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Abstract: Visual disturbances caused by inflammatory and demyelinating processes of the visual
system, mainly in the optic nerve, are a common symptom in multiple sclerosis (MS). Optical
coherence tomography (OCT) is a tool that is increasingly used for quantifying retinal damage
in MS and other neurologic diseases. Based on spectral interferometry, it uses low-coherent
infrared light to generate high-resolution spatial images of the retina. The retinal nerve fiber layer
(RNFL) consists of unmyelinated axons that form the optic nerve, and thus represents a part of
the central nervous system. OCT allows for noninvasive measurements of RNFL thickness in
micrometer resolution. With the help of OCT, researchers have managed to demonstrate that
eyes of MS patients show distinct RNFL thinning after an event of acute optic neuritis in MS,
and even subclinical damage in eyes with no previous optic neuritis. OCT is also a useful tool
in terms of providing a differential diagnosis of MS toward, for example, neuromyelitis optica, a
disease that usually shows stronger retinal thinning, or Susac syndrome, which is characterized
by distinct patchy thinning of the inner retinal layers. RNFL thinning is associated with magnetic
resonance imaging-derived measurements of the brain, such as whole-brain atrophy, gray and
white matter atrophy, and optic radiation damage. These features suggest that OCT-derived retinal
measurements are a complement for measuring central nervous system neurodegeneration in
the context of clinical trials — for example, with neuroprotective substances.

Keywords: visual function, multiple sclerosis, optic neuritis, retinal nerve fiber layer, neuro-
myelitis optica, Susac syndrome

Introduction

“Objective”, “easy to perform”, “noninvasive”, “cheap”, and “reproducible” — these
are keywords that are used when referring to the application of optical coher-
ence tomography (OCT) as a novel imaging marker for the diagnosis, differential
diagnosis, and disease progression in multiple sclerosis (MS), the most common
chronic inflammatory disorder of the central nervous system (CNS).! But what is
really behind it?

Visual disturbances including blurred vision, visual field defects, and color
desaturation are frequently occurring symptoms in MS and are assumed to be caused
by inflammation in and axonal damage to the optic nerve as part of the CNS.%* When
exceeding a certain threshold, this scenario may clinically appear as acute optic
neuritis (ON). During the course of the disease, acute ON affects 50%—70% of MS
patients.>* Notably, MS patients consider visual function the second most important
body function,* which underscores the considerable impact of visual impairment on
patients’ quality of life.
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Since its introduction in 1991,° retinal OCT has emerged
as a valuable part of the neuroophthalmologic imaging
toolbox. It allows for spatial imaging of the retina with
micrometer resolution and thus, for example, quantification
of the retinal nerve fiber layer (RNFL), which represents the
unmyelinated axons of the retinal ganglion cells that converge
to the optic disc and form the optic nerve (Figure 1).° In prin-
ciple, OCT works as an analog to ultrasound imaging, but
is based on spectral interferometry.” Infrared low-coherent
light from a laser or superluminescent diode is scattered back
by the different retinal layers. By analyzing phase differ-
ences obtained from an interference pattern with a reference
beam, the signal can be mathematically transformed into a
depth protocol. Thus, intraretinal thickness estimates can be
calculated. Of note, as a general rule, OCT data are derived
from different abilities of distinct anatomical structures to
reflect light and do not necessarily represent the respective
anatomical structures itself.

The first OCT data from MS patients were reported in
1999.8 While early OCT studies in MS were performed with
comparatively slow third generation time domain (TD)-OCT
devices, which focus on the peripapillary RNFL derived
from a ring scan and the total macular volume (TMYV)
of all layers, state-of-the-art fourth generation spectral
domain (SD)-OCT devices and algorithms facilitate reti-
nal imaging with enhanced resolution, shorter acquisition
times, three-dimensional scans, and video imaging. Also,
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Figure | OCT-derived cross-sectional images of the retina.

Notes: (A) A line scan through the fovea centralis and the optic nerve head. The
left image shows the fundus image, which is acquired simultaneously to the OCT
image. The orange line indicates the location of the cross-section. The right image
is the respective retinal OCT scan as a grayscale image. (B) The retinal nerve fiber
layer thickness is usually acquired by a peripapillary ring scan. Image analysis provides
the thickness values for the overall ring, but also for the sectors.

Abbreviations: NS, nasal-superior; N, nasal; NI, nasal-inferior; TI, temporal-
inferior; T, temporal; TS, temporal-superior; OCT, optical coherence tomography.

in the latest SD-OCT devices, eye tracking systems allow
accurate repositioning of the scanned area, thus providing
conditions for detecting even subtle changes in the range of
a few micrometers in follow-up measurements. The most
important advantage of SD-OCT is that it allows for intrareti-
nal segmentation, which means that the different retinal
layers can now be differentiated and measured individually
(Figure 2). Thus, besides the RNFL, the bordering ganglion
cell layer (GCL), often combined with the inner plexiform
layer (GCIPL), became an important outcome parameter
in OCT studies in MS.*'* Importantly, comparative studies
with different OCT devices revealed that data generated by
TD-OCT and SD-OCT are not interchangeable.'> Thus, the
technique used for acquisition should be considered when
interpreting data.

The examination is noninvasive; OCT devices are —
comparatively —affordable, and examinations can be performed
within a few minutes. Given these features, OCT has emerged
into a valuable imaging method for the detection and longitu-
dinal monitoring of neuroaxonal pathology in MS and other
diseases with a neurodegenerative component. Importantly,
typical OCT findings in MS, namely RNFL reduction and
GCL thinning, were also the most prominent pathological
changes observed in a postmortem histological investigation
of the retinas of MS patients, which thereby corroborates the
validity of the OCT technique.'® Against this background, OCT
is on the rise to becoming a standard outcome parameter in
observational and interventional trials in MS.

The aim of this review is to briefly summarize cur-
rent OCT findings in MS and ON, its role for differential
diagnosis, and its suitability as an outcome parameter in
clinical trials.

Retinal damage in MS following

ON

Acute ON is the presenting symptom in 15%-20% of MS
patients and occurs in up to 70% of patients during the course
of the disease.?* For decades, temporal paling and atrophy of
the optic disc was considered a characteristic morphological
consequence of ON. Accordingly, numerous OCT studies
consistently found that ON leads to significant thinning of the
RNFL (Figure 3).!72° According to a meta-analysis of cross-
sectional TD-OCT studies that included more than 2,000
individual eyes from MS patients with a previous episode
of ON,?” a mean RNFL reduction of approximately 20 um
can be expected after ON, which corresponds to a 20% loss
in RNFL thickness. The favorite explanation for this obser-
vation is the retrograde degeneration of retinal axons that
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Figure 2 Intraretinal segmentation in a three-dimensional spectral domain OCT scan of the macula.

Note: State-of-the-art spectral domain OCT devices allow for segmentation, and thus quantification, of the retinal layers.

Abbreviations: ILM, inner limiting membrane; RNFL, retinal nerve fiber layer; GCL, ganglion cell layer; IPL, inner plexiform layer; INL, inner nuclear layer; OPL, outer
plexiform layer; ONL, outer nuclear layer; ELM, external limiting membrane; IS/OS, inner segments/outer segments of the photoreceptor layer; RPE, retinal pigment

epithelium; OCT, optical coherence tomography.

have been damaged by an inflammatory attack to the optic
nerve. More recently, the course of RNFL reduction in the
context of acute ON has been evaluated in more detail using
SD-OCT."! After initial swelling due to edema in the acute
phase of ON, RNFL thickness decreased over the following 6
months. Intraretinal segmentation demonstrated that GCIPL
also decreased significantly after ON. Of note, initial swell-
ing was restricted to RNFL, suggesting that the changes in
the GCIPL are the more reliable parameter for longitudinal
monitoring of ON-related retinal damage.

Retinal damage in MS

without ON
While RNFL reduction after an episode of ON is not sur-
prising, RNFL reduction was consistently observed in MS

patients who had never had a clinical episode of ON, as well
as in the clinically unaffected fellow eye of patients with a his-
tory of ON (Figure 3).'"1%202% Accordingly, the meta-analysis
of cross-sectional TD-OCT studies mentioned in the “Retinal
damage in MS following ON” section reported a mean RNFL
reduction of approximately 7 wm in more than 3,100 eyes
of MS patients without ON.?’” We recently performed a large
multicenter SD-OCT study including 414 MS patients and
94 healthy control subjects, with the objective of describing
retinal findings in MS, while focusing on the influence of an
ON and differences in MS subgroups.'® The study revealed
that even in the absence of ON, the RNFL is about 10 um
thinner when compared to that of healthy controls. MS
patients with a secondary progressive disease course were
more severely affected than patients with relapsing—remitting
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PMB 34 58 1.71 PMB 50 84 65 1.31
26 (74) (72) [ (0.95) 39 (73 (96) 2) | 0.97)
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Healthy control MS ON MS non-ON

Figure 3 RNFL thinning in MS with and without ON.

Notes: Peripapillary RNFL thickness values in different sectors of (A) a healthy subject; (B) an MS patient with a history of ON showing severe G and T RNFL thinning;
and (C) an MS patient with no ON history showing mild thinning mainly in the temporal quadrant. Black numbers display the thickness measurements of the subject; green
numbers are the average thickness value of the age- and sex-matched reference group. Sectors are classified in comparison to the reference group. Green: thickness values
within the fifth and 95th percentile range. Yellow: first to fifth percentile range. Red: less than the first percentile.

Abbreviations: G, global; NS, nasal-superior; N, nasal; NI, nasal-inferior; N/T, nasal-temporal ratio; Tl, temporal-inferior; T, temporal; TS, temporal-superior; ON, optic
neuritis; PMB, papillo-macular bundle; RNFL, retinal nerve fiber layer; MS, multiple sclerosis.
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MS; moreover, patients with primary progressive MS who,
by definition, do not develop acute ON, also showed RNFL
thinning. In contrast to earlier TD-OCT-derived data, which
failed to demonstrate RNFL reduction in patients with clini-
cally isolated syndrome (CIS) suggestive of early MS,* a
more recent SD-OCT study showed GCL thinning in a
cohort of CIS patients without a history of ON and with
normal visual evoked potential (VEP) latencies.'? These data
indicate that degeneration of retinal neurons occurs very
early in the course of the disease and independent of ON.
While a plethora of cross-sectional OCT studies in MS exist,
high-quality longitudinal data are rather sparse. According
to a TD-OCT study that monitored RNFL changes in MS
patients at 6-month intervals over a period of up to 4.5 years,
progressive RNFL thinning occurred even in the absence of
ON as a function of time with a mean annualized decrease
of 1-2 um.*® A similar decrease in RNFL and GCIPL thick-
ness was recently reported in an SD-OCT study on 92 MS
patients over a median follow-up period of 1 year."* In con-
trast, a smaller longitudinal SD-OCT study failed to detect
a significant change over time in a mixed cohort of patients
with relapsing—remitting and secondary progressive MS.*!
Thus, longitudinal SD-OCT data still await confirmation in
a sufficiently large cohort of well-characterized MS patients
over a sufficiently long period of time. In comparison, the
natural course of RNFL thinning in a healthy population
ranges from around 0.1-0.5 wm per year.’?33

How can the development of retinal damage in MS patients
without a concomitant or previous ON be explained? In fact,
there is a lively ongoing scientific debate about this phenom-
enon. Currently, three favorite hypotheses are discussed, which
are not mutually exclusive.’® The first explanation refers to
a subclinical “smoldering” ON that structurally impacts the
optic nerve but does not manifest as clinically apparent ON.

Consequently, retrograde axonal damage results in RNFL
thinning, and GCL reduction can be explained by the “dying
back” of retinal ganglion cells. Another hypothesis is focused
on the concept of retrograde transsynaptic degeneration of the
retinal axons and neurons, respectively, which was already
suggested in the 1960s.” MS lesions within the posterior
part of the visual pathway affect axons of the optic radiation,
which leads to retrograde degeneration of second-level neu-
rons in the lateral geniculate nucleus and then, by crossing the
synapse, transsynaptically to the degeneration of the optical
tract and optic nerve, respectively.’®* This model is supported
by several combined OCT and magnetic resonance imaging
(MRI) studies, which are discussed later in this review. The
third approach to explain subclinical retinal damage in MS is
being discussed controversially and refers to a primary retinal
pathology in MS in which retinal neurons are the primary
target of a neurodegenerative process. !4

Retinal changes in MS beyond

axonal and neuronal damage

In addition to the RNFL and GCIPL, other retinal layers may
be affected in MS, although data are less clear. Changes in
the inner nuclear layer (INL) revealed new insight on MS-
related retinal damage: Gelfand et al*! reported findings of
macular microcysts in the INL in 5%—6% of all MS patients’
eyes. Appearance of macular microcysts is illustrated in
Figure 4. MS patients suffering from macular microcysts
tended to have reduced RNFL and GCIPL, more severely
impaired visual function, and worse MS disease severity
scores. Several studies from other centers confirmed these
results and researchers suggested that macular microcysts
are a consequence of retinal ganglion cell degeneration com-
prising inflammatory components.*** Macular microcysts
in MS appear to be dynamic in their extent, suggesting a

Figure 4 Macular microcysts in a patient with recurrent optic neuritis.

Notes: (A) On the fundus image, macular microcysts are identifiable as crescent-shaped darker regions in the perifoveal area. The orange line indicates the location of the
corresponding OCT image on the right. The green line marks the scan boundary. (B) Here, blue arrows show the position of macular microcysts in the inner nuclear layer.

Abbreviation: OCT, optical coherence tomography.

submit your manuscript

156

Dove

Degenerative Neurological and Neuromuscular Disease 2014:4


www.dovepress.com
www.dovepress.com
www.dovepress.com

Dove

Optical coherence tomography in multiple sclerosis

dependency on the acute inflammatory status of the optic
nerve.*>* It was also reported that macular microcysts are
not exclusive to MS, but they also occur in other neuroinflam-
matory conditions such as neuromyelitis optica (NMO) and
chronic relapsing inflammatory optic neuropathy, and that
macular microcysts in those diseases are generally associated
with ON.*'*2 However, macular microcysts are not specific
to neuroinflammatory diseases, as a comprehensive report
on the complete clinical spectrum of macular microcysts has
revealed.® Similar findings have also been shown in heredi-
tary optic neuropathy, including Leber hereditary optic neu-
ropathy and glaucoma,**® pointing to vitreous traction and
schisis of the INL as an alternative cause for macular micro-
cysts.*** In our own database, none of nine patients with
neuroinflammatory diseases and macular microcysts showed
any signs of vitreous traction, which clearly argues against
vitreous traction as a causative factor in macular microcysts.*
Detection of macular microcysts was the first evidence that
neuroinflammatory disorders do not only lead to a loss of
retinal axons and ganglion cells, but also to visible structural
damage in further retinal layers. Even in the absence of visible
macular microcysts, thickening of the INL occurs in eyes with
a history of ON, which is also in correlation to gadolinium-
enhancing T2-hyperintense lesions on cranial MRI, disability,
and relapse rate, indicating that the INL might be a site of
swelling due to acute inflammatory processes.*** While
the INL was repeatedly shown to be a dynamic parameter
for abnormalities in MS, results for the involvement of the
outer retinal layers — namely, the outer plexiform layer, outer
nuclear layer, and photoreceptor layer — are inconsistent. In
a subgroup of MS patients with suspected primary retinal
thinning named “macula thinning predominant” with normal
RNFL but abnormal TMV, a reduction of these outer layers
was found in comparison to healthy controls.!® However,
while a similar finding was reported from a second United
States cohort,”® we could not confirm the existence of this
subtype in our own database.*

Relationship between structural

retinal changes and visual function

Visual impairment is one of the most prevalent symptoms of
MS and compromises the health-related quality of life in MS
patients.**!? Interestingly, OCT-determined retinal disinte-
gration correlates with the quality of life in MS patients.>!
This suggests that OCT-detectable retinal damage translates
into gaugeable visual dysfunction, indicating the morpho-
logical changes that we can detect by OCT are clinically
relevant. Indeed, several publications describe a relation of

retinal axonal or ganglion cell loss to visual function.?5"-% In
terms of visual acuity, low-contrast visual acuity determined
at 1.25% and 2.5% contrast levels using low-contrast visual
acuity (Sloan) charts or functional acuity contrast testing
showed a stronger association with RNFL/GCL thinning
than did high-contrast tests using Snellen or Early Treatment
Diabetic Retinopathy Study (ETDRS) charts.>*> Also, color
vision determined by pseudoisochromatic Hardy—Rand—
Rittler plates or the Lanthony D15 desaturated tests was
found to be impaired in MS and is associated with RNFL
thinning.>

One widespread method to test optic nerve function
include the use of VEP recorded from the visual cortex.
The amplitude and latency after a visual stimulus allow
for conclusions to be made on the integrity of the optic
pathway. Several publications investigated whether OCT
or VEP is the more sensitive tool in evaluating optic nerve
damage in MS.5"* VEP tended to be more sensitive in
detecting eyes with a previous ON, whereas OCT is more
objective in obtaining the subtle shades of degeneration.
In consequence, the two methods are considered comple-
mentary because each represents different aspects of the
pathology. RNFL thickness was also shown to correlate
with visual field deficits after ON.®° A more recent technique
to characterize visual function is multifocal VEP, which
detects abnormalities in smaller areas using numerous
stimulations presented in one measurement. In a cohort of
CIS patients it was able to detect focal abnormalities even
in the absence of ON.¢!

As a general rule, OCT examinations should always be
accompanied by a comprehensive visual function test to give
an overall picture of the patient’s visual impairment.®

Relationship between OCT
and brain atrophy

A frequently used slogan in neurology-related OCT research
is “OCT — a window to the brain?” and occasionally, pro-
vocative claims to substitute MRI by cheaper, faster, and
easier-to-perform OCT are made. In 2007, the first study
investigating the relationship between OCT measurements
and brain atrophy showed a significant association between
RNFL thickness and brain parenchymal fraction, an MRI-
derived measure of brain atrophy.® These data suggested that
neurodegeneration in the brain is reflected by retinal axonal
breakdown and were the starting shot for the evaluation of
the capacity of OCT-based measures as surrogate markers
for global neurodegeneration in MS and, subsequently,
other neurodegenerative disorders.* ¢ Several subsequent
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TD-OCT-based publications confirmed a relationship
between different MRI measurements of brain atrophy and
RNFL thickness in MS patients, yet the studies varied in
terms of their methods and patient cohorts.'**267% Also, an
association between RNFL thickness and axonal damage in
the visual cortex, as determined by magnetic resonance spec-
troscopy, was shown.® While some studies®*’ focused mainly
on global brain atrophy as a more robust measure of overall
brain neurodegeneration, which integrates volume changes
in both gray and white matter irrespective of the underlying
cause, few of these early studies addressed the correlations
between retinal axonal damage and gray or white matter
atrophy separately.'*?>% However, data remained inconsistent,
probably as a consequence of different cohort characteris-
tics and methodological restrictions.?>% Results from more
recent SD-OCT studies are inconsistent as well. While some
researchers reported good correlations for OCT measure-
ments with white matter atrophy (but not or less so for gray
matter), others found a relationship of RNFL and GCIPL
thickness with cortical gray matter volume.”® " Furthermore,
a negative correlation of INL thickness and white matter
volume was reported.” One important confounder that
impacts the correlation between OCT and MRI measures of
neurodegeneration is a patient’s history of ON.”? An event
of ON may inflict substantial damage to the optic nerve and
inner retinal layers, respectively, which is not necessarily
accompanied by equivalent damage to the brain parenchyma,
thereby especially disrupting the association with gray matter
measurements.”” How can the quite consistently observed
associations between retinal and brain damage, at least in
MS eyes without an ON history, be explained? Obviously,
a more global primary or secondary degenerative process
that affects the whole CNS including the retina may be an
explanation. Strong support for the concept of retrograde
transsynaptic degeneration discussed earlier comes from a
recent combined OCT and ultrahigh field MRI study, which
showed a significant correlation between both thinning of the
optic radiation and lesion volume within the optic radiation
with RNFL reduction.” Transsynaptic degeneration may not
only occur in a retrograde direction, but it may also occur
bidirectionally.® Anterograde degeneration in the form of
Wallerian degeneration following ON can transsynaptically
proceed beyond the lateral geniculate nucleus via the optic
radiation to the visual cortex.”*”* In summary, OCT and MRI
provide differential and largely complementary informa-
tion. Thus, for the time being, OCT should be viewed as an
additional complementary outcome parameter instead of an
alternative to MRI.

OCT in the diagnosis and

differential diagnosis of MS
Currently, the use of OCT in the diagnosis of MS is not
clearly established, and outside MS centers and clinical trials,
OCT clearly still plays a subordinated role. Nevertheless, as
visual dysfunction caused by inflammation or axonal dam-
age of the optic nerve is not unique for MS — and given that
it may also occur in other neuroophthalmologic disorders
often misdiagnosed as MS®2 — a tool to differentiate diseases
on the basis of characteristic morphological retinal changes
would be helpful. Indeed, several OCT studies demonstrated
a capability of OCT to differentiate between retinal dam-
age attributable to MS—ON and other neuroophthalmologic
differential diagnoses, as different entities show different
patterns of retinal pathology. Two important differential diag-
noses of MS in which OCT has been shown to be helpful in
terms of differential diagnosis, namely neuromyelitis optica
spectrum disorders (NMOSD) and Susac syndrome (SuS),
are exemplarily discussed in the following paragraphs.
Both NMOSD and MS are neuroinflammatory diseases
with acute ON as a characteristic or even crucial manifes-
tation.”®”” But while ON is usually unilateral in MS and is
often characterized by a good prognosis,> ON in NMOSD fre-
quently presents bilaterally and even simultaneously. Visual
impairment is often more severe and the risk of recurrence
is higher.” Several studies investigated whether different
OCT patterns exist in NMOSD and MS patients. A major
finding of most studies, including our own investigation of
17 patients with MS and NMOSD, respectively,” is that
RNFL reduction after ON is more pronounced in NMO than
in MS (55-83 wm versus 74-95 um, respectively).!!->1:79-83
Likewise, the GCIPL is more severely affected.!"” However,
other studies failed to detect a difference in RNFL thickness
between MS and NMOSD.*# The strong visual impair-
ment in NMO is thought to result from a certain threshold
of neuroaxonal loss, from which retinal neurons and axons
no longer have the ability to sufficiently maintain visual
function. Furthermore, macular microcysts occur at a higher
frequency in NMOSD-ON than MS—ON (21% versus 5%,
respectively), indicating a stronger presence of inflammatory
processes.*>7*8 This is in line with the increased INL thick-
ness reported in NMOSD after ON in comparison to MS.”
Interestingly, OCT results of NMOSD eyes not affected by
a clinically reported ON show no or only slight differences
in comparison to healthy control subjects,'!*!78185 which
might be indicative of either (or both) lesser diffuse direct
optic nerve damage in NMOSD when compared to MS, or
less pronounced retrograde transsynaptic degeneration as a
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Figure 5 Distinct patterns of macular volume loss in a patient with Susac
syndrome.

Notes: (A) Retinal thickness map and OCT scan of a Susac syndrome patient. The
color-coded thickness map shows a patchy thinning, mainly in the 9—12 o’clock hour
sectors. The corresponding OCT image shows that the inner retinal layers have
almost vanished in the respective area. For comparison, (B) the retinal thickness
map and corresponding OCT scan of a healthy subject. (C) The retinal thickness
map and OCT of a multiple sclerosis patient with previous optic neuritis showing
severe but equally distributed retinal thinning.

Abbreviation: OCT, optical coherence tomography.

consequence of less severe affection of the posterior visual
pathway in NMOSD.

SuS is a rare condition characterized by encephalopathy,
visual disturbances, and hearing loss, which are caused by
probable autoimmune-mediated occlusions of small vessels
in the brain, retina, and inner ear, respectively.®’*? Despite
the completely different pathophysiology of visual involve-
ment in SuS and MS, the phenotype of visual impairment in
SuS may resemble that of ON. In combination with clinically
and radiologically evident CNS involvement, and taking into
account that young women are predominantly affected both
by SuS and MS, it is not surprising that patients with SuS
are very often misdiagnosed as having MS.* Recently,
a TD-OCT study comparing retinal morphology in nine
SuS patients and MS patients with or without previous
ON revealed distinct patterns of retinal damage in SuS and
MS.”” All three groups showed a reduction of average RNFL
thickness and TMV. However, while in MS retinal layer dam-
age is evenly distributed over all sectors of the macula, in
SuS patients, a characteristically patchy retinal thinning in
certain sectors was observed, reflecting the vascular origin
of the pathology. However, there were no specific retinal
areas that were predominantly affected. Currently, studies
using SD-OCT in SuS are underway and will provide further

information on the predominantly affected retinal layers.
While damage is mainly restricted to RNFL and GCIPL in
MS, the architecture of the blood supply in the retina also
suggests that deeper layers are involved in SuS (Figure 5).

Conclusion and future perspectives

OCT and, in particular, the up-to-date SD-OCT technique
provide detailed information at high resolution regarding
the thickness, and thus structural integrity, of the different
retinal layers. Given that within the retina, axons of the
retinal ganglion cells are not myelinated, axonal damage
can be directly quantified, rendering OCT an excellent tool
to evaluate neuroaxonal damage in vivo. OCT certainly
provides only limited added value in the diagnostic workup
of straightforward cases. But, as different diseases may
show distinct patterns of retinal pathology, OCT may be
helpful in the differential diagnostic workup in difficult
situations. Most importantly, in the context of MS, it is now
well established that at least in the absence of ON, retinal
neuroaxonal degeneration determined by OCT reflects
global neurodegeneration in the CNS, suggesting OCT
parameters — in particular, RNFL and GCIPL — as surrogates
for measuring CNS neurodegeneration. However, the appro-
priateness of OCT as part of the routine monitoring of MS
patients is currently controversially discussed.”®*” Moreover,
the high inter- and intraindividual reproducibility of OCT
data facilitates follow-up monitoring of neurodegeneration
and provides a rationale for the use of OCT as an outcome
parameter in clinical trials in general and in particular those
addressing neurodegeneration or evaluating the neuroprotec-
tive capacity of new drugs. Indeed, an increasing number of
observational and interventional studies'® already included
changes in RNFL as secondary endpoint. An important
observation that limits the use of OCT in MS research is that
the correlation between retinal and CNS neurodegeneration
often tends to decrease or even vanish in the context of ON,
which can be explained by the dramatic impact of ON on the
inner retinal layers. However, there are no longitudinal data
available to substantiate the influence of ON on the relation-
ship of retinal thinning and brain atrophy. Thus, the history
of ON or acute ON in a patient enrolled in a clinical trial is a
major confounder that needs to be carefully addressed. Less
affected by this limitation are trials in patients with acute
ON, in which OCT parameters are excellent endpoints for
the evaluation of neuroprotective substances. Recently, Siihs
et al'® were the first to use RNFL reduction in the first 16
weeks after an acute ON as the primary endpoint in an inter-
ventional randomized controlled Phase II clinical trial, and
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they showed that a 3-day course of erythropoietin in addition
to methylprednisolone was superior to placebo in preventing
RNFL thinning after ON. Remarkably, a sample size of 40
individuals per arm was sufficient to detect a significant dif-
ference.'” Further studies with OCT parameters as primary
or secondary endpoints are under way.
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