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Abstract 

Background and objectives:  Inhibition of terminal complement in neuromyelitis optica spectrum disorder 
(NMOSD) using eculizumab helps prevent relapses, but the exact mechanism of action of the drug remains unclear. 
Similarly, genetic variants in the Fc Gamma receptor 3A (FCGR3A), also known as CD16, are correlated with outcomes 
in NMOSD, but the immune cells expressing those CD16 are unknown. We compared CD16 expression on immune 
cells modulated by complement activity in natural killer (NK) cells and natural killer-T (NKT) cells in NMOSD to disease 
and normal-healthy controls.

Methods:  Peripheral blood cell (PBMC) samples from 45 patients with NMOSD with aquaporin 4 (AQP4)-IgG, 18 
disease controls, and 19 normal controls were analyzed for CD16 expression and complement receptors in vitro.

Results:  At baseline, the number of NKT cells was increased in NMOSD (p < 0.001), but the proportion that was CD16 
positive was lower compared to normal and disease controls (p = 0.0012). NK cell count was normal, but the ratio that 
was CD16 positive was also significantly lower (p < 0.001). In both NK cells and NKT cells from NMOSD, C5 comple-
ment receptor expression was much higher than normal and disease controls (p < 0.001 for both). We also evaluated 
activation markers CD69 and CD83, which were also significantly higher in NK and NKT cells from NMOSD patients. 
FCGR3A p158 V/V genotype group in NMOSD patients showed decreased NK cell proportion with activation, and 
fewer CD16-expressing NKT cells than the F/F genotype group.

Discussion:  Our results support an immunopathogenesis model in which complement pathway activation in NK/
NKT cells upregulates CD16 expression that binds to antibody/antigen complexes. In the context of NMOSD, these 
complement-sensitive cells may be responsible for the escalating autoimmune activity.

Introduction
The immunopathogenesis of neuromyelitis optica spec-
trum disorder (NMOSD) has been shown to involve 
many components of the adaptive immune system 
including T cells [1, 2], B cells [3], monocytes [4], as well 
as the innate immune system, including complement [5], 
granulocytes [6, 7], plasmablasts [8], and antibodies [9]. 
In a simplistic model, upstream communication among 
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peripheral T cells, B cells and monocytes leads to a coor-
dinated decision to attack the central nervous system. A 
breach of the blood brain barrier by aquaporin-4-reactive 
T cells likely initiates the attack, then the T cells recruit 
granulocytes like neutrophils and eosinophils and ulti-
mately aquaporin-4 antibodies that can fix complement 
and destroy astrocytes and nearby myelin [10].

Human trials of the C5 terminal complement inhibi-
tor, eculizumab, proved very effective in preventing 
relapses [11]. Immunopathogenesis models would have 
predicted that blocking the final step of the complement 
cascade would have prevented membrane attack complex 
(MAC) complex formation and downstream astrocyte 
injury within the central nervous system (CNS). If the C5 
inhibitor only inhibits complement-dependent astrocytic 
necrosis via AQP4-IgG, it would not explain the relapse 
rate reduction. Thus, the mechanism of action in C5 
inhibitors may manipulate upstream peripheral immuno-
logical activity beginning with C5a to prevent the initia-
tion of an attack.

In another human trial in NMOSD testing, the effi-
cacy of a CD19 monoclonal B cell depletion strategy 
to prevent relapses, beyond the expectation that B cell 
depletion was effective in preventing relapses [12]. An 
interesting discovery was reported that did not gain 
widespread attention at the time: a genetic variant in the 
Fc gamma receptor 3A gene (FCGR3A, position 158), 
encoding CD16A, significantly predicted outcomes in 
the placebo arm [13]. The genetic variation at position 
158 predicts how the receptor will bind the Fc portion 
of antibodies, with the phenylalanine (F) F/F homozy-
gous genotype binding the weakest, the valine (V) V/V 
binding the strongest and the V/F genotype in between. 
In this trial of NMOSD participants not on any mono-
clonal therapies, the F/F genotype had the best clinical 
outcomes and the V/V genotype had the worst, with V/F 
in between. This was the first study that showed a sig-
nificant genetic impact on outcomes in NMOSD. Known 
to be expressed by NK cells and monocytes, we do not 
understand how FCGR3A influences the immunopatho-
genesis of NMOSD.

To begin to investigate the upstream immunological 
processes that lead to NMOSD attacks, we focused on 
the convergence of CD16 expression and complement 
activity at the level of NK and NKT cells. As effectors of 
innate immunity, NK cells can quickly react to infections 
and cancers without the requirement of self-major histo-
compatibility complex (MHC) class I signals or antibod-
ies. NK cells can also behave as adaptive immune cells 
with antigen-specificity and immunological memory 
where they may be involved in autoimmunity [14]. NKT 
cells are much less numerous than NK cells, but they 
serve many of the same functions with the additional 

capability of signaling with CD1d molecules that can pre-
sent self-antigens and contribute to autoimmunity [15]. 
Although there have been some previous reports study-
ing the prevalence of NK and NKT cells in NMOSD so 
far [16–18], no studies have been reported that have per-
formed a comprehensive analysis including the FCGR3A 
polymorphism. Because both NK and NKT cells express 
CD16A encoded by FCGR3A and react to complement 
activity, we sought to characterize the levels and patterns 
of expression in NMOSD compared to healthy and dis-
ease controls.

Materials and methods
Patients and Peripheral blood mononuclear cells (PBMCs)
PBMCs from serum aquaporin-4 (AQP4)-IgG-positive 
NMOSD patients measured by cell-based assay (CBA) 
were donated from The Guthy-Jackson Foundation 
and Prof. Friedemann Paul. All NMOSD samples were 
from patients in remission with a gap of at least 4 weeks 
between sample collection and the date of last relapse. 
The PBMCs were isolated by Ficoll’s method. Disease 
controls (DC) and normal controls (NC) were obtained 
from the Guthy-Jackson Charitable Foundation and 
healthy volunteers under informed consent. Forty-five 
random NMOSD with AQP4-IgG patients, 18 disease 
controls, and 19 normal controls were included in this 
cohort. Disease controls include eight with myelin-oligo-
dendrocyte glycoprotein (MOG)-IgG associated disease 
(MOGAD) [19], four with a diagnosis multiple sclerosis 
(MS) who were seronegative for both AQP4 and MOG-
IgG, and one of each following diagnoses: Crohn’s dis-
ease, neuropsychiatric systemic lupus erythematosus, 
rheumatoid arthritis, transverse myelitis, ankylosing 
spondylitis, and AQP4-IgG-seronegative NMOSD. The 
demographics of study participants are shown in Table 1.

Flow cytometry and data analysis
BD Fortessa X-20 (BD Bioscience) was used for flow 
cytometry analysis. After doublet cells were excluded, 
lymphocytes and monocytes fractions were isolated 
by plotting forward- and side-scatter heights. The fol-
lowing antibodies were used for the assay: CD3-AF700 

Table 1  Profiles of each group in the cohort

NMOSD Disease controls Normal controls
(n = 45) (n = 18) (n = 19)

Age 45.79 ± 14.98 44.7 ± 19.33 43.67 ± 15.61

Sex (M:F) 5:40 3:15 6:13

AQP4-IgG 
serostatus

100% (45/45) 0% (0/18) 0% (0/19)
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(BioLegend), CD11b-BV421 (BD Bioscience), CD14-
BV785 (BioLegend), CD14-PerCP-Cy5.5 (BioLegend), 
CD16-BUV395 (BD Bioscience), CD35-VioBlue (Milte-
nyi Biotec), CD35-PE (BioLegend), CD45-BUV737 (BD 
Bioscience), CD45-BV711 (BioLegend), CD56-BV510 
(BioLegend), CD69-BV650 (BioLegend), CD83-BV605 
(BioLegend), CD88-APC (BioLegend), CD88-BV786 (BD 
Bioscience), CX3CR1-PE (BioLegend), and TCR Vα24-
Jα18-APC-Vio770 (Miltenyi Biotec). LIVE/DEAD™ Fix-
able Blue Dead Cell Stain Kit (Thermo Fisher Scientific) 
was used to exclude dead cells from peripheral blood 
mononuclear cells (PBMCs). After Fc receptor blocking 
using FcR Blocking Reagent (Immunostep) according 
to the manufacturer’s instruction, PBMCs were stained 
with the surface markers for 30  min at 4  °C. They were 
then fixed with 4% paraformaldehyde, permeabilized 
with 0.1% Tween-20. Cells were stained with intracel-
lular markers for 30  min at 4  °C in PBS with 0.5% fetal 
bovine serum (FBS) and 2  mM of ethylenediaminetet-
raacetic acid (EDTA). NK, NKT and monocytes are 
defined as follows: NK (CD45 + CD14-CD3-CD56 +), 
NKT (CD45 + CD14-CD3 + CD56 +), and monocytes 
(CD45 + CD11b + (CD14 + and/or CD16 +)). The gating 
strategy in the study is shown in Additional file 1: Fig. S1.

Polymerase chain reaction (PCR)
The DNAs were extracted from PBMC samples with 
QIAamp DNA Micro (Qiagen, USA). GoTaq Green Mas-
ter Mix (Promega, USA) and primers were mixed as per 
the manufacturer’s instructions. The primer sequences 
used in the reaction are as follows: FCGR3A common 
forward primer (TCC AAA AGC CAC ACT CAA AGT 
C), FCGR3A p158 V reverse primer (AGA CAC ATT 
TTT ACT CCC ATC), and FCGR3A p158 F reverse 
primer (AGA CAC ATT TTT ACT CCC ATA). After 
incubation of 95 °C for 5 min, 35 cycles of 95 °C for 20 s, 
56 °C for 20 s, and 72 °C for 30 s were performed.

Statistical analysis
Data were analyzed with FlowJo v10.7.1 (Becton Dickin-
son & Company) and GraphPad Prism 8.4.3 (GraphPad 
Software, LLC). The groups were compared using the 
Kruskal–Wallis test, and Spearman’s rank correlation was 
used for the analysis of correlations between parameters. 
Due to the exploratory nature of the study, no adjustment 
for multiple comparisons was made. A statistical signifi-
cance was defined as p < 0.05.

Table 2  Percentages of positivity for cell surface markers of NK cells, NKT cells, and monocytes in each group

n.s. not significant, *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001

(%) NMOSD Disease controls Normal controls p
(n = 45) (n = 18) (n = 19)

NK Cells 6.807 ± 3.841 5.413 ± 3.463 6.377 ± 3.461 0.3827ns

 CD16+ 42.71 ± 20.40 38.43 ± 21.44 64.87 ± 19.98 0.0004***

 CD35+ 20.89 ± 14.68 22.02 ± 18.09 11.63 ± 8.240 0.0083**

 CD88+ 18.59 ± 9.319 11.86 ± 11.73 3.966 ± 3.925 < 0.0001****

 CD35+CD88+ 7.184 ± 6.017 3.487 ± 2.365 1.193 ± 1.233 < 0.0001****

 CD69+ 12.96 ± 7.721 11.55 ± 8.765 4.543 ± 2.873 < 0.0001****

 CD83+ 23.49 ± 13.83 24.14 ± 15.06 9.744 ± 7.248 0.0001***

NKT Cells 6.219 ± 4.350 3.322 ± 2.192 3.576 ± 2.124 0.0006***

 CD16+ 23.33 ± 17.98 40.64 ± 24.17 37.65 ± 17.55 0.0012**

 CD35+ 22.08 ± 22.78 30.03 ± 26.82 10.74 ± 11.84 0.0086**

 CD88+ 19.35 ± 17.36 15.33 ± 10.76 8.759 ± 9.246 0.0112*

 CD35+CD88+ 6.814 ± 11.68 2.765 ± 1.812 1.292 ± 1.537 0.0001***

 CD69+ 17.77 ± 13.11 20.17 ± 12.21 14.81 ± 11.27 0.3159ns

 CD83+ 29.71 ± 22.21 41.26 ± 21.25 25.44 ± 24.05 0.0553ns

 TCR Vα24+ 16.50 ± 19.60 29.12 ± 23.64 35.28 ± 17.36 0.0001***

Monocytes 5.780 ± 5.473 8.038 ± 5.905 5.048 ± 5.499 0.2295ns

 CD35+CD88+ 7.478 ± 7.732 9.122 ± 10.95 1.146 ± 1.420 0.0030**

 CM 52.72 ± 13.85 56.29 ± 22.89 44.49 ± 14.53 0.0775ns

 IM 6.507 ± 4.608 5.850 ± 3.181 7.863 ± 4.276 0.3345ns

 NCM 40.77 ± 13.80 37.86 ± 22.03 47.20 ± 12.63 0.1756ns
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Results
The percentage of NKT cells as a proportion of all white 
blood cells was increased in the NMOSD group com-
pared to the other groups (NMOSD 6.219 ± 4.350%, 
DC 3.322 ± 2.192%, NC 3.576 ± 2.124%; p = 0.0006) 
(Fig.  1H). Among them, the percentage of NKT cells 
expressing CD16 in NMOSD was lower than in the other 
groups (NMOSD 23.33 ± 17.98%, DC 40.64 ± 24.17%, 
NC 37.65 ± 17.55%; p = 0.0012) (Fig.  1I). In contrast, 
the percentages of NK cells in the NMOSD, DC, and 
NC were 6.807 ± 3.841%, 5.413 ± 3.463%, and 6.377 ± 
3.461%, respectively, without significant differences 
(Fig.  1A). Similar to NKT cells, the proportion of NK 
cells expressing CD16 was lower in the NMOSD group 
compared to NC (NMOSD 42.71 ± 20.40%, NC 64.87 ± 
19.98%; p = 0.0004) and was also significantly lower in the 
disease controls (DC 38.43 ± 21.44%) (Fig. 1B).

The classical NKT, also known as invariant NKT 
(iNKT), play a significant role in all NKT cells. iNKT 
has invariant TCR Vα24-Jα18, and is CD1d-restricted. 
We analyzed the proportion of iNKT among NKT using 
the TCR Vα24-Jα18 antibody. Results showed the per-
centage of TCR Vα24-Jα18-positive NKT was lower in 
the NMOSD than in the DC and NC groups (NMOSD 
16.50 ± 19.60%, DC 29.12 ± 23.64%, NC 35.28 ± 17.36%; 

p = 0.0001) (Fig.  1O). We also analyzed the surface 
marker expressions in TCR Vα24-Jα18-positive NKT 
cells. The only significant result is obtained from CD83-
positive subsets, which showed significantly higher in the 
NMOSD group than the Normal Control group (Addi-
tional file 2: Fig. S2).

We simultaneously analyzed monocyte populations in 
each cohort. The percentages of monocytes in NMOSD, 
DC, and NC were 9.383 ± 7.833%, 11.26 ± 6.592%, and 
8.042 ± 5.329%, respectively, with no statistically sig-
nificant differences between the groups (p = 0.5004) 
(Fig. 2A). The proportions of classical monocytes (CM), 
intermediate monocytes (IM), and non-classical mono-
cytes (NCM) among monocytes was not different either 
(Fig. 2C–E). Unlike NK and NKT cells in NMOSD, CD16 
expression on monocytes was not different in NMOSD 
compared to controls (Fig. 2E, F).

We then focused on the surface expression of two com-
plement receptors in NK and NKT cells: CD35 (CR1), the 
receptor for C3b and C4b, and CD88 (C5aR), the receptor 
for C5a. There was a significant increase in CD35-positive 
NK cells in NMOSD and DC compared to NC (NMOSD 
20.89 ± 14.68%, DC 22.02 ± 18.09%, NC 11.63 ± 8.240%; 
P = 0.0083). In NKT cells, CD35 expression was higher in 
both NMOSD and disease controls, compared to healthy 

Fig. 1  Flow cytometry analysis of NK and NKT cells. Although there is no change in the abundance of NK cells themselves (A), CD16-positive 
NK cells are significantly decreased in NMOSD (B). Complement receptors CD35 (C) and CD88 (D) were increased in NMOSD, and 
CD35 + CD88 + co-positive cells were markedly increased (E). Activation markers CD69 (F) and CD83 (G) were also increased in NK cells. Analysis 
of NKT cells showed they were significantly increased in NMOSD (H), while CD16-positive cells (I) and TCR Vα24-positive cells (O) were significantly 
decreased. CD88 (K) and CD35 + CD88 + double-positive (L) showed significant increases compared to NC, while CD35 (J) and activation markers 
(M, N) were unchanged. NMOSD (n = 45), disease controls (n = 18), and healthy controls (n = 19). *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001
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controls (NMOSD 22.08 ± 22.78%, DC 30.03 ± 26.82%, 
NC 10.74 ± 11.84%; P = 0.0086) (Fig. 1C, J). The C5a recep-
tor, CD88, was elevated in NMOSD in both NK and NKT 
cells (CD88 + NK: NMOSD 7.184 ± 6.017%, DC 3.487 ± 
2.365%, NC 1.193 ± 1.233%; P < 0.0001, CD88 + NKT: 
NMOSD 6.814 ± 11.68%, DC 2.765 ± 1.812%, NC 1.292 ± 
1.537%; p = 0.0001) (Fig.  1D, K). Of note, the number of 
CD35 + CD88 + double-positive cells was significantly 
elevated in both NK and NKT cells in the NMOSD 
group (CD35 + CD88 + NK: NMOSD 7.184 ± 6.017%, 
DC 3.487 ± 2.365%, NC 1.193 ± 1.233%; P < 0.0001, 
CD35 + CD88 + NKT: NMOSD 6.814 ± 11.68%, DC 
2.765 ± 1.812%, NC 1.292 ± 1.537%; p = 0.0001) (Fig.  1E, 
L). Monocytes from NMOSD patients also expressed ele-
vated levels of complement receptors, but they were also 
elevated on monocytes in other diseases (Fig. 2B).

We analyzed the expression of CD69 as a marker of 
early activation of NK and NKT cells. CD69 expression 
was significantly increased in NMOSD compared with 
NC, while an increase in CD69 + NK was also observed 
in DC compared with NC (NMOSD 12.96 ± 7.721%, DC 
11.55 ± 8.765%, NC 4.543 ± 2.873%; p < 0.0001) (Fig. 1F). 
In contrast, there was no significant difference in CD69 
expression on NKT cells among NMOSD versus healthy 
or disease controls (Fig.  1M). CD83 is another marker 
found on activated T and B cells, circulating dendritic 
cells, Langerhans cells, macrophages, monocytes, neu-
trophils, and NK cells [20]. There was a significant 
increase in CD83-positive cells in NMOSD and DC in 
NK cells (NMOSD 23.49 ± 13.83%, DC 24.14 ± 15.06%, 
NC 9.744 ± 7.248%; p = 0.0001) (Fig.  1G). The percent-
age of CD83 + NKT cells in each cohort was similar to 
CD69 (NMOSD 29.71 ± 22.21%, DC 41.26 ± 21.25%, NC 
25.44 ± 24.05%; p = 0.0553) (Fig. 1N). A summary of the 
analyzed flow cytometry data is shown in Table 2.

We performed Spearman correlation analysis for 
the NMOSD group to examine potential correlations 
between the parameters (Additional file  3: Table  S1). 
Moderate positive correlations were found between 
CD35 and CD83 (p < 0.0001, r = 0.6482) (Fig.  3G), and 
CD88 and CD69 (p = 0.0004, r = 0.5040) in NK cells 
(Fig.  3H). Weak-negative correlations were also seen 
between CD16 and CD35 (Fig.  3A), CD16 and CD88 
(Fig. 3B), and CD16 and CD69 (Fig. 3C). No correlation 
was observed between CD16 and CD83 (Fig. 3D), CD35 
and CD69 (Fig. 3F), and CD69 and CD83 (Fig. 3J). The 
same analysis was performed for NKT cells, with sig-
nificant strong positive correlations between CD88 
and CD69 (p < 0.0001, r = 0.7103) (Fig.  4J), CD35 and 
CD83 (p < 0.0001, r = 0.7900) (Fig.  4H), and CD83 and 
TCR Vα24-Jα18 (p < 0.0001, r = 0.7951) (Fig. 4O). There 
were also moderate positive correlations between the 
following combinations: CD35 and TCR Vα24-Jα18 
(Fig.  4I), CD69 and CD83 (Fig.  4M), and CD69 and 
TCR Vα24-Jα18 (Fig.  4N). Weak-positive correlations 
were detected between CD16 and CD35 (Fig.  4A), 
and CD69 and CD35 (Fig. 4G), but no correlation was 
observed between CD16 and CD88 (Fig. 4B), and CD16 
and CD69 (Fig. 4C).

Among the NMOSD group who were using the B cell 
depletion rituximab as preventive therapy (n = 20), the 
only impact was an increase in CD16 expression on 
NK cells in rituximab-treated patients compared to the 
patients without rituximab (n = 25) (Fig.  5B). No sig-
nificant differences were found between the NMOSD 
patients with and without rituximab in the other param-
eters (Additional file 4: Table S2). Finally, we analyzed the 
correlation between the number of days from the date of 
sample collection to relapse date and each parameter, but 
found no significant correlations (data not shown).

Fig. 2  Flow cytometry analysis of monocytes. There are no significant differences between the percentage of monocytes (A), classical monocytes 
(C), intermediate monocytes (D), and non-classical monocytes (E). Complement receptors in monocytes are significantly upregulated in NMOSD 
and DC (B). NMOSD (n = 45), disease controls (n = 18), and Healthy controls (n = 19). **p < 0.01
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We further analyzed the effect of FCGR3A p158 poly-
morphism on NK cell ratio and its surface markers in 
NMOSD patients. 45 patients had V/V, V/F, and F/F 
genotypes in 11, 22, and 12 patients, respectively. The 
ratio of NK cells among all PBMCs in the V/V geno-
type group was significantly lower than that in the F/F 
group (p = 0.0400, Fig.  6A). However, their ratio in the 
V/F group was not significantly different from that in 
the other groups (V/V vs. V/F: p = 0.6119; V/F vs F/F: 
p = 0.1346) and was intermediate between the V/V and 
F/F groups. The number of CD69-positive NK cells was 
significantly increased in the F/F group compared with 
the V/V group (p = 0.0388, Fig.  6E). The expression of 
CD88 on NK cells was significantly upregulated in the 
V/V group compared with the V/F group (p = 0.0175, 
Fig. 6D). The same analysis was performed for NKT cells. 
There was no significant difference in the expression of 
CD16 (Fig.  6B), CD35 (Fig.  6C), and CD83 (Fig.  6F) in 
NK cells. Although there was no difference in the ratio 
of NKT cells (Fig.  6G), the ratios of CD16-positive NK 
cells (Fig. 6H) and CD35-positive NK cells (Fig. 6I) in the 
V/V group were significantly lower than those in the F/F 
group, respectively. In addition, TCR Vα24-positive NKT 

cells were significantly increased in the F/F group com-
pared to the V/F group (p = 0.0071, Fig. 6M), and there 
was an increasing trend in the F/F group compared to the 
V/V group (p = 0.0861).

Discussion
In this study, we have focused on the convergence of com-
plement reactivity and CD16 expression in immune cells 
that may be involved in the pathogenesis of NMOSD. 
If terminal complement inhibition only acted to pro-
tect against downstream MAC formation at the astro-
cyte endfoot, it would not have prevented relapses from 
initiating. Therefore, C5 complement inhibition with 
eculizumab in NMOSD trials must be acting upstream 
of the complement MAC complex as this drug proved 
remarkably effective in preventing relapses from occur-
ring at all [11]. Similarly, the impact of a genetic variation 
in FCGR3A in NMOSD outcomes strongly implicates 
this receptor in the immunopathogenesis of the disease. 
Among upstream immune targets that are (1) sensitive 
to peripheral complement activity, (2) can express CD16 
and (3) are antigen-specific, monocytes and NK/NKT 
cells are prime candidates.

Fig. 3  Spearman correlation analysis in NK cells of NMOSD group (n = 45). Dot plots show the results of correlation analysis between parameters 
each other: CD16 vs CD35 (A), CD16 vs CD88 (B), CD16 vs CD69 (C), CD16 vs CD83 (D), CD35 vs CD88 (E), CD35 vs CD69 (F), CD35 vs CD83 (G), CD88 
vs CD69 (H), CD88 vs CD83 (I), and CD69 vs CD83 (J). There is a significant positive correlation between CD35 and CD83 (G). There was a negative 
correlation between CD16 and CD35 (A), CD88 (B), and CD69 (C)
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Fig. 4  Spearman correlation analysis in NKT cells of NMOSD group (n = 45). Dot plots also show the results of correlation analysis between 
parameters each other: CD16 vs CD35 (A), CD16 vs CD88 (B), CD16 vs CD69 (C), CD16 vs CD83 (D), CD16 vs TCR Vα24 (E), CD35 vs CD88 (F), CD35 vs 
CD69 (G), CD35 vs CD83 (H), CD35 vs TCR Vα24 (I), CD88 vs CD69 (J), CD88 vs CD83 (K), CD88 vs TCR Vα24 (L), CD69 vs CD83 (M), CD69 vs TCR Vα24 
(N), and CD83 vs TCR Vα24 (O). There is a significant positive correlation between CD35 and CD83 (H). CD16 showed negative correlation between 
CD35 (A), CD88 (B), and CD69 (C). A positive correlation was observed between TCR Vα24 positivity and CD35 (I), CD69 (N) and CD83 (O). Positive 
correlations were also observed between activation markers and complement receptors, namely between CD35 and CD83 (H), and CD88 and CD69 
(J)

Fig. 5  Analysis of parameters with and without rituximab in NMOSD (n = 45). The percentage of NK cells (A–F) and NKT cells (G–M) is shown 
among NMOSD patients with (left column) or without (right column) rituximab intervention. Only CD16 + NK cells significantly increased NMOSD 
with rituximab (B). *p < 0.05
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We found that the expression of complement receptors, 
CD16, and immune activation markers in NK and NKT 
cells are significantly changed in NMOSD patients com-
pared to the control groups. This difference appears to be 
specific to NK and NKT cells as there is no difference in 
these markers on monocytes between NMOSD and dis-
ease controls. In line with our data showing a decrease 
of NK populations expressing CD16 and an increase in 
NKT cells in NMOSD, two previous reports showed that 
NK cells were decreased in NMOSD [17, 18]. An increase 
in NKT, as well as a decrease in CD16-expressing NK 
cells, was previously reported in NMOSD as compared 
to healthy controls [16]. One possible explanation for this 
finding is that activated CD16 + NK cells are more likely 
to migrate out from the circulation. A similar decrease 
in peripheral circulating NK cells has been reported in 
primary Sjogren’s syndrome [21]. Interestingly, NKT 
expressing CD16 were also significantly decreased in our 
data, suggesting not only NK but also NKT may migrate 
to peripheral inflammatory tissues. Another possibil-
ity for the decrease in NK/NKT cells is that all NMOSD 
samples used in this study were in remission, and most 
patients were already on therapeutic intervention; how-
ever, this is unlikely as disease controls were also in 
remission.

Invariant NKT (iNKT) cells all express the same T cell 
receptor Vα24-Jα18 paired with Vβ11, which binds gly-
colipid presented by CD1d. In our NMOSD cohort, the 
invariant NKT cell population was lower compared to 
healthy and disease controls. The function of iNKT in 
autoimmune diseases is controversial. There are reports 
that iNKT can be detrimental when they release inter-
leukin-17 (IL-17) upon stimulation by CD1d or via 
secreted interleukin-23 (IL-23) from antigen-presenting 
cells [22]. On the other hand, some reports suggest that 
iNKT acts in a protective manner on the Th17 lineage by 
suppressing IL-23 released from monocyte-derived den-
dritic cells (mDCs) and IL-17 production from memory 
CD4 + helper T cells [23, 24].

Although small in number, NKT cells play a signifi-
cant role in autoimmunity through various mechanisms 
including dendritic cell maturation by antigen presen-
tation, as adjuvants, and through long-term immune 
memory effects [15]. Also, there are some reports that 
NK cells act as antigen-presenting cells. HLA-DR expres-
sion in NKG2C + adaptive NK cells was upregulated 
when the cells were incubated with human cytomegalovi-
rus and specific antibodies. CD16 expression on them is 
simultaneously decreased, whereas CD80/86 molecules 
have no changes. Notably, chloroquine decreased T-cell 

Fig. 6  Analysis of parameters among FcGR3A p158 polymorphisms in NMOSD. The percentage of NK cells (A–F) and NKT cells (G–M) is shown 
among NMOSD patients with V/V, V/F, and F/F genotypes. The ratio of NK cells in total PBMCs was significantly decreased in the V/V genotype group 
compared to the F/F group (A). There was no difference in the expression of CD16 (B), CD35 (C), and CD83 (F) in these cells, but CD69-positive NK 
cells were significantly increased (E), and CD88-positive NK cells were significantly increased in the V/V group compared with the V/F group (D). 
Meanwhile, there was no difference in the ratio of NKT cells (G), but CD16-positive NK cells were decreased in the V/V group (H). Furthermore, TCR 
Vα24-positive NKT cells were significantly increased in the F/F group compared to the V/F group (M), and there was also a tendency for an increase 
in the F/F group compared to the V/V group (p = 0.0861). The expression of CD35 in NKT cells was also significantly decreased in V/V group than F/F 
group (I). There was no difference in complement receptors or activation markers on the surface of NKT cells between the groups (J–L). *p < 0.05; 
**p < 0.01
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response if NK cells were pulsed with HCMV-antibody 
complex but did not affect NK cells pulsed with HCMV 
peptide. Antigen presentation by NK cells activated a 
polyfunctional CD4 + T cell response characterized 
by degranulation (CD107a) and the secretion of Th1 
cytokines (interferon (IFN)-γ and TNF-α) [25]. In the 
mouse model, NK1.1( +)CD11c( +)CD122( +)MHC class 
II( +) cells share characteristics with the NK cell lineage 
and with IFN-producing killer dendritic cells. These cells 
depend on IL-15 and express E4BP4, cytotoxic and pro-
duce type I and type II IFN upon activation and efficient 
Antigen-presenting cells (APCs) through MHC class II 
expression and cross-presentation to CD8s [26]. Inter-
estingly, an increased NKT ratio has also been reported 
in Sjogren’s syndrome [27]. Sjogren’s syndrome is one of 
common coexisting autoimmune diseases of NMOSD 
[28], indicating these autoimmune diseases may have 
similar pathogenesis of innate immunity via NKT cells.

Neutrophils are another immune cell that constantly 
express high levels of C5a the receptor, CD88. C5a-
preactivated neutrophils cause glutamate increase of 
extracellular space of astrocytes, which may be partially 
responsible for downstream astrocyte damage in acute 
relapses of NMOSD [29]. Our data suggest that periph-
eral NK and NKT cells expressing CD88 play another role 
in the upstream pathogenesis of NMOSD. NK and NKT 
cells do not usually express CD88, even though CD88-
mRNA is present in the nucleus. Nevertheless, they can 
upregulate CD88 in systemic inflammatory conditions 
such as E. coli-induced sepsis [6].

CD69 is one of the early activation markers of hemat-
opoietic cells, including NK and NKT cells [30]. Stimu-
lation with IL-2, IL-12, TNF-α, and pneumococcal 
C-polysaccharide increases CD69 expression in NK and 
NKT cells [30, 31]. Another activation marker, CD83, is 
known to bind to CD83L on APCs, stabilize MHC class II 
and CD86, and expand antigen-specific cytotoxic T lym-
phocytes (CTLs) in vitro if co-expressing with CD80 [32]. 
Our data indicate a significant increase in the number 
of activated NKs in NMOSD. Positive correlations were 
observed between CD35 and CD83, and CD69 and CD88 
in both NK and NKT cells, which suggests that comple-
ment activity and NK/NKT activation occur at the same 
time. NK/NKT cell activation can be caused by various 
stimuli and is not necessarily disease-specific. In other 
words, any inflammatory activity has the potential to 
activate NK/NKT cells, and thereby trigger an NMOSD 
relapse.

CD16-expression on NK cells was significantly 
decreased in the NMOSD group compared to DC and 
NC, but not in the rituximab intervention group. The 
results of the FCGR3A p158 polymorphism in this study 
also revealed that they altered the ratio of both NK/NKT 

cells and the expressions of many cell surface markers. 
The degree of B cell depletion due to rituximab depends 
on the FCGR3A p158 polymorphism and NMOSD 
patients with the F allele have an increased risk of relapse 
due to insufficient memory B cell depletion. The sug-
gested reason for this is that the FCGR3A p158 F/F geno-
type reduces the affinity of autoantibodies for NK cells 
and have the slower binding rate, resulting in reduced 
Antibody-dependent cellular cytotoxicity (ADCC) effi-
cacy of NK cells [33, 34]. Similar polymorphism changes 
have also been reported in anti-myelin-associated glyco-
protein (MAG) neuropathy and rheumatoid arthritis [35, 
36]. Thus, the effect of the p158 polymorphism in rituxi-
mab users is opposite to the effect in NMOSD patients 
who are not using this monoclonal antibody. The F/F 
genotype is associated with poor outcomes in rituxi-
mab users because of insufficient ADCC and depletion 
of B cells; in placebo mimicking natural history, the V/V 
genotype has the worst outcomes presumably related to 
increased ADCC activity perhaps with the AQP4 anti-
body. Either way, CD16 activity on NK/NKT cells seems 
to play a key in the pathogenesis of NMOSD.

We speculate the following hypothesis to explain 
relapse initiation in NMOSD (Fig. 7): NK and NKT cells 
activated by systemic inflammation upregulate expres-
sion of the C5 complement receptor, CD88. These cells 
then take up the immune complex of the AQP4-IgG and 
the AQP4 molecule via CD16. The source of AQP4 may 
be derived from astrocytes in the central nervous system 
or from lungs, kidneys, and muscles, which are present 
in lower amounts. When inflammation destroys these 
tissues and AQP4 proteins are released into the blood, it 
binds to circulating AQP4-IgG and form immune com-
plexes. Some reported cases that triggered NMOSD 
relapse, such as infection or tumor [37, 38], may sup-
port this hypothesis. NK/NKT cells that internalize these 
immune complexes via CD16A are activated and express 
CD69 and HLA-DR, then they migrate into lymph nodes 
where they interact with and activate AQP4-reactive T 
cells and B cells. Together, the adaptive immune response 
to AQP4 initiates an attack. Currently, the best theory for 
CNS localization of the AQP4 immune response is based 
on mouse models showing that Th17-polarized AQP4-
reactive T cells adoptively transferred to wild-type mice 
preferentially attack the optic nerves, then the spinal cord 
within 12 days [39].

There are several limitations to our present study. First, 
the disease control group is heterogeneous. It is neces-
sary to collect a variety of autoimmune diseases and 
conduct a similar study to verify whether the results are 
specific to NMOSD. Second, the samples used in this 
study are all from the remission phase and may not reflect 
events occurring in the acute phase. Different cell surface 
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marker changes may be seen in NK and NKT cells in the 
acute phase. On the other hand, the fact that many acti-
vated NK and NKT cells express complement receptors 
even in the remission phase is significant enough that 
we can speculate that they may play a significant role in 
the unique pathogenesis of NMOSD. The third limitation 
is the difference in the sample size of each group. Since 
the NMOSD group has more than twice the patients 
included compared to the Disease and Normal Con-
trols, the analysis might be skewed. Also, the previous 
analysis of FCGR3A polymorphisms in rituximab-treated 
NMOSD patients used a total of 100 patients [33]. A 
similar and bigger sample size could have made detecting 
significant differences in each parameter more sensitive.

In summary, NK and NKT cells are thought to play a 
major role in the pathogenesis of NMOSD by express-
ing complement receptors and CD16 after activation and 
migrating to the periphery, triggering ADCC and pro-
longed production of autoantibodies. Further analysis 
of how immune complexes, complement, and cytokines 
alter NK and NKT cells themselves and how they are 
involved in the pathogenesis of NMOSD is necessary.
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