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• CH is associated with
large-artery
atherosclerosis, white
matter lesion load, and
a proinflammatory
profile in patients with
ischemic stroke.

• CH and, in particular,
mutations in TET2 and
PPM1D are associated
with higher risk for
second vascular events
and death after
ischemic stroke.
ruary 
Clonal hematopoiesis (CH) is common among older people and is associated with an
increased risk of atherosclerosis, inflammation, and shorter overall survival. Age and
inflammation are major risk factors for ischemic stroke, yet the association of CH with risk
of secondary vascular events and death is unknown. We investigated CH in peripheral
blood DNA from 581 patients with first-ever ischemic stroke from the Prospective Cohort
With Incident Stroke–Berlin study using error-corrected targeted sequencing. The pri-
mary composite end point (CEP) consisted of recurrent stroke, myocardial infarction, and
all-cause mortality. A total of 348 somatic mutations with a variant allele frequency ≥1%
were identified in 236 of 581 patients (41%). CH was associated with large-artery
atherosclerosis stroke (P = .01) and white matter lesion (P < .001). CH-positive patients
showed increased levels of proinflammatory cytokines, such as interleukin-6 (IL-6), inter-
feron gamma, high-sensitivity C-reactive protein, and vascular cell adhesion molecule 1.
CH-positive patients had a higher risk for the primary CEP (hazard ratio [HR], 1.55; 95%
confidence interval [CI], 1.04-2.31; P = .03), which was more pronounced in patients with
larger clones. CH clone size remained an independent risk factor (HR, 1.30; 95% CI,
2024
1.04-1.62; P = .022) in multivariable Cox regression. Although our data show that, in particular, larger and TET2- or
PPM1D-mutated clones are associated with increased risk of recurrent vascular events and death, this risk is partially
mitigated by a common germline variant of the IL-6 receptor (IL-6R p.D358A). The CH mutation profile is accompanied
by a proinflammatory profile, opening new avenues for preventive precision medicine approaches to resolve the self-
perpetuating cycle of inflammation and clonal expansion.
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Introduction
With aging, the risk of cardiovascular disease and cancer is
increasing. Clonal hematopoiesis (CH), defined by the acquisition
of somatic mutations in hematopoietic stem cells (HSCs), has
been identified as a commonality between these 2 age-related
conditions. CH occurs in 20% to 30% of individuals aged
>60 years and most frequently involves mutations in epigenetic
regulatory genes (eg, DNMT3A, TET2, and ASXL1).1-7 It is
associated with a higher all-cause mortality, an increased risk for
cardiovascular events, and an approximately 10-fold risk of
developing hematologic malignancies.6,8 A causal relationship
between CH and cardiovascular disease is best known for TET2,
for which accelerated development of atherosclerosis driven by
an altered function of the nucleotide-binding domain (NOD)-like
receptor protein 3 (NLRP3)/interleukin-1β (IL-1β) inflammasome
of mutated monocytes/macrophages was reported in preclinical
models.8-10 Moreover, in patients with ischemic and nonischemic
heart failure, CH has been reported to be associated with rapid
progression and unfavorable overall survival.11,12 These data
point toward multifaceted effects of mutated clones in CH-
positive individuals, not only affecting self-renewal and differ-
entiation but also inflammatory signaling of mature blood
cells.13,14 Inflammation plays a crucial role in the pathogenesis of
ischemic stroke and its functional consequences after brain
VOLUME 141, NUMBER 7
injury.15-17 Compared with the rapidly increasing number of
reports in the field of myocardial infarction (MI) and heart failure,
little is known with respect to CH and ischemic stroke. In their
original 2014 article, Jaiswal and colleagues reported an
increased risk of ischemic stroke in individuals with CH, which has
recently been confirmed in large patient series.6,18 To fill the
knowledge gap concerning the role of CH in patients with
ischemic stroke, we conducted a thorough genetic study inves-
tigating secondary cardiovascular risk of patients with ischemic
stroke and CH in a large prospective cohort.19

Patients and methods
Patients
The Prospective Cohort With Incident Stroke–Berlin (PROSCIS-B;
ClinicalTrials.gov identifier: NCT01363856) is a prospective,
observational, hospital-based cohort study of patients enrolled
after first-ever stroke. For further details, notice the previously
published study protocol.19 In short, patients with ischemic
stroke were recruited at 1 of 3 stroke units of Charité–Uni-
versitätsmedizin Berlin. Within 7 days of stroke onset, patients
received interviews, extensive clinical examinations, and blood
draws for laboratory analysis. During 3 years of follow-up, annual
telephone-based interviews assessed patients’ vital status, inci-
dence of cardiovascular diseases, and functional outcome. Vital
ARENDS et al
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status was additionally obtained from the local registry office,
even if patients were lost to follow-up. Patients aged ≥18 years
were included after first-ever stroke, as defined by World Health
Organization criteria.20 Exclusion criteria were previous stroke
(not counting transitory ischemic attacks), brain tumor or metas-
tases, and participation in any intervention study. A Consolidated
Standards of Reporting Trials (CONSORT) flow diagram for the
inclusion and exclusion of patients is shown in supplemental
Figure 1, available on the Blood website. In addition, serial
blood samples of 24 patients with ischemic stroke from the Berlin
Longterm Observation of Vascular Events Study (BeLOVE;
German Clinical Trials Registry DRKS00016852) were investi-
gated. BeLOVE is an ongoing observational clinical cohort study
of patients with existing cardiovascular disease. The study was
approved by the ethics committee (internal review board) of the
Charité–Universitätsmedizin Berlin (EA1/218/09) and was con-
ducted in accordance with ethical principles described in the
Declaration of Helsinki.

Patient characteristics
Additional information at baseline was collected, including the
following: sociodemographic parameters; etiologic subtype of
stroke, according to the Trial of ORG 10172 in Acute Stroke
Treatment classification21; stroke severity, according to National
Institutes of Health Stroke Scale (NIHSS); cardiovascular risk
factors (current smoking, alcohol consumption, hypertension,
peripheral artery disease, prevalent atrial fibrillation, prevalent
diabetes mellitus, and history of MI); and use of statin or
antithrombotic/anticoagulant medication.

Outcome measures
Primary end point of the PROSCIS-B study is a composite end
point (CEP) of recurrent stroke, MI, and all-cause death within
3 years, based on a structured interview with the patient or his/
her relatives. Moreover, medical records were screened for any
unreported end points. Reported recurrent stroke events or MIs
were validated according to World Health Organization
criteria22 using medical records from the responsible hospital
and/or the treating physician by 2 senior vascular neurologists
who were not involved in the PROSCIS-B study and were
blinded to CH status. Survival status was obtained from the
Berlin local registration office. Only confirmed end points were
used in the analysis.

Targeted sequencing
Peripheral blood (PB) samples were obtained within 7 days after
the incident stroke and stored at −80◦C. DNA was extracted
from PB samples and subjected to an error-corrected targeted
sequencing workflow, as published previously.23,24 Briefly,
sequencing libraries were prepared using a commercially
available library preparation kit and a customized targeted
sequencing panel (Twist BioScience) covering 45 genes recur-
rently mutated in CH (supplemental Table 1). Bioinformatic
error correction was implemented via 9-bp unique molecular
identifiers (xGen UDI-UMI adapters by Integrated DNA Tech-
nologies). Libraries were sequenced in paired-end mode on
Illumina’s NovaSeq 6000 sequencing platform. Somatic variants
with a variant allele frequency (VAF) ≥1% were identified using
our in-house variant calling pipeline (see supplemental Patients
and methods).24 Selected variants with VAF <2% were validated
with an independent targeted ultradeep sequencing approach,
CH IN PATIENTS WITH ISCHEMIC STROKE
as previously described.25,26 The genotype of the interleukin-6
receptor (IL-6R) single-nucleotide polymorphism p.D358A
(rs2228145 C>A) was determined via Sanger sequencing
(supplemental Patients and methods).

Biomarker analysis
Several inflammatory biomarkers (ie, high-sensitivity C-reactive
protein [hsCRP], IL-1β, IL-6, IL-18, interferon gamma [IFN-γ], and
tumor necrosis factor-α [TNF-α]) and markers of endothelial
dysfunction (ie, vascular cell adhesion molecule 1 [VCAM-1] and
soluble P-selectin) were measured in baseline serum samples at
a commercial laboratory (Synevo, Clinical Trials Service Labo-
ratory, Berlin, Germany). hsCRP was determined using the High
Sensitivity C-Reactive Protein Assay (Siemens Healthcare,
Germany) with a limit of detection of 0.3 mg/L and the
IMMULITE 1000 system. IFN-γ, IL-6, IL-18, IL-1β, and TNF-α
were determined using the MILLIPLEX Human Cytokine/Che-
mokine Magnetic Bead Panel multiplex assay (Merck, Germany)
with a limit of detection of 3.20 pg/mL and the Luminex 200
System. VCAM-1 and soluble P-selectin were determined using
the MILLIPLEX Human Cardiovascular Disease Magnetic
Bead Panel 2 multiplex assay (Merck) with a limit of detection of
0.122 and 0.244 ng/mL, respectively, and the Luminex 200
System.

MRI data analysis
Magnetic resonance imaging (MRI) images were taken from
clinical routine data using different 1.5- and 3-T scanners at 3
tertiary sites. Fluid-attenuated inversion recovery or T2-weighted
images were used to assess white matter lesion severity, accord-
ing to the Wahlund classification system.27 The Wahlund visual
rating scale, or age-related white matter changes scale, is a scale
ranging from a score of 0 to 30 that takes into account both sides
of the brain (right and left) and prespecified brain regions (frontal,
parieto-occipital, temporal, infratentorial/cerebellum, and basal
ganglia). Herein, white matter hyperintensities are assigned a
score of 0 to 3 in each region on both sides of the brain. The final
score is the sum of all regions. Rating was performed indepen-
dently by 2 raters (neurologist [A.K.] and senior neuroradiologist).

Statistical analysis
Statistical analysis was performed in R version 4.0.1 using the
packages “ggplot2,” “stats,” “tableone,” “survival,” “power-
SurvEpi,” and “forestmodel.” The primary end point was
assessed using univariable and multivariable Cox regression
models to obtain crude and adjusted hazard ratios (HRs). A
sample size calculation was performed in advance using the
“powerSurvEpi” package in R: Presuming a CH prevalence of
25%, a 2-tailed type I error α of 5%, and an HR of order 2.0
(based on the exploratory analysis for ischemic stroke and car-
diovascular disease by Jaiswal et al6), 87 events were needed to
obtain a power of 80%. Event-free survival curves were esti-
mated using Kaplan-Meier analysis. To account for potential
confounders, adjustment was made for baseline risk factors
found to be imbalanced (P < .2 in Fisher test or Wilcoxon rank-
sum test) between the groups of CH-positive and CH-negative
individuals: age, sex, arterial hypertension, diabetes, obesity
(defined as body mass index >30 kg/m2), smoking status, stroke
severity (as measured by the NIHSS), peripheral artery disease,
atrial fibrillation, physical activity before stroke incidence (low vs
high), and use of anticoagulants. The Cox proportional hazards
16 FEBRUARY 2023 | VOLUME 141, NUMBER 7 789
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assumption was tested for all covariates using a score test of
time-weighted residuals.28 The primary end point was assessed
separately for the variables CH (all somatic mutations with VAF
≥1%), CH of indeterminate potential29 (CHIP; all somatic
mutations with VAF ≥2%), CH with large clones (all somatic
mutations with VAF ≥10%), as well as VAF as a continuous
measure of clone size. In patients with >1 mutation, the largest
VAF was used for clone size calculation. In analyses on single
gene level, all patients carrying a mutation in the respective
gene X were classified as X mutated, regardless of the VAF of
the mutation or other comutations. Pairwise comparisons of
variables for exploratory purposes were performed using Wil-
coxon rank-sum tests or Fisher exact tests. The 2-sided level of
significance was set at a P < .05 without adjustment for multiple
testing, if not stated otherwise. In all analyses, we considered
only complete cases.
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Results
Sequencing data analysis
PB samples were available for 581 patients with incident
ischemic stroke (supplemental Figure 1). We identified 348
somatic mutations with VAF ≥1% in 236 patients, representing
41% of our cohort. Although 155 patients harbored a single
mutation, 81 patients harbored multiple (up to 5) mutations
(Figure 1A; supplemental Figure 2). The VAF ranged from 1% to
48% (Figure 1B), with a median of 2.7%. ASXL1 mutations had a
higher median VAF than non-ASXL1 mutations (5.6% vs 2.6%;
P = .03; supplemental Figure 3). The most frequently mutated
genes were DNMT3A, TET2, and ASXL1 (Figure 1C), affecting
81% of all CH-positive patients, consistent with the mutational
spectrum described in other nonmalignant cohorts.6,26,30-32 The
most frequent comutation pair was DNMT3A/TET2 in 19 patients
(Figure 1D). TET2-mutated patients more frequently harbored a
second mutation in another gene than DNMT3A-mutated
patients (35/73 vs 37/119; P = .02). CBL-mutated patients
frequently harbored second mutations (8/11), in particular
DNMT3A mutations (Figure 1D; supplemental Figure 2).

Clonal dynamics after ischemic stroke
To investigate the dynamics of CH clones after ischemic stroke,
we analyzed 24 CH-positive patients with ischemic stroke with
available follow-up blood sample 2 years after stroke from the
BeLOVE cohort. We identified 35 CH clones with VAF ≥1% in at
least 1 time point. Median VAF increased from 1.7% to 2.2%
(maximum increase, 3%; maximum decrease, 3%). To quantify
clonal dynamics, we calculated the clonal fitness index following
Robertson et al33 and classified clones as increasing, decreasing,
or stable (supplemental Patients and methods). Median fitness
was s = 0.09 per year, corresponding to a doubling time of ~8
years for a clone of VAF 1%. Interestingly, we found that 13 of 35
clones showed positive selection and only 2 of 35 clones showed
negative selection (supplemental Figure 4). On individual gene
level, SRSF2-mutated clones showed the highest expansion
properties (median fitness, s = 0.25 per year, corresponding to a
doubling time of 2.8 years; supplemental Figure 5).

Associations of CH with baseline clinical
characteristics
Baseline characteristics of the 581 patients byCH status are shown
in Table 1. As previously reported, the presence of CH mutations
790 16 FEBRUARY 2023 | VOLUME 141, NUMBER 7
correlated strongly with patient age, ranging from 0% in patients
aged <40 years to >60% in patients aged >80 years (Figure 1E-F).
In terms of the different etiological stroke subtypes according to
the Trial of ORG 10172 in Acute Stroke Treatment criteria,21 the
highest prevalence of CH was found in patients with evidence of
large-artery atherosclerosis (49.7% vs 37.4% in patients with all
other stroke subtypes; P = .01; Figure 1G). This association
remained significant after correction for age, sex, and cardiovas-
cular risk factors in a logistic regression (odds ratio, 1.67; 95%
confidence interval [CI], 1.1-2.54; P= .016; supplemental Table 2).
In terms of laboratory measures, CH-positive patients had lower
baseline hemoglobin values (14.1 vs 14.4 g/dL; P = .04) and red
blood cell counts (4.58/μL vs 4.72/μL; P = .007), as well as a lower
estimated glomerular filtration rate (74.3 vs 83.3 ml/min per
1.73 m2; P < .001; supplemental Figure 6), as recently reported in
patients with chronic kidney disease.34

Association of CH with inflammatory biomarkers
We measured levels of inflammatory biomarkers that have previ-
ously been related to CH (hsCRP, IL-1β, IL-6, TNF-α, IFN-γ, and IL-
18) and markers of endothelial activation (VCAM-1 and P-selectin)
at baseline in 562 patients. Patients with CH showed higher
median values of hsCRP (6.1 [2.1-17.4] vs 4.0 [1.7-10.8] mg/mL;
P = .006), IL-6 (4.9 [3.2-11.6] vs 3.7 [3.2-7.1] pg/mL; P = .002), and
VCAM-1 (503 [412-605] vs 459.5 [370-571] ng/mL; P = .001)
compared with patients without, at a Bonferroni-corrected signif-
icance level of P < .00625 (Figure 2A; supplemental Figure 7). The
fraction of patients with elevated levels of IFN-γ was higher in
patients with CH (21.7% vs 10.1%; P < .001; Figure 2A). In line with
the previously reported association of TET2 deficiency with
elevated IL-1β,8,9 we found higher IL-1β levels in patients with a
TET2 mutation compared with CH-negative patients (3.20
[3.20-10.22] vs 3.20 [3.20-4.26] pg/mL; P = .015; Figure 2B).

Association of CH with white matter lesion load
White matter lesions (WMLs) are areas of abnormal myelination in
the brain that reflect a mixture of inflammation, swelling, and
damage to the myelin. There is increasing evidence that WMLs
may be an early component of neurodegenerative conditions,
such as Alzheimer disease and stroke.35 They can be detected in
T2-weighted or fluid-attenuated inversion recovery sequences on
MRI, are typically quantified by the Wahlund visual rating scale,27

and are considered a marker for small-vessel disease.35,36 Among
398 patients with available MRI data, the Wahlund score signifi-
cantly differed between CH-positive and CH-negative patients
(median, 7 [interquartile range, 4-11] vs 4 [interquartile range, 2-8];
P < .001; Figure 2C). As expected, WML load correlated with
patient age (supplemental Figure 8A). However, we also found a
statistically significant correlation of WML load with clone size
(supplemental Figure 8B). In a linear regression with age, sex,
arterial hypertension, diabetes mellitus, and clone size as inde-
pendent variables, age (P < .0001), sex (P = .04), arterial hyper-
tension (P = .007), and clone size (P = .06) were predictive for
WML load (supplemental Figure 8C).

Associations of CH and clone size with recurrent
vascular events and death
With a median follow-up time of 36.2 months, primary end
point data were available for all 581 patients with a total of 97
events (50 deaths, 42 strokes, and 5 MIs). In a univariable time-
to-event analysis, CH was associated with a higher risk of the
ARENDS et al
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Figure 1. Sequencing analysis and demographic and clinical characteristics of 581 patients with ischemic stroke from the PROSCIS-B study with respect to CH status.
(A) Number of patients stratified by the number of detected mutations. (B) Histogram of VAF. (C) Gene-specific somatic mutation prevalence in 581 patients of the PROSCIS-B
cohort. (D) CIRCOS plot (www.circos.ca) visualizing the comutational spectrum of the PROSCIS-B cohort. Segment length depicts number of patients with mutation(s) in the
respective gene. Multiple mutations in the same gene are not considered. Ribbons depict the frequency of co-occurrence of 2 gene mutations in the same patient. (E) Age
distribution of the PROSCIS-B cohort of CH-positive and CH-negative patients. (F) CH prevalence according to patient age. (G) CH prevalence according to etiological cause
of stroke, as defined by the Trial of ORG 10172 in Acute Stroke Treatment criteria. Point size visualizes patient number, and color visualizes median age of the group.
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occurrence of the CEP (HR, 1.55; 95% CI, 1.04-2.31; P = .03;
Figure 3A). The risk was higher for patients with multiple
mutations (HR, 1.94; 95% CI, 1.16-3.28; P = .01; supplemental
Figure 9) and patients with large clone CH (defined by VAF ≥

10%: HR, 2.45; 95% CI, 1.39-4.31; P = .002; Figure 3B;
supplemental Figure 10). In fact, in a univariable Cox regression
with the group of CH-negative patients as reference group, HR
increases steadily with clone size (Figure 3C). This led us to
investigate the effect of clone size as measured by the VAF as a
CH IN PATIENTS WITH ISCHEMIC STROKE
continuous parameter. In a univariable Cox regression, clone
size was associated with a 51% higher risk per 10% increase in
VAF (HR, 1.51; 95% CI, 1.24-1.84; P < .001). Because of its
strong association with CH, age represents a major source of
confounding in our analyses. However, in a multivariable anal-
ysis with age, sex, NIHSS score, cardiovascular risk factors, atrial
fibrillation, peripheral artery disease, and anticoagulant therapy
as covariates, CH clone size remained an independent risk
factor (HR, 1.30; 95% CI, 1.04-1.62; P = .022; Table 2). Of note,
16 FEBRUARY 2023 | VOLUME 141, NUMBER 7 791
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Table 1. Demographic and clinical characteristics of the PROSCIS-B cohort

Characteristic CH negative (n = 345) CH positive (n = 236) Total (n = 581) P value*

Age, median (IQR), y 64 (55-73) 73.5 (66.75-81) 68 (59-76) <.001

Sex, no. (%) .012

Female 227 (65.8) 130 (55.1) 357 (61.4)

Male 118 (34.2) 106 (44.9) 224 (38.6)

TOAST classification, no. (%) .037

Large-artery atherosclerosis 77 (22.3) 76 (32.2) 153 (26.3)

Cardiac embolism 80 (23.2) 60 (25.4) 140 (24.1)

Small-artery occlusion 61 (17.7) 32 (13.6) 93 (16.0)

Other determined cause 12 (3.5) 4 (1.7) 16 (2.8)

Undetermined cause 115 (33.3) 64 (27.1) 179 (30.8)

Modified ranking scale, no. (%) 1

≤1 224 (64.9) 153 (64.8) 377 (64.9)

≥2 121 (35.1) 83 (35.2) 204 (35.1)

NIHSS score, no. (%) .08

≤4 268 (77.7) 168 (71.2) 436 (75.0)

>4 77 (22.3) 68 (28.8) 145 (25.0)

Smoking status, no. (%) .002

Never smoker 114 (33.4) 108 (46.8) 222 (38.8)

Current or former smoker 227 (66.5) 123 (53.2) 350 (61.2)

Arterial hypertension, no. (%) .01

No 136 (39.4) 68 (28.8) 204 (35.1)

Yes 209 (60.6) 168 (71.2) 377 (64.9)

Diabetes mellitus, no. (%) .066

No 279 (80.9) 175 (74.2) 454 (78.1)

Yes 66 (19.1) 61 (25.8) 127 (21.9)

Dyslipidemia, no. (%) .754

No 272 (79.8) 183 (78.5) 455 (79.3)

Yes 69 (20.2) 50 (21.5) 119 (20.7)

Obesity, no. (%) .022

No 250 (72.7) 186 (80.9) 436 (76.0)

Yes 94 (27.3) 44 (19.1) 138 (24.0)

Atrial fibrillation, no. (%) .01

No 283 (82.0) 172 (72.9) 455 (78.3)

Yes 62 (18.0) 64 (27.1) 126 (21.7)

Coronary heart disease, no. (%) .91

No 287 (83.2) 198 (83.9) 485 (83.5)

Yes 58 (16.8) 38 (16.1) 96 (16.5)

Peripheral artery disease, no. (%) .043

No 328 (95.1) 214 (90.7) 542 (93.3)

Yes 17 (4.9) 22 (9.3) 39 (6.7)

Analyses were restricted to patients without missing values in the respective category.

IQR, interquartile range; TOAST, Trial of Org 10172 in Acute Stroke Treatment.

*P value from Wilcoxon rank sum test or Fisher exact test.

†High-dose statin therapy is defined as a dose equivalent to atorvastatin ≥ 40 mg/d.
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Table 1 (continued)

Characteristic CH negative (n = 345) CH positive (n = 236) Total (n = 581) P value*

History of cancer, no. (%) .30

No 313 (92.3) 210 (89.7) 523 (91.3)

Yes 26 (7.7) 24 (10.3) 50 (8.7)

Statin therapy, no. (%) .41

None 50 (14.7) 26 (11.1) 76 (13.3)

Low dose 243 (71.7) 178 (76.1) 421 (73.5)

High dose† 46 (13.6) 30 (12.8) 76 (13.3)

Antithrombotics, no. (%) .19

None 0 (0.0) 1 (0.4) 1 (0.2)

Antiplatelet 271 (79.9) 174 (74.4) 445 (77.7)

Anticoagulation 61 (18.0) 50 (21.4) 111 (19.4)

Both 7 (2.1) 9 (3.8) 16 (2.8)

IL-6R p.D358A, no. (%) .069

D/D 148 (42.9) 91 (38.6) 239 (41.1)

D/A 146 (42.3) 121 (51.3) 267 (46.0)

A/A 51 (14.8) 24 (10.2) 75 (12.9)

Analyses were restricted to patients without missing values in the respective category.

IQR, interquartile range; TOAST, Trial of Org 10172 in Acute Stroke Treatment.

*P value from Wilcoxon rank sum test or Fisher exact test.

†High-dose statin therapy is defined as a dose equivalent to atorvastatin ≥ 40 mg/d.
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adding inflammatory biomarker levels associated with CH to the
multivariable model did not substantially change the magnitude
of this association (supplemental Table 3). On gene group level,
in particular the group of non-DNMT3A (defined by the pres-
ence of a CH mutation[s] in other gene[s] than DNMT3A) was
associated with higher risk of CEP occurrence in univariable
analysis (Figure 3D), mainly driven by TET2 and PPM1D muta-
tions (Figure 3E). In multivariable analysis, clone size of non-
DNMT3A mutations (HR, 1.44 per 10% VAF; 95% CI, 1.16-1.79;
P = .001), TET2 mutations (HR, 1.40 per 10% VAF; 95% CI,
1.01-1.91; P = .04), and PPM1D mutations (HR, 2.30 per 10%
VAF; 95% CI, 1.37-3.87; P = .002) were significantly associated
with the CEP (supplemental Table 4). Referring to the proposed
definition of CH with indeterminate potential29 (CHIP), defined
by CH with a VAF ≥2%, TET2-CHIP (HR, 2.25; 95% CI,
1.13-4.50; P = .021) and PPM1D-CHIP (HR, 6.75; 95% CI,
2.15-21.19; P = .001) were associated with a higher risk of CEP
occurrence in multivariable analysis (supplemental Table 4).

To understand whether the risk for the CEP was concordant
across vascular events and mortality, we separately analyzed
for the end points recurrent stroke and death using Kaplan-
Meier analysis. Interestingly, the increased risk for the CEP in
CH-positive patients seems to be primarily driven by mortality
rather than recurrent vascular events (supplemental Figure 11).
Interplay of CH, systemic inflammation, and IL-6R
genotype
A common hypomorphic variant of the IL-6 receptor (IL-6R
p.D358A; rs2228145 A>C) functionally impairs IL-6R signaling,37

is associated with reduced cardiovascular risk in large patient
CH IN PATIENTS WITH ISCHEMIC STROKE
cohorts,38 and has been suggested as a proxy phenotype for IL-6
inhibition.39 Recently, Bick et al demonstrated that the risk
attenuation attributable to the IL-6R p.D358A variant is more
pronounced in the presence of CH.40 To explore the interplay of
CH, systemic inflammation, and impaired IL-6R signaling in the
context of ischemic stroke, we genotyped all 581 patients for the
presence of the rs2228145 variant. Theminor allele (C) frequency
in our patient cohort was 35.9%. Although IL-6 levels did not
significantly differ across different genotypes, individuals with
A/D or A/A variants had significantly lower hsCRP values
(Figure 4A-B). The IL-6R p.D358A variant was not associated with
the CEP (HR, 0.93; 95% CI, 0.62-1.41; P = .76; supplemental
Figure 12). When further stratifying by CH mutation status,
however, our data indicate differences in the risk for CEP
occurrence depending on CH/TET2 status (Figure 4C-F). The
presence of A/D or A/A variants seems to partially attenuate the
risk in the group of CH-positive and TET2-mutated patients,
whereas it does not in CH/TET2-negative patients.
Discussion
In our large prospective cohort of patients with ischemic stroke,
we found that CH is associated with a higher risk for recurrent
vascular events and death. Associations with adverse outcome
have likewise been documented for cardiovascular diseases,
such as heart failure or aortic valve stenosis.41,42

Although the association of CH with secondary vascular risk is
substantially driven by age, several arguments are in favor of an
age-independent biologic effect of CH in this context. First, the
risk for secondary vascular events in our cohort increased with
16 FEBRUARY 2023 | VOLUME 141, NUMBER 7 793
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clone size and number of mutations in the sense of a dose-
response relation, remaining statistically significant after correc-
tion for age and other confounders. Clone size itself has been
shown to be primarily a function of the mutation-specific clonal
fitness rather than patient age (supplemental Figure 13).43,44

Similar effects of clone size have been reported in the risk pre-
diction for hematologic malignancies.1,6,32

Second, we found statistically significant differences between
the different mutated genes with respect to secondary vascular
risk. Although mutations in the most frequently altered gene,
DNMT3A, seem to confer a more benign phenotype, there
were in contrast strong associations for mutations in genes
other than DNMT3A, in particular TET2 and PPM1D, with
recurrent vascular events and death. For these 2 genes, the
proinflammatory dysregulation/pathway leading to accelerated
development of atherosclerosis or heart failure is best under-
stood.8-10,45

Third, we found stroke subtype-specific differences in the
prevalence of CH. Although CH was in general highly prevalent
in our cohort of patients with ischemic stroke, it was specifically
associated with large-artery occlusion, supporting a potential
role of CH in the pathogenesis of this stroke subtype. Compared
with the gene mutation prevalence in a cohort of 237 patients
with colorectal cancer of similar median age from the FIRE-3
study that was investigated with the exact same sequencing
technique,24 we observed a significantly higher prevalence of
TET2 mutations in patients with ischemic stroke (12.7% vs 5.9%;
794 16 FEBRUARY 2023 | VOLUME 141, NUMBER 7
P = .004), whereas no significant difference was found for
DNMT3A mutations (20.5% vs 18.6%; P = .56). This enrichment
of TET2 mutations in patients with ischemic stroke further sug-
gests a central role of TET2-driven CH in stroke pathogenesis.24

Recently, Bhattacharya et al demonstrated that CH is associated
with higher stroke risk in individuals without prior stroke in large
population-based cohorts.18 In contrast to our study, CH was
associated with hemorrhagic stroke and small-vessel ischemic
stroke in an exploratory analysis in one cohort sample of post-
menopausal women.18 Although we cannot investigate the
association with hemorrhagic stroke in the PROSCIS-B cohort,
because recruitment resulted in predominantly patients with
ischemic stroke being included, the reason for the differing
findings concerning ischemic stroke subtypes presently remains
unclear. Differences in study design (population based vs inci-
dent stroke) and sequencing sensitivity (whole exome
sequencing vs error-corrected targeted sequencing) might, in
part, explain diverging results. However, further studies,
including mechanistic studies, will be necessary to determine
cause-effect relations beyond the epidemiologic association
level.

Following the current concept that CH-inducing mutations in
HSCs increase the inflammatory properties of myeloid cells that
differentiate from them,46 CH-positive patients showed elevated
hsCRP and cytokine levels of IL-6 and IFN-γ at baseline after
ischemic stroke. These findings hint toward a stronger systemic
proinflammatory response as a reaction to ischemic brain
ARENDS et al
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damage. In addition, it is conceivable that resolution of acute
inflammation in the brain after primary strokemight be affected in
CH-positive patients as themonocyte/granulocyte axis represents
both: a key regulator of inflammation resolution and amain target
of mutated CH clones.47 Interestingly, our analysis of the IL-6R
p.D358A single-nucleotide polymorphism indicates differences in
cardiovascular risk modulation dependent on CH/TET2 status, as
previously reported in large population studies without prevalent
cardiovascular disease.40 These results warrant further studies
in larger cohorts with potential implications for the applicability
of anti-inflammatory treatment. Furthermore, we showed a
CH IN PATIENTS WITH ISCHEMIC STROKE
previously unappreciated association between CH and elevated
VCAM-1 levels. VCAM-1 mediates the adhesion of leukocytes to
vascular endothelium and plays a critical role in the development
of atherosclerosis.48 VCAM-1 is also an essential protein for
homing and immune tolerance of HSCs.49

Although we comprehensively investigated CH in the by far
largest cohort of patients with incident ischemic stroke to
date, our study has several limitations. When dissecting the
CEP into mortality and recurrent strokes, we find that the
association is primarily driven by mortality. The cause of death
16 FEBRUARY 2023 | VOLUME 141, NUMBER 7 795



Table 2. Multivariable Cox regression model for the CEP

Variable N Hazard ratio (95% CI) P

VAF 550 1.30 (1.04, 1.62) .022

Age 550 1.41 (1.11, 1.80)

Gender male 342 Reference 

female 0.69 (0.43, 1.10)

Physical activity low 374 Reference 

high 0.96 (0.58, 1.60)

Stroke severity NIHSS = 0-4 413 Reference 

NIHSS > 4

208

176

137 1.57 (0.99, 2.49)

Smoking not active 393 Reference 

active 0.80 (0.44, 1.43)

Hypertension no 192 Reference 

yes 0.79 (0.48, 1.29)

Diabetes no 430 Reference 

yes 1.50 (0.93, 2.44)

Obesity no 417 Reference 

yes 1.31 (0.78, 2.22)

Atrial fibrillation no 434 Reference 

yes 1.66 (0.78, 3.52)

Peripheral artery disease no 516 Reference 

yes 1.92 (0.90, 4.06)

Anticoagulant therapy no 428 Reference 

yes

157

358

120

133

116

34

122 0.68 (0.32, 1.43)

.005

.121

.886

.057

.446

.345

.098

.307

.186

.090

.304

0.5 1 2

Multivariable Cox regression analysis of clone size (measured by the VAF) with potential confounders as covariates. For the variables VAF and age, HRs are given per 10% VAF change
and per age decade, respectively.
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is difficult to define in individuals after stroke because of
significant comorbidities. Population-based studies suggest
that approximately two-thirds of deaths are caused by car-
diovascular events in patients after ischemic stroke.50 How-
ever, CH is also associated with a higher incidence of
hematologic cancer. In the absence of a systematic docu-
mentation of cause of death, cancer incidence, or incidence of
other vascular events in the PROSCIS-B study, it eventually
remains elusive to which extent the reported association
between CH and the CEP reflects secondary vascular risk.
Moreover, our analyses rely on sequencing data of a single
time point. As we exemplified in 24 CH-positive patients,
assessing somatic mutations at 2 (or more) time points
enables investigations of longitudinal clonal dynamics, which
796 16 FEBRUARY 2023 | VOLUME 141, NUMBER 7
could provide additional insights into a potential relation
between clonal fitness and clinical outcomes.

In summary, our results provide novel insights into the interplay
of CH, systemic inflammation, and cardiovascular risk and set
the stage for further investigations, potentially improving
personalized risk stratification and secondary prevention stra-
tegies for patients experiencing ischemic stroke.
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Supplementary Methods 
Bioinformatic analysis 
Paired-end reads (148bp+17bp+8bp+148bp) were sequenced on an Illumina NovaSeq 6000 
and processed using our in-house Snakemake1 pipeline. UMIs were extracted and FASTQs 
were generated using picard ExtractIlluminaBarcodes, IlluminaBasecallsToSam and 
SamToFastq subsequently.2 Raw reads were aligned to GRCh383 using bwa mem4 and UMI 
information was added using picard MergeBamAlignment.2 Consensus reads were generated 
using fgbio GroupReadsByUmi with -s adjacency and fgbio CallMolecularConsensusReads 
with -M 3.5 Consensus reads were aligned to GRCh38 using bwa mem and picard 
MergeBamAlignment. Fgbio FilterConsensusReadsQuality with a minimum of 3 consensus 
reads and default parameters was used for quality filtering of aligned consensus reads. Local 
realignment was performed using GATK36 RealignerTargetCreator and IndelRealigner.7 
Variants were called using VarDict8 in single-mode with a minimum allele frequency of 0.0001. 
Variant calls were annotated using annovar9 with following databases: refGen, cytoBand, 
clinvar_20200316, dbnsfp35c, gnomad30_genome, avsnp150, cosmic92_coding, 
cosmic92_noncoding, revel, nci60.  
 
Filtering of somatic variants 
The list of variants called by the above variant calling pipeline was further processed using an 
R-based filtering script with the following exclusion criteria: 

1. Functional criteria 
a. synonymous variants  
b. intronic variants 

2. Quality Criteria 
a. Strandbalance = 1  
b. Strandbalance = 0 

3. Read count criteria 
a. Coverage < 50 
b. Variant supporting reads < 10 
c. Variant allele frequency < 0.01 

4. Cohort/Population-based frequency criteria 
a. Allele frequency in the general population > 10% according to the 

gnomad30_genome database 
b. Variant frequency in this cohort > 20% 

5. Germline/SNP Criteria 
a. 0.45 < VAF < 0.55 or VAF > 0.95 and allele frequency > 0.1% in the 

gnomad30_genome database or reported in the dbSNP database. Truncating 
variants at 0.45 < VAF < 0.55 were rescued, if not reported in the 
gnomad30_genome database and not reported in the dbSNP 
 

Here, Strandbalance is defined as the ratio of variant reads on plus strand to minus strand. 
Hotspot variants such as DNMT3A R882C/H, GNB1 K57E, JAK2 V617F, SF3B1 K666N and 
K700E, SFRS2 P95L, U2AF1 S34F, and Q157P/R were rescued. Variants passing these 
filters were manually evaluated in the Integrative Genome Viewer (Broad Institute, Cambridge, 
USA).  
 
Validation of variants 
Selected variant candidates were validated using targeted-deep sequencing method. Briefly, 
120-220 bp amplicons covering the identified mutation region were generated with Touchdown 
PCR and subsequently pooled for libraries construction. Each pool contained non-overlapping 
amplicons. The final sequencing libraries were generated using NEBNext library preparation 
kit (New England Biolabs) and sequenced on Illumina’s MiSeq platform with the following 
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sequencing mode: paired-end, 150 bp (Read 1) + 8 bp (i7 index) + 8 bp (i5 index) + 150 bp 
(Read 2). Alignment was performed as described above. Read counts and VAFs for previously 
identified mutation positions were extracted and manually verified in IGV. 
 
IL-6R p.Asp358Ala (rs2228145) genotyping 
SNP genotyping was performed using Sanger sequencing. Briefly, 20 µl PCR mixture was 
made containing 10 µl of KAPA HiFi HotStart ReadyMix (Roche), 1 µl of forward primer (5’-
GGGGTTGGAGGGGAAGGTTCCT-3’) at 10 µM, 1 µl of reverse primer (5’-
GCAATGCAGAGGAGCGTTCCGA-3’) at 10 µM, 20 ng of gDNA and remaining volume with 
nuclease-free water. The following thermal cycling protocol was used: initial denaturation at 
95°C for 3 min, 35 cycles of denaturing at 98°C for 20 s, annealing at 65°C for 15 s, extension 
at 72°C for 10 s, and a final extension at 72°C for 10 s. PCR products were purified using 
AMPure beads (Beckman Coulter). Samples were sequenced with Sanger sequencing 
method by Microsynth and rs2228145 variant was determined by visual inspection.  

 
Clonal fitness analysis 

24 patients from the BeLOVE cohort were classified as CH-positive based on the error-
corrected targeted sequencing of blood DNA collected within 7 days of the stroke 
onset. For those patients the follow-up samples at a second timepoint ~ 2 years after 
stroke were available. Sequencing and variant calling was performed analogously to 
the PROSCIS-B cohort. All variants with VAF ≥ 1% in at least one timepoint were taken 
into account. The clonal fitness index 𝑠 was calculated along the lines of Robertson et 
al.10, where the authors derived from a birth-death model of hematopoiesis, that the 
time evolution of the VAF 𝑣(𝑡) of a mutation can be expressed as  
 

𝑣(𝑡) =  
𝑒𝑠(𝑡−𝑡0

 )

2(𝑁𝑤
 +𝑒𝑠(𝑡−𝑡0

 ))
, 

 
Where 𝑁𝑊 is the number of wildtype stem cells and 𝑡0 the time the mutation occurred. 
Given two VAFs 𝑣1  and 𝑣2  at two timepoints 𝑡1  and 𝑡2 , the fitness index 𝑠  can be 
calculated as 
 

𝑠 =  
1

∆𝑡
log⁡(

𝑣2

𝑣1

(1−2𝑣1)

(1−2𝑣2)
), 

 
where  ∆𝑡 = 𝑡2 − 𝑡1, provided 𝑁𝑊 is constant over time. For the VAF, we can assume 
a binomial error, approximated by the Wald interval 
 

𝜎𝑣 =  √
𝑣(1−𝑣)

𝑑
, 

 
where 𝑑  is the sequencing depth. The error 𝜎𝑠  of 𝑠  can be approximated using 
Gaussian error propagation.   
 

𝜎𝑠 =  √(
𝜕𝑠

𝜕𝑣1
)
2

𝜎𝑣1
2 + (

𝜕𝑠

𝜕𝑣2
)
2

𝜎𝑣2
2 = 

1

∆𝑡
√(ℎ(𝑣1)𝜎𝑣1)

2
+ (ℎ(𝑣2)𝜎𝑣2)

2
, 

 
with 
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ℎ(𝑥) =
1

𝑥
+  

2

1−2𝑥
. 

 
A clone was classified as increasing, if 𝑠 −⁡1.96𝜎𝑠 > 0, as decreasing if 𝑠 +⁡1.96𝜎𝑠 <
0, and as stable if it was neither increasing nor decreasing. 
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Supplementary Tables 

Table S1 

Table S1: List of genes covered by the custom sequencing panel (Twist Bioscience). 

No. Gene Region No. Gene Region No. Gene Region 

1 DNMT3A Full 16 RAD21 Full 31 ETV6 Full 

2 TET2 Full 17 STAG2 Full 32 FLT3 Full 

3 JAK2 Full 18 CHEK2 Full 33 GATA1 Full 

4 ASXL1 Full 19 GNAS Full 34 GATA2 Exon 2 

5 SF3B1 Full 20 GNB1 Full 35 KIT Exon 8-19, 17 

6 SRSF2 Full 21 ATM Full 36 MPL Exon 10 

7 TP53 Full 22 KRAS Full 37 NPM1 Exon 11 

8 U2AF1 Full 23 NRAS Full 38 PTPN11 Full 

9 PPM1D Full 24 WT1 Full 39 RUNX1 Full 

10 CBL Full 25 MYD88 Full 40 SETBP1 Exon 4-9 

11 IDH1 Full 26 STAT3 Full 41 NF1 Exon 28-38 

12 IDH2 Full 27 BRCC3 Full 42 PHF6 Exon 3-5, 7-9 

13 BCOR Full 28 CALR Exon 8-9 43 BRAF Exon 15 

14 BCORL1 Full 29 CEBPA Full 44 NOTCH1 Exon 26, 27, 34 

15 EZH2 Full 30 CSF3R Exon 14,17 45 XPO1 Exon 14 
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Table S2 

Table S2: Multivariable logistic regression for incident large artery atherosclerotic stroke (dependent variable) with 
CH, age, sex, arterial hypertension, diabetes mellitus, smoking status, obesity and dyslipidemia as independent 
variables.  

Variable Univariate 

OR 95%-CI  p-value 

CH 1.63 1.08 – 2.48 0.020 

Age 1.01 1.00 – 1.03 0.154 

Male sex 1.07 0.71 – 1.62 0.738 

Arterial hypertension 1.09 0.70 – 1.73 0.695 

Diabetes mellitus 1.04 0.63 – 1.66 0.889 

Smoking status 1.87 1.22 – 2.90 0.005 

Obesity 1.13 0.70 – 1.80 0.614 

Dyslipidemia 1.73 1.09 – 2.74 0.020 
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Table S3 

Table S3: Multivariable Cox regression for the CEP. Multivariable models include age, gender, physical activity, 
stroke severity, smoking status, arterial hypertension, diabetes, obesity, atrial fibrillation, peripheral artery disease 
and anticoagulant therapy as covariates, as well as one additional biomarker associated with CH (hsCRP, IL-6, 

IFN-γ, or VCAM-1). 95%-CI = 95% confidence interval. 

hsCRP 

Variable Level Hazard ratio 95%-CI p 

VAF  1.27 1.01-1.59 0.044 

Age  1.41 1.11-1.80 0.005 

Gender female 0.67 0.42-1.07 0.093 

Physical activity high 1.00 0.60-1.68 0.987 

Stroke severity NIHSS > 4 1.57 0.99-2.50 0.058 

Smoking active 0.80 0.45-1.43 0.453 

Arterial hypertension yes 0.78 0.47-1.28 0.318 

Diabetes yes 1.45 0.89-2.36 0.135 

Obesity yes 1.30 0.76-2.21 0.335 

Atrial fibrillation yes 1.47 0.68-3.19 0.329 

Peripheral artery disease yes 1.82 0.84-3.90 0.127 

Anticoagulant therapy yes 0.72 0.34-1.54 0.401 

log10(hsCRP)  1.17 0.80,1.72 0.417 

 IL-6 

Variable Level Hazard ratio 95%-CI p 

VAF  1.31 1.05-1.64 0.016 

Age  1.48 1.15-1.90 0.003 

Gender female 0.67 0.42-1.08 0.099 

Physical activity high 0.89 0.53-1.52 0.682 

Stroke severity NIHSS > 4 1.64 1.02-2.64 0.040 

Smoking active 0.80 0.44-1.46 0.472 

Arterial hypertension yes 0.76 0.45-1.26 0.285 

Diabetes yes 1.46 0.89-2.39 0.137 

Obesity yes 1.40 0.80-2.43 0.236 

Atrial fibrillation yes 1.72 0.81-3.67 0.160 

Peripheral artery disease yes 1.73 0.79-3.81 0.170 

Anticoagulant therapy yes 0.58 0.27-1.23 0.153 

log10(IL-6)  1.45 0.82-2.58 0.202 

 IFNγ 

Variable Level Hazard ratio 95%-CI p 

VAF  1.32 1.05-1.65 0.016 

Age  1.49 1.15-1.91 0.002 

Gender female 0.68 0.42-1.10 0.115 

Physical activity high 0.88 0.52-1.50 0.648 

Stroke severity NIHSS > 4 1.66 1.03-2.66 0.036 

Smoking active 0.81 0.45-1.48 0.502 

Arterial hypertension yes 0.76 0.46-1.27 0.299 

Diabetes yes 1.48 0.90-2.43 0.120 

Obesity yes 1.36 0.78-2.36 0.274 

Atrial fibrillation yes 1.84 0.86-3.93 0.117 
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Peripheral artery disease yes 2.00 0.94-4.26 0.074 

Anticoagulant therapy yes 0.57 0.27-1.22 0.145 

log10(IFNγ)  1.22 0.60,2.47 0.577 

 VCAM-1 

Variable Level Hazard ratio 95%-CI p 

VAF  1.28 1.02-1.61 0.036 

Age  1.32 1.03-1.70 0.030 

Gender female 0.71 0.44-1.14 0.153 

Physical activity high 1.03 0.62-1.71 0.913 

Stroke severity NIHSS > 4 1.69 1.06-2.69 0.028 

Smoking active 0.81 0.45-1.46 0.489 

Arterial hypertension yes 0.77 0.47-1.28 0.317 

Diabetes yes 1.39 0.85-2.26 0.186 

Obesity yes 1.28 0.76-2.18 0.354 

Atrial fibrillation yes 1.48 0.68-3.21 0.320 

Peripheral artery disease yes 2.01 0.94-4.29 0.072 

Anticoagulant therapy yes 0.74 0.35-1.59 0.447 

log10(VCAM-1)  4.80 0.97-23.82 0.055 



Arends et al.     Clonal hematopoiesis in ischemic stroke 

 

9 

 

Table S4 

Table S4: Univariable and multivariable hazard ratios (HR) for the CEP from Cox regression for different (sub-) 
groups with CH negative patients as reference group. Multivariable analysis includes age, gender, physical activity, 
stroke severity, smoking status, arterial hypertension, diabetes, obesity, atrial fibrillation, peripheral artery disease 
and anticoagulant therapy as covariates. Only complete cases entered the analysis. CH = clonal haematopoiesis, 
defined by somatic mutation with variant allele frequency (VAF) ≥ 1%, CHIP = clonal haematopoiesis of 
indeterminate potential defined by CH with VAF ≥ 2%, LCCH = large clone CH, defined by VAF ≥ 10%, CH VAF = 
VAF as a continuous parameter, non-DNMT3A CHIP = CHIP defined by the presence of one or more mutation(s) 
in other gene(s) than DNMT3A, non-DNMT3A clone size = VAF of non-DNMT3A mutations as a continuous 
parameter, TET2 clone size = VAF of TET2 mutations as a continuous parameter, TET2 CHIP = somatic mutation 
in TET2 with VAF ≥ 2%, PPM1D clone size = VAF of PPM1D mutations as a continuous parameter, PPM1D CHIP 
= somatic mutation in PPM1D with VAF ≥ 2%, 95%-CI = 95% confidence interval.  

Subgroup Univariable Multivariable 

HR 95%-CI  p-value HR 95%-CI  p-value 

CH 1.55 1.04 - 2.31 0.031 1.14 0.73 - 1.80 0.56 

CHIP 1.69 1.10 - 2.61 0.017 1.19 0.72 – 1.98 0.48 

LCCH 2.45 1.39 - 4.31 0.002 1.67 0.87 - 3.20 0.14 

CH clone size 1.51 1.24 - 1.84 < 0.001 1.30 1.04 - 1.62 0.022 

non-DNMT3A clone size 1.60 1.32 - 1.95 < 0.001 1.44 1.16 - 1.79 0.001 

non-DNMT3A CHIP 2.18 1.37 - 3.47 0.001 1.71 1.01 - 2.91 0.048 

TET2 clone size 1.53 1.14 – 2.05 0.005 1.40 1.01 - 1.93 0.04 

TET2 CHIP 2.72 1.47 – 5.01 0.001 2.25 1.13 - 4.50 0.021 

PPM1D clone size 2.16 1.32 - 3.52 0.002 2.30 1.37 - 3.87 0.002 

PPM1D CHIP 7.65 2.75 - 21.22 < 0.001 6.75 2.15 - 21.19 0.001 
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Supplementary Figures 

Figure S1 

 

Figure S1: CONSORT flow diagram of inclusion and exclusion of patients from the Prospective Cohort With Incident 
Stroke Berlin.  
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Figure S2 

 

Figure S2: Variant allele frequencies of somatic mutations for patients with multiple mutations, ordered by the 
largest VAF in the sample.  
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Figure S3 

 

Figure S3: Variant allele frequencies (VAF) of ASXL1 mutations (n = 26) compared to other mutations (n = 322). 
P-value from Wilcoxon rank-sum test. 
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Figure S4 

 

Figure S4: Dynamics of 35 CH clones in 24 patients with ischemic stroke from the BeLOVE cohort. Clones are 
classified as increasing, stable or decreasing, according to their fitness index s (see Supplementary methods). 
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Figure S5 

 

Figure S5: Fitness indices for the five most frequently mutated genes in 24 patients from the BeLOVE cohort. 
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Figure S6 

 

Figure S6: Violin plots of baseline laboratory measures in CH positive and CH negative patients. HGB = 
hemoglobin, RBC = red blood cell count, WBC = white blood cell count, PLT = platelet count, HDL = high-density 
lipoprotein, LDL = low-density lipoprotein, eGFR = estimated glomerular filtration rate, ALT = alanine transaminase, 
AST = aspartate transaminase, gGT = Gamma-glutamyltransferase, CK = creatinkinase. P-values from Wilcoxon 
rank-sum test without correction for multiple testing.  
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Figure S7 

  

Figure S7: Inflammatory biomarkers that did not significantly differ between CH positive and CH negative patients 
at a Bonferroni corrected significance level of P < 0.0065. P-values above brackets from Wilcoxon rank sum test. 
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Figure S8 

 

Figure S8: A) Scatterplot of white matter lesion load as measured by the Wahlund score and age. B) Scatterplot 
of the Wahlund score and clone size given by the variant allele frequency. R represents the Pearson correlation 
coefficient. C) Linear regression with Wahlund score as dependent variable and clone size, age, sex, arterial 
hypertension and diabetes mellitus as independent variables.  
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Figure S9 

 

Figure S9: Kaplan-Meier analysis of the composite endpoint stratified by number of CH mutations.  
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Figure S10 

u 

Figure S10: Kaplan-Meier analysis of the composite endpoint (recurrent stroke, myocardial infarction and all-
cause death) stratified by four classes of CH status: CH negative (VAF < 1%), CH with VAF of 1-2%, CH with 

VAF 2-10% and CH with VAF > 10%. 
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Figure S11 

 

Figure S11: A) Kaplan-Meier analysis of A) overall survival, B) time to recurrent stroke or C) time to vascular 

event (stroke or myocardial infarction) in patients of the PROSCIS-B cohort stratified by CH status. 
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Figure S12 

 

Figure S12: Kaplan-Meier analysis of the CEP stratified by IL-6R p.D358 variant.  
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Figure S13 

 

Figure S13: Scatterplot of variant allele frequency vs. patient age. R represents the Pearson correlation 
coefficient.  
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