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Somatic structural variants (SVs) are widespread in cancer, but their 
impact on disease evolution is understudied due to a lack of methods 
to directly characterize their functional consequences. We present a 
computational method, scNOVA, which uses Strand-seq to perform 
haplotype-aware integration of SV discovery and molecular phenotyping 
in single cells by using nucleosome occupancy to infer gene expression as 
a readout. Application to leukemias and cell lines identifies local effects of 
copy-balanced rearrangements on gene deregulation, and consequences 
of SVs on aberrant signaling pathways in subclones. We discovered distinct 
SV subclones with dysregulated Wnt signaling in a chronic lymphocytic 
leukemia patient. We further uncovered the consequences of subclonal 
chromothripsis in T cell acute lymphoblastic leukemia, which revealed 
c-Myb activation, enrichment of a primitive cell state and informed 
successful targeting of the subclone in cell culture, using a Notch inhibitor. 
By directly linking SVs to their functional effects, scNOVA enables systematic 
single-cell multiomic studies of structural variation in heterogeneous cell 
populations.

The mutational landscapes of numerous cancers were recently cata-
loged1,2, revealing that somatic SVs represent around 55% of driver 
mutations2,3. Somatic mutational processes generate a broad spec-
trum of SVs from simple (for example, deletions and inversions) to 
complex classes (for example, chromothripsis)4–8, and these SVs are 
important drivers of malignancy, metastasis and relapse9–12. However, 
with the exception of focal deletions and amplifications, somatic SVs 
have proven difficult to characterize functionally in cancer genomic 
surveys1–3,13. Studies integrating transcriptome and whole genome 
sequencing (WGS) data have inferred SV functional outcomes13–16, but 
these typically require large cohorts and do not account for intratumor 
heterogeneity (ITH)3. Instead, SV effects can be measured directly by 
reading both genotype and molecular phenotype in the same cell, 

using single-cell multiomics17–21. Several such methods have been 
developed17–20, but these do not presently account for small (<10 Mb) 
somatic copy number alterations (SCNAs), balanced SVs and com-
plex rearrangement events like chromothripsis4,5,7,22, which has limited 
efforts to functionally characterize the most common class of driver 
mutations in cancer.

To address this, we developed scNOVA (single-cell nucleosome 
occupancy and genetic variation analysis)—a method enabling func-
tional characterization of the full spectrum of somatic SV classes. 
scNOVA uses Strand-seq23 in two ways: (1) it uses the DNA fragmenta-
tion pattern resulting from micrococcal nuclease (MNase) digestion23 
to directly measure nucleosome occupancy (NO) and indirectly infer 
patterns of gene activity, and (2) it couples this ‘molecular phenotype’ 
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were significantly over-represented near genes showing allele-specific 
expression in the genome (P < 0.0018, hypergeometric test; Supple-
mentary Fig. 2). These data suggest that haplotype-specific NO, a signal 
directly obtained from Strand-seq datasets, reflects biological gene 
regulation patterns in the genome.

Cell-typing. Since NO within gene bodies reflects gene activity in 
MNase-seq data28, we hypothesized that Strand-seq based NO pat-
terns could be used to infer gene expression. To investigate this, we 
tested whether NO globally reflects cellular gene expression patterns 
in the retinal pigment epithelium-1 (RPE-1) cell line, for which we pre-
viously generated both Strand-seq and RNA-seq data24. To profile NO 
globally, we pooled 33 million read fragments (including phased and 
nonphased reads) from 79 Strand-seq libraries into pseudobulk NO 
tracks. We identified an inverse correlation between NO at gene bod-
ies and gene expression (P < 2.2 × 10–16; Spearman’s r of up to −0.24;  
Fig. 1g and Supplementary Fig. 4), where highly expressed genes 
showed significantly lower NO within their gene bodies (and vice versa). 
We next explored the utility of NO for cell-type inference (‘cell-typing’), 
based on the activity of lineage-specific genes, by implementing a 
multivariate dimensionality reduction framework. We performed in 
silico mixing of Strand-seq libraries from different LCLs and RPE cell 
lines, and built a classifier that separates distinct cell types by partial 
least squares discriminant analysis (PLS-DA). We used a training set 
of 179 mixed libraries, and initially considered 19,629 features, which 
reflect ENSEMBL36 genes with sufficient read coverage (Methods). After 
feature selection, 1,738 features were retained. We then used a nono-
verlapping set of 123 cells to assess performance, all of which scNOVA 
classified accurately (area under the curve (AUC) = 1; Extended Data  
Fig. 3). Our framework also discriminated between cells from three 
related RPE cell lines derived from the same donor, which exhibit dis-
tinct SV landscapes24,37 (AUC = 0.96; Fig. 1h) indicating that scNOVA 
enables accurate cell-typing.

Gene activity changes between cell populations. Having estab-
lished that scNOVA can use the expression of lineage-specific genes 
for cell-typing, we evaluated if it could predict gene expression differ-
ences between defined cell populations, such as subclones bearing 
distinct SVs. We devised a module that integrates deep convolutional 
neural networks and negative binomial generalized linear models 
(Supplementary Figs. 5 and 6), to measure differential gene activity 
between two defined cell populations. To benchmark this module, we 
mixed Strand-seq libraries from different cell lines in silico, creating 
‘pseudoclones’, and evaluated the predicted changes in gene activity 
between defined pseudoclones (each composed of cells from one 
cell line) by analyzing NO at gene bodies (Supplementary Fig. 7 and 
Extended Data Fig. 4). We first compared RPE-1 to the HG01573 LCL 
line, and defined the ground truth of expression using RNA-seq. We 
found that the differential gene activity score of scNOVA (Methods) 
was highly predictive of the ten most differentially expressed genes, 
where analyses of pseudoclones comprising 156 RPE-1 and 46 HG01573 
libraries revealed an AUC of 0.93 (we observed a similar performance 
when analyzing the 50 most differentially expressed genes; Fig. 1i). 
Gene activity changes inferred included well-known markers of epi-
thelial (for example, EGFR, VCAN) and lymphoid (for example, CD74, 
CD100) cell types (Supplementary Table 2). The scNOVA predictions 
were informative also when we simulated minor subclones present with 
clonal frequency (CF) = 20%, CF = 5% and CF = 1.3%, resulting in AUCs of 
0.92, 0.79 and 0.68, respectively (Extended Data Fig. 4). We obtained 
similar results when applying scNOVA to pseudoclones derived from 
different (genetically related) RPE cell lines (Supplementary Fig. 7). 
These benchmarking exercises suggest that scNOVA can accurately 
infer gene activity changes between defined cell populations, sug-
gesting that this framework can be used to functionally characterize 
subclonal SVs.

with SVs discovered by single-cell tri-channel processing (scTRIP, which 
jointly models read-orientation, read depth and haplotype-phase24) 
in the same cell. MNase digests the linker DNA between nucleosomes, 
leaving nucleosome-protected DNA intact, to enable genome-wide 
inference of NO by measuring sequence read counts25–28. Previous work 
has shown that active enhancers and transcribed genes exhibit reduced 
NO25–30. However, the relationships between NO and SV landscapes in 
cancer remain unexplored. scNOVA addresses this by integrating SVs 
and NO along the genome of a cell, to functionally characterize SVs in 
heterogeneous samples.

Results
NO classifies cell types and predicts gene activity changes
Strand-seq data reveals NO. We hypothesized that NO patterns 
derived from MNase fragmentation during Strand-seq library prepa-
ration could represent a readout to allow functional characterization 
of SVs (Fig. 1a and Extended Data Fig. 1). To test this, we evaluated 
whether Strand-seq data revealed nucleosome positioning through 
comparison with bulk MNase-seq data. We used the NA12878 lympho-
blastoid cell line (LCL), which has both datatypes available, and pooled 
95 Strand-seq libraries (sequenced to a median of 540,379 mapped 
nonduplicate reads per single cell31; Supplementary Table 1), into a 
‘pseudobulk’ track, allowing direct comparison with the correspond-
ing MNase-seq dataset (sequenced to 19-fold genomic coverage32). 
We measured NO along the genome (Methods) and found Strand-seq 
and MNase-seq were highly concordant in terms of uniformity of 
coverage and inferred nucleosome positions at DNase I hypersensi-
tive sites (Spearman’s r = 0.68) (Fig. 1b,c). Nucleosome positioning 
near the binding site of CTCF26,28 (a key chromatin organizer) closely 
matched between both assays (Fig. 1d and Supplementary Fig. 1), 
and estimated nucleosome repeat lengths28 were highly concordant 
(Supplementary Fig. 1). In addition, both assays measured NO in all 15 
chromatin states identified by the Roadmap Epigenome Consortium33. 
Among these chromatin states, Strand-seq and MNase-seq revealed 
the highest NO signals on average for the polycomb-repressed state 
and the bivalent enhancer state, whereas the lowest average NO sig-
nals were consistently seen for the active transcription start site (TSS) 
state (Extended Data Fig. 2). This indicates that Strand-seq enables 
direct measurement of NO to reveal a ‘molecular readout’. We thus 
developed the scNOVA framework, which harnesses Strand-seq to 
measure NO genome-wide and couples this with SVs discovered in 
the same sequenced cell (Fig. 1a).

As Strand-seq resolves its measurements by haplotype31, we con-
sidered that haplotype-specific differences in NO (haplotype-specific 
NO) resulting from random monoallelic expression, germline SNPs 
and local effects of SVs could be harnessed for scNOVA. To assess the 
utility of haplotype-resolved NO, we phased 24,652,658 of 49,205,197 
(50.1%) of the NA12878 Strand-seq read fragments, and pooled these 
reads to generate pseudobulk NO tracks for each chromosomal 
haplotype (denoted ‘H1’ and ‘H2’, respectively; Fig. 1b). Using the 
female-derived NA12878 cell line, we compared haplotype-specific 
NO to haplotype-resolved gene expression measurements from bulk 
RNA-seq data34 (Methods). We identified a significant increase of NO 
in gene bodies mapping to H1 compared with H2 across the X chromo-
some (adjusted P = 0.0012; Wilcoxon rank sum test), suggesting that 
H1 represents the inactive X chromosome. These data were consist-
ent with haplotype-resolved gene expression measurements at loci 
subject to X-inactivation35, whereas genes escaping X-inactivation 
did not exhibit haplotype-specific NO (Fig. 1e,f and Supplementary 
Fig. 3). We also investigated whether Strand-seq data is informative of 
haplotype-specific NO at cis-regulatory elements (CREs), and identi-
fied a 1.4-fold enrichment for allele-specific CRE binding on the X 
chromosome (P = 0.015; hypergeometric test; based on 718 CREs with 
haplotype-specific NO genome-wide; 10% false discovery rate (FDR)) 
(Supplementary Fig. 2). Moreover, CREs with haplotype-specific NO 
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Fig. 1 | Haplotype-aware single-cell multiomics to functionally characterize 
SVs. a, Leveraging Strand-seq, scNOVA performs SV discovery and then, using 
phased NO tracks, identifies functional effects of SVs locally (via evaluation of 
haplotype-specific NO) and globally (clone-specific NO). Orange, Strand-seq 
reads mapped to the Watson (W) strand; green, reads mapped to the Crick (C) 
strand. b, Strand-seq-based NO tracks in NA12878 reveal nucleosome positions 
well-concordant with bulk MNase-seq, depicted for a chromosome 12 locus 
with relatively regular nucleosome positioning92. Red, NO tracks mapping 
to haplotype 1 (H1); blue, H2; black, combining phased and unphased reads; 
gray, MNase-seq. The y axis depicts the mean read counts at each bp in 10 bp 
bins. c, Correlated NO at consensus DNase I hypersensitive sites33 for NA12878. 
d, Averaged nucleosome patterns at CTCF binding sites34 in NA12878, using 
pseudobulk Strand-seq and MNase-seq. e, FCs of haplotype-resolved NO in 
gene bodies plotted for chromosome X and chromosome 7 (a representative 
autosome) in NA12878. FCs of haplotype-resolved RNA expression 

measurements are shown to the right. f, Pseudobulk haplotype-phased NO 
track of exons of the representative chromosome X gene SH3KBP1 based on 
Strand-seq. Boxplots comparing H1 and H2 use two-sided Wilcoxon rank sum 
tests followed by Benjamini–Hochberg multiple testing (FDR) correction 
(boxplots defined by minima = 25th percentile – 1.5 × interquartile range (IQR), 
maxima = 75th percentile + 1.5 × IQR, center = median and bounds of box = 25th 
and 75th percentile; n = 47 single cells). Bar charts show haplotype-specific 
RNA expression of SH3KBP1 (two-sided likelihood ratio test followed by FDR 
correction; n = 4 biological replicates; data are presented as mean values 
± s.e.m.). g, Inverse correlation of NO at gene bodies and gene expression. NO is 
based on pseudobulk Strand-seq libraries from RPE-1. Gene bodies were scaled 
to the same length. h, Cell-typing based on NO at gene bodies (AUC = 0.96). Cell 
line codes: Blue, RPE-1; Purple, BM510; Magenta, C7; LV, latent variable. i, Receiver 
operating characteristics for inferring altered gene activity by analyzing NO at 
gene bodies, using pseudobulk Strand-seq libraries from in silico cell mixing.
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Functional outcomes of SVs in cell lines
To test this, we set out to investigate the functional outcomes of 
somatic SV landscapes in a panel of LCL samples38 (N = 25) from the 
1000 Genomes Project39 (1KGP). Single-cell SV discovery in 1,372 
Strand-seq libraries generated for this panel (Supplementary Table 1) 
discovered 205 somatic SVs, with 24 of 25 (96%) LCLs showing at least 
one SV subclone—a sevenfold increase compared to a previous report40 
(Supplementary Table 3 and Supplementary Data). Of all the cell lines, 
13 (52%) contained an SV subclone above 10% CF. This included the 
widely used NA12878 cell line34,39, in which we discovered a subclonal 

500 kb deletion at19q13.12 (CF = 21%) that was mutually exclusive with 
two 22q11.2 deletions seen at CFs of 21% and 57%, respectively (Supple-
mentary Figs. 9 and 10). The 22q11.2 SVs mapped to the well-known site 
of IGL recombination occurring during normal B cell development41. 
We hence focused on the 19q13.12 event, which resulted in the loss of a 
copy of ZNF382—a tumor suppressor and repressor of c-Myc42. Applica-
tion of scNOVA measured significantly increased activity of ERCC6—a 
target gene of the c-Myc/Max transcription factor (TF) dimer43—and 
decreased activity of PIEZO2 and TRAPPC9, in cells harboring this dele-
tion (10% FDR; Supplementary Table 2).
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clonal expansion of the BFB clone in p8 compared with p4 (P value based on 
FDR-corrected two-sided unpaired t-tests; n = 3). HG1505, control cell line with 
a somatically stable MAP2K3 locus. Note that for both NA20509 and HG1505 the 
germline copy number of the MAP2K3 locus was consistently estimated to be 
three. Data are presented as mean values ± s.e.m. g, RNA-seq shows significant 
increase of MAP2K3 at p8 versus p4 (FDR-corrected two-sided Wald test, based on 
DESeq2; n = 5 and three biological replicates for p4 and p8, respectively). h, Mean 
RNA expression Z scores of c-Myc/Max target genes in NA20509 (differences 
between p4 and p8 were evaluated using a two-sided Wilcoxon rank sum test; n = 5 
and three biological replicates for p4 and p8, respectively). Boxplot was defined 
by minima = 25th percentile – 1.5 × IQR, maxima = 75th percentile + 1.5 × IQR, 
center = median and bounds of box = 25th and 75th percentile (g–h).
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To validate these findings, we reanalyzed Fluidigm and Smart-seq 
single-cell RNA-seq (scRNA-seq) datasets generated for NA12878  
(refs. 44,45). We employed several established tools for SCNAs discovery 
from scRNA-seq data46–48 (Supplementary Table 4), all of which failed to 
discover any of the SV subclones seen in this cell line (Supplementary 
Table 4). Yet, upon directly inputting the respective SV breakpoint 
coordinates into the CONICSmat tool46, we succeeded in identifying the 
19q13.12 deletion (denoted ‘19q-Del’) through ‘targeted SCNA recalling’. 
We next pursued differential gene expression analyses by scRNA-seq, 
comparing 19q-Del cells to unaffected (‘19q-Ref’) cells, and verified 
overexpression of ERCC6 in 19q-Del cells (10% FDR; Supplementary  
Fig. 10). For PIEZO2 and TRAPPC9, the scRNA-seq-based expression 
trends were consistent with scNOVA (Supplementary Fig. 10), but did 
not reach the FDR threshold. A search for the over-represented TF 
targets amongst the differentially active genes identified c-Myc and 
Max as the most over-represented TFs in 19q-Del cells (10% FDR; Sup-
plementary Fig. 10). These results indicate that scNOVA can function-
ally characterize SVs inaccessible to scRNA-seq-based SCNA discovery.

We next focused on NA20509, the LCL with the most abundant SV 
subclone (85% CF). Somatic SVs in NA20509 arose primarily through 
the breakage-fusion-bride-cycle (BFB) process24,49 involving a 49 Mb 
terminal duplication on 5q, and a 2.5 Mb inverted duplication on 17p 
with an adjacent terminal deletion (terDel) (Fig. 2a). The 5q and 17p 
segments became fused into a derivative chromosome of around 
115 Mb (Supplementary Fig. 13), which probably stabilized the BFB. 
We searched for global gene activity changes in this ‘17p-BFB’ subclone 
compared with the nonrearranged cells (‘17p-Ref’) and identified 18 
dysregulated genes (Fig. 2b). Testing for gene set over-representation50 
(Methods) revealed an enrichment of the target genes of c-Myc/Max 
heterodimers (10% FDR; Fig. 2c), that is, the same TFs we observed in 
the 19q-Del subclone in NA12878. Consistent with this, we identified 
somatic copy-number gain of MAP2K3, which encodes a gene activating 
c-Myc/Max51, resulting from the BFB (Fig. 2a).

We performed several orthogonal analyses to validate these find-
ings. First, we verified all somatic SVs using deep WGS data generated 
for the 1KGP sample panel52 (Supplementary Fig. 13). Second, we ana-
lyzed RNA-seq data38 for this LCL panel, which revealed that NA20509 
exhibits the highest MAP2K3 expression and the highest c-Myc/Max 
target expression (Supplementary Fig. 14 and Fig. 2d). Third, we fol-
lowed the 17p-BFB subclone in culture, by subjecting early (p4) and 
late passage (p8) cells to Strand-seq, which revealed outgrowth of 
the 17p-BFB subclone (CF = 23% at p4, CF = 100% at p8; P < 0.00001, 
Fisher’s exact test; Fig. 2e), suggesting these cells have a proliferative 
advantage. Quantitative real-time PCR experiments verified this clonal 
outgrowth pattern (Fig. 2f).

Since the functional impact of SVs on clonal expansion is unex-
plored in LCLs, we more deeply characterized the molecular pheno-
types of 17p-BFB cells by pursuing RNA-seq in p4 and p8 cultures. We 
observed increased MAP2K3 expression (1.39-fold, 10% FDR) at p8, 

consistent with MAP2K3 dysregulation as a result of copy-number 
gain in the 17p-BFB subclone (Fig. 2g and Supplementary Note). 
Pathway-level analysis showed deregulation of c-Myc/Max target genes 
following clonal expansion (P = 0.036; Wilcoxon rank sum test; Fig. 2h 
and Supplementary Fig. 14). Collectively, these data link the outgrowth 
of SV subclones to the deregulation of c-Myc/Max targets, which could 
represent a common driver of clonal expansion in LCLs.

Local effects of copy-balanced driver SVs in leukemia
To deconvolute the effects of driver SVs in patients, we applied scNOVA 
to analyze the local consequences of balanced SVs, which are wide-
spread in leukemia3,53. We analyzed primary cells from a patient with 
acute myeloid leukemia (AML) (32-year-old male; patient-ID = AML_1) 
bearing a balanced t(8;21) translocation that results in RUNX1-RUNX1T1 
gene fusion54. We sorted CD34+ cells from AML_1 (Supplementary  
Fig. 15), and sequenced 42 Strand-seq libraries. SV discovery revealed 
a 46,XY,t(8;21)(q22;q22) karyotype (Fig. 3a, Supplementary Fig. 16 
and Supplementary Table 3) consistent with clinical diagnosis. We 
fine-mapped the translocation breakpoint to intron 1 of RUNX1T1 and 
intron 5 of RUNX1 (Supplementary Fig. 17), and subsequently identified 
haplotype-specific NO at 11 genes, genome-wide (10% FDR; Supplemen-
tary Table 2). This included RUNX1T1, which showed reduced NO on 
the derivative (H2) haplotype (Fig. 3b), consistent with increased gene 
activity mediated as a local effect of the translocation55. The remaining 
genes did not reside near a detected somatic SV, suggesting other fac-
tors (such as germline SNPs; Supplementary Fig. 17) may have affected 
their NO.

To systematically investigate potential local effects, we used 
a sliding window (Methods) to measure NO on both sides of the 
translocation breakpoint. We observed decreased NO, suggest-
ing increased chromatin accessibility, from the breakpoint junc-
tion up to the respective nearest topologically associating domain 
(TAD) boundaries (Fig. 3c). This signal was most pronounced in an 
enhancer-rich region around 0.8 to 1.1 Mb upstream of RUNX1 origi-
nating from chromosome 21 (P < 0.003; likelihood ratio test, adjusted 
using permutations; Fig. 3c), found to physically interact with the 
RUNX1 promoter in CD34+ cells56. Within this segment, we identi-
fied two CREs with significantly reduced NO (10% FDR; Exact test)  
(Fig. 3d and Supplementary Table 5), which may foster RUNX1-RUNX1T1 
expression. Chromosome-wide analysis showed haplotype-specific 
NO patterns were restricted to the fused TAD (Fig. 3e,f), in line with 
these patterns resulting from the translocation.

We also revisited Strand-seq datasets with previously reported 
copy-neutral SVs, including the BM510 cell line in which copy-neutral 
interchromosomal SVs resulted in TP53–NTRK3 gene fusion24. In agree-
ment with the oncogenic role of TP53–NTRK3 (ref. 24), scNOVA identi-
fied NTRK3 upregulation as the only significant local effect (10% FDR), 
consistent with allele-specific TP53–NTRK3 expression measured on 
the rearranged haplotype (Extended Data Fig. 5). Second, we revisited 

Fig. 3 | Haplotype-specific NO analysis shows local effects of a copy-neutral 
driver SV in AML. a, Balanced t(8;21) translocation in AML_1, discovered based 
on strand cosegregation (P value = 0.00003 for translocation discovery using 
strand cosegregation24, FDR-adjusted Fisher’s exact test; Supplementary 
Fig. 16). The SV breakpoint was fine-mapped to the region highlighted in 
light blue. Composite reads shown were taken from all informative cells in 
which reads could be phased (WC or CW configuration; Methods). b, A violin 
plot demonstrates haplotype-specific NO at the RUNX1T1 gene body (10% 
FDR; two-sided Wilcoxon rank sum test followed by Benjamini–Hochberg 
multiple correction; n = 17 single cells; boxplot was defined by minima = 25th 
percentile – 1.5× IQR, maxima = 75th percentile + 1.5× IQR, center = median and 
bounds of box = 25th and 75th percentile), consistent with aberrant activity 
of the locus on der(8). c, Haplotype-specific NO around the SV breakpoint. 
FCs of haplotype-specific NO, measured between the RUNX1-RUNX1T1 
containing derivative chromosome (der(8)) and corresponding regions on the 

unaffected homolog (Ref), are shown in black, and –log10(P values) in light blue. 
Enhancer-target gene physical interactions based on chromatin conformation 
capture56,93 are depicted in orange (interactions involving RUNX1 and RUNX1T1) 
and gray (involving other loci). d, Significant CREs located within the distal peak 
region, demonstrating haplotype-specific absence of NO on der(8) at 10% FDR, 
suggesting increased CRE accessibility on der(8). Within the segment around 0.8 
to 1.1 Mb upstream of RUNX1, which showed pronounced haplotype-specific NO, 
we tested 69 CREs for haplotype-specific NO, which identified two significant 
CREs. e, Haplotype-specific NO measured between der(8) and corresponding 
regions of the unaffected homolog. Red, regions corresponding to the fused 
TAD. f, A beeswarm plot shows that the fused TAD (red) is an outlier in terms of 
haplotype-specific NO on der(8) (P values based on Kolmogorov–Smirnov tests; 
n = 83 TADs in der(8); boxplot was defined by minima = 25th percentile – 1.5× IQR, 
maxima = 75th percentile + 1.5× IQR, center = median and bounds of box = 25th 
and 75th percentile).
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a 2.6 Mb inversion mapping to 14q32 in a T-cell acute lymphoblastic 
leukemia (T-ALL) patient-derived xenograft (T-ALL_P1)24. scNOVA dis-
covered downregulation of BCL11B, a known haploinsufficient T-ALL 
tumor suppressor57, as a significant local effect of this balanced inver-
sion, supporting allele-specific silencing of BCL11B on the rearranged 
haplotype as measured by RNA-seq24 (Extended Data Fig. 6). These data 
collectively show that scNOVA allows linking balanced SVs to their local 
functional consequences—a functionality not provided by any previous 
single-cell multiomic method20.

Dissecting functional effects of heterogeneous somatic SVs
We next set out to functionally dissect a leukemia sample with unknown 
genetic drivers, by characterizing B-cells from a 61-year-old patient 
with chronic lymphocytic leukemia (CLL) (CLL_24)58. Analysis of 86 
Strand-seq libraries revealed an unprecedented level of somatic SVs, 
with 11 different karyotypes represented by 13 SVs occurring in sub-
clones with CFs of 1–5% (Supplementary Table 3). This vastly exceeds 
intrapatient diversity estimates for CLLs from the Pan-Cancer Analy-
sis of Whole Genomes (PCAWG), where maximally three subclones 
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were reported59, highlighting how Strand-seq provides access to SVs 
escaping discovery by WGS3,24. Chromosome 10q showed especially 
pronounced subclonal heterogeneity; we identified seven partially 
overlapping deletions ranging from 2 to 31 Mb in size, and residing prox-
imal to the fragile site FRA10B60 (Fig. 4a and Supplementary Fig. 18).  
These SVs clustered into a 1.4 Mb ‘minimal segment’ at 10q24.32, arising 
independently from both haplotypes (Fig. 4b). While previous studies 
reported somatic 10q24.32 deletions in 1–4% of CLLs61–63, molecular 
analysis of this recurrent somatic SV has so far been lacking.

We first compared all cells bearing a 10q24.32 deletion (‘10q-Del’, 
N = 11) to cells lacking such SV (‘10q-Ref’, N = 75), hence disregard-
ing the fine-scale subclonal structure of CLL_24, and predicted 115 
dysregulated genes (Fig. 4c and Supplementary Table 2). Next, we 
performed molecular phenotype analysis using MsigDB64 (Methods), 
which revealed that 10q-Del cells exhibit increased activity in several 
leukemia-relevant signaling pathways, including Wnt, c-Met (a pathway 
promoted by Wnt signaling65), B cell receptor (BCR) signaling, phos-
phatidylinositol (3,4,5)-trisphosphate (PIP3) signaling and the CREB 
pathway (10% FDR; Fig. 4d). RNA-seq data available for 178 CLLs62 and 
stratified by 10q24.32 status, revealed upregulation of Wnt and c-Met 
signaling—but not of BCR, PIP3 and CREB signaling—in CLLs exhibiting 
10q24.32 deletions (10% FDR; CLLs with 10q-Del: N = 4; 10q-Ref: N = 174; 
Fig. 4e and Supplementary Fig. 24). These data therefore suggest a 
link between 10q24.32 deletion and the promotion of Wnt signaling.

We further tested whether the different 10q-Del events seen in 
CLL_24 subclones have led to distinct functional outcomes, focusing 
on three subclones represented by at least two cells: ‘SCa,’ showing one 
interstitial deletion directly at the minimal segment; ‘SCb,’ harboring a 
terDel, with the breakpoint located at the minimal segment boundary 
and ‘SCc,’ containing two interstitial deletions, at the minimal seg-
ment and at 10q23.31 (Fig. 4b and Supplementary Table 3). Molecu-
lar phenotype analysis of each subclone identified 109, 206 and 266 
differentially active genes, respectively (Supplementary Table 2), 
with the most pronounced levels of Wnt upregulation in SCb and SCc  
(Fig. 4f). SCb showed the highest activation of c-Met, BCR and PIP3 sign-
aling, whereas CREB signaling was highest in SCc (Supplementary Fig. 
21). This suggests that deletion location and length at 10q24.32 affect 
their molecular consequences, and furthermore illustrates the ability 
of scNOVA to predict molecular differences in subclones represented 
by as few as two cells.

To more deeply characterize the CLL_24 subclones, we gener-
ated CITE-seq (cellular indexing of transcriptomes and epitopes by 
single-cell sequencing) data, which couples scRNA-seq with protein 
surface marker measurements66. Again, we attempted SCNA discovery 
in the scRNA-seq data, which failed to detect any SCNAs, or subclones, 
in CLL_24 (Supplementary Table 4). However, targeted SCNA recalling46 
identified 82 CITE-seq cells harboring the greater than 31 Mb 10q-terDel 
of SCb (‘10q-terDel’), whereas the deletions in SCa (2.2 Mb) and SCc 
(2.1 Mb and 1.9 Mb, respectively) escaped detection (Extended Data  

Fig. 7 and Supplementary Notes). Having recovered the SCb subclone in 
the CITE-seq data, we performed single-cell gene set enrichment analy-
sis67 (Methods), which verified that all pathways inferred by scNOVA 
(Wnt, c-Met, BCR, PIP3 and CREB) are upregulated in 10q-terDel cells 
(Fig. 4d,g). A gene regulatory network analysis68 comparing 10q-terDel 
with 10q-Ref cells identified 43 differentially active TFs (FDR 10%; Fig. 4h)  
and a functional enrichment analysis69 showed over-representation 
of Wnt signaling, BCR signaling and the PD-1 checkpoint pathway 
(Supplementary Table 16 and Fig. 4h); the PD-1 checkpoint pathway 
has been linked to immune resistance and transformation of CLL to 
aggressive lymphoma70,71. Since somatic lesions mediating PD-1 expres-
sion in CLL have remained elusive, we used the CITE-seq data to analyze 
PD-1 protein expression, which demonstrated upregulation of PD-1 in 
10q-terDel-containing cells as the only significant hit at the protein level 
(Fig. 4i). Notably, NFATC1, a TF predicted to be differentially active by 
both scNOVA and CITE-seq, regulates Wnt72, PIP3 (refs. 73,74), CREB75 and 
BCR signaling76 as well as PD-1 expression77, and thus may contribute 
to global pathway dysregulation in CLL_24. Our analysis reveals subtle 
pathway activities of somatic deletions present at low CF (Fig. 4f,j), 
and collectively implicates 10q24.32 deletions in dysregulated Wnt 
signaling—a crucial pathway for CLL pathogenesis78.

Functional characterization of subclonal chromothripsis
While chromothripsis is a widespread mutational process in cancer3,4,22, 
this process is not ascertained by previous single-cell multiomic meth-
ods, and its molecular outcomes remain largely elusive3,79. We previ-
ously discovered a subclonal chromothripsis event24 in T-ALL_P1 that 
affects most of 6q (denoted ‘6q-CT’; CF = 30%) (Fig. 5a and Supplemen-
tary Table 3); however, the consequences of this complex rearrange-
ment were uncharacterized. Using scNOVA, we identified 12 genes with 
differential NO between 6q-CT and 6q-Ref cells (denoted the ‘CT gene 
signature’; 10% FDR; Fig. 5a,b and Supplementary Table 2). A closer 
analysis showed 27 TF genes overlapping the chromothriptic region 
(Fig. 5a). Gene set over-representation testing using the target genes 
of these TFs revealed that c-Myb, product of the MYB oncogene, was 
significantly enriched among the genes included in the CT gene sig-
nature (10% FDR; adjusted P = 0.00015; Fig. 5b,c and Supplementary 
Table 6). The MYB gene is located within a region that was duplicated 
(and inverted) as a result of 6q-CT, suggesting a potential dosage effect 
(Fig. 5a). Corroborating these predictions, we performed RNA-seq in a 
panel of 13 T-ALLs, amongst which T-ALL_P1 showed the highest expres-
sion of c-Myb targets (Fig. 5d and Supplementary Table 7). We also 
verified that MYB is allele-specifically expressed from the SV-affected 
haplotype (P = 0.0317; likelihood ratio test; Supplementary Fig. 30), 
which together nominates MYB as a candidate driver gene dysregulated 
as a consequence of 6q-CT.

To more deeply characterize this sample, we generated scRNA-seq 
data for T-ALL_P1 (5,504 cells; Fig. 6a). Since scRNA-seq-based SCNAs 
discovery46–48 missed the 6q-CT event (Supplementary Table 4), we 

Fig. 4 | Deconvoluting consequences of subclonal SV heterogeneity in a CLL 
primary sample. a, Single-cell SV discovery in CLL_24. All cells exhibiting deletions 
(10q-Del) shown in Supplementary Fig. 18. 10q-Ref, cells bearing a not rearranged 
10q. b, Minimal deleted region (chr10:101615000-103028000; hg38), displaying 
recurrent deletions in a separate cohort of CLLs62. c, Heatmap of genes with 
altered activity in 10q-Del based on scNOVA (alternative mode; 10% FDR). Genes 
from all significant pathways reported in d are highlighted. d, Pathway modules 
with differential activity, in cells exhibiting 10q-Del (10% FDR). e, Minimal deleted 
region-bearing CLL samples from the International Cancer Genome Consortium 
(ICGC) demonstrate overexpression of Wnt signaling genes compared with 
10q-Ref (P = 0.0098; two-sided likelihood ratio test; n = 174 and n = 4 independent 
CLL samples for 10q-Ref and 10q-Del, respectively). f, Pathway activities ((–1) × Z 
score of NO) derived from jointly modeled NO at the gene bodies of Wnt signaling 
pathway genes for each SV-bearing CLL_24 cell. SIa-SId correspond to single cells 
exhibiting a deletion at 10q24 not shared by any other cell. n = 2, 3, 2 and 1 cells 

are depicted in the plot for SCa, SCb, SCc and SIa-SId, respectively. g, Single-cell 
gene set enrichment scores for five leukemia-related pathways from CITE-seq. 
Enrichment scores for 10q-terDel (n = 82) and 10q-Ref (n = 2,381) cells were 
compared using two-sided t-tests. h, Chart depicting 43 differentially active TFs 
between 10q-terDel and 10q-Ref cells based on DoRothEA68. Genes involved in 
the pathways over-represented by these TFs are annotated using colored dots. 
i, Differentially expressed surface protein CD279 (PD-1) in 10q-terDel (n = 82) 
compared with 10q-Ref (n = 2,381) cells based on a two-sided Wilcoxon rank sum 
test. j, Wnt pathway diagram showing the altered genes or TFs in SCb (10q-terDel) 
identified by scNOVA (blue nodes) and CITE-seq (red borders). Gray, known (see 
PubmedIDs) and computationally predicted regulators (based on Gene Ontology 
Biological Process (GOBP)) of Wnt signaling that are deleted in SCb. Throughout 
the figure, boxplots were defined by minima = 25th percentile – 1.5× IQR, 
maxima = 75th percentile + 1.5× IQR, center = median and bounds of box = 25th and 
75th percentile.
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again performed targeted SCNA recalling (Supplementary Notes) 
generating confident calls for 838 (around 15%) cells in the scRNA-seq 
dataset (the remaining 4,666 cells lacked a confident assignment; 
‘NA’). Out of these 838 cells, 729 were predicted to harbor the 6q-CT 
event, and 109 were called 6q-Ref. Unsupervised clustering80 of 
the scRNA-seq data stratified by 6q status (Methods) revealed that 
6q-CT cells (as predicted through targeted recalling) were enriched in 
two expression clusters (clusters 3 and 7; P = 3.43 × 10–5 and 1.15 × 10–3; 
FDR-adjusted Fisher’s exact test; Fig. 6d and Supplementary Fig. 34), 

in line with a distinctive expression profile. To corroborate this, we 
applied UCell81 to assign cells into ‘6q-CT’ or ‘6q-Ref’ based on the 
CT gene signature, which confirmed enrichment of 6q-CT in clusters 
3 and 7 (Fig. 6c,d; P = 3.39 × 10–38 and P = 2.15 × 10–4; FDR-adjusted 
Fisher’s exact test). Trajectory analysis82 showed the 6q-CT cells (as 
defined by UCell) were enriched for DNearly (double-negative early; 
P = 2.78 × 10–13), DNQ (double-negative quiescent; P = 1.27 × 10–5) 
and DPP (double-positive proliferating; P = 1.88 × 10–7) T cells 
(FDR-corrected Fisher’s exact tests; Fig. 6b and Supplementary  

a

10
q-

Re
f

(7
5 

ce
lls

)

SC
a

on
eD

el
(2

 c
el

ls
)

SC
b

te
rD

el
(3

 c
el

ls
)

SC
c

tw
oD

el
(2

 c
el

ls
)

–50

0

50

–50

0

50

–50

0

50

–50

0

50

chr10 (q22.3-q26.3)

CLL_24_90hp2_PE20352

CLL_24_90hp2_PE20344

CLL_24_120hp2_PE20457

80 Mb 90 Mb 100 Mb 110 Mb 120 Mb 130 Mb

b

d 
(–log10 Padj.)

0 1
1.20.

2
0.

4
0.

6
0.

8

Wnt signaling
pathway

c-Met signaling
pathway

BCR signaling
pathway

PIP3 signaling in
B lymphocytes

CREB pathway

1.4

SC
a

SC
b

SC
c

SI
a

SI
b

SI
c

SI
d

2

1

0

–1

–2

h

c

−2

−1

0

1

2

Z 
sc

or
e

SV NO

10
q-

Re
f

10
q-

D
el

W
N

T5
A

FA
T1

IN
O

80

N
FA

TC
1

C
D

H
9

SCa : 10q-oneDel
SCb : 10q-terDel
SCc : 10q-twoDel
SIa-d : singletons

M
AX

EL
F1

PO
U

2F
2

EL
F5

IR
F4

C
RE

B3 ZF
X

SM
AR

C
C

2
N

FA
TC

1
LY

L1
N

C
O

A3 SP
I1

BC
L1

1A
BA

C
H

2
AT

F7
N

C
O

A2
ZK

SC
AN

1
O

TX
2

PA
X5

KL
F6

AR
N

T
EB

F1
N

O
N

O
C

U
X1

BC
L3

PB
X2

M
EF

2
JU

N
B

TC
F7

TC
F3

SP
IB

IR
F9

KM
T2

A
H

N
F1

A
N

FA
TC

2
TF

AP
2C

H
N

F4
A

SN
AI

2
AT

F3
TC

F2
5

BC
L6

M
XI

1
FO

XP
1 lo

g 2-
FC

 (1
0q

-t
er

D
el

/1
0q

-R
ef

)
–3

–2

–1

0

1

2

3

BCR signaling pathway (Padj. = 0.037)
Wnt signaling pathway (Padj. = 0.022)

PD-L1 expression and PD-1 checkpoint pathway in cancer (Padj. = 0.042)

Z 
sc

or
e 

of
 R

N
A

W
nt

 s
ig

na
lin

g 
ta

rg
et

 g
en

es

−0.4

−0.2

0

0.2

0.4

0.6
10

q-
Re

f
(N

 =
 17

4)

10
q-

D
el

(N
 =

 4
)

fe
ICGC

P = 0.0098 
Wnt signaling

Pa
th

w
ay

 a
ct

iv
ity

 s
ca

le
d 

by
 

m
ed

ia
n 

of
 10

q-
Re

f

j

Minimal deleted region

Si
ng

le
 c

el
ls

sc
TR

IP
 (1

0q
-D

el
)

IC
G

C
SN

P6
 a

rr
ay

BP_DO223422
BP_DO223555

BP_DO52705
BP_DO6370
BP_DO6420
BP_DO6934

120hp1_PE20582
120hp2_PE20406

120hp2_PE20457

90hp1_PE20423
90hp1_PE20456

90hp1_PE20467

90hp2_PE20323

90hp2_PE20344

90hp2_PE20352

90hp2_PE20356

90hp2_PE20357

Scale
chr10:

Chromosome band

2 Mb hg38
101,000,000 102,000,000 103,000,000 104,000,000

10q24.31 10q24.32 10q24.33 10q25.1

Del H1

Del H2

SC
a

SC
b

SC
c

SI
a-

d

BTRC FBXW4 SUFUNFKB2LDB1

β-catenin

SMAD4

SUFU (all)

BTRC (SCa,b)

FBXW4 (all)

MED12

LDB1 (all)

WNT9A

TCF3

CTBP2 (SCb)

CTR9
GOBP

CSNK2A1

NFKB2 (all)

Negative regulators of β-catenin

Transcription
factors

Wnt ligands

Target
genes

DNA

Wnt signaling pathway

PMID: 11477086 PMID: 27713747

GOBPGOBP

GOBP PMID: 29087512

Deleted genes (10q-terDel)

Increased activity in SCb (10q-terDel) (scNOVA)

KEGG pathway
Protein–protein interaction

WNT5A NFATC1 PD-1(CD279)
DNA

Increased TF activity (10q-terDel) (CITE-seq)

Increased protein expression (10q-terDel) 
(CITE-seq)

TCF7

NCOA2

PMID: 32266087

LY
N

SY
K

N
R4

A3

G
AB

1

PD
-1

 (C
D

27
9)

 p
ro

te
in

 e
xp

re
ss

io
n 

le
ve

l

g

0

1

2

PD-1 (protein)

9.8 × 10–6

−2

0

2

4

CREB signaling

1.3 × 10–8

−2

0

2

4

PIP3 signaling

1.7 × 10–5

−2

0

2

4

c-Met signaling

0.00012

−2

0

2

4

Wnt signaling

i

Z-
tr

an
sf

or
m

ed
 e

nr
ic

hm
en

t s
co

re

2.6 × 10–8

−2

0

2

4

BCR signaling

Z-
tr

an
sf

or
m

ed
 e

nr
ic

hm
en

t s
co

re

Z-
tr

an
sf

or
m

ed
 e

nr
ic

hm
en

t s
co

re

Z-
tr

an
sf

or
m

ed
 e

nr
ic

hm
en

t s
co

re

Z-
tr

an
sf

or
m

ed
 e

nr
ic

hm
en

t s
co

re

6.8 × 10–9

10q-
Ref

10q-
terDel

10q-
Ref

10q-
terDel

10q-
terDel

10q-
Ref

10q-
terDel

10q-
Ref

10q-
terDel

10q-
Ref

10q-
terDel

10q-
Ref

http://www.nature.com/naturebiotechnology


Nature Biotechnology | Volume 41 | June 2023 | 832–844 840

Article https://doi.org/10.1038/s41587-022-01551-4

Fig. 35), and depleted of mature CD4+ T cells (P = 1.45 × 10–11, Sup-
plementary Fig. 35). This suggests a potential differentiation block 
at the progenitor stage as a result of 6q-CT and, more generally, that 
6q-CT cells bear a distinctive molecular phenotype as a result of the 
chromothriptic rearrangements.

Having identified c-Myb pathway activation as a consequence of 
6q-CT in TALL_P1, we hypothesized this molecular phenotype could 
guide drug targeting in cell culture. We selected NOTCH1 as a suit-
able candidate for targeting this subclone because this c-Myb target 
was (1) inferred by scNOVA to be highly upregulated in 6q-CT cells 
(Fig. 5b) and (2) is targetable by different compounds and strate-
gies83. We treated T-ALL_P1 cell cultures with the CB-103 pan-NOTCH 
small-molecule inhibitor (targeting the Notch1 intracellular domain 
(N1-ICD)84,85) or a vehicle control for 8 h and 24 h (Methods). Using 
scRNA-seq (3,663 single cells) to analyze drug response patterns, 
we inferred 6q-CT and 6q-Ref cells at each timepoint by transferring 
the cell annotation labels from the untreated (reference) sample with 
Seurat80 (Fig. 6c and Supplementary Fig. 37). After 24 h in culture, 
vehicle-treated T-ALL_P1 cells showed a 45% relative increase in the 
6q-CT subclone compared to 8 h (CF of 17.1% to 24.6%; P = 0.0180; 
FDR-adjusted Fisher’s exact test), indicating that 6q-CT cells 
expanded clonally. By contrast, upon CB-103 treatment, the CF of 
the 6q-CT subclone was reduced at 24 h (to CF = 15.5%; P = 0.0064; Fig. 
6e and Supplementary Fig. 38), indicating that 6q-CT cells were pref-
erentially lost with N1-ICD inhibition. Additionally, we observed spe-
cific depletion of the REACTOME N1-ICD gene set only in 6q-CT cells 
after 24 h of CD-103 treatment, consistent with specific subclone 
targeting (P = 0.0096; FDR-adjusted Wilcoxon rank sum test; Fig. 6f 
and Supplementary Fig. 39). These results highlight the potential of 
scNOVA to functionally characterize highly complex classes of DNA 
rearrangement (that is, chromothripsis events), and to clinically 
target subclones bearing complex cancer driver SVs.

Discussion
The functional characterization of SVs is of critical importance for 
precision oncology1–3. Our method characterizes a wide spectrum 
of SV classes24, and couples these with NO analysis to link somatic 
SVs to local or global gene activity changes. Accounting for balanced 
SVs, scNOVA allows the investigation of copy-number stable (that is, 
euploid) malignancies previously inaccessible to single-cell multiom-
ics3,20 (Supplementary Table 12). Strand-seq derived SCNA calls were 
far better resolved compared to scRNA-seq based calls (Supplemen-
tary Table 4), suggesting a more limited utility of scRNA-seq data for 
discovering SCNA drivers in cancer, with the exception of malignan-
cies displaying extremely high levels of chromosomal instability with 
particularly large-scale SCNAs3,86.

We uncovered unprecedented karyotypic diversity in a CLL 
sample, comprising distinct deletions at 10q24.32, which we link to 
leukemia-related signaling pathways, particularly Wnt signaling. Read 
depth based profiling of SCNAs is prone to underreport such subclonal 
structural diversity3. Enrichment of cases bearing 10q24.32 deletions 
amongst relapsed/refractory and high-risk CLL87 suggests a potential 
role of Wnt pathway dysregulation mediated through 10q24.32 in 
disease progression. Whether the FRA10B fragile site is involved in the 
formation of these deletions remains to be seen and requires larger 
cohorts. Interestingly, CLL_24 exhibits a SNP (rs118137427; 3.7% allele 
frequency in Europeans) within FRA10B associated with the acquisition 
of 10q-terDel in normal blood88. Based on the PCAWG resource compris-
ing 94 CLLs2, rs118137427 is seen in 2 out of 4 (50%) CLLs with 10q24.32 
deletions, but in only 6 of 90 (6.7%) CLLs with 10q-Ref (P = 0.035; Fish-
er’s exact test), suggesting a possible link between SNPs at FRA10B and 
ITH in leukemia that warrants future investigation.

Our framework readily functionally characterizes complex rear-
rangements previously inaccessible to single-cell multiomics3. Com-
plex somatic SVs are prevalent in cancer and linked with aggressive 
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tumor phenotypes2,3,22 underlining significant potential of scNOVA for 
the comprehensive functional characterization of cancer cells. Since 
scNOVA does not require coupling distinct experimental modalities 
in each individual cell, it overcomes important methodological chal-
lenges20, including data sparseness and higher costs from generat-
ing data for more than one modality20,89. Additionally, the coverage 
achieved by Strand-seq enables the analysis of haplotype-specific NO 

along the entire genome (Supplementary Fig. 41), providing advantages 
over classical allele-specific analyses that are restricted to regionally 
phased SNPs15.

Nonetheless, important challenges remain, and the full spectrum 
of mutations arising in an individual cell is likely to remain inaccessi-
ble to a single method in the foreseeable future. Strand-seq does not 
capture SVs less than 200 kb that more rarely acts as cancer drivers2. 
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Additionally, while scNOVA infers differentially active genes, it does not 
span the same dynamic expression range as scRNA-seq (Supplementary 
Table 12). This suggests that pairing scNOVA with targeted SCNA recall-
ing by scRNA-seq can provide added value by allowing variants outside 
the detection range of other methods to be characterized. Finally, 
Strand-seq requires dividing cells for BrdU labeling23 (Fig. 1a), and is 
therefore not applicable for nondividing cells or fixed samples. How-
ever, it can be used for dividing cells in organoids, primary fresh frozen 
progenitor cells, cells in regenerating tissues and cancer samples ame-
nable to culture. Our study used cell lines for benchmarking followed 
by proof-of-principle application in patient samples. Generalization 
of these analyses to larger cohorts will allow systematic investigation 
of the roles subclonal SVs play in leukaemogenesis.

We foresee a wide variety of potential future applications. Our 
framework offers potential for studies on the determinants and con-
sequences of chromosomal instability in cancer, and may promote 
research into the interplay of genetic and nongenetic cancer deter-
minants20. It likewise could be used to advance surveys of precan-
cerous lesions3,90. Additionally, scNOVA may offer value in precision 
oncology by exposing subclonal driver alterations along with their 
targetable functional outcomes, to target cancer subclones in patients. 
Furthermore, SVs can accidentally arise in key model cell lines, as we 
demonstrate for widely used LCLs, and the features of scNOVA are 
ideally suited to functionally characterize unwanted heterogeneity 
in such samples. Unwanted somatic SVs also arise as a by-product 
of CRISPR-Cas9 genome editing, which generates micronuclei and 
chromosome bridges in human primary cells, structures that initiate 
the formation of chromothripsis91. scNOVA could promote the safety 
of therapeutically relevant genome editing in the future, by enabling 
the simultaneous detection and functional characterization of such 
potentially pathogenic editing outcomes.

In summary, scNOVA moves directly from SV landscapes to their 
functional consequences in heterogeneous cell populations. By making 
a broad spectrum of somatic SVs accessible for functional characteri-
zation genome-wide, this single-cell multiomic framework serves as 
a foundation for deciphering the impact of somatic rearrangement 
processes in cancer.
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Methods
Strand-seq library preparation
NA20509 Strand-seq libraries were prepared as previously described94. 
Strand-seq libraries of primary leukemia samples were generated as 
follows: peripheral blood mononuclear cells of a previously untreated 
female CLL patient (routine diagnostics: IGHV unmutated, no TP53 
mutation, no detected alteration in 6q21, 8q24, 11q22.3, 12q13, 13q14 
and 17p13) were isolated after obtaining informed consent. Cells were 
isolated and cultured using previously established protocols95. CLL 
cells were cultured at 1 × 106 cells ml–1 in Roswell Park Memorial Institute 
(RPMI) medium (Gibco by Life technologies), supplemented with 10 
% human serum (PAN BIOTECH), 1% Pen/Strep (GIBCO by Life Tech-
nologies) and 1% Glutamine (GIBCO by Life Technologies). Cells were 
stimulated with 1 µg ml–1 Resiquimod (Enzo) and 50 ng ml–1 IL-2 (Sigma). 
BrdU (40 µM; Sigma) was incorporated for 90 h and 120 h, respectively, 
to perform nontemplate strand labeling. Single nuclei from each time-
point were sorted into 96-well plates using a BD FACSMelody cell sorter, 
followed by Strand-seq library preparation (described below). In the 
case of the AML sample, frozen primary mononuclear cells from a bone 
marrow aspirate were thawed and stained with CD34-APC (clone 581; 
Biolegend), CD38-PeCy7 (clone HB7; eBioscience), CD45Ra-FITC (clone 
HI100; eBioscience), CD90-PE (clone 5E10; eBioscience) and LIVE/
DEAD Fixable Near-IR Dead Cell Stain (Thermofisher). Single, viable, 
CD34+ cells (Supplementary Fig. 15) were sorted using a BD FACSAria 
Fusion Cell Sorter into ice-cold serum-free expansion medium (SFEM) 
supplemented with 100 ng ml–1 SCF and Flt3 (Stem Cell Technologies), 
20 ng ml–1 IL-3, IL-6, G-CSF and TPO (Stem Cell Technologies). Cells were 
plated in Corning Costar Ultra-Low Attachment 96-well flat-bottom 
plates (Sigma) at 1 × 105 cells ml–1 in warm medium as above. At 24 h 
after culture, 40 µM BrdU was added. Nuclei were isolated after 43 h 
total culture time, and BrdU-incorporating nuclei sorted into 96-well 
plates followed by Strand-seq library preparation. All Strand-seq librar-
ies were automatically prepared using a Biomek FXP liquid handling 
robotic system, as described previously23,96. Libraries were sequenced 
on an Illumina NextSeq 500 sequencing platform (MID-mode, 75 base 
pair (bp) paired-end sequencing protocol).

Strand-seq data preprocessing
Reads from Strand-seq (fastq) libraries were aligned to the hg38 assem-
bly using BWA97, as previously described24. Sequence reads with low 
quality (MAPQ < 10), supplementary reads and duplicated reads were 
removed. Single-cell library selection was performed as described 
previously24. The single-cell footprints of different SV classes were 
discovered using the principle of scTRIP of Strand-seq data using the 
MosaiCatcher computational pipeline with default settings24.

Coupling NO measurements and SV discovery in the same cell 
with scNOVA
We developed scNOVA as a computational framework for coupling dis-
covered somatic SVs with analyses of NO profiles in the same cell. The 
scNOVA workflow covers a set of different operations from single-cell 
SV discovery (using the previously described scTRIP method24) to NO 
profiling at CREs, and gene as well as pathway dysregulation inference 
based on NO at gene bodies, and can be used in a haplotype-aware or 
-unaware manner (Extended Data Fig. 1). To maximize reusability, inter-
operability and reproducibility we combined all scNOVA modules into 
a coherent workflow using snakemake. Alternatively, these modules 
can be executed individually.

Data analysis and operational definition utilized for NO. We oper-
ationally defined NO closely following definitions from a previous 
study28: NO maps were calculated by counting how many reads from 
the Strand-seq libraries (which typically comprise mono-nucleosomal 
fragments around 140–180 bp in size; see Supplementary Table 1 and 
Supplementary Fig. 1) covered a given bp based on aligning reads to the 

GRCh38 (hg38) genome assembly with BWA97. Genomic regions with 
unusual (such as artificially high) coverage were considered artifacts, 
and were automatically excluded (‘blacklisted’) by our Strand-seq 
analysis workflow as previously described24. No further peak calling 
or smoothing was conducted, and no assumptions on the length of 
the nucleosomal DNA were made to derive NO maps, as nucleosome 
boundaries were determined on both sides of the nucleosome by 
paired-end sequencing28. For the calculation of NO around bound CTCF 
binding sites (downloaded from ENCODE34), the averaged profile was 
scaled28 to yield an NO equal to 1 at position –2,000 bp from the center 
of the bound CTCF site.

Cell type classification. We generated feature sets from the NO at the 
body of genes (defined as the region from the TSS to the transcription 
termination site, which includes exons and introns) at the single-cell 
level. When several sequencing batches from the same samples were 
available, we applied batch correction to the NO count matrix using 
ComBat-seq98. NO in gene body regions was normalized by segmental 
copy number status, and by library size to obtain reads per million, 
which we transformed into log2 scale. This feature set was used for the 
unsupervised dimension reduction plot (Extended Data Fig. 3) and 
for training of a supervised classification model based on PLS-DA99.

Haplotype-phasing of single-cell NO tracks. As previously described, 
Strand-seq directly resolves its underlying sequence reads onto haplo-
types ranging from telomere to telomere31 (chromosome-length hap-
lotyping). scNOVA phases NO profiles onto a chromosomal homolog 
using the StrandPhaseR algorithm31, which is employed wherever the 
template strand segregation pattern of a chromosome enables unam-
biguous haplotype-phasing, that is, for Watson/Crick (WC) or Crick/
Watson (CW) template state configurations in Strand-seq libraries31,96. 
Haplotype-specific analyses pursued by scNOVA employ phased reads 
(normalized by locus copy number), whereas the inference of gene 
activity changes uses both phased reads (from chromosomes with a 
WC or CW configuration) and unphased reads (from chromosomes 
with a CC or WW configuration31,96).

Inference of haplotype-specific NO and identification of local 
effects of SVs. To dissect local effects of SVs, the scNOVA framework 
performs a genome-wide haplotype-specific NO analysis at gene bodies 
in pseudobulk, which yields a haplotype-specific NO matrix. Using this 
matrix, scNOVA then scans up to ±1 Mb around each somatic SV break-
point to infer local effects of these breakpoints on haplotype-specific 
gene activity, using FDR-adjusted Wilcoxon rank sum tests. Once a local 
effect on gene activity is identified, scNOVA additionally provides the 
option to locally scan for CREs exhibiting haplotype-specific NO. To do 
so, user-provided CRE positions from the cell type of interest are used 
by scNOVA to calculate haplotype-specific NO at CREs, and the Exact 
test (10% FDR) is used for significance testing.

Inference of genome-wide changes in gene activity. This 
haplotype-unaware module of scNOVA considers all reads—whether 
phased or not—to infer gene activity alterations via analysis of dif-
ferential patterns of NO along gene bodies. scNOVA obtains gene 
loci from ENSEMBL (GRCh38.81), converted into bed format (Gen-
ebody_hg38.81.bed). Strand-seq reads falling within the start and 
end position of genes (Genebody_hg38.81.bed) were identified with 
the Deeptool multiBamSummary function100, using the following 
parameters: [multiBamSummary BED-file –BED Genebody_hg38.81.
bed –bamfiles Input.bam –extendReads –outRawCounts output.tab 
-out output.npz]. The scNOVA gene dysregulation inference module 
contains two steps: Step 1 filters out genes unlikely to be expressed 
(‘not expressed’, NEs), whereas Step 2 infers dysregulated (that is, 
differentially expressed) genes between subclones using a general-
ized linear model.
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using Strand-seq read count data, with these read counts then being 
normalized using the median-of-ratios method from DESeq2 (ref. 103). 
For each member in the biological pathway gene sets from MSigDB64, 
scNOVA then computes mean normalized NO values, in each single-cell, 
as a proxy for pathway-level NO. Lowly variable genes (s.d. <80%) are 
removed. Pathway-level NO is compared between cells with and with-
out SVs using linear mixed model fitting followed by likelihood ratio 
testing, and controlling the FDR at 10%. For linear mixed model fitting, 
SV status is defined as a fixed effect and different Strand-seq library 
batches are defined as random effects, by scNOVA.

Quantitative real-time PCR
NA20509 was ordered from Coriell and taken into culture at passage 
four. The late passage was grown until passage eight in a time span 
of 8 weeks. HG01505 was taken into culture at passage five and was 
grown until passage nine within a total time span of 6 weeks. DNA, 
RNA and protein were isolated with the NucleoSpin TriPrep Mini kit 
(740966.50) according to the manufacturer’s protocol. qPCR was 
performed on genomic DNA. PCR primers for MAP2K3 and TP53 were 
obtained from Sigma. qPCR was performed using BD SYBR Green PCR 
Master Mix (4309155) with a final primer concentration of 300 nM 
each and 10 ng input gDNA. A GAPDH control region was used as a 
normalizer. The primer sequences for DNA qPCR are provided in Sup-
plementary Table 17.

Drug treatment with CB-103
Primary human T-ALL cells were recovered from cryopreserved bone 
marrow aspirates of patients enrolled in the ALL-BFM 2009 study. 
Patient-derived xenografts were generated as previously described 
by intrafemoral injection of 1 million viable primary ALL cells in NSG 
mice104 Patient-derived xenografts (T-ALL_P1)24 cells were frozen until 
processing. Human hTERT immortalized primary bone marrow mes-
enchymal stroma cells (MSC; provided by D. Campana) were cultured 
in Roswell Park Memorial Institute (RPMI) 1640 medium supplemented 
with 10% heat-inactivated fetal bovine serum, l-glutamine (2 mM), peni-
cillin/streptomycin (100 IU ml–1) and hydrocortisone (1 µM). MSCs were 
seeded in 24-well plates at a concentration of 500,000 cells per well in 
1 ml Aim V medium. After 24 h, T-ALL cells were added at a concentra-
tion of 1.5 million cells per well in 1 ml Aim V. CB-103 (MedChemExpress, 
HY-135145) or DMSO (vehicle) as control was added after an additional 
24 h at a concentration of 10 µM. After 8 h and 24 h, cells were trypsi-
nized, collected and frozen in 90% fetal bovine serum /10% DMSO.

Single-cell RNA sequencing and data processing
For scRNA-seq library preparation, cryopreserved cells were thawed 
rapidly at 37 °C and resuspended in 10 ml warm RPMI medium with 
100 µg ml–1 Dnase I. Cells were centrifuged for 5 mins at 300g, and 
resuspended in ice-cold PBS with 2% fetal bovine serum and 5 mM 
EDTA. Cells were stained on ice with anti-murine-CD45-PE (mCD45)
(clone 30-F11; BioLegend; 1:20) in the dark for 30 mins. 1:100 
4,6-diamidino-2-phenylindole (DAPI) was added and incubated in the 
dark for 5 mins before sorting. Triple negative cells (4,6-diamidino-2-ph
enylindole-mCD45-GFP–) were sorted (Supplementary Fig. 32) using a 
BD FACSAria fusion cell sorter into ice-cold 0.03% bovine serum albumin 
(BSA) in PBS. All isolated cells were used immediately for scRNA-seq 
libraries, which were generated as per the standard 10x Genomics Chro-
mium 3′ (v.3.1 Chemistry) protocol. Completed libraries were sequenced 
on a NextSeq5000 sequencer (HIGH-mode, 75 bp paired-end).

Sequenced transcripts were aligned to both human and mouse 
genomes (GRCh38 and mm10) and quantified into count matrices 
using cell ranger mkfastq and count workflows (10X Genomics, v.3.1.0, 
default parameters). The R package Seurat80 (v.4.0.3) was used for 
quality control of single cells and unsupervised clustering of the data. 
Briefly, human cells were separated from multiplets/mouse contami-
nation based on greater than 97 % of their reads aligning to GRCh38. 

Further filtering for high quality cells accepted only those with more 
than 200 but less than 20,000 total RNA counts, and a percentage of 
mitochondrial reads less than 10% for the untreated data, and less than 
40% for the drug-treated samples. Finally, remaining mouse transcripts 
were removed before further analysis.

In the untreated data, normalization, scaling and regression of 
mitochondrial read percentage was carried out using the scTrans-
form package105. Dimensionality reduction and differential expres-
sion analysis of identified clusters was performed as standard using 
Seurat. Trajectory analysis was performed using Monocle3 (ref. 106). 
In the drug treatment data, individual Seurat objects that had been 
quality controlled as above were normalized by scTransform105,107 and 
then integrated to correct for batch effects and allow for comparative 
analysis. To re-annotate clusters from the untreated data in the drug 
treatment data, the TransferData() function from Seurat80 was used 
to project labels from our reference (that is, untreated data) onto 
the integrated drug treatment data. Single-cell gene set enrichment 
analysis was performed using the R package ‘escape’67.

Cellular indexing of transcriptomes and epitopes by 
single-cell sequencing
A peripheral blood-derived sample (CLL_24) was recovered from 
cryopreservation as previously described108 to reach viability above 
90%. Then, 5 × 105 viable cells were stained by a premixed cocktail of 
oligonucleotide-conjugated antibodies (Supplementary Table 14) 
and incubated at 4 °C for 30 min. We provided dilution used for each 
antibody in Supplementary Table 14. Cells were washed three times 
with ice-cold washing buffer. After completion, bead-cell suspensions, 
synthesis of complementary DNA and single-cell gene expression and 
antibody-derived tag (ADT) libraries were performed using a Chro-
mium single cell v.3.1 3ʹ kit (10× Genomics) according to the manufac-
turer’s instructions. Then, 3′ gene expression and ADT libraries were 
pooled in a ratio of 3:1 aiming for 40,000 reads (gene expression) and 
15,000 reads per cell (ADT), respectively. Sequencing was performed 
on a NextSeq 500 (Illumina). After sequencing, the cell ranger wrap-
per function (10x Genomics, v.6.1.1) cellranger mkfastq was used to 
demultiplex and to align raw base-call files to the human reference 
genome (hg38). The obtained FASTQ files were counted by the cell-
ranger count command. If not otherwise indicated default settings 
were used. Single-cell gene set enrichment analysis was performed 
using the R package ‘escape’67.

Single-cell gene signature scoring using UCell
The activity of the scNOVA-identified gene set from T-ALL_P1 in 
scRNA-seq data was profiled using the UCell package81. Briefly, sig-
nature genes considered were those with either increased (implying 
decreased expression) or decreased (implying increased expression) 
nucleosome occupancy (see Fig. 5b), or genes encoding TFs whose 
targets showed differential nucleosome occupancy (see Fig. 5c). 
The following gene set was used for T-ALL_P1: ‘PRKCB–’, ‘RPS6KA2–’, 
‘FAM120B–’, ‘FAM86C1+’, ‘FBXO22+’, ‘RHOH+’, ‘SLC9A7+’, ‘NASP+’, 
‘NOTCH1+’, ‘MRPL48+’, ‘MFSD9+’, ‘MVB12B+’, ‘MYB+’ (with ‘+’ for 
upregulated, and ‘–’ for downregulated). The score per single cell for 
the entire directional gene set was calculated using the AddModule-
Score_UCell() function. Cells were considered to be ‘active’ for the 
signature genes if their respective UCell score was greater than or equal 
to the median UCell score of the entire dataset, plus the s.d. Similarly, 
for T-cell cell-type labeling, marker gene sets for T-cell subsets were 
obtained from Park et al.109 and single cells were scored for their activity 
in each gene set. Cells were labeled by their best-fit cell type, that is the 
cell-type whose gene set gave the highest UCell score.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this article.

http://www.nature.com/naturebiotechnology
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Data availability
Sequencing data from this study can be retrieved from the European 
Genome-phenome Archive (EGA) and the European Nucleotide Archive 
(ENA). LCL data are available under the following accessions: Strand-seq 
(PRJEB39750, PRJEB55038); RNA-seq (ERP123231); WGS (PRJEB37677). 
C11 cell line data are available under the accession PRJEB55012. Leuke-
mia patient data and human primary cells derived data were depos-
ited in the European Genome-phenome Archive (EGA) under the 
following accession numbers: skin fibroblast (EGAS00001006498); 
cord blood (EGAS00001006567). T-ALL Strand-seq and scRNA-seq 
(EGAS00001003365), CLL Strand-seq (EGAS00001004925), 
AML Strand-seq (EGAS00001004903), T-ALL bulk RNA-seq 
(EGAS00001003248), CLL bulk RNA-seq (EGAS00001005746), CLL 
CITE-seq (EGAS00001004925). Access to human patient data is gov-
erned by the EGA Data Access Committee.

Code availability
The computational code of our analytical framework scNOVA is avail-
able open source at https://github.com/jeongdo801/scNOVA, with 
no restrictions on reuse. Other software used: Mosaicatcher (https://
github.com/friendsofstrandseq/mosaicatcher-pipeline), Strand-
PhaseR (https://github.com/daewoooo/StrandPhaseR), InferCNV 
(https://github.com/broadinstitute/inferCNV/), HoneyBADGER 
(https://jef.works/HoneyBADGER/), CONICSmat (https://github.
com/diazlab/CONICS), NucTools (https://homeveg.github.io/nuc-
tools), Delly2 (https://github.com/dellytools/delly), BWA (v.0.7.15), 
STAR (v.2.7.9a), SAMtools (v.1.3.1), biobambam2 (v.2.0.76), deeptools 
(v.2.5.1), perl (v.5.16.3), Python (v.3.7.4), cuDNN (v.7.6.4.38), CUDA 
(v.10.1.243), TensorFlow (v.1.15.0), scikit-learn (v.0.21.3), matplotlib 
(v.3.1.1), R v.4.0.0, DESeq2, FlowJo and BD FACSDiva.
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Extended Data Fig. 1 | Overview of components of the scNOVA computational 
workflow. scNOVA employs single cell tri-channel processing (scTRIP) as 
realized in the MosaiCatcher pipeline to perform haplotype-aware somatic SV 
discovery24. Modules of scNOVA enable single-cell mulitomics of these somatic 
SVs, including inference of haplotype-specific NO to investigate local (cis) effect 
of SVs, and inference of altered gene/pathway activity to investigate global 
(trans) effect of SVs detectable between geneticlaly distinct subclones. To 
infer alterations in gene activity, scNOVA integrates deep convolutional neural 

network (CNN) based machine learning, and negative binomial generalized 
linear models. The framework dissects intra-sample genetic heterogeneity at 
single-cell resolution, measures the local haplotype-specific impact of somatic 
SVs, can be used to explore global gene dysregulation in SV-containing cells, can 
discriminate between genetically-distinct subclones, and can uncover shared 
functional consequences of heterogeneous SVs affecting the same chromosomal 
interval.
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Extended Data Fig. 2 | Read depth of Strand-seq and MNase-seq data 
stratified into 15 chromatin states defined by Roadmap epigenome 
consortium33. 15 chromatin states based on the NA12878 cell line were utilized 
in this genome-wide analysis. Plots generated represent Strand-seq data from 
NA12878 (n = 95 cells) (a), and publicly available MNase-seq from NA12878, 
NA19193, and NA19238 (n = 1 sample each) (b-d). The bulk MNase-seq experiment 
of NA12878 was pursued using single-end SOLID sequencing reads, and that of 
NA19193 and NA19238 was done using paired-end Illumina reads. The X-axis in 
the box plot indicates reads per kilobase per million (RPKM) measured for each 
genomic segment annotated by one of the 15 chromatin states. Abbreviations 
for chromatin states33 are: TssA-Active TSS, TssAFlnk-Flanking Active TSS, 
TxFlnk - Transcription at gene 5’and 3’, Tx - Strong transcription, TxWk - Weak 

transcription, EnhG - Genic enhancers, Enh - Enhancers, ZNV/Rpts - ZNF genes & 
repeats, Het - Heterochromatin, TssBiv - Bivalent/Poised TSS, BivFlnk - Flanking 
Bivalent TSS/Enh, EnhBiv - Bivalent Enhancer, ReprPC - Repressed PolyComb, 
ReprPCWk - Weak Repressed PolyComb, Quies - Quiescent/Low. Boxplots were 
defined by minima = 25th percentile - 1.5X interquartile range (IQR), maxima = 
75th percentile + 1.5X IQR, center = median, and bounds of box = 25th and 75th 
percentile. Both Strand-seq and MNase-seq assays measured NO in all fifteen 
chromatin states. Among these chromatin states, Strand-seq and MNase-seq 
revealed the highest NO signals on average for the polycomb repressed state 
and the bivalent enhancer state; whereas the lowest average NO signals were 
consistently seen for the active transcription start site (TSS) state.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Utility of NO for cell-typing. (a) Cell-typing based on 
NO at gene bodies (AUC = 1). Epi1: RPE-1 replicate 1 (79 cells); Epi2: replicate 2 (77 
cells); LCL1: HG01573 (46 cells); LCL2: HG02018 (50 cells), LCL3: NA19036 (50 
cells); LV: latent variable. (b) UMAP visualization of Strand-seq libraries based 
on NO at gene-bodies (normalized by segmental ploidy status24). (c) We also 
explored dimensionality reduction of Strand-seq libraries based on DNA motif 
accessibility. Using the chromVAR package110, single-cell NO profiles for 2 kb 
DNase I hypersensitive sites (DHSs) were transformed into a deviation Z-score, 
which measures how likely a certain motif accessibility would occur when 
randomly sampling sets of peaks with similar GC content and read depth. For 
each single-cell, the deviation Z-score was calculated for 870 human TF motifs 
from the cisBP database111. These dimensionality reduction plots suggest that 
batch effect within the same cell type (three individuals in LCL, and two batches in 

RPE-1 sequenced separately) is minimal, and far less than the cell-type dependent 
variability. (d) UMAP using scMNase-seq26, including 45 NIH3T3 cells and 272 
murine naive T cells, based on NO at the gene-bodies. (e) UMAP of RPE-1 (the 
originally commercially available cell line) and its transformed derived37 cell lines 
(BM510 and C7). Two biological replicates were sequenced for each cell line. (f ) 
Receiver operating characteristic (ROC) using the PLS-DA based classifier. AUC 
for classifying each cell line was 0.9614, 0.9694, and 0.9892 for RPE-1, BM510, 
and C7 respectively. (g-h) Cell-typing for LCL, RPE-1, skin fibroblast, AML, T-ALL, 
and umbilical cord blood cells (g), and ROC curve depicting classification 
performance (overall AUC = 0.998) (h). (i-j) Cell-typing in five RPE-1 derived 
cell lines37 (RPE-1, BM510, C7, C29, and C11) (i), and ROC curve depiciting 
classification performance (overall AUC = 0.9648) (j).
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Extended Data Fig. 4 | In silico downsampling experiments. We performed in 
silico cell mixing of RPE-1 and HG01573 cells to simulate application of scNOVA 
to different cell fractions (CFs). In this analysis six different CF ranges were 
considered (20, 10, 5, 3.3, 2, and 1.3). For each in silico cell mixing experiment, 
a total of 150 single cells were randomly subsampled for the major pseudo-
clone (containing RPE-1 cells) and the minor pseudo-clone (HG01573 cells), by 
controlling the minor pseudo-clone CF at 20, 10, 5, 3.3, 2, and 1.3%, respectively. 

AUC, area under the curve. DEGs, differentially expressed genes. For each CF, we 
performed random subsampling of single-cell libraries 10 times, and depicted 
the respective mean AUC in the plot. Two different analysis modes - default 
(dashed lines, CNN with negative binomial generalized linear model), and 
alternative (solid lines, CNN with PLS-DA) are depicted. When the CF is larger than 
10%, the default mode performs better, whereas for CFs smaller than 10%, the 
alternative mode outperforms the default mode.
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Extended Data Fig. 5 | Haplotype-specific NO analysis in RPE-1 and BM510. (a, 
b) Haplotype-specific NO analysis of NO at gene bodies genome-wide in RPE-1 
(a) and BM510 (b). For each chromosomal karyogram, the y-axis indicates the 
significance of haplotype-specific NO for each gene (-log10 p.adjust). All the 
significant genes were indicated in red dots (FDR 10%; two-sided wilcoxon rank 
sum test followed by Benjamini Hochberg multiple correction; derived from 
n = 33 cells and n = 79 cells for RPE-1 and BM510, respectively; Boxplots were 
defined by minima = 25th percentile - 1.5X interquartile range (IQR), maxima = 
75th percentile + 1.5X IQR, center = median, and bounds of box = 25th and 75th 
percentile.). NTRK3 (identified in BM510) is the only significant gene adjacent 

to an SV breakpoint. Haplotype-resolved RNA expression at the NTRK3 locus 
is depicted using bar graphs in the right panel (two-sided likelihood ratio test 
followed by Benjamini Hochberg multiple correction; n = 2 biological replicates; 
Data are presented as mean values +/− SEM). (c-d) Haplotype-specific NO 
analysis at CREs. Browser track depicts the haplotype-resolved NO of the not 
rearranged (Ref) homolog in red, and the SV homolog in blue. scNOVA identified 
two CREs with significant haplotype-specific NO, including an intergenic CRE 
spanning chr15:87527100-87528100 (p.adjust = 0.029, log2-fold change = −2.01) 
(c) and an intronic CRE at chr15:88246388-88247388 (p.adjust = 0.076, log2-fold 
change = −1.39) (d).
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Haplotype-specific NO analysis in T-ALL_P1. (a) For each 
chromosomal karyogram, the y-axis indicates the significance of haplotype-
specific NO at each gene (-log10 p.adjust). Genes with haplotype-specific NO are 
indicated using red dots (FDR 10%). An inlet figure depicts haplotype-specific 
NO (two-sided wilcoxon rank sum test and Benjamini Hochberg multiple 
correction; n = 56 cells) and RNA expression at the BCL11B gene locus (two-sided 
likelihood ratio test and Benjamini Hochberg multiple correction; n = 2 biological 
replicates), which has a nearby somatic SV (within 1 Megabase) and represents 
the (only) predicted local SV effect. (b) We did not measure haplotype-specific 
NO for TCL1A (two-sided wilcoxon rank sum test and Benjamini Hochberg 
multiple correction; n = 56 cells), a small gene with 4229 bp in size, in spite of 
its haplotype-specific gene expression24 (two-sided likelihood ratio test and 
Benjamini Hochberg multiple correction; n = 2 biological replicates). Boxplots 
were defined by minima=25th percentile-1.5X interquartile range (IQR), 
maxima=75th percentile+1.5X IQR, center=median, and bounds of box=25th and 

75th percentile. For bargraphs, data are presented as mean values +/− SEM (a-b). 
(c) Simulation analysis revealed a minimum gene length (7219 bp) needed to 
robustly detect haplotype-specific NO at gene bodies, a gene length met by 80% 
of genes in the genome (Supplementary Notes). (d) Inversion breakpoints and 
rearranged TADs. Known 3’ BCL11B enhancers112 are depicted in orange. In the not 
rearranged haplotype, they are located proximal to BCL11B, but in the inverted 
haplotype these enhancers they are located far away from BCL11B, and proximal 
to TCL1A in the different TAD boundary. (e) Application of scNOVA identified an 
intergenic CRE near the BCL11B with haplotype-specific NO. The browser track 
depicts the haplotype-resolved NO of the not rearranged (Ref) homolog in red 
and the SV homolog in blue. (f) The known 3’ BCL11B enhancer does not show 
significant haplotype-specific NO, but the inversion physically relocates these 
enhancers to the far distance from the BCL11B. A representative CRE is shown 
amongst four CREs overlapping with known 3’ BCL11B enhancers.
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Extended Data Fig. 7 | Inference of SCNAs using CITE-seq data from the 
CLL_24 sample. (a) InferCNV48 analysis of 3,919 high quality CLL cells, and 
540 control cells (cells sequenced by CITE-seq not originating from the B-cell 
lineage; see Supplementary Fig. 25), profiled by CITE-seq. This analysis did not 
discover any subclones in CLL_24. (Note that the high variability observed on the 
6p-arm, not only seen in CLL cells but also in control cells, likely arose from the 

presence of MHC genes in this locus, whose expression is cell cycle dependent113.) 
(b) CONICSmat based targeted SCNA recalling of the 10q-terDel (previously 
discovered in SCb; see Fig. 4b) using the high-resolution breakpoints derived 
from Strand-seq. Use of these SV breakpoints allowed CONICSmat to confidently 
call the 10q-terDel in 82 single cells from the CITE-seq data.

http://www.nature.com/naturebiotechnology
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