
High coverage Illumina BAM files for NA19240, HG00733 and HG00514 http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/datacollections/hgsvsv_discovery/data/

NA19240 SVelter callset http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/datacollections/hgsvsvdiscovery/working/20160728SVelter_UMich/

PacBio HiFi reads for NA19240, HG00733 and HG00514 http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/HGSVC2/working/

SK-BR-3 Illumina BAM file http://labshare.cshl.edu/shares/schatzlab/www-data/skbr3/SKBR3550bppcrFREES1L001ANDL002R1001.101bp.bwamem.ill.mapped.sort.bam

SK-BR-3 SURVIRVOR merged callset http://labshare.cshl.edu/shares/schatzlab/www-data/skbr3/SURVIVOR1kmin2_min50bp.vcf.gz

SK-BR-3 PacBio aligned BAM file http://labshare.cshl.edu/shares/schatzlab/www-data/skbr3/readslrskbr3.fangmlr-0.2.3mapped.bam

HG00733 haploid HiFi assembly http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/datacollections/HGSVC2/working/20200628HHUassembly-resultsCCS_v12/assemblies/phased/

HG00733 Oxford Nanopore sequencing http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/datacollections/hgsvsvdiscovery/working/20181210ONT_rebasecalled/

Two scripts clusterSV.py and splitFasta.py, this can be found in our github repository. To run this script, the following dependencies have to be satisfied: * Python3 (version >= 3.6) *
Packages: scipy, statistics, numpy, matplotlib, biopython

Gepard dotplot tool (http://cube.univie.ac.at/gepard). Java v1.8 is required to run the program.

This function is implemented as clusterSV.py, which takes illumina callset as input and output SV clusters. We use the median of events in the cluster as start and end for cluster
coordinates.

python clusterSV.py -i input.bed -c chrom -w work_dir/

The output files are named as chrom.svclustersctxxx.bed under your working directory. ct is the cluster merge cutoff.

This step is only for NA19240, HG00514 and HG00733. We use public available alignment file of PacBio reads for SK-BR-3.

Supplementary Note for Mako
Table of contents

I. Datasets resource

II. Create benchmark CSVs for real data

III. Performance evaluation

IV. Simulate complex structural variants

V. Experimental validation

VI. CSV manual inspection

VII. Computational validation

VIII. Running configurations

Dataset resource

Create benchmark CSVs for real data

Prerequisites

Step1: clustering discovered SVs

Step2: align CCS reads

align each subread with pbmm2
pbmm2 align GRCh38.reference.fa prefix.ccs.fastq.gz prefix.pbmm2.srt.bam --preset CCS --sort -j 8 -J 8 --sample sample_name

align each subread with NGMLR
ngmlr -t 8 GRCh38.reference.fa -q prefix.ccs.fastq.gz -o prefex.nglmr.sam
samtools sort -o prefix.nglmr.srt.bam

Merge pbmm2 aligned BAMs
samtools merge merged.ccs.pbmm2.srt.bam *.pbmm2.srt.bam
samtools index merged.ccs.pbmm2.srt.bam

Merge NGMLR aligned BAMs
samtools merge merged.ccs.ngmlr.srt.bam *.nglmr.srt.bam
samtools index merged.ccs.ngmlr.srt.bam

splitFasta.py is self-developed script to split the multi-fastq file.

Get reference sequence corresponding to each SV cluster
bedtools getfasta -fi referece.fa -bed sv_cluster.bed -fo cluster_ref.fa
Get long reads that span each SV cluster
samtools view -b pacbio_aligned.bam sv_cluster.bed | samtools fast > cluster_reads.fa
Split the multi-fastq file
python splitFasta.py --input cluster_reads.fa --output work_dir/

Finally, we obtain the reference sequence and long read sequences separated in each files.

We use Gepard to visualize and create reference to reads dotplots.
java -cp /path/to/Gepard-1.40.jar org.gepard.client.cmdline.CommandLine -seq1 cluster_ref.fa -seq2 read.fa -matrix /path/to/gepard/resources/matrics/edna.mat -maxwidth 2000 -maxheigth 2000 -outfile read.png -silent

The comparison is based on the idea from Truvari and Peter A.Audano's 2019 Cell paper. In general, it searches for closest event of similar size. If such predictions can be found
from the compare set, we will calculate the reciprocal overlap. The comparison parameters are listed below. For more information about evaluation schema, please refer Truvari
(https://github.com/spiralgenetics/truvari).

Matching parameters

Parameter Default Definition

bpDist 500 Max distance between breakpoints of two events

size 0.7 Minimum size similarity of two events

Evaluation measurements

Metric Definition

TP-base Number of matching calls from the truthset

TP-call Number of matching calls from the prediction set

FP Number of non-matching calls from the prediction set

FN Number of non-matching calls from the truthset

precision TP-call / (TP-call + FP)

recall TP-base / (TP-base + FN)

f1 (recall * precision) / (recall + precision)

base cnt Number of calls in the truthset

call cnt Number of calls in the prediction set

The script compare.py can be found at Mako's Github repository, which evaluates the overlaps between truthset and predictions.

Step3: prepare data for sequence dotplot

Step4: create sequence dotplot and inspection

Performance evaluation

Usage:
compare.py [commands] <parameters>

Commands:
bed: evaluate overlaps between two BED files
both: evaluate complete and unique match, all breakpoints match
base: evaluate complete and unique match

Please check the required inputs for different commands by running: compare.py base -h compare.py both -h compare.py bed -h

The evaluation function create two files.

prefix.stats.txt: contains evaluation measurements listed in the previous table.
prefix.bed: contains overlapped calls. The 1st column is the ID of observerations. The 2nd column is the ID for benchmark variants. The 3rd column contains the number of
observations that matches a benchmark. The 4th and 5th column are similarity info of the best match among all matches.

For simulated data evaluation, we use the both command. This will generate two statistic summary files prefix_base.stats.txt and prefix_sub.stats.txt.

Unique-interval match results are from prefix_base.stats.txt.
All-breakpoint match results are from prefix_sub.stats.txt.

For real data evaluation, we use the bed command. The VCF file is firstly converted to BED file. This command will only produce the prefix_base.stats.txt.

The VCF file conversion of SVelter, GRIDSS and TARDIS follows the filtering process, and is obtained through convert.py. The first four columns of output BED file must be chrom,
start, end and length. ``` Usage: convert.py [options]

Options: -h --help show this help message and exit -s SAMPLE Sample name (yri, skbr3) -t TOOL Detection method (gridss, svelter, tardis) -v VCF Path to VCF file -b BED Path to
output BED file ```

We use the idea of VISOR to simulate complex rearrangement and create a modified script simulate.py to create complex events. VISOR is a tool that can simulate simple SVs at
different haplotypes which includes deletion, insertion, tandem duplication, translocation copy-paste and more information can be found in the Github
(https://github.com/davidebolo1993/VISOR). Dependencies are listed below to run simulations * Python (>=3.6) * Python package for simulation data: pysam, pybedtools, pyfaidx,
wgsim, bwa.

We recommend to use the python3.6 virtual environment created by Conda. All of these packages can be installed through Conda. Please refer VISOR for details.

We first simulate some reported complex events by other studies, including deletion flanked by inversion, inverted duplication, dispersed duplication and etc. Please see figure
below for details. This is done on chr1 as described in steps.

Note: We only randomly select and combine from deletion, inversion, inverted tandem duplication, tandem duplication. Translocation copy-paste are not modified. Meanwhile,
transolcation copy-paste are treated inverted and dispersed duplication. The BED file of this simulation can be found in our Github.

Create random regions
Rscript randomregion.r -d chrom.dim.tsv -n 300 -l 5000 -s 500 -x chr1.exclude.bed -v 'deletion,inverion,tandem duplication,inverted tandem
duplication,translocation coyp-paste' -r '35:35:5:10:15' | sortBed > chr1.random.bed

Under your working directory, you will find generated random regions in BED files.

We next randomly add events to those generated in step2. The added events involve deletion, inversion, inverted tandem duplication and tandem duplication. For example,
deletion associated with inversions can be simulated as below, which is similar to SURVIVOR. If deletion is generate in Step1, inversions are randomly added events.

chr1 20000000 20001000 inversion chr1 20001001 21000000 deletion chr1 21000001 210001000 inversion

The below command will generate two files: 1) added.SVs.bed, this saves all simple events; 2) added.SVs.nested.bed contains the nested events and will be used as the truth set,
each nested event contains at least two simple events.

Simulate reported CSVs with known command
python simluate.py known -i chr1.random.bed -w /path/to/work_dir -c chr1

In this step, we will add created events to the genome with SNPs created at step1. Only one haplotype for nested events, the other one only has SNPs.

Python simulate.py sim –g templatewithsnp/chr1.fa –bed chr1.added.SVs.bed –o variation_genome/ -c chr1

Simulate complex structural variants

Simulate reported complex events

Step1: Random generate SV regions

Step2: Create nested events

Step3: Simulate the variation genome with CSVs

Once the variation genome has been created for each chromosome, we can start to simulate and align reads with VISOR.

These steps are required for creating input for reads simulation.

Get chromosome size information of variation genome and get the maximum dimension for further simulation
cd variation_genome/ && find . -name "*.fa" -exec samtools faidx {} \; && cut -f1,2 *.fai ../reference.fa.fai > haplochroms.dim.tsv
cat haplochroms.dim.tsv | sort | awk '$2 > maxvals[$1] {lines[$1]=$0; maxvals[$1]=$2} END { for (tag in lines) print lines[tag] }' > maxdi
ms.tsv
awk 'OFS=FS="\t"''{print $1, "0", $2, "100.0", "100.0"}' maxdims.tsv > ../shorts.laser.simple.bed

All required files are prepared, we can start reads simulation and alignment.

VISOR SHORtS –g chr1.fa –s variation_genome/ -bed shorts.laser.simple.bed –o bam_out/ -threads 7 –c 10

We only simulate from chr1 to chr22. For each chromosome, we follow the above steps. And in this part, we randomly made combination of different simple event to create the
complex events. Before simulation, we need to create a configuration file for each chromosome as listed below. The configure file and CSV file can be found at our Github.

This file contains the initial settings for each chromosome, but can be modified.

Create configure file for simulation
python simulate.py config -f reference.fa.fai -n 4500 -w working_dir/ -l 5000 -s 500

The file sim_chrom.config.txt will be used later and has to be under working_dir.

Create basic operations for each chromosome independently from chr1 to chr22

Create basic operations
simulate random -w ./working_dir/
Random select and combine basic operations
simulate add -i ./working_dir/chr1.bed -w /working_dir/ -c chr1
Add create nested events to the genome
simulate sim -g /path/to/reference.fa -c chr1 -bed chr1.added_SVs.bed -o /path/to/variation_genome/

Once the variation genome is created, we follow the step mentioned above to simulate short reads.

The following pipeline has been applied to the PCR assay development. Firstly, the genomic sequence of a 500 bp region next to each SV breakpoint was extracted from UCSC
Genome Browser on GRCh38/hg38 Assembly. Secondly, Primer3 Plus (Untergasser et al 2007) is used to compute a set of primer pairs flanking the breakpoint for these regions.
200bp from each side of breakpoint will be excluded from the primer design to avoid the potential uncertainty of breakpoints. Thirdly, the quality score of the primers were checked
using Netprimer (PREMIER Biosoft International, Palo Alto, CA) software. The primer would not be used if the quality score was less than 80%. Fourthly, all primer pairs were
tested for their uniqueness across the human genome using In Silico PCR from UCSC Genome Browser. BLAT search were also performed at the same time to make sure all
primer candidates have only one hit in the human genome. Lastly, NCBI 1000 Genome Browser was used to check if there were any SNPs in the primer or probe binding region. If
this does not result in a valid primer pair, the size of the regions for which primers are designed was increased from 500 bp to 750 bp and all process were repeated to search for
primers.

PCR amplifications were performed in 15 µl reactions using DNA Engine Peltier thermal cycler and C1000 Touch™ thermal cycler (BioRad). Each PCR reaction contained 50 ng of
template DNA; 1X PrimeSTAR GXL PCR buffer (1 mM MgCl2) 0.2 mM dNTPs, 100 nM of each primer, and 0.375 U PrimeSTAR® GXL Taq DNA polymerase (Takara). PCR
reactions were performed under the following conditions: 32 cycles of denaturation at 98°C for 10 seconds, annealing at 55°C for 15 seconds, and extension at 68°C for 45
seconds to 3 min 45 seconds depending on the predicted PCR amplicon size, followed by a final extension at 68°C for 5 minutes.

PCR products were electrophoresed on a pre-cast gel or a submerged agarose gel. For pre-cast gels, aliquots of 2 µl of PCR product were electrophoresed in 1.2% or 2% E-gels®
containing SYBR (Invitrogen) and visualized with an E-Gel Imager® (Invitrogen). To prepare for Sanger sequencing, 5 ul PCR product was mixed with 2 ul ExoSAP-IT
(AppliedBiosystems). Samples were incubated at 37°C for 15 minutes then 80°C for 15 minutes using a C1000 Touch thermal cycler.

For submerged agarose gels, PCR reactions were run in duplicate and the entire PCR product was electrophoresed in 1% agarose gels (1× TAE) containing 0.1 µg/ml SYBR Gold

Step4: Start simulate reads

Randomized CSVs simulation

Create a configure file

Simulation

Experimental validation

Methods

PCR development

PCR and Sanger Sequencing

(Molecular Probes Inc.) for 45-120 minutes at 100-120V. DNA fragments were visualized on a ChemiDoc™ MP (BioRad) using a UV light and filter. The target band was cut from
the gel and purified using the NucleoSpin® Gel and PCR Clean-Up kit (Macherey-Nagel) following the manufacturer’s instructions. The DNA concentrations were measured using
the Qubit® 2.0 (ThermoFisher). The optimal DNA concentration for Sanger sequencing would be between 10-20 ng/μl. Samples were then sent to Eton Bioscience to be
sequenced.

We evaluated the accuracy of CSV detection given by Mako of HG00733, which contains 609 autosomes CSVs. Due to the large number of primers to desgin, we used the Primer3
command line options with defualt parameters except the parameter SEQUENCE PRIMER PAIR OK REGION LIST. This parameter is set based on the region 200bp outside the
breakpoint but within the extended flanking region. Table 2 shows the validated CSVs and PacBio refined types.

Chrom Start End PacBio Type

chr1 81,194,398 81,195,874 invDup

chr2 119,659,504 119,661,322 insDup

chr3 146,667,093 146,677,284 delDisDup

chr5 141,480,327 141,483,116 disDup

chr7 1,940,931 1,941,009 insDup

chr9 29,591,409 29,593,057 delINV

chr10 14,568,488 14,568,677 insDup

chr12 71,315,482 71,316,928 invDup

chr12 77,989,900 77,994,324 invDup

chr13 74,340,759 74,342,810 disDup

chr16 78,004,459 78,007,456 disDup

chr17 34,854,438 34,855,851 invDup

chr17 48,538,270 48,540,171 disDup

chr18 72,044,575 72,045,937 disDup

chr21 26,001,844 26,002,990 delINV

Table 1. Summary of experimental validation of PCR succeed CSVs.

After evaluating all CSVs given by Mako, we further validated some gene overlapping CSVs as follows. A detailed analysis of Sanger results of these events are shown in Figure
1-4.

Sample Gene SV Type Validation Strategy Status

HG00514 CARD6 DEL+INV Sanger sequencing validated

HG00514 SORBS1 (CAP) INS+DUP Sanger sequencing validated

HG00713 SORBS1 (CAP) INS+DUP Sanger sequencing validated

NA19240 C4BPA DEL+INV Sanger sequencing validated

NA19240 TSPAN8 INS+INV Sanger sequencing not validated

HG00514 SPOCK3 DEL+INV Sanger sequencing validated

NA19240 MMP8 INS+INV Sanger sequencing not validated

Table 2. Summary of experimental validation of novel complex SVs

The Sanger sequencing not only validated the SV events predicted by the Mako algorithm, but not deciphered the exact breakpoints. For example, Mako algorithm predicted a
751bp deletion from the C4BPA gene, and meanwhile a 153bp fragment upstream of this deletion was inverted (Figure 1). Our Sanger was able to identify the exact breakpoints
for both predicted deletion and inversion events, with a few basepairs away from the predicted breakpoints (Figure 2). Interestingly, around 90% of CEU population has deletion
(44.4% heterozygous and 45.4% homozygous deletions) at this locus based on the 1000 Genomes dataset (Sudmant et al 2015).

In some other cases such as the CARD6 gene in the sample HG00514, Mako algorithm was able to identify the exact breakpoints. In this gene Mako algorithm predicted a 2941bp
deletion together with a 440bp fragment inversely inserted upstream region of the deletion (Figure 3). The Sanger identified the deletion breakpoints and the left inversion

Results

Validation of all CSVs detected by Mako

Validation of CSVs at coding regions

breakpoints a few basepairs away from the predicted ones. However, the validated right breakpoint from the inversion exactly matches the prediction, indicating the high sensitivity
of the Mako algorithm (Figure 4).

Figure N1. Sanger sequencing validation of a deletion and inversion event.

Figure N2. Sanger sequencing validation on deletion and inversion at C4BPA gene from NA19240.

Figure N3. Sanger sequencing validation on deletion and inverted duplication event.

Figure N4. Sanger sequencing validation on deletion and inversion at CARD6 gene from HG00514.

CSV manual inspection

1. PacBio long-read sequencing (HGSVC)

2. Gepard (https://github.com/univieCUBE/gepard).

1. Filtering Mako’s CSVs in excludable regions for each sample. The GRCh38 exclude regions are provided by SVelter (https://github.com/mills-
lab/svelter/tree/master/Support/GRCh38).

2. We extract each PacBio reads with SAMtools and create the sequence Dotplot with Gepard. We use k=15 to build create the sequence Dotplot. In total, we created in average
30 Dotplots for each event.

1. VaPoR (https://github.com/mills-lab/vapor).
2. Assemblies alignment of HiFi haploid reads (http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/datacollections/HGSVC2/working/20200628HHUassembly-

resultsCCSv12/haploidreads/).
3. K-Mer match Python script.

VaPoR bed --sv-input csvs.bed --output-path /path/to/vapor_out/ --reference /path/to/reference.fa --pacbio-input /path/to/contig_align.bam

The source code can be found in our GitHub repo.

External sources

Major steps

Dotplot inspection

Computational validation

Methods

External sources

Vapor ONT validation

Kmer HiFi contig validation

Results

Mako is a standalone java program. Python is only used to create CSV benchmarks and simulate CSVs. * Java (jdk >= 1.8) * htsjdk: https://github.com/samtools/htsjdk

NOTE: BAM file NEED to be under workdir, and please use absolute path for workdir

Get Mako configuration file
python process.py config -b /path/to/sample.bam -w /path/to/work_dir/ -n 30000 -s sampleName -f /path/to/ref.fa.fai

Example of a config file for simulation data
mean:499
stdev:50
readlen:150
workDir:/path/to/work_dir/
bam:/path/to/sample.bam
name:sim

Using config file create in previous step. The config file usually names as sampleName.mako.cfg.

java -jar Mako.jar -R /path/to/your/reference.fa -F /path/to/your/sampleName.mako.cfg

python ParseMako.py tovcf -m sampleName_mako_calls.txt -o sampleName_mako.vcf -r /path/to/ref.fa -s sampleName

The default output is sampleName.mako.sites.txt.

Version=1.6.0

Create Manta workflow
${MANTA_INSTALL_PATH}/bin/configManta.py \
--bam sample.bam \
--referenceFasta GRCh38.fa \
--runDir ${MANTA_ANALYSIS_PATH}--bam

Run workflow
python ${MANTA_ANALYSIS_PATH}/runWorkflow.py -j 8

Running configurations

Mako

Running dependencies

Step1: Create configuration file

Step2: SV detection

Step3: convert Mako output to VCF format

Manta

Version=0.1

svelter.py Setup --reference GRCh38.fa --workdir /working/directory/ --support ../Support/GRCh38/

svelter.py NullModel --sample /absolute/path/of/sample.bam --workdir /working/directory

svelter.py BPSearch --sample /absolute/path/of/sample.bam --workdir /working/directory

svelter.py BPIntegrate --sample /absolute/path/of/sample.bam --workdir /working/directory

svelter.py SVPredict --sample sample.bam --workdir /working/directory --bp-file sample.bam/sample.bam.txt

svelter.py SVIntegrate --workdir /working/directory --prefix output --input-path path/of/output/from/Step4

Version=0.2.13

Add read group tag to simulated BAM file
samtootls addreplacerg -r ID:wgs_sim -r LB:visor_sim -r SM:wgs_sim -o simrg.srt.bam sim.srt.bam
samtools index simrg.srt.bam

Extract the discordant paired-end alignments.
samtools view -b -F 1294 sample.bam > sample.discordants.unsorted.bam
Extract the split-read alignments

samtools view -h sample.bam \
 | scripts/extractSplitReads_BwaMem -i stdin \
 | samtools view -Sb - \
 > sample.splitters.unsorted.bam

Sort both alignments
samtools sort sample.discordants.unsorted.bam sample.discordants
samtools sort sample.splitters.unsorted.bam sample.splitters

Call SVs
lumpyexpress \
 -B sample.bam \
 -S sample.splitters.bam \
 -D sample.discordants.bam \
 -o sample.vcf

Version=2.6.2

bash /path/to/gridss.sh --reference GRCh38.fa --output sample.vcf.gz --assembly sample.assembly.bam --threads 1 --jar /path/to/gridss-2.6.2
-gridss-jar-with-dependencies.jar --workingdir /path/to/workdir sample.bam

Version=1.0.6

First download the sonic file of GRCh38 (GRCh38_1kg.sonic)

tardis -i /path/to/sample.bam --ref /path/to/reference.fa --sonic /path/to/GRCh38_1kg.sonic --out /path/to/tardis.vcf --threads 6

SVelter

Lumpy

GRIDSS

TARDIS

