
Article
A Network of microRNAs Acts to Promote Cell
Cycle Exit and Differentiation of Human Pancreatic
Endocrine Cells
Wen Jin,

Francesca Mulas,

Bjoern

Gaertner, ...,

Andrea C.

Carrano, Hung-

Ping Shih, Maike

Sander

masander@ucsd.edu

HIGHLIGHTS
Genome-wide

identification of miRNAs

regulated in human

endocrine cell

development

Endocrine-enriched

miRNAs promote cell

cycle exit and endocrine

cell formation

Network modeling

predicts miRNA-regulated

TFs and downstream cell

cycle regulators

DATA AND CODE

AVAILABILITY
GSE115327

GSE52314

GSE51924

GSE54471

GSE51311

Jin et al., iScience 21, 681–694
November 22, 2019 ª 2019
The Authors.

https://doi.org/10.1016/

j.isci.2019.10.063

mailto:masander@ucsd.edu
https://doi.org/10.1016/j.isci.2019.10.063
https://doi.org/10.1016/j.isci.2019.10.063
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2019.10.063&domain=pdf


Article
A Network of microRNAs Acts to Promote
Cell Cycle Exit and Differentiation
of Human Pancreatic Endocrine Cells
Wen Jin,1 Francesca Mulas,1 Bjoern Gaertner,1 Yinghui Sui,1 Jinzhao Wang,1 Ileana Matta,1 Chun Zeng,1

Nicholas Vinckier,1 Allen Wang,1 Kim-Vy Nguyen-Ngoc,1 Joshua Chiou,1 Klaus H. Kaestner,2 Kelly A. Frazer,3

Andrea C. Carrano,1 Hung-Ping Shih,4 and Maike Sander1,5,*
1Departments of Pediatrics
and Cellular & Molecular
Medicine, Pediatric Diabetes
Research Center, University
of California, San Diego, La
Jolla, CA 92093, USA

2Department of Genetics and
Institute for Diabetes,
Obesity, and Metabolism,
University of Pennsylvania,
Perelman School of
Medicine, Philadelphia, PA
19104, USA

3Department of Pediatrics,
Institute for Genomic
Medicine, University of
California, San Diego, La
Jolla, CA 92093, USA

4Department of Translational
Research and Cellular
Therapeutics, Diabetes and
Metabolic Research Institute,
Beckman Research Institute,
City of Hope, Duarte, CA
91010, USA

5Lead Contact

*Correspondence:
masander@ucsd.edu

https://doi.org/10.1016/j.isci.
2019.10.063
SUMMARY

Pancreatic endocrine cell differentiation is orchestrated by the action of transcription factors that op-

erate in a gene regulatory network to activate endocrine lineage genes and repress lineage-inappro-

priate genes. MicroRNAs (miRNAs) are important modulators of gene expression, yet their role in

endocrine cell differentiation has not been systematically explored. Here we characterize miRNA-reg-

ulatory networks active in human endocrine cell differentiation by combining small RNA sequencing,

miRNA over-expression, and network modeling approaches. Our analysis identified Let-7g, Let-7a,

miR-200a, miR-127, and miR-375 as endocrine-enriched miRNAs that drive endocrine cell differentia-

tion-associated gene expression changes. These miRNAs are predicted to target different transcrip-

tion factors, which converge on genes involved in cell cycle regulation. When expressed in human em-

bryonic stem cell-derived pancreatic progenitors, these miRNAs induce cell cycle exit and promote

endocrine cell differentiation. Our study delineates the role of miRNAs in human endocrine cell differ-

entiation and identifies miRNAs that could facilitate endocrine cell reprogramming.

INTRODUCTION

The potential to generate pancreatic beta cells from human pluripotent stem cells (hPSCs) or via cell re-

programming from other cell sources holds promise for modeling causes of diabetes and cell replacement

therapies (Benthuysen et al., 2016). Knowledge of the molecular underpinnings of pancreas and beta cell

development has enabled some success in developing beta cell reprogramming and directed differentia-

tion strategies. In particular, the identification of transcription factors (TFs) governing cell fate decisions has

been instrumental for cell reprogramming approaches (Benthuysen et al., 2016). Although TFs play a major

role in orchestrating gene expression changes during developmental transitions, recent evidence also

shows significant roles for other regulators such as small RNAs.

MicroRNAs (miRNAs) are a group of small non-coding RNAs (�22 nucleotides) with known roles in the regu-

lation of gene expression in development, mature cell function, and disease (Vidigal and Ventura, 2015).

Studies in mice and zebrafish have demonstrated important roles for miRNAs in pancreatic endocrine

cell development and beta cell function (Kaspi et al., 2014). Pancreatic progenitor cell-specific deletion

ofDicer1, an enzyme that is universally required for the functional maturation of miRNAs, results in reduced

endocrine cell numbers (Lynn et al., 2007), whereasDicer1 disruption in beta cells impairs insulin biogenesis

(Melkman-Zehavi et al., 2011). At the level of individual miRNAs, miR-375 (Kloosterman et al., 2007; Poy

et al., 2009) and miR-7 (Kredo-Russo et al., 2012; Latreille et al., 2014) have been identified as regulators

of beta cell differentiation and function.

Generally, miRNAs are thought to repress target mRNAs and act by destabilizing mRNAs through base

pairing between the miRNA seed sequence (nucleotides at position 2–8) and a complementary sequence

in the target mRNA (Guo et al., 2010; Lim et al., 2005). However, recent evidence suggests that miRNAs can

also activate gene expression (Jopling et al., 2008; Valinezhad Orang et al., 2014; Vasudevan et al., 2007).

The effects of individual miRNAs on gene expression are generally small, which has led to the concept that

miRNAs fine-tune gene expression rather than acting as genetic switches (Vidigal and Ventura, 2015).

Consistent with this idea, miRNAs have been shown to promote cell differentiation and to facilitate cell re-

programming when force expressed in conjunction with lineage-determining TFs (Chen et al., 2004, 2006;
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Dey et al., 2012; Lim et al., 2005; Nam et al., 2013; Yoo et al., 2011). Mechanistically, each miRNA has the

ability to repress hundreds of mRNA targets, and multiple miRNAs often converge on a single pathway

to promote a common developmental outcome (Lim et al., 2005; Vidigal and Ventura, 2015). Therefore,

a comprehensive understanding of context-specific contributions of miRNAs to gene regulation requires

a systems-level approach where all miRNAs and their targets are considered.

In this study we used genome-wide small RNA sequencing to identify candidate miRNAs with possible

roles in human endocrine cell differentiation. By comparing miRNA profiles of hPSC-derived pancreatic

progenitors and human cadaveric beta and alpha cells genome-wide, we identified miRNAs that are

induced during endocrine cell differentiation. Through gain-of-function experiments during hPSC differen-

tiation, we show that islet cell-enriched miRNAs act to promote cell cycle exit and hence islet cell differen-

tiation. Integrating RNA-seq, CLIP-seq, and chromatin state data, we applied a network modeling

approach to identify candidate miRNA-regulated TFs that explain the impact of islet cell-enriched miRNAs

on cell cycle regulation during endocrine cell differentiation. Our findings provide a systems-level view of

how miRNAs regulate human endocrine cell differentiation, which has implications for programming islet

endocrine cells from hPSCs or other cell sources.

RESULTS

Identification of miRNAs Up-Regulated during Endocrine Cell Differentiation

To identify miRNAs that are regulated during pancreatic beta cell differentiation, we conducted

genome-wide small RNA sequencing in pancreatic progenitor cells derived from CyT49 human embry-

onic stem cells (hESCs) (Figure S1) and primary beta cells isolated from cadaveric human islets by fluo-

rescence-activated cell sorting (Kameswaran et al., 2014) (Figure 1A). Although both up- and down-regu-

lated miRNAs could have roles in beta cell differentiation, we here focused on miRNAs that increase in

expression during endocrine cell differentiation. By comparing expression levels of individual miRNAs in

beta cells and pancreatic endoderm stage (PE) cells, we defined miRNAs induced during beta cell differ-

entiation. This analysis revealed 14 miRNAs that were more highly expressed in beta cells than in PE cells

(>5,000 sequence reads in beta cells; > 2.3-fold increase; Figure 1B and Tables S1A and S1B). With the

exception of miR-127, miR-204, and miR-99b, the same miRNAs also exhibited higher expression in

sorted alpha cells compared with PE cells (Figure 1C and Tables S1A and S1C), suggesting shared roles

for most miRNAs in the development of both endocrine cell types. Among the miRNAs induced during

endocrine cell differentiation were miR-375, miR-200a/c, and miR-7, which have reported roles in beta

cell development, proliferation, function, and survival in mice (Belgardt et al., 2015; Kloosterman

et al., 2007; Kredo-Russo et al., 2012; Latreille et al., 2014; Nieto et al., 2012; Poy et al., 2004, 2009;

Wang et al., 2013). Most notable was the significantly higher expression of members of the Let-7 miRNA

family in both beta and alpha cells compared with PE cells, including Let-7a, Let-7b, Let-7f, Let-7g, and

miR-98 (Figures 1B and 1D and Tables S1A and S1B). We confirmed the results from the small RNA

sequencing by comparing miRNA levels in PE cells and human cadaveric islets using the Taqman miRNA

assay (Figure 1E).

Identifying miRNAs Regulating Human Endocrine Cell Differentiation

To identify mRNAs regulated by these miRNAs, we selected several miRNAs for over-expression in hESC-

derived PE cells. We included the top three beta cell-enriched miRNAs (miR-375, miR-127, and Let-7a), as

well as Let-7g andmiR-200a, as they are highly induced during endocrine cell differentiation. miR-7 was not

included because of its inhibitory role in endocrine cell differentiation in mice (Kredo-Russo et al., 2012).

To determine the effects of these miRNAs on gene expression, we next over-expressed Let-7g, Let-7a,

miR-200a, miR-375, and miR-127 individually in hESC-derived PE cells (Figure 2A). For these studies, we

chose PE cells derived from H1 hESCs because a recently published protocol showed very efficient dif-

ferentiation of H1 hESCs into beta-like cells in vitro (Rezania et al., 2014). Since our genome-wide small

RNA sequencing was performed in PE cells from CyT49 hESCs (Figure 1), we first confirmed that H1 and

CyT49 hESC-derived PE cells have similar molecular features. Similar to CyT49 hESC-derived PE cells

(Figure S1), 98% of H1 hESC-derived PE cells expressed the pancreatic progenitor marker PDX1 (Figures

S2A and S2B). In addition, RNA-seq analysis showed highly concordant transcriptome profiles of H1 and

CyT49 hESC-derived PE cells [(R) > 0.92; Figure S2C]. Furthermore, we confirmed that Let-7g, Let-7a,

miR-200a, and miR-375 were expressed at similarly low levels in H1 and CyT49 hESC-derived PE cells

(Figure S2D).
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Figure 1. Identification of miRNAs Up-Regulated during Endocrine Cell Differentiation of Human Pancreatic

Progenitor Cells

(A) Workflow for genome-wide small RNA profiling of pancreatic progenitors (pancreatic endoderm, PE) and endocrine

islet cells. PE cells were differentiated from human embryonic stem cells (hESCs), and human alpha and beta cells were

isolated from cadaveric human islets by fluorescence-activated cell sorting (FACS).

(B and C) MA plots comparingmiRNA expression levels in PE cells and beta cells (B) or PE cells and alpha cells (C). miRNAs

with higher expression in beta and alpha cells than PE are indicated by red circles in B and C, respectively. Blue lines

indicate 2-fold change in miRNA expression; yellow line indicates no change.

(D) Heatmap comparing expression levels in PE, alpha cells, and beta cells of the thirteen most highly enriched miRNAs in

beta cells compared with PE cells.

(E) Relative expression of indicated miRNAs determined by Taqman qPCR in PE cells and human islets.

Data are shown as meanG S.E.M. (n = 3 biological replicates). ns, not significant; **p < 0.01, ***p < 0.001; Student’s t test.

See also Figure S1 and Table S1.
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Figure 2. Endocrine Cell-EnrichedmiRNAs Regulate Expression of Cell Cycle Genes in Pancreatic Progenitor Cells

(A) Workflow to identify genes repressed by each indicated miRNA after lentiviral transduction of hESC-derived

pancreatic endoderm (PE) cells. Transduced cells were sorted based on mCherry after 48 h, RNA-seq analysis performed

(n = 3 biological replicates), and down-regulated genes identified.

(B–F) Venn diagrams showing the overlap between genes down-regulated in islets (n = 3) compared with PE (n = 2) (blue)

and genes repressed by Let-7g (purple, B), Let-7a (red, C), miR-200a (yellow, D), miR-375 (green, E), or miR-127 (light blue,

F). Top five GO categories enriched among genes repressed by the miRNA and down-regulated in islets compared with

PE are shown on the right.

(G) Venn diagram showing overlap between miRNA-repressed genes.

See also Figure S2, Tables S2, and S3.
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Inclusion of an mCherry reporter into the miRNA constructs allowed us to monitor transduction efficiencies

in PE stage cultures and to isolate transduced cells by FACS. We observed 13%–20% mCherry+ PE cells

2 days after transduction, and this number increased to 34%–49% 6 days after transduction (Figure S2E).

The increase is likely explained by the lentiviral expression vector requiring more than 2 days to reach

maximum expression. To identify miRNA targets, we analyzed sorted mCherry+ PE cells 2 days after trans-

duction, reasoning that this early time point is best suited for studying the direct effects of miRNA on gene

expression. As expected, Let-7g, Let-7a, miR-200a, miR-375, and miR-127 were each expressed at signifi-

cantly higher levels in cells transduced with the miRNA-expressing vector compared with control vector-

transduced cells (Figure S2F). Furthermore, forced expression of Let-7g, Let-7a, miR-200a, miR-375, or

miR-127 in hESC-derived PE repressed the expression of genes (p < 0.05, permutation test, Tables S2A–

S2E) that were down-regulated between PE and islets (Figure S2G), suggesting that these miRNAs could

contribute to gene expression changes during islet cell differentiation.

Islet Cell-Enriched miRNAs Regulate Expression of Cell Cycle Genes in Pancreatic Progenitor

Cells

To identify miRNA-regulated transcripts with likely roles in endocrine cell differentiation, we analyzed sets

of genes that were down-regulated by forced expression of each miRNA (p < 0.05, permutation test) and

also down-regulated in islets as compared with PE cells (p < 0.05, permutation test, Figures 2B–2F). These

mRNA subsets comprised 16.5% of Let-7g-, 13.9% of Let-7a-, 18.5% of miR-200a-, 18.7% of miR-375-, and

30.3% of miR-127-repressedmRNAs in PE cells. We then performed Gene Ontology (GO) analysis to define

the biological processes regulated by mRNAs that are repressed by individual miRNAs and are also ex-

pressed at lower level in islet than PE cells. The top five enriched GO categories for each one of these

miRNA-regulated sets of mRNAs comprised processes associated with DNA replication and regulation

of the cell cycle (Figures 2B–2F and Tables S3A–S3E). Given that endocrine cell formation is associated

with cell cycle exit (Kim et al., 2015; Miyatsuka et al., 2011; Piccand et al., 2014), these findings suggest

that miRNAs could control endocrine cell differentiation by regulatingmRNAs involved in cell cycle control.

The finding that all five miRNAs regulate cell cycle-associated transcripts raised the question of whether

they share similar target genes. Analysis of the extent of overlap between the mRNAs down-regulated

by Let-7g, Let-7a,miR-200a,miR-375, andmiR-127 revealed amodest number of shared targets (Figure 2G).

Only seven mRNAs (ZNF239, PIF1, CDC45, TMEM114, HIST1H4H, MRPS25, and ESPL1) were repressed by

all fivemiRNAs, indicating distinct regulatory roles for each one of themiRNAs. Together, these results sug-

gest distinct but converging miRNA targets in regulating cell division in pancreatic progenitors.

Since all candidate miRNAs appeared to regulate different aspects of cell cycle progression, we sought to

gain further insight into how input from the different miRNAs converges on cell cycle regulation. To study

the combined effect of miRNAs, we generated a ‘‘polycistronic’’ miRNA (poly-miR) lentiviral construct that

drives the expression of Let-7g, Let-7a, miR-200a, and miR-375 under the control of a single promoter.

miR-127 was excluded because overall it repressed fewer genes than the other miRNAs (Figure 2F). We ex-

pressed the poly-miR construct in H1 hESC-derived PE cells and analyzed the transcriptome two days after

transduction (Figure 3A). miRNA expression analysis in mCherry-sorted cells revealed that Let-7g, Let-7a,

miR-200a, and miR-375 were each significantly higher expressed in poly-miR- than vector-only-transduced

PE cells (Figures S3A and S3B). Expression of the poly-miR construct in PE cells resulted in down-regulation

of 2,463 transcripts (p < 0.05; permutation test). Consistent with the results from expression of individual

miRNAs (Figure S2G), poly-miR-repressed mRNAs (p < 0.05, permutation test, Table S2F) were highly en-

riched for mRNAs with higher expression in PE compared with islets (Figure S3C and Table S2G). Of the

2,463 poly-miR-repressed mRNAs, 388 were also down-regulated during the transition of PE to islet (Fig-

ure S3D). As predicted, genes involved in cell cycle processes were overrepresented among these 388

mRNAs (Figure S3D and Table S3F).

Endocrine-Enriched miRNAs Regulate Cell Cycle-Associated Transcription Factors

To decipher mechanisms by which Let-7g, Let-7a, miR-200a, and miR-375 regulate cell cycle genes, we

sought to distinguish direct and indirect targets of the four miRNAs (Figure 3A). We defined putative direct

targets as poly-miR-repressedmRNAs (p < 0.05, permutation test, Table S2F) predicted to be direct targets

by TargetScan (based on matching sequence to the miRNA seed region) and/or exhibiting binding to the

RNA-binding protein Argonaute, as determined by CLIP-seq in human islets (Kameswaran et al., 2014).

From this analysis, 223 putative direct target mRNAs were identified (Figure 3B and Table S4A). Of

these, all were predicted by TargetScan and 35 also by HITS-CLIP. These 223 genes represent 9.1% of
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Figure 3. Identification of Putative Direct miRNA Target mRNAs in Pancreatic Progenitor Cells

(A) Workflow to identify repressed genes after transduction of hESC-derived pancreatic endoderm (PE) cells with a

lentivirus expressing a polycistronic construct for the indicated miRNAs (poly-miR) and mCherry. Transduced cells were

sorted after 48 h, RNA-seq analysis performed (n = 3 biological replicates), and down-regulated genes identified. Direct

targets of candidate miRNAs were identified based on TargetScan and CLIP-seq analysis.

(B) Pie graph showing percentage of direct (dark gray) and indirect (light gray) targets of candidate miRNAs repressed by

poly-miR construct.

(C) GSEA plot showing enrichment of 223 direct target genes of Let-7g, Let-7a, miR-200a, and miR-375 in islets (n = 3)

compared with PE (n = 2). False Discovery Rate (FDR) is shown.

(D) mRNA expression levels of transcription factors directly targeted by Let-7g, Let-7a, miR-200a, and miR-375 measured

in reads per kilobase per million reads mapped (RPKM).

(E) Predicted network of transcription factors downstream of miRNAs. Transcription factors are indicated by gray

triangles, and individual miRNAs are indicated by colored squares.

See also Figure S3, Tables S2, S3, and S4.
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all poly-miR-repressed genes. Reinforcing the potential relevance of these predicted direct miRNA targets

for endocrine cell development, GSEA analysis showed significantly lower expression of these genes in is-

lets than in PE cells (Figure 3C).

To determine whether miRNAs are direct regulators of cell cycle-associated mRNAs in PE cells, we

analyzed enriched GO terms among the 223 predicted direct miRNA targets. We found no enrichment

of categories linked to cell cycle-related processes (Table S4B). Moreover, many of the cell cycle regulators

that were repressed by the poly-miR, including CCND3, CDC45, MCM7, and CKS1B (Table S2F), were not

among the predicted direct miRNA targets (Table S4A). Thus, cell cycle-associated transcripts appear to be

indirectly regulated by the miRNAs. We postulated that this indirect effect of miRNAs on the expression of

cell cycle genes could be mediated through the regulation of TFs. Consistent with this hypothesis, 21 TFs

were among the 223 putative direct miRNA targets (Figure 3D and Tables S4A and S4C). A striking finding

was that many of these TFs have documented roles in cell cycle regulation, including E2F2, which is part of

the complex controlling cell cycle progression, and numerous TFs are known to regulate cell growth (e.g.,

ZC3H10, ZNF783, ZBTB46, ZBTB5, ZFYVE26, TP53, EZH1, HIF3A, DPF2, TEAD3). In addition, TFs predicted

to be directly regulated by the miRNAs included TFs involved in the regulation of endocrine cell develop-

ment and maturation, such as NKX6.1 (Schaffer et al., 2013; Taylor et al., 2013) and the thyroid hormone

receptor THRA, consistent with the role of thyroid hormone in beta cell maturation (Matsuda et al.,

2017). Reflective of their shared seed sequence, TFs that are predicted to be directly regulated by Let-

7g and Let-7a showed complete overlap, whereas miR-200a and miR-375 mostly regulated separate sets

of TFs (Figure 3E). This analysis indicates that Let-7g, Let-7a, miR-200a, and miR-375 might jointly change

the transcriptional landscape in PE cells by down-regulating expression of different sets of TFs.
miRNAs Regulate a Network of Cell Cycle Genes in Pancreatic Progenitor Cells

Having identified a set of TFs as potential direct miRNA targets, we next sought to determine whether

these TFs could act downstream of the miRNAs to regulate cell cycle genes. To test this, we constructed

and subsequently probed a miRNA-gene regulatory network, linking the four candidate miRNAs and their

putative direct TF targets to poly-miR-regulated genes predicted to be target genes of the TFs (Figures 4A,

S4A, and S4B). First, to identify TF-binding events close to poly-miR-regulated genes (down- and up-regu-

lated), we used ATAC-seq data from PE cells and islets and mapped open chromatin regions surrounding

transcriptional start sites (TSSs; closest within 10 kb) of these genes (n = 241,922 sites; FDR <0.01, MACS2)

(Figures 4A and S4A; see Transparent Methods). Second, to pinpoint identified candidate TF-bound re-

gions with likely impact on gene regulation during the PE to islet transition, we identified ATAC sites ex-

hibiting dynamics in histone modifications between PE cells and islets. We focused on H3K4me3 and

H3K27ac, two highly dynamic histone modifications during development (Wang et al., 2015; Xie et al.,

2013) that have been associated with active promoters (H3K4me3) and active promoters and enhancers

(H3K27ac) (Creyghton et al., 2010; Heintzman et al., 2009). We then tested whether changes in these histone

marks are accompanied by expression changes of proximal genes. As predicted, an increase in

H3K4me3 and H3K27ac deposition in PE compared with islets was associated with higher mRNA levels

(p = 5.3 3 10�134; Mann-Whitney test), whereas a decrease was associated with lower mRNA levels

(p = 1.93 10�36). Finally, to construct the network, we linked open chromatin regions with dynamic histone

marks to miRNA-regulated TFs by identifying those regions with a matching TF-binding motif. Validating

our miRNA-gene regulatory network, GO analysis showed that the 1,307 genes comprising the network

were enriched for cell cycle regulators (Figure S4C and Table S5).

Having validated our approach of linking putative TF binding events to changes in gene transcription dur-

ing the PE to islet transition, we next assembled all data into a structured graph (Figures 4A and S4A)

consisting of different types of nodes that represent the individual datasets, namely, the four candidate

miRNAs (squares, Let-7g, Let-7a, miR-200a, and miR-375), their predicted target TFs (triangles), predicted

TF-binding regions (hexagons), and indirect miRNA target genes (circles). Each connection between nodes

(i.e., edge) was given a score representing the strength of their association, as inferred from miRNA-target

databases (a), from algorithms matching TF motifs to DNA sequences (b), or from differential regulation of

the connected gene (c) (see Figure S4A for details). A combined score was then computed for each possible

path in the network from a miRNA to a gene. The score for an individual gene (G1) regulated by a miRNA is

the sum of the edge scores (S1 = a1 + b1 + c1). To account for effects of more than one miRNA on an in-

dividual gene, we then computed a combined score representing the connectivity of the four miRNAs to

G1. According to this scoring system, a higher rank is assigned to genes with strong connectivity of
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Figure 4. Endocrine Cell-Enriched miRNAs Regulate a Network of Cell Cycle Genes

(A) Schematic of approach to identify core network of miRNA-regulated transcription factors and down-stream target

genes. Building of network (left) and probing of network (right) is summarized. The nodes of the graph represent miRNAs

(squares; Let-7g [purple], Let-7a [red], miR-200a [yellow], and miR-375 [green]), TFs (triangles), TF-binding regions

(hexagons), and genes (circles).

(B) Predicted network of 40 highest scoring cell cycle genes based on network in (A) with miRNAs depicted as rectangles,

TFs as triangles, and genes as ovals. TF, transcription factor; G, gene; S, score.

See also Figure S4, Tables S5, and S6.
individual miRNA-mediated paths and characterized by an effect of more than one miRNA (Figure S4B and

Table S6). The resulting network of the 40 highest scoring cell cycle genes demonstrates direct connectivity

of the four miRNAs with cell cycle regulators through several TFs, including SOX12, RFX1, TP53, E2F2,

MBD2, ZNF512B, ZNF783, and ZNF641 (Figure 4B). Of interest is the identification of NEUROD1 as an in-

direct miRNA target of Let-7 miRNAs and miR200a. Neurod1 is a TF that has been shown to induce cell cy-

cle exit and to regulate endocrine cell differentiation in model organisms (Ahnfelt-Ronne et al., 2007; Mu-

toh et al., 1998). Our network analysis identifies a core network of miRNAs, TFs as their putative direct

targets, and down-stream genes with likely roles in cell cycle regulation and endocrine cell differentiation.
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Figure 5. Endocrine Cell-Enriched miRNAs Regulate Cell Cycle Exit and Endocrine Cell Differentiation

(A) Workflow to test effects of miRNAs on cell proliferation and endocrine cell differentiation during the transition of

hESC-derived pancreatic endoderm (PE) to the early endocrine (EN) cell stage. Early PE stage cells were transduced with a

lentivirus expressing a polycistronic construct for the indicated miRNAs (poly-miR) and mCherry, cultured in 2D until the

end of the PE stage, aggregated, differentiated in 3D to the EN stage, sectioned, and stained for Ki-67 and insulin (INS).

(B) Representative images showing immunofluorescence staining for Ki-67 (left) and INS (right) together with mCherry and

DAPI at the EN stage for control vector (top) or poly-miR (bottom) transduced aggregates. Scale bar, 50 mm.

(C and D) Percentage of Ki-67+ cells (C) and INS+ cells (D) in the mCherry+ cell population. Data are shown as

mean G S.E.M. (n = 3 biological replicates, each dot represents cell counts in a single aggregate from one of three

independent experiments).

(E and F) Cells were sorted based on mCherry at the EN stage, RNA-seq analysis performed (n = 4 biological replicates),

and differentially expressed genes in control and poly-miR transduced cells identified. Enriched GO categories (top) and

log2-fold change (FC) of exemplary genes (bottom) among genes down- (E, p < 0.05, permutation test) and up-regulated

(F, p < 0.05, permutation test) by the poly-miR. *p < 0.05, Student’s t test.

See also Figure S5 and Table S7.
miRNAs Regulate Endocrine Cell Differentiation by Promoting Cell Cycle Exit

We next determined whether forced expression of Let-7g, Let-7a, miR-200a, and miR-375 represses cell cy-

cle progression in hESC-derived pancreatic progenitor cells, as predicted by our computational analysis.

We transduced PE cells with the poly-miR lentiviral construct and differentiated these cells for another

6 days as 3D aggregates to the early pancreatic endocrine (EN) stage, when insulin+ cells are first present

(Figure 5A). Sectioned aggregates were then stained for the proliferation marker Ki-67. Consistent with our

computational prediction, forced expression of the miRNAs reduced the percentage of Ki-67+ cells (Fig-

ures 5B and 5C). The miRNAs likely exhibit their anti-proliferative effect in progenitors and not beta cells,

as insulin+ cells in EN stage cultures were mostly Ki67� in both control vector- and poly-miR-transduced

aggregates (Figure S5A).

Since cell cycle exit and endocrine cell differentiation are tightly coupled (Kim et al., 2015; Miyatsuka et al.,

2011; Piccand et al., 2014), we tested whether the reduction in Ki-67+ cells after miRNA over-expression was

associated with an increase in the number of insulin+ cells. Indeed, we observed a higher percentage of

insulin+ cells in aggregates expressing the poly-miR construct compared with vector-transduced aggre-

gates (Figures 5B and 5D). The bias of our culture conditions for the differentiation of insulin+ cells (Fig-

ure S5B) precluded quantification of other endocrine cell types. To further determine how Let-7g, Let-

7a, miR-200a, and miR-375 over-expression affects gene expression at the EN stage, we conducted

RNA-seq analysis of sorted mCherry+ cells. Consistent with the reduction in Ki67+ cells in poly-miR-trans-

duced cultures (Figure 5C), genes associated with cell cycle regulation, such as CCND1, CDK4, and PCNA,

were enriched among genes down-regulated (p < 0.05, permutation test) by forcedmiRNA expression (Fig-

ure 5E and Tables S7A and S7B). Up-regulated genes (p < 0.05, permutation test) comprised endocrine

cell-characteristic genes involved in the regulation of insulin secretion and ion transport (e.g., GLPR1,

SYT1, CACNA1A, SLC2A1) (Figure 5F and Tables S7A and S7C), further supporting the conclusion that

Let-7g, Let-7a, miR-200a, and miR-375 promote endocrine cell differentiation. We note that insulin

mRNA levels were slightly decreased rather than increased in poly-miR transduced cells (Table S7A), sug-

gesting that miRNAs or their target genes could affect insulin protein levels at the posttranscriptional level.

Taken together, our data support a model whereby endocrine-enriched Let-7g, Let-7a, miR-200a, andmiR-

375 are part of a gene regulatory network that triggers cell cycle exit to promote endocrine cell

differentiation.
DISCUSSION

Here, we identified 14 miRNAs (Let-7g, Let-7a, Let-7f, Let-7b, miR-200a, miR-200c, miR-204, miR-99b, miR-

141, miR-127, miR-7, miR-27b, miR-98, and miR-375), that are induced during human beta cell differentia-

tion. We further studied five miRNAs (Let-7g, Let-7a, miR-200a, miR-375, and miR-127) with a high fold-

change during endocrine cell differentiation and experimentally show that these miRNAs induce cell cycle

exit in pancreatic progenitor cells. By constructing an integrated miRNA-gene regulatory network of endo-

crine cell differentiation, we show that these miRNAs likely contribute to endocrine cell differentiation by

directly regulating different sets of cell cycle-associated TFs.

To analyze how islet cell-enriched miRNAs cooperate to drive endocrine cell differentiation, we developed

a computational method to model the relationship of miRNAs, TFs, and miRNA-regulated genes. Our
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computational model builds on a previously published approach for constructing miRNA regulatory net-

works (Gosline et al., 2016) and integrates chromatin state and expression data to build a multi-layer

network. Our approach differs in a few key aspects from published methodologies. First, it incorporates

predictions from both CLIP-seq data and TargetScan into a combined score that is assigned to network

edges. In addition, our scoring system focuses on a set of miRNAs identified experimentally and weighs

the number of miRNAs contributing to each path, accounting for potential synergistic effects of miRNAs

on downstream gene expression changes. As such, the algorithm presented here can be applied to other

cellular contexts with matchingmiRNA/mRNA/chromatin data and provides a useful framework for the pre-

diction of miRNA effects.

We found that islet cell-enriched miRNAs Let-7g, Let-7a, miR-200a, miR-375, and miR-127 repress different

transcripts involved in cell cycle regulation and thereforemight synergize in driving cell cycle exit and endo-

crine cell differentiation. All four miRNAs have been implicated in the regulation of cell proliferation in

other contexts. Like the Let-7 family miRNAs studied here, Let-7b inhibits proliferation and induces neural

differentiation when over-expressed in neural progenitors (Zhao et al., 2010). Furthermore, Let-7b, miR-

200a, and miR-375 have been shown to induce cell cycle arrest in tumor cells (Liu et al., 2012; Uhlmann

et al., 2010; Wang et al., 2011). Likewise, acute over-expression of miR-375 in dedifferentiated beta cells

reduces their proliferation and promotes their redifferentiation (Nathan et al., 2015). This anti-proliferative

effect of miR-375 is opposite to observations in miR-375-deficient mice, which exhibit decreased beta cell

proliferation (Poy et al., 2009). Since these mice carry a germline mutation ofmiR-375, it is possible that the

observed decrease in beta cell proliferation is the consequence of a developmental defect rather than a

reflection of miR-375 directly regulating inhibitors of cell cycle progression.

Pancreatic endocrine cell differentiation is tightly linked to cell cycle exit. In both mice and humans, endo-

crine cell differentiation depends on the TF NGN3 (encoded by NEUROG3) (Gradwohl et al., 2000;

McGrath et al., 2015), which commits pancreatic progenitors to the endocrine lineage and promotes cell

cycle exit by inducing the cell cycle inhibitors Cdkn1a (p21/CIP1) and Pak3 (Miyatsuka et al., 2011; Piccand

et al., 2014). We observed no effect of either combined or individual Let-7g, Let-7a, miR-200a, and miR-375

over-expression on NEUROG3 mRNA levels (Tables S2A–S2D, S2F), suggesting that these miRNAs exert

their effect on proliferation independent of NGN3. However, Let-7g, Let-7a, miR-200a, and miR-375

expression with the poly-miR construct significantly induced the NGN3 target gene and endocrine differ-

entiation factor NEUROD1 (Ahnfelt-Ronne et al., 2007). Based on our computational model, these miRNAs

are predicted to modulate NEUROD1 expression indirectly through down-regulation of NEUROD1 up-

stream TFs. Given that NEUROD1 can promote cell cycle exit through direct activation of Cdkn1a (Mutoh

et al., 1998), miRNA-mediated modulation of NEUROD1 levels likely contributes to the observed effect of

islet-enriched miRNAs on cell proliferation and differentiation.

Gain- and loss-of-function studies inmodel organisms have shown that the repressive effects ofmiRNAs on their

targets is mostly modest, which has led to the view that miRNAs act to fine-tune gene expression. Consistent

with this view, we observed relatively small effects of miRNA over-expression on gene expression, cell prolifer-

ation, and endocrine cell differentiation. However, these results do notmean that themiRNAs are not important

for endocrine cell differentiation. We over-expressed islet cell-enriched miRNAs in an in vitro system where

growth factor conditions have been optimized for efficient beta cell differentiation. Therefore, the miRNAs

might not be limiting in the context of these optimized conditions. Studies in model organisms underscore

the idea that miRNAs confer robustness to developmental processes and become limiting only under condi-

tions of stress. For example, loss of miR-7 has little effect on Drosophila sensory organ development under

normal conditions, but when environmental stresses are added to the developing organism, miR-7 becomes

necessary (Li et al., 2009). Similar examples exist in worms and mice, where miRNA deletions lead to significant

developmental perturbations only on sensitized backgrounds or under stress (Brenner et al., 2010; Chivukula

et al., 2014). Further illustrating that miRNAs can have significant biological effects in specific contexts, miRNAs

have been shown to drastically augment reprogramming efficiencies (Anokye-Danso et al., 2011; Yoo et al.,

2011). Therefore, the here-identified islet cell-enriched miRNAs could help develop still missing protocols for

robust direct reprogramming of human endocrine cells.
Limitations of the Study

One limitation of our approach for identifying endocrine cell differentiation-relevant miRNAs is the focus

on miRNAs that repress mRNAs. There is evidence that miRNAs can activate gene expression or directly
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reduce protein levels (El Ouaamari et al., 2008; Jopling et al., 2008; Vasudevan et al., 2007). It is possible

that some of the identified miRNAs regulate endocrine cell differentiation through these mechanisms.

Another limitation is that we compared miRNA profiles in pancreatic progenitors and mature human endo-

crine cells. Therefore, we do not know how these miRNAs are regulated during postnatal endocrine cell

maturation. Finally, our network modeling approach predicts synergist effects of Let-7g, Let-7a, miR-

200a, and miR-375 on cell cycle regulation. This predicted synergy will have to be experimentally validated.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

DATA AND CODE AVAILABILITY

All RNA-seq and ATAC-seq data generated in this study can be found at GEO with accession number

GSE115327.

Accession numbers for additional data used in this study are as follows: GSE52314 (small RNA-seq, sorted

alpha and beta cells); GSE51924 (CLIP-seq, human islets); E-MTAB-1086 (RNA-seq, PE cells); GSE54471

(H3K27ac, H3K4me3 ChIP-seq, PE cells); GSE51311, E-MTAB-1919, E-MTAB-189, and E-MTAB-191

(H3K27ac, H3K4me3 ChIP-seq, human islets).
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Supplemental figures and legends 

Figure S1 

 
 
Figure S1: Pancreatic endoderm differentiated from CyT49 hESCs. Related 
to Figure 1. 
(A) Schematic of the hESC-based differentiation strategy. (B) 
Immunofluorescence staining of PE cell aggregate sections for PE-specific 
markers PDX1 and SOX9. Scale bar, 50 µm. (C) Representative flow cytometry 
analysis at PE stage for PDX1. hESC, human embryonic stem cells; DE, 
definitive endoderm; GT, gut tube; FG posterior foregut; PE, pancreatic 
endoderm; EN, endocrine cell stage. 
 
  



 

 

Figure S2

 
  



 

 

Figure S2. Forced expression of individual miRNAs in hESC-derived 
pancreatic progenitor cells. Related to Figure 2.  
(A) Immunofluorescence staining of pancreatic endoderm (PE) differentiated 
from H1 hESCs for PDX1 and SOX9. Scale bar, 50 µm. (B) Representative flow 
cytometry analysis at PE stage for PDX1. (C) Scatter plot showing correlation in 
mRNA expression between PE cells derived from H1 hESCs and CyT49 hESCs. 
(D) Expression of indicated miRNAs in H1-derived PE cells and islets relative to 
CyT49-derived PE cells determined by Taqman qPCR. Data are shown as mean 
± S.E.M. (n = 3 technical replicates). (E) Representative flow cytometry analysis 
for mCherry 48 h (top row) and 6 days (bottom row) after lentiviral transduction 
with miRNA-mCherry constructs. Gating for cell sorting is shown. (F) Relative 
expression of indicated miRNAs determined by Taqman qPCR in H1 PE cells 48 
h after lentiviral transduction with miRNAs or vector control (C). Data are shown 
as mean ± S.E.M. (n = 3 biological replicates). **P < 0.01, ***P < 0.001; Student’s 
t-test. (G) GSEA plots showing enrichment of genes repressed by Let-7g, Let-7a, 
miR-200a, miR-375, and miR-127 in islets (n = 3) compared to PE (n = 2). False 
Discovery Rate (FDR) is shown.  
 
  



 

 

Figure S3

 
 
Figure S3. Forced expression of a polycistronic construct for four miRNAs 
in hESC-derived pancreatic progenitor cells. Related to Figure 3. 
(A) Representative flow cytometry analysis for mCherry 48 h (left) and 6 days 
(right) after lentiviral transduction with poly-miR-mCherry construct. Gating for 
cell sorting is shown. (B) Relative expression of indicated miRNAs determined by 
Taqman qPCR in H1 PE cells 48 h after lentiviral transduction with a vector 
control or a polycistronic construct containing Let-7g, Let-7a, miR-200a, and miR-
375 (poly-miR). Data are shown as mean ± S.E.M. (n = 3 biological replicates). 
**P < 0.01, ***P < 0.001; Student’s t-test. (C) GSEA plot showing enrichment of 
genes repressed by the poly-miR construct in islets compared to PE. False 
Discovery Rate (FDR) is shown. (D) Venn diagram showing the overlap between 
genes down-regulated in islets compared to PE (blue) and genes repressed by 
the poly-miR construct (grey). Top five GO categories enriched among genes 
repressed by the poly-miR construct and down-regulated in islets compared to 
PE are shown on the bottom.  
 



 

 

Figure S4 

 
  



 

 

Figure S4. Approach to identify core network of miRNA-regulated genes in 
pancreatic progenitor cells. Related to Figure 4. 
(A,B) Schematic of approach to identify core network of miRNA-regulated 
transcription factors and cell cycle genes. Building of network (A) and probing of 
network (B) is shown. The nodes of the graph represent miRNAs [squares; Let-
7g (purple), Let-7a (red), miR-200a (yellow), and miR-375 (green)], transcription 
factors (triangles), transcription factor binding regions (hexagons) and genes 
(circles). In (A), the source for each node is indicated on the left, while evidence 
(indicated by a, b, and c) used to calculate scores is indicated on the right. In (B), 
path-based scoring of an individual gene [e.g. gene 1 (G1)] is shown. See 
Materials and Methods for details. (C) Top five GO categories enriched in genes 
comprising the miRNA-regulated core network in (A). TF, transcription factor; G, 
gene; S, score. 
 
  



 

 

Figure S5 
 

 
Figure S5. Endocrine cell differentiation from H1 hESCs. Related to Figure 5. 
(A) Representative images showing immunofluorescence staining for insulin 
(INS), Ki-67, mCherry, and DAPI at the endocrine cell (EN) stage for control 
vector (top) or poly-miR (bottom) transduced aggregates. (B) 
Immunofluorescence staining of sections from EN stage aggregates for insulin 
(INS), glucagon (GCG), and somatostatin (SST). Scale bar, 50 µm. 
  



 

 

Transparent Methods 

 
Contact for reagent and resource sharing 

Further information and requests for reagents may be directed and will be fulfilled 

by the corresponding author Maike Sander (masander@ucsd.edu). 

 

Experimental model and subject details 

Human islets 

Human cadaveric pancreatic islets for the Taqman miRNA analysis (Donor ID:1-

3) and for the RNA-seq and ATAC-seq analysis (Donor ID: 4-7) were obtained 

through the Integrated Islet Distribution Program (IIDP). The islets had ≥ 90% 

purity and ≥ 90% viability. Upon receipt, islets were handpicked and immediately 

processed for RNA extraction or isolation of nuclei.  

Donor 
ID 

Donor 
Age 

Donor 
Sex 

Dia-
betes* BMI Race 

Cause of 
Death 

1 53 Male No 27.2 Caucasian 
CVA/STRO-

KE 

2 48 Female No 31.0 

American 
Indian or 

Alaska Native 
CVA/STRO-

KE 

3 48 Male No 27.7 Caucasian CVA/STROKE 

4 55 Male No 29.8 

Black or 
African 

American 
CVA/STRO-

KE 

5 59 Female No 24.7 Caucasian CNS tumor 

6 55 Male No 23.2 Caucasian Head trauma 

7 56 Female No 33.4 

Black or 
African 

American 
CVA/STRO-

KE 

 

mailto:masander@ucsd.edu


 

 

*Diabetes status was defined by the patient’s medical record and, when 

available, hemoglobin A1c levels. 

 

Maintenance and differentiation of H1 hESCs 

hESC research was approved by the University of California, San Diego, 

Institutional Review Board and Embryonic Stem Cell Research Oversight 

Committee. All hESC experiments were performed in H1 hESCs with the 

exception of miRNA expression profiling, for which CyT49 hESCs were used.  

H1 hESCs were maintained and differentiated as described with some 

modifications (Rezania et al., 2014). In brief, hESCs were cultured in mTeSR1 

media (Stem Cell Technologies) and propagated by passaging cells every 3 to 4 

days using Accutase (eBioscience) for enzymatic cell dissociation. For 

differentiation of H1 cells, we employed a 2D monolayer culture format up to day 

11 of differentiation. Cells were then dissociated using accutase for 10 min, 

reaggregated by plating the cells in a low attachment 6-well plate on an orbital 

shaker (100 rpm) in a 37 °C incubator. Cells were subsequently cultured in 

suspension from Days 11-14.  

On Day 0, dissociated hESCs were resuspended in mTeSR1 media (see 

media compositions below) and seeded onto Matrigel-coated 12-well plates by 

adding 1 ml of cell suspension (~8 x 105 cells/well) to each well. The following 

day, undifferentiated cells were washed in stage 1 medium and then 

differentiated using a multi-step protocol with stage-specific media (see below) 

and daily media changes.  



 

 

All stage-specific base media were comprised of MCDB 131 medium (Thermo 

Fisher Scientific) supplemented with NaHCO3, GlutaMAX, D-Glucose, and BSA 

using the following concentrations: 

Stage 1/2 medium: MCDB 131 medium, 1.5 g/L NaHCO3, 1X GlutaMAX, 10 mM 

D-Glucose, 0.5% BSA 

Stage 3/4 medium: MCDB 131 medium, 2.5 g/L NaHCO3, 1X GlutaMAX, 10 mM 

D-glucose, 2% BSA 

Stage 5 medium: MCDB 131 medium, 1.5 g/L NaHCO3, 1X GlutaMAX, 20 mM 

D-glucose, 2% BSA 

 

Media compositions for each stage were as follows: 

Stage 1 (Days 0-2): base medium, 100 ng/ml Activin A, 25 ng/ml Wnt3a (Day 0). 

Day 1-2: base medium, 100 ng/ml Activin A 

Stage 2 (Days 3-5): base medium, 0.25 mM L-Ascorbic Acid (Vitamin C), 50 

ng/mL FGF7 

Stage 3 (Days 6-7): base medium, 0.25 mM L-Ascorbic Acid, 50 ng/mL FGF7, 

0.25 µM SANT-1, 1 µM Retinoic Acid, 100 nM LDN193189, 1:200 ITS-X, 200 nM 

TPB 

Stage 4 (Days 8-10): base medium, 0.25 mM L-Ascorbic Acid, 2 ng/mL FGF7, 

0.25 µM SANT-1, 0.1 µM Retinoic Acid, 200 nM LDN193189, 1:200 ITS-X, 

100nM TPB 



 

 

Stage 5 (Days 11-14): base medium, 0.25 µM SANT-1, 0.05 µM Retinoic Acid, 

100 nM LDN193189, 1:200 ITS-X, 1 µM T3, 10 µM ALK5 inhibitor II, 10 µM 

ZnSO4, and 10 µg/mL Heparin, 10 µM ROCK inhibitor 

End of stage 1 = definitive endoderm 

End of stage 2 = gut tube 

End of stage 3 = posterior foregut 

End of stage 4 = pancreatic endoderm 

End of stage 5 = endocrine cells 

 

Maintenance and differentiation of CyT49 hESCs 

CyT49 hESCs were maintained and differentiated as described (Xie et al., 2013). 

Propagation of CyT49 hESCs was carried out by passing cells every 3 to 4 days 

using Accutase™ (eBioscience) for enzymatic cell dissociation, and with 10% 

(v/v) human AB serum (Valley Biomedical) included in the hESC medium the day 

of passage. hESCs were seeded into tissue culture flasks at a density of 50,000 

cells/cm2.  

CyT49 hESC medium was comprised of DMEM/F12 (Corning; 45000-346) 

supplemented with 10% (v/v) KnockOut™ Serum Replacement (Thermo Fisher 

Scientific), 1X MEM non-essential amino acids (Thermo Fisher Scientific), 1X 

GlutaMAX™ (Thermo Fisher Scientific), 1% (v/v) penicillin-streptomycin (Thermo 

Fisher Scientific), 0.1mM 2-mercaptoethanol (Thermo Fisher Scientific), 10ng/mL 

Activin A (R&D Systems), and 10ng/mL Heregulin-β1 (PeproTech).  



 

 

Pancreatic differentiation of CyT49 hESCs was performed as previously 

described (Schulz et al., 2012). Briefly, we employed a suspension-based format 

using rotational culture. Undifferentiated hESCs were aggregated by preparing a 

single-cell suspension in hESC media at 1 × 106 cells/mL and overnight culture in 

six-well ultra-low attachment plates (Costar) with 5.5ml per well on an orbital 

rotator (Innova2000, New Brunswick Scientific) at 95 rpm. The following day, 

undifferentiated aggregates were washed in RPMI media (Corning) and then 

differentiated using a multistep protocol with daily media changes and continued 

orbital rotation at either 95 rpm or at 105 rpm on Days 4 to 8.  

 

Stage 1/2 medium: RPMI medium (Corning), 0.2 % (vol/vol) FBS, 1X GlutaMAX 

Stage 3/4 medium: DMEM High Glucose medium (HyClone), 0.5X B-27 

Supplement, 1X GlutaMAX 

 

Media compositions for each stage were as follows: 

Stage 1 (Days 0-1): Day 0: RPMI/FBS, 100ng/mL Activin A, 50ng/mL mouse 

Wnt3a, 1:5000 ITS. Day 1: RPMI/FBS, 100 ng/mL Activin A, 1:5000 ITS 

Stage 2 (Days 2-4): Day 2: RPMI/FBS, 2.5µM TGF R1 kinase inhibitor IV, 

25ng/mL KGF, 1:1000 ITS. Days 3-4: RPMI/FBS, 25ng/mL KGF, 1:1000 ITS 

Stage 3 (Days 5 -7): DMEM/B27, 3nM TTNPB, 0.25mM KAAD-Cyclopamine, 

50ng/mL Noggin  

Stage 4 (Days 7-10): DMEM/B27, 50ng/mL KGF, 50ng/mL EGF 

 



 

 

End of stage 1 = definitive endoderm 

End of stage 2 = gut tube 

End of stage 3 = posterior foregut 

End of stage 4 = pancreatic endoderm 

 

Cell line 

HEK293T cells were maintained in DMEM containing 100 units/mL penicillin and 

100 mg/mL streptomycin sulfate supplemented with 10% fetal bovine serum 

(FBS). 

 

Method details 

Immunocytochemistry 

Cells were washed twice before fixation with 4% paraformaldehyde in PBS for 

either 30 min at room temperature, or overnight at 4°C. Cells were then washed 

three times with PBS and incubated in 30% sucrose at 4°C overnight before 

mounting in Optimal Cutting Temperature Compound (Tissue-Tek) and 

sectioning at 10 µm. Immunocytochemistry was performed as described (Xie et 

al., 2013). The following primary antibodies and dilutions were used: guinea pig 

anti-PDX1 (gift from Dr. Christopher Wright, Vanderbilt University) 1:1000; rabbit 

anti-SOX9 (Millipore, AB5535) 1:1000; rabbit anti-Ki-67 (ThermoFisher, RM-

9106-S1) 1:200; guinea pig anti-insulin (LINCO, 4011-01) 1:1000. Secondary 

antibodies were Cy5-, Cy3-, or Alex488-conjugated donkey antibodies against 

guinea pig or rabbit (Jackson Immuno Research Laboratories). Images were 



 

 

acquired on a Zeiss Axio-Observer-Z1 microscope with a Zeiss AxioCam digital 

camera and figures prepared with Adobe Photoshop CS6/Illustrator CS5.  

To determine the percentage of Ki-67+ cells in the mCherry+ cell 

population, at least ten sections from different aggregates were analyzed per 

hPSC differentiation. For each condition, three independent hPSC differentiations 

were performed. Ki-67+ and mCherry+ cells were quantified using HALO software 

(PerkinElmer Inc).  

 

Fluorescence-activated cell sorting and intracellular flow cytometry 

hESC-derived PE cells were dissociated to a single-cell suspension with 

Accutase (Stemcell Technologies) at 37°C for 10 min. Accutase was neutralized 

with FACS sorting buffer [1% (wt/vol) FBS, 1 mM EDTA, 25mM Hepes, PBS]. 

FACS was performed on a FACS Fortessa equipped with FACS DiVa software 

(BD Biosciences). Cells were sorted into Trizol for RNA analysis. For intracellular 

flow cytometry, dissociated cells were fixed, permeabilized with BD 

Cytoperm/Cytofix (BD Bioscience), and stained with anti-PDX1-PE conjugated 

antibody (BD Biosciences, 562161; 1:20) at room temperature for 30 min, 

washed, and resuspended in FACS buffer. Flow cytometry analysis was 

performed on FACSCanto II (BD Biosciences) and analyzed with FlowJo 

software (FlowJo LLC).  

 

 

 



 

 

TaqMan microRNA assay  

qRT-PCR for miRNAs was performed using the TaqMan MicroRNA Reverse 

Transcription Kit (Applied Biosystems, Cat. No. 4366596). Briefly, 10 ng of total 

RNA was reverse transcribed using RT primers from the TaqMan MicroRNA 

Assay kit [Applied Biosystems; probe catalogue numbers: Let-7a (000377), Let-

7g (002282), miR-127 (000452), miR-200a (000502), miR-375 (000564), miR-7 

(000268), miR-99b (000436), and RUN44 (001094). qRT-PCR was performed on 

a Bio-rad CFX96 real-time system using the TaqMan Universal PCR Master Mix 

(Applied Biosystems, Cat. No. 4324018) and TaqMan probes from the TaqMan 

MicroRNA Assay kit. miRNA levels were determined on three independent 

samples and values were normalized to endogenous snoRNA RNU44. 

 

miRNA expression vector construction 

To generate miRNA expression vectors, 270 nt of the miRNA gene primary 

transcript, including the 22 nt mature miRNA and 125 nt of genomic sequence 

flanking each side of the miRNA (Chen et al., 2004), were amplified. Let-7a and 

Let-7g were expressed with mutations in their loop sequence to block LIN28 

binding and ensure proper miRNA processing (Piskounova et al., 2008). For 

transduction of PE cells, a modified version of pLKO.3G was used, in which GFP 

was exchanged for mCherry (pLKO.mcherry). For the polycistronic miRNA 

expression vector, a gBlock gene fragment encompassing miR-375, Let-7a, Let-

7g, and miR-200a was cloned into pLKO.mcherry. 

 



 

 

Lentivirus production and transduction of PE cells 

High-titer lentiviral supernatants were generated by co-transfection of the miRNA 

expression vector and the lentiviral packaging construct into HEK293T cells as 

described (Xie et al., 2013). Briefly, miRNA expression vectors were 

cotransfected with the pCMV-R8.74 (Addgene, #22036) and pMD2.G (Addgene, 

#12259) expression plasmids into HEK293T cells using a 1mg/ml PEI solution 

(Polysciences). Lentiviral supernatants were collected at 48 hr and 72 hr after 

transfection. Lentiviruses were concentrated by ultracentrifugation for 120 min at 

19,500 rpm using a Beckman SW28 ultracentrifuge rotor at 4°C. The titer 

routinely achieved was 5*108~109 TU/ml. For PE cell transductions, H1 hESCs 

were differentiated to the PE stage (Day 8 of differentiation) in monolayer 

cultures and transduced with lentivirus at a MOI of 2. For RNA analysis, cells 

were collected 48 hr after transduction.  

 

Small RNA sequencing and data analysis 

Small RNA-seq data from sorted human alpha and beta cells have been 

described (Kameswaran et al., 2014). RNA from PE stage CyT49 hESC cultures 

was isolated using the miRVana miRNA Isolation kit (Thermo Fisher Scientific). 3 

μg of RNA was used for library preparation using the TruSeq Small RNA sample 

preparation kit (Illumina) and a Pippin Prep (Sage Science) for size selection with 

a 3% cassette (CSD3010). RNA was prepared for sequencing using the Illumina 

protocol (Illumina FC-102-1009) and amplified libraries were sequenced on an 

Illumina Genome Analyzer II (Illumina FC-104-1003). Sequenced libraries were 



 

 

processed as described (Kameswaran et al., 2014). miRNAs with sample values 

below 1 RPM were excluded from the analysis. There was one replicate each for 

hESC-derived PE, alpha, and beta cells. Each miRNA expression value was log2-

transformed and displayed in a heatmap.  

 

RNA sequencing, mapping and data analysis  

RNA quality was assessed using TapeStation (Agilent Technologies). Libraries 

were prepared according to the instructions of Illumina’s TruSeq RNA library prep 

kit. Libraries were quantified using High Sensitivity DNA screen tape (Agilent 

Technologies) and Qubit dsDNA High Sensitivity (Life Technologies) assays. 

Finally, libraries were multiplexed and sequenced on a HiSeq 2500 (Illumina) 

sequencer using single-end sequencing.  

RNA-seq samples were mapped to the UCSC human transcriptome 

(hg19/GRCh37) by the Spliced Transcripts Alignment to a Reference (STAR) 

aligner (STAR-STAR_2.4.0f1), allowing for up to 10 mismatches (Dobin et al., 

2013). Only reads aligned uniquely to one genomic location were retained for 

subsequent analysis. Expression levels of all genes were quantified by Cufflink 

(https://github.com/cole-trapnell-lab/cufflinks) using only reads with exact 

matches. Genes with average RPKM above 1 were retained for further analyses. 

Differentially expressed genes were identified using a permutation test, 

with the number of permutations set to 1000. Briefly, all the samples were 

shuffled, fold changes were computed to obtain a null distribution, and a P-value 

was estimated for each gene's fold change as a cumulative probability from the 



 

 

null distribution. For comparison of PE and islet data and poly-miR versus control 

data at the EN stage, batch effects were removed using ComBat (Johnson et al., 

2007).  

 

Gene Set Enrichment Analysis (GSEA) and Gene Ontology (GO) analysis 

We applied GSEA (http://www.broad.mit.edu/gsea), which scores a-priori defined 

gene sets in two different conditions (Subramanian et al., 2005). GSEA 

(http://www.broad.mit.edu/gsea) was run with the number of permutations for P-

value computation set to 1000. We used genes significantly repressed by 

miRNAs (P < 0.05, permutation test) as gene sets to determine coordinated 

regulation in islets compared to PE samples. Gene sets with a false discovery 

rate of < 0.05 were considered significantly enriched. Enrichment of gene sets for 

Gene Ontology (GO) terms was tested using Metascape (Tripathi et al., 2015).  

 

ATAC-seq sample preparation 

Roughly 50,000 PE or primary human islet cells were used for each ATAC-seq 

assay as described (Buenrostro et al., 2013). Briefly, cell nuclei were isolated 

using cold lysis buffer (10 mM Tris-HCl, pH 7.4, 10 mM NaCl, 3 mM MgCl2 and 

0.1% IGEPAL CA-630). The nuclei pellet was resuspended in the transposase 

reaction mix; 25 μL 2x TD buffer, 2.5 μL transposase (Illumina) and 22.5 μL 

nuclease-free water at 37°C for 30 min. Then transposed DNA fragments were 

purified using the Qiagen MinElute kit and amplified 10-12 cycles using the 

http://www.broad.mit.edu/gsea
http://www.broad.mit.edu/gsea
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/lysis
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/transposase


 

 

Nextera (Illumina) PCR primers. Libraries were sequenced on HiSeq4000 

platform. 

 

ChIP-seq and ATAC-seq data analysis 

ChIP-seq and ATAC-seq reads were mapped to the human genome 

(hg19/GRCh37) using Bowtie (Langmead et al., 2009) and BWA (Li and Durbin, 

2009), respectively, and visualized using the UCSC Genome Browser (Kent et 

al., 2002). Unmapped reads were discarded. After mapping, SAMtools (Li et al., 

2009) was used to remove duplicate sequences and merge samples. Here, 

“SAMtools view -Sbq 30” was used to filter out reads with mapping quality less 

than 30, "SAMtools rmdup” was used to remove duplicated reads, and "SAMtools 

merge” was used to merge files of the same histone marker or input condition. 

ChIP-seq and ATAC-seq analysis was performed in two biological replicates for 

PE and 4-5 donors for islet. The Pearson correlation among biological replicates 

ranged from 64% to 96% for human islets and 91% to 96% for PE.  

HOMER (Heinz et al., 2010) as used to call ChIP-seq peaks using 

“findPeaks function” with “–style histone” to call peaks. Stage- and condition-

matched input DNA controls were used as background when calling peaks. 

MACS2 (Zhang et al., 2008) was used to call peaks from ATAC-seq data, with 

parameters “shift set to 100 bps, smoothing window of 200 bps” and with 

“nolambda” and “nomodel” flags on. 

To link changes in chromatin to gene expression changes, we first defined 

differential H3K27ac and H3K4me3 peaks in PE and islet (adjusted P<0.05, 



 

 

“getDifferentialPeaksReplicates” function in HOMER) and then used BEDtools 

(Quinlan and Hall, 2010) to identify overlapping ATAC peaks in PE or islet using 

a ± 1.5 kb window from the summit of the ATAC peak. Next, we identified the 

nearest TSS within a 10kb window of the H3K27ac or H3K4me3 peak. We then 

assessed the concordance of the directionality of changes in gene expression 

and histone marks by evaluating whether genes near regions showing gain or 

loss of H3K27ac or H3K4me3 in PE versus islet exhibit significant concordant 

expression changes (Mann-Whitney test).  

 

Network building  

CLIP-seq signal, mRNA expression, ATAC-seq and ChIP-seq binding data were 

encoded in a graphical model depicted in Figures 4 and Figure S4 by adapting a 

previously published algorithm (Gosline et al., 2016). Nodes arranged in four 

different layers, corresponding to miRNAs, transcription factors (TFs), DNA 

regions, and genes, were identified and connected as follows: For each of the 

four selected miRNAs, predicted target genes were retrieved through the 

TargetScan repository (http://www.targetscan.org/vert_71/). For the pairs of 

miRNA-target gene identified, the corresponding CLIP-seq signal was collected 

from previously published data (Kameswaran et al., 2014). Among the targets, 

TFs in the second layer of the network were selected based on down-regulation 

by poly-miR transfection compared to control with P < 0.05 and with an 

annotation in the TF Animal Database (Zhang et al., 2015). In the third layer of 

the network, we selected DNA regions showing significant changes in PE versus 

http://www.targetscan.org/vert_71/


 

 

islet for H3K27ac or H3K4me3 (see previous paragraph) with the nearest gene 

showing down-regulation by poly-miR transfection, hereafter referred to as Rsel. 

The Rsel DNA regions were filtered for links to the selected TFs by scoring the 

match of their binding motifs with the DNA regions in the network. Briefly, motifs 

of selected TFs were extracted from a collection of databases, including JASPAR 

(http://jaspar.genereg.net/cgi-bin/jaspar_db.pl), Hocomoco 

(http://hocomoco11.autosome.ru/), and ENCODE-related data sets (Aylward et 

al., 2018) and scored for matches with narrow regions spanning 300bp around 

the peak summits of each Rsel. Log-odds scores and corresponding P-values 

were obtained using the MEME Suite tool FIMO (http://meme-

suite.org/tools/fimo) with default parameters. The last layer was defined by 

considering genes proximal to DNA regions, as described above, and filtering for 

those differentially regulated in poly-miR versus control (P < 0.05). 

A score representing the strength of the association was computed for 

each pair of connected nodes in the different network layers, as follows: Given 

the TargetScan context++ score 𝑆𝑖  (Agarwal et al., 2015) and the CLIP-seq 

signal 𝑆𝑗 of each miRNA-TF association, their values were normalized in a 0-1 

range and combined as𝑎 = (1 − 𝑆𝑖)(1 − 𝑆𝑗) (Szklarczyk et al., 2015). Scores of 

edges connecting TFs to Rsel regions were defined as the𝑏 = 1 − 𝑞, 𝑞 being the 

q-value returned by FIMO, representing the probability of obtaining the log-odds 

ratio scores of the matches by chance. Scores from DNA regions to genes were 

defined as the absolute value of the Log2 Fold Change of each gene 𝑥in poly-

miR versus control data: 𝑐 = |𝐿𝑜𝑔2𝐹𝐶(𝑥)|A combined score was computed for 

http://jaspar.genereg.net/cgi-bin/jaspar_db.pl
http://hocomoco11.autosome.ru/
http://meme-suite.org/tools/fimo
http://meme-suite.org/tools/fimo


 

 

each possible path in the network starting from a miRNA to a gene, by adding the 

contribution of the different layers, as: 𝑆 = 𝑎 + 𝑏 + 𝑐. 

 

Network-based gene ranking  

Given an individual gene, G1, all network paths connecting a miRNA to G1 were 

considered with their corresponding scores and compared for gene ranking as 

follows: Among the paths connecting the same miRNA to G1, only the one with 

the highest score was retained, obtaining a score Si for each of the k miRNAs 

showing an indirect link to G1, k<=N, with N equal to the number of miRNAs in 

the network (N=4). A first score summarizing the strength of the association of 

these retrieved network paths was computed as 𝑆𝑛𝑒𝑡(𝐺1) = 𝑚𝑒𝑎𝑛(𝑆𝑖), i ranging 

from one to k. A second score, accounting for the synergistic effect of several 

miRNAs on the same gene, was computed as proportion of miRNAs in at least 

one network path linking to the selected gene G1: 𝑆𝑚𝑖𝑟(𝐺1) = 𝑘 𝑁⁄ . Finally, a 

combined score for G1 was obtained as a weighted sum of 𝑆𝑛𝑒𝑡and 𝑆𝑚𝑖𝑟 , i.e. 

𝑆𝑐𝑜𝑚𝑏(𝐺1) = 𝑤 ∗ 𝑆𝑛𝑒𝑡(𝐺1) + 𝑤 ∗ 𝑆𝑚𝑖𝑟(𝐺1), with w set to 0.5. This procedure was 

applied to score individual genes annotated to cell cycle regulation in the Gene 

Ontology (GO:0051726) and genes were ranked based on 𝑆𝑐𝑜𝑚𝑏values. 

 

Quantification and statistical analysis 

Statistical parameters including FDR, R, and P-values are reported in the Figures 

and the Figure Legends. 

 



 

 

KEY RESOURCES TABLE 
 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Antibodies 

Rabbit anti-PDX1 Abcam Cat# ab47267, 
RRID:AB_777179 

Rabbit anti-SOX9 Millipore Cat# AB5535, 
RRID:AB_2239761 

Guinea pig anti-INS Dako Cat# A0564, 
RRID:AB_10013624 

Mouse anti-GCG Sigma-Aldrich Cat# G2654, 
RRID:AB_259852 

Rabbit anti-SST Agilent Cat# A056601-2 

Mouse anti-Ki67 Lab Vision Cat# RM-9106-S1, 
RRID:AB_149792 

Mouse anti-PDX1, PE conjugate BD Biosciences Cat# 562161, 
RRID:AB_10893589 

Mouse IgG1, kappa isotype control (PE conjugate) BD Biosciences Cat# 556650, 
RRID:AB_396514 

Chemicals, Peptides, and Recombinant Proteins 

DPBS Corning Cat# 45000-434 

Fatty Acid-Free BSA Proliant Biologicals Cat# 68700 

D-(+)-Glucose Solution, 45% Sigma-Aldrich Cat# G8769 

Accutase® eBioscience Cat# 00-4555-56 

Penicillin-Streptomycin Thermo Fisher 
Scientific 

Cat# 15140122 

GlutaMAX™ Thermo Fisher 
Scientific 

Cat# 35050061 

MEM Non-Essential Amino Acids Solution (100X) Thermo Fisher 
Scientific 

Cat# 11140050 

Sodium Bicarbonate Sigma-Aldrich Cat# NC0564699 

Matrigel® Corning Cat# 356231 

ROCK Inhibitor Y-27632 STEMCELL 
Technologies 

Cat# 72305 

mTeSR1 Complete Kit - GMP STEMCELL 
Technologies 

Cat# 85850 

RPMI 1640 1X, w/o L-Glutamine Corning Cat# 45000-404 

DMEM/F12 with L-Glutamine, HEPES Corning Cat# 45000-350 

DMEM/F12 w/o L-Glutamine Corning Cat# 45000-346 

HyClone Dulbecco’s Modified Eagles Medium Thermo Fisher 
Scientific 

Cat# SH30081.FS 

MCDB 131 Thermo Fisher 
Scientific 

Cat# 10372-019 

CTS™ KnockOut™ SR XenoFree Kit Thermo Fisher 
Scientific 

Cat# A1099202 

Insulin-Transferrin-Selenium (ITS-G) (100X) Thermo Fisher 
Scientific 

Cat# 41400045 

Insulin-Transferrin-Selenium-Ethanolamine (ITS-X) 
(100X) 

Thermo Fisher 
Scientific 

Cat# 51500-056 

B-27™ Supplement (50X) Thermo Fisher 
Scientific 

Cat# 17504044 



 

Bovine Albumin Fraction V (7.5%) Thermo Fisher 
Scientific 

Cat# 15260037 

2-Mercaptoethanol Thermo Fisher 
Scientific 

Cat# 21985-023 

Human AB Serum Valley Biomedical Cat# HP1022 

Activin A R&D Systems Cat# 338-AC/CF 

Heregulin-1 Peprotech Cat# 100-03 

ALK5 Inhibitor II Enzo Life Sciences Cat# ALX-270-445 

KGF/FGF7 R&D Systems Cat# 251-KG 

EGF R&D Systems Cat# 236-EG 

Retinoic Acid Sigma-Aldrich Cat# R2625 

LDN-193189 Stemgent Cat# 04-0074 

SANT-1 Sigma-Aldrich Cat# S4572 

TPB Calbiochem Cat# 565740 

Noggin R&D Systems Cat# 3344-NG-050 

Wnt3a R&D Systems Cat# 1324-WN-010 

3,3’,5-Triiodo-L-thyronine sodium salt (T3) Sigma-Aldrich Cat# T6397 

TGF R1 kinase inhibitor IV EMD Biosciences Cat# 616454 

KAAD-Cyclopamine Toronto Research 
Chemicals 

Cat# K171000 

Heparin Sigma-Aldrich Cat# H3149 

TTNPB Sigma-Aldrich Cat# T3757 

Zinc Sulfate Sigma-Aldrich Cat# Z0251 

TRIzol® Thermo Fisher 
Scientific 

Cat# 15596018 

Polyethylenimine (PEI) Polysciences Cat# 23966-1 

O.C.T. Compound Sakura Finetek USA Cat# 25608-930 

Vectashield Antifade Mounting Medium Vector Laboratories Cat# H-1000 

Critical Commercial Assays 

MinElute Reaction Cleanup Kit QIAGEN Cat#28204 

miRNeasy Mini Kit QIAGEN Cat# 74104 

mirVana™ miRNA Isolation Kit Thermo Fisher 
Scientific 

Cat# AM1560 

Nextera DNA Library Preparation Kit (24 samples) Illumina Cat#FC-121-1030 

TruSeq Stranded mRNA Library Preparation Kit Illumina Cat# 20020594 

TruSeq Small RNA Library Preparation Kit Illumina Cat# RS-200-0012 

RNA 6000 Nano Kit Agilent Technologies Cat# 5067-1511 

High Sensitivity D1000 ScreenTape Agilent Technologies Cat# 5067-5584 

RNA ScreenTape Agilent Technologies Cat# 5067-5576 

RNA ScreenTape Sample Buffer Agilent Technologies Cat# 5067-5577 

RNA ScreenTape Ladder Agilent Technologies Cat# 5067- 5578 

Qubit ssDNA assay kit Thermo Fisher Scientific Cat# Q10212 

iScript™ cDNA Synthesis Kit Bio-Rad Cat# 1708890 

iQ™ SYBR® Green Supermix Bio-Rad Cat# 1708880 

Cytofix/Cytoperm W/Golgi Stop Kit BD Biosciences Cat# 554715 

https://www.thermofisher.com/order/catalog/product/15596018


 

Deposited Data 

RNA-seq and ATAC-seq data GEO GSE115327 

Experimental Models: Cell Lines 

H1 WiCell Research 
Institute 

NIHhESC-10-0043, 
RRID:CVCL_9771 

CyT49 ViaCyte, Inc. NIHhESC-10-0041, 
RRID:CVCL_B850 

HEK293T ATCC Cat# CRL-3216, 
RRID:CVCL_0063 

Oligonucleotides 

 
Assay ID: 000377, Taqman miRNA assay; hsa-let-7a 

Thermo Fisher 
Scientific 

 
Cat# 4427975 

 
Assay ID: 002282, Taqman miRNA assay; hsa-let-7g 

Thermo Fisher 
Scientific 

 
Cat# 4427975 

 

Assay ID: 000452, Taqman miRNA assay; hsa-
mIR127- 3p 

Thermo Fisher 
Scientific 

 

Cat# 4427975 

 
Assay ID: 000502, Taqman miRNA assay; hsa-
mIR- 200a-3p 

Thermo Fisher 
Scientific 

 
Cat# 4427975 

 

Assay ID: 002300, Taqman miRNA assay; hsa-
mIR- 200c-3p 

Thermo Fisher 
Scientific 

 

Cat# 4427975 

 

Assay ID: 000377, Taqman miRNA assay; hsa-let-7a 
Thermo Fisher 
Scientific 

 

Cat# 4427975 

 

Assay ID: 000564, Taqman miRNA assay; hsa-mIR-375 
Thermo Fisher 
Scientific 

 

Cat# 4427975 

 

Assay ID: 000268, Taqman miRNA assay; hsa-mIR-
7- 5p 

Thermo Fisher 
Scientific 

 

Cat# 4427975 

 
Assay ID: 000436, Taqman miRNA assay; hsa-
mIR- 99b-5p 

Thermo Fisher 
Scientific 

 
Cat# 4427975 

Assay ID: 001182, Taqman miRNA assay; hsa-
mIR- 124-3p 

Thermo Fisher 
Scientific 

 

Cat# 4427975 

 

Assay ID: 001094, Taqman miRNA assay; RNU control 
Thermo Fisher 
Scientific 

 

Cat# 4427975 



 

ATTTgaattctcagccgcagatgcgttcaggtgagggcggaggctagcg 
gggcgctgtgcagcactgagctcgcggaagaccaggaccaggagatca
c 
cgagggcgaccgccaggccccgggccctccgctcccgccccgcgacga 
gcccctcgcacaaaccggacctgagcgttttgttcgttcggctcgcgtgagg 
caggggcggcctctcagcaccagcccgggggccggcctgatcgccacgc 
aggcacctgccgccgccaccgccaccgccatctcaaccgtacgggtggg 
agaggctgtgcgccgctccaggggagatccggctcccatccggccccacc 
cgccctgccttgccctgcccgcagcttctTTCTTATCACTCACACA 
GGAAACCAGGATTACCGAGGAGGAAAAAAAGCCTT 
CCTGTGGTGCTCAACTGTGATTCCTTTTCACCATTC 
ACCCTGGATGTTCTCTTCACTGTGGGATGAGgtAGT
A 
GGTTGTATAGTTctgttgaatctcatggACTATACAATCTAC 
TGTCTTTCCTAACGTGATAGAAAAGTCTGCATCCAG 
GCGGTCTGATAGAAAGTCAGTTAACTAATTGTACAA 
TATTTAAGATTAACTTGTCTTAAAGAGATGTAGTGC
A 
GCATTTGTTTATGGCCTGGAAATAAATTAATTTAGA
G 
ATAAAGTCTGTAGCAAGTACACTGGATGGGctccaaat 
gtggtgcaagatgaggcaaatgtgtggcacttgtagctttgctgccaagcctc 
tgctgtgaggatgttccctttcctgtctcaagtgcatcctgaagagttcctccag 
cgctccgtttccttttgcctgattccaggctgaggtagtagtttgtacagttctgtt 
gaatctcatggctgtacaggccactgccttgccaggaacagcgcgccagct 
gccaagtggggctgagaggatggcgtcaccctgctcatctctgggaaacc
a 
ggtaatggggaggaagtcCACCACCCCTGGCTGCTCACCG 
CTCCGGTTCTTCCCTGGGCTTCCACAGCAGCCCCT 
GCCTGCCTGGCGGGACCCCACGTCCCTCCCGGGC 
CCCTGTGAGCATCTTACCGGACAGTGCTGGATTTC
C 
CAGCTTGACTCTAACACTGTCTGGTAACGATGTTCA 
AAGGTGACCCGCCGCTCGCCGGGGACACCACCGA 
GGCACATCCGGAGCTCCTACTCCAGGGATGGGCTG 
TTTTTTttaattaaGGTG 

This study IDT gBlock 

Software and Algorithms 

Flowjo-v10 FlowJo LLC http://www.flowjo.co 
m/download-newest- 
version/ 

STAR 2.4.0f1 (Dobin et al., 2013) https://github.com/al 
exdobin/STAR 

Bowtie 1.1.1 (Langmead et al., 
2009) 

http://bowtie- 
bio.sourceforge.net/i 
ndex.shtml 

Cufflinks 2.2.1 (Trapnell et al., 2010) https://github.com/co 
le-trapnell- 
lab/cufflinks 

HTSeq 0.6.1 (Anders et al., 2015) https://htseq.readthe 
docs.io/en/master/in 
stall.html 

DEseq2 1.10.1 (Love et al., 2014) https://www.biocond 
uctor.org/packages/d 
evel/bioc/html/DESe 
q2.html 

MACS2 (Zhang et al., 2008) http://liulab.dfci.harv 
ard.edu/MACS/Dow 
nload.html 

http://www.flowjo.co/
http://bowtie-/
http://liulab.dfci.harv/


 

BEDTools 2.17.0 (Quinlan and Hall, 
2010) 

https://bedtools.readt 
hedocs.io/en/latest/c 
ontent/installation.ht 
ml 

ComBat (part of the sva Bioconductor package) (Johnson et al., 2007) 
(Leek, 2014) 

http://bioconductor.o 
rg/packages/release/ 
bioc/html/sva.html 

GSEA (Mootha et al., 2003; 
Subramanian et al., 
2005) 

http://www.broad.mit 
.edu/gsea 

Metascape (Tripathi et al., 2015) http://metascape.org 
/gp/index.html#/main 
/step1 

TargetScan (Agarwal et al., 2015) http://www.targetsca 
n.org/vert_72/ 

JASPAR (Khan et al., 2018) http://jaspar.genereg 
.net/cgi- 
bin/jaspar_db.pl 

Hocomoco (Kulakovskiy et al., 
2018) 

http://hocomoco11.a 
utosome.ru/ 

FIMO (Grant et al., 2011) http://meme- 
suite.org/tools/fimo 

R 3.5.0  https://cran.r- 
project.org/ 

SAMtools 1.3 (Li et al., 2009) https://github.com/sa 
mtools/samtools 

HOMER 4.10 (Heinz et al., 2010) http://homer.ucsd.ed 
u/homer/download.ht 
ml 

HALO™ Image Analysis Software PerkinElmer http://www.perkinelm 
er.com/product/halo- 
plus-3-ws-license- 
cls141255 

Adobe Illustrator CS5   

Adobe Photoshop CS5   

http://bioconductor.o/
http://www.broad.mit.edu/gsea
http://www.broad.mit.edu/gsea
http://metascape.org/
http://jaspar.genereg.net/cgi-bin/jaspar_db.pl
http://jaspar.genereg.net/cgi-bin/jaspar_db.pl
http://jaspar.genereg.net/cgi-bin/jaspar_db.pl
http://hocomoco11.autosome.ru/
http://hocomoco11.autosome.ru/
http://meme-suite.org/tools/fimo
http://meme-suite.org/tools/fimo
http://homer.ucsd.ed/
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