022 The Author(s). Published by Wolters Kluwer Health, Inc.
largely balanced in both studies—a result of a balanced participant
recruiting process. We observed similarly shaped empirical joint densi-
ties of body height and weight in participants from UKBB and NAKO
stratified for sex (Fig. 1). Across data sets, a slight age-dependent de-
crease in height was observable resulting in slightly lower average
height of UKBB participants (Fig. 1).
Image-Derived Features
Overall, the observed marginal densities of image-derived fea-

tures showed varying degrees of deviation between UKBB and NAKO
(Fig. 2A). Organ volumes of liver, spleen, and the kidney showed a
e (UKBB vs NAKO); a, age; s, sex; h, height; w, weight; f, image features; p,
ausal relations; dashed lines represent possible causal relations. Solid
bles. Note that ds and p are interchangeable in this case as each study has
raph of the data generating process based solely on prior knowledge. B,
l discovery (conditional independence testing). We were able to establish a
were able to exclude indirect effects mediated by height or weight
observed confounder, beyond the different imaging protocols, cannot be
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FIGURE 4. Exemplary visualization of the effect of data harmonization on cross-study analyses. A, Kernel density plot showing the change of liver proton
density fat fraction (PDFF) with age on the original data (UKBB, red; NAKO, blue). B, Kernel density plot showing the change of liver PDFF with age on
the harmonized data (UKBB, red; NAKO, blue). C, Kernel density plot showing the change of pancreas PDFF with age on the original data (UKBB, red;
NAKO, blue). D, Kernel density plot showing the change of pancreas PDFF with age on the harmonized data (UKBB, red; NAKO, blue). Dashed red and
blue lines represent 50% quantile regression separately for UKBB and NAKO data, respectively. Regression lines showed markedly better consistency
between studies after feature harmonization.

FIGURE 5. Kernel density plots showing age-dependent changes of image-derived features based on harmonized data for the liver, spleen, pancreas, left
(l) and right (r) kidney volume, kidney hilum adipose tissue (AT) volume, aswell as liver and pancreas protondensity fat fraction (PDFF). Red, UKBB; blue,
NAKO. Dashed line, 50% quantile regression line; dotted lines, 25% and 75% quantile regression lines.

Gatidis et al Investigative Radiology • Volume 58, Number 5, May 2023
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FIGURE 6. Representative examples for phenotypic organ alterations with increasing age (A) and with increasing bodymass index (BMI) (B). A, Top row:
water contrast images; bottom row: relative fat signal images depicting decrease in left kidney volume, increase in left kidney hilum adipose tissue (AT)
(top), and increase in pancreatic fat content (bottom) in 6 representative participants (closest to the respective group median values) of increasing age
(from left to right: 20–30, 30–40, 40–50, 50–60, 60–70, and 70–80 years). Orange lines mark pancreatic organ borders and the left kidney hilum. B,
Top and bottom rows: relative fat signal images depicting increase in liver volume, liver fat content (top), and pancreas fat content (bottom) in 6
representative participants (closest to the respective group median values) of increasing BMI (from left to right: BMI of 15–20, 20–25, 25–30, 30–35,
and 35–40 kg/m2). Orange lines mark pancreatic organ borders; asterisks mark the liver parenchyma.

Investigative Radiology • Volume 58, Number 5, May 2023 Cross-Study Analysis of Imaging Data
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tendency toward higher values in NAKO, whereas measured volumes
of kidney hilar ATwere slightly higher in UKBB.

Analysis of the Data Generating Process
To further understand these observed feature distribution shifts,

we analyzed the data generating process using methods of causal dis-
covery. We were able to use prior knowledge about the causal relation
among subsets of observed variables to formulate a partial causal model
of the data generating process as a starting point (Fig. 3A).

Further, using nonparametric nonlinear conditional indepen-
dence testing,24 we were able to uncover direct causal effects of sex
(P < 0.0001), height (P < 0.0001), and weight (P < 0.0001) on observed
image features and, importantly, of the image source itself (UKBB vs
NAKO, P < 0.0001) on image features. In contrast, no causal effect of
the data source could be observed on weight (P = 0.95) or height
(P = 0.99) beyond the effect mediated by age (Fig. 3B). These results
confirm a direct effect (bias) of the data source (NAKO vs UKBB) on
observed image features.

Data Harmonization
Image feature harmonization across studies resulted in a better

alignment of empirical marginal feature densities between UKBB and
NAKO in a subset of features, particularly for pancreas volume and liver
PDFF (Fig. 2B). Interestingly, the above-described distribution shifts be-
tween unharmonized features from UKBB and NAKO (Fig. 2A) were
slightly even further increased through harmonization in a subset of im-
age features, most pronounced for pancreas PDFF and right kidney AT
volume (Fig. 2B). Clearly, this was a result of preserving and enhancing
age-related effects through feature harmonization. As shown for liver and
pancreas PDFF in Figure 4, feature harmonization resulted in a markedly
improved alignment of age-dependent empirical feature densities be-
tween UKBB and NAKO and thus enhanced conspicuity of age-related
changes in liver and pancreas PDFF.

In a supplemental analysis (Supplemental Material 1, http://links.
lww.com/RLI/A787), we assessed the success of data harmonization by
predicting the data source (UKBB vs NAKO) based on image-derived fea-
tures. The underlying rationale is that, after optimal data harmonization,
identification of the data source should not be possible better than by ran-
dom choice. We found that before data harmonization identification of the
data source based on image featureswas possible to a high degree, whereas
after data harmonization this classification accuracy was markedly
TABLE 2. Coefficients of Median (50% Quantile) Regression of Image-D

Female

Interc. (%) Age2 (%/y2) Weight (%

Li PDFF (%) −5.80E-03 2.80E-06 2.40E-04
Pc PDFF (%) −7.40E-03 1.20E-05 8.60E-04

Interc. (mL) Age2 (mL/y2) Weight (m

Li vol (mL) 6.60E+02 −2.10E-02 1.10E+01
Sp vol (mL) 9.20E+01 −1.10E-02 1.20E+00
Kd l vol (mL) 1.20E+02 −5.30E-03 4.10E-01
Kd r vol (mL) 1.20E+02 −4.60E-03 4.40E-01
Pc vol (mL) 8.40E+01 −3.50E-03 1.70E-01
Kd l AT vol (mL) −3.20E+00 1.90E-03 9.60E-02
Kd r AT vol (mL) −7.10E+00 1.80E-03 9.40E-02

The coefficients for the linear age term and the height term were 0 in all regression

Li, liver; Pc, pancreas; Sp, spleen; Kd l, left kidney; Kd r, right kidney; Kd l AT, le
proton density fat fraction; Interc., intercept.
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decreased, pointing to successful harmonization of image-derived
features (Supplemental Material 1, http://links.lww.com/RLI/A787).

Cross-Study Analyses
Using merged harmonized data from UKBB and NAKO, we

assessed age-related changes of image-derived features over a wider
age range (20–80 years) than would have been possible for UKBB
(50–80 years) or NAKO (20–70 years) alone.

Overall, we observed a marked, nonlinear decrease in organ vol-
umes with age with the steepest volume decline between ages 40 and
80 years. In contrast, volumes of left and right kidney AT compartments
increased substantially with agewith the steepest increase between ages
40 and 80 years (Figs. 5, 6).

Liver PDFF and pancreas PDFF both increased nonlinearly with
age. This age-dependent increase in organ fat content was more pro-
nounced for the pancreas. Regarding hepatic fat content, a slight
age-dependent increasewas observed, whereas a subpopulation of indi-
viduals with markedly increased hepatic fat content appeared after the
age of approximately 40 years (Fig. 5).

Finally, joint analysis of harmonized data fromUKBB andNAKO
allowed us to generate quantitative models of interactions between epide-
miological variables and image-derived features. Using quantile regres-
sion, we derived median feature values as well as 25% and 75% quantile
feature values as a function of age (including a quadratic age term),
weight, and height separately for male and female subpopulations. Inter-
estingly, only the quadratic age term and body weight had nonzero coef-
ficients in the final models (Table 2, Supplemental Material 2, http://
links.lww.com/RLI/A788). These models provide a unique characteriza-
tion of the expected phenotypic range of abdominal organ volumes and
AT distributions in the investigated populations across a large age range.
Beyond age-related changes described previously, these quantitative
models revealed a positive effect of body weight on organ volumes and
liver and pancreas PDFF of varying degree. Representative examples of
abdominal organ phenotypes are shown in Figure 6.

DISCUSSION
In this study, we demonstrated joint, cross-study analysis of im-

aging data fromUKBB andNAKO.We investigated the data generating
process and corrected for undesired bias related to the data source. After
data harmonization, we performed cross-study analyses characterizing
abdominal organ phenotypes in the normal population across a wide
age range.
erived Features Separated by Sex

Male

/kg) Interc. (%) Age2 (%/y2) Weight (%/kg)

Li PDFF −1.50E-02 3.00E-06 3.90E-04
Pc PDFF −1.50E-02 1.90E-05 9.00E-04

L/kg) Interc. (mL) Age2 (mL/y2) Weight (mL/kg)

Li vol 6.70E+02 −4.00E-02 1.30E+01
Sp vol 1.20E+02 −1.30E-02 1.40E+00

Kd l vol 1.00E+02 −3.80E-03 8.70E-01
Kd r vol 1.00E+02 −3.30E-03 8.50E-01
Pc vol 7.40E+01 −2.30E-03 3.90E-01

Kd l AT vol −4.30E+00 2.20E-03 1.40E-01
Kd r AT vol −1.20E+01 2.80E-03 1.80E-01

models and were thus omitted in this table.

ft kidney hilum adipose tissue; Kd r AT, right kidney hilum adipose tissue; PDFF,

© 2022 The Author(s). Published by Wolters Kluwer Health, Inc.
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To understand data biases, we investigated the data generating
process using a combination of prior knowledge and methods of causal
discovery. We found that the data source (UKBB vs NAKO) had a direct
effect on image-derived features beyond the effects of age, sex, height,
and weight. This source-related bias is most likely the result of differences
in the image acquisition process between the studies resulting in acquisition
shift.16 Beyond the effects of different imaging protocols, however, it can-
not be excluded that unobserved confounders (eg, differences in ethnicity,
lifestyle, or nutrition between UKBB and NAKO participants) mediate ad-
ditional effects of the data source on image features. Overall, we expect
these unobserved effects to be far less significant compared with the direct
effects of different imaging protocols on image features.

Cross-study analysis of image features revealed how joint analysis
of data from different sources enables a more comprehensive understand-
ing of phenotypic variation. We were able to characterize age-related
changes of abdominal organ phenotypes in a way that reflects the major-
ity of the adult population in the United Kingdom and Germany. What
has been previously reported for small cohorts with a focus on single or-
gans was possible in this study on a large and representative data set
thanks to a combination of a unique large-scale data, automated feature
extraction using deep learning and cross-study analysis of harmonized
data, grounded in causal analysis of the data generating process. Wewere
thus able to provide quantitative models for abdominal organ volumes as
well as abdominal AT distribution (liver PDFF, pancreas PDFF, kidney
hilum AT volume). This information can potentially be used for defining
normative and reference values also in clinical settings with diagnostic
utility. To this end, however, the analysis of all data to be acquired in
UKBB and NAKO as well as their joint interpretation with outcome data
will be required.

The observed ranges of organ volumes in this study are in accor-
dancewith existing literature reports.26–31 Similarly, our findings on AT
distribution are comparable to previous reports on liver PDFF,32 pancreas
PDFF,33 and kidney hilum AT.34 In contrast to these previous studies, the
size of the underlying data combined with the wide age range of partici-
pants in our study provide a much more comprehensive and general de-
scription of parameter distribution.

This study has limitations. Most importantly, feature extraction
can be further improved for a subset of features by using dedicated im-
age sequences available in UKBB and NAKO. For example, the analy-
sis of dedicated multiecho sequences for estimation of liver and pan-
creas PDFF may increase accuracy for these parameters. Furthermore,
the addition of further nonimaging data will allow for a more detailed
understanding of the data generating process by considering informa-
tion about, for example, lifestyle, patient history, or genetic predisposi-
tions. We will have to leave these analyses to future studies that can be
performed once data collection in UKBB and NAKO are completed.

ComBat normalization (and comparable methods), by design, is
performed relative to a reference, which can be one of the included data
sets or their weighted combination. Without external calibration, the
choice of this reference is not well-defined. In this study, we chose
UKBB as the reference data set. The rational for this choice was the as-
sumption that particularly signal intensity measurements are more ro-
bust and less prone to artifacts on a 1.5 T scanner with larger voxel size
due to higher field homogeneity and less noise or ghosting artifacts. To
resolve the question of the choice of reference more definitely, addi-
tional external calibration measurements (eg, multiecho acquisitions
available in UKBB for precise PDFF estimation) will be required in
future studies.

In this study, we provided a blueprint of how cross-study analy-
ses can be performed in the context of epidemiological cohort imaging
studies and demonstrated the remarkable potential of such analyses.

In conclusion, cross-study analysis of image-derived features from
UKBB andNAKO is feasible and can provide unique, population-wide in-
sights into imaging phenotypes and their relation to epidemiological data.
Data from UKBB and NAKO harmonized as proposed in this work can
© 2022 The Author(s). Published by Wolters Kluwer Health, Inc.
be helpful for future joint data analyses across cohorts linking genetic, en-
vironmental, and behavioral risk factors to MRI-derived phenotypes and
provide reference values for clinical diagnostics.
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