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a b s t r a c t

Glucocorticoids such as dexamethasone (Dex) are widely used to treat both acute and chronic inflamma-
tory conditions. They regulate immune responses by dampening cell-mediated immunity in a glucocor-
ticoid receptor (GR)-dependent manner, by suppressing the expression of pro-inflammatory cytokines
and chemokines and by stimulating the expression of anti-inflammatory mediators. Despite its evident
clinical benefit, the mechanistic underpinnings of the gene regulatory networks transcriptionally con-
trolled by GR in a context-specific manner remain mysterious. Next generation sequencing methods such
mRNA sequencing (RNA-seq) and Ribosome profiling (ribo-seq) provide tools to investigate the transcrip-
tional and post-transcriptional mechanisms that govern gene expression. Here, we integrate matched
RNA-seq data with ribo-seq data from human acute monocytic leukemia (THP-1) cells treated with the
TLR4 ligand lipopolysaccharide (LPS) and with Dex, to investigate the global transcriptional and transla-
tional regulation (translational efficiency, DTE) of Dex-responsive genes. We find that the expression of
most of the Dex-responsive genes are regulated at both the transcriptional and the post-transcriptional
level, with the transcriptional changes intensified on the translational level. Overrepresentation pathway
analysis combined with STRING protein network analysis and manual functional exploration, identified
these genes to encode immune effectors and immunomodulators that contribute to macrophage-
mediated immunity and to the maintenance of macrophage-mediated immune homeostasis. Further
research into the translational regulatory network underlying the GR anti-inflammatory response could
pave the way for the development of novel immunomodulatory therapeutic regimens with fewer unde-
sirable side effects.

� 2022 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Gene regulatory networks (GRNs) are continually adjusting
mRNA and protein levels according to cellular needs, affecting all
steps of the expression process, from transcription to mRNA matu-
ration, transport, translation, and protein degradation [1]. These
adjustments are further customized in the presence of external
stimuli that transform the transcriptional and translational land-
scapes within the cells.

Over the last two decades, assessing gene transcription levels
using next generation sequencing methods such as RNA-seq, have
become central to the understanding of the molecular mechanisms
underpinning the biological processes and phenotypes in various
biological contexts. RNA-seq analysis can, however, not always
capture the full picture of gene expression, as the final fate of
mRNA molecules depend on mRNA stability, mRNA degradation,
and translation efficiency (TE). ribo-seq offers a quantitative
approach to study translational regulation of global transcriptomes
by quantifying the capture of ribosome-protected RNA fragments
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(RPFs) [2]. Normalizing ribosome footprint density by mRNA abun-
dance determines a gene’s translation efficiency. In ribo-seq, the
number of RPFs between different conditions for a given gene is
used as a proxy for a change in the translation of the encoded pro-
tein. A major caveat with ribo-seq is, however, the mRNA abun-
dance of the transcript, which directly affects the probability of
ribosome occupancy, and thus may not necessarily reflect the tran-
scriptional efficiency of each gene.

Synthetic glucocorticoids (GCs) such as dexamethasone (Dex),
are commonly used in the treatment of a variety of immune and
inflammatory diseases due to their potent anti-inflammatory
effect. Their immunomodulatory properties stem from a complex
mechanism of action that dampens cell-mediated immunity by
inhibiting the expression of pro-inflammatory cytokines and
chemokines, while activating the expression of anti-inflammatory
immune mediators [3–6]. The effects of GCs are mediated through
the ubiquitously expressed intracellular, ligand-dependent gluco-
corticoid receptor (GR). GR classically exerts its transcriptional reg-
ulation, following GC binding, by interacting with evolutionarily
conserved 15 bp palindromic consensus DNA sequences (AGAA-
CANNNTGTTCT) designated as glucocorticoid response elements
(GREs). GREs are primarily present in the enhancer and promoter
regions of GR target genes and drive, predominantly through pro-
tein–protein interactions with co-activators and histone acetyl
transferases (HATs), the transcription of anti-inflammatory factors
[7–10]. Transcriptional inhibition by GR is, on the other hand,
exerted via recruitment of co-repressors such as Glucocorticoid
receptor interacting protein 1 (GRIP1) and histone deacetylases
(HDACs), disrupting pro-inflammatory NF-jB/interferon response
factor3 (IRF3) complexes, and interaction with classical palin-
dromes or with cryptic GREs within NF-jB and AP-1 motifs [11–
14] (Fig. S1). Though regulation by GCs/GR has been extensively
studied on the transcriptional level, the impact of GCs on post-
transcriptional gene regulatory mechanisms is largely unknown,
with the exception of a small subset of pro-inflammatory genes.
These include effector molecules such as Tumor necrosis factor
alpha (TNFa), interleukin 6 (IL6), and Chemokine (CAC motif)
ligands (CCL)2 and CCL7, suggesting a role for GCs/GR in post-
transcriptional gene expression modulation [15–18].

In the present study, we aimed at systematically investigating
the global impact of Dex treatment on the transcriptional and
post-transcriptional regulation of gene expression in an inflamma-
tory setting. For this, a well-established in vitromodel of inflamma-
tion using macrophage-like cells derived from phorbol 12-
myristate 13-acetate (PMA)-differentiated human THP-1 cells
was utilized [19]. THP-1 is a human monocytic cell line derived
from a patient with acute monocytic leukemia, which has been
widely used to investigate monocyte/macrophage activities [20].
Differentiated THP-1 cells are extremely sensitive to LPS and
respond by releasing a plethora of inflammatory cytokines [21–
23]. To investigate the effect of Dex on inflammation, Dex treat-
ment was performed concurrently with LPS stimulation, with the
latter inducing a pro-inflammatory M1 macrophage phenotype.
Further, using previously published methodology and integrating
matched mRNA-seq data with ribo-seq data, the change in transla-
tion efficiency (DTE) was calculated [24]. This approach allows the
subcategorization of genes into buffered, forwarded, intensified, or
exclusively (exclusive) translationally regulated genes. We show
that the expression of the majority of the Dex-responsive (acti-
vated and suppressed) and LPS-stimulated genes can be classified
as ‘‘intensified”. These genes undergo statistically significant tran-
scriptional and translational changes and display a change in trans-
lational efficiency. Overrepresentation analysis (Reactome
pathways, KEGG pathways, and gene ontology (GO)), combined
with STRING protein network analysis and gene-by-gene manual
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functional exploration, identified these genes to exhibit immune
effector and immunomodulatory functions that contribute to
maintaining macrophage-mediated immune homeostasis.

Overall, our findings show that, in addition to transcriptional
control, most Dex-responsive genes are subject to translational
regulation in LPS-stimulated macrophages, and that the protein
products of these genes are involved in macrophage-mediated
immunity.
2. Materials and methods

2.1. Cell propagation, culture, and treatment

THP-1 cells were obtained from ATCC and cultured in RPMI
1640 medium (Thermo Fisher Scientific; A1049101) supplemented
with 10 % heat inactivated FBS (Sigma Aldrich; F9665), 1 % Pen/
Strep (Sigma Aldrich; P4333). The cells were grown at 37 �C and
5 % CO2 and routinely tested negative for mycoplasma contamina-
tion. For THP-1 differentiation, cells were grown in culture media
containing the dialyzed FBS (Sigma Aldrich; F0392) and incubated
with 10 ng/ml (final concentration) phorbol 12-myristate 13-
acetate (PMA, Sigma Aldrich; P1585) for 24 h, followed by 24 h
incubation with fresh growth media (without PMA). The differen-
tiated THP-1 cells were treated for 3 h with vehicle (0.1 % EtOH),
100 ng/ml lipopolysaccharide (LPS, Sigma Aldrich; L6529), or with
a combination of 100 ng/ml LPS and 1 lM Dex (Sigma Aldrich;
D4902). All treatments were performed on five independent bio-
logical replicates (n = 5). Following the 3 h incubation, the cells
were harvested for ribosome profiling and mRNA sequencing.
2.2. Ribosome profiling

Ribosome profiling of THP-1 derived macrophage-like cells was
performed according to previously published work by our group
and others [25–27]. In short, 10 million cells were lysed for
10 min on ice in 1 mL lysis buffer consisting of 20 mM Tris-Cl
(pH 7.4), 150 mM NaCl, 5 mM MgCl2, 1 % Triton X-100, 0.1 % NP-
40, 1 mM dithiothreitol, 10U/ml DNase I, cycloheximide (0.1 mg/
ml) and nuclease-free H2O. The lysate was homogenized by imme-
diate repeated pipetting and multiple passes through a syringe fit-
ted with a 21G needle, allowing for dissociation of cell clumps and
facilitating quick and equal lysis of the cells. Samples were next
centrifuged at 20,000g for 10 min at 4 �C to pellet cell debris. Per
sample, 200 or 400 lL of lysate were digested with RNase 1
(N6904K; Biozym), purified with Microspin Sephacryl S-400 HR
columns (Sigma-Aldrich; GE27-5140–01) and 1lg footprints were
used for removal of the ribosomal RNA according to the ribo-Zero
Gold rRNA Removal Kit (h/m/r) (Illumina; MRZG12324). The foot-
prints were purified by excision from a Novex 15 % TBE Urea PAGE
gel (Fisher Scientific; EC68852BOX) followed by a treatment of the
3́ends with T4 PNK (Biozym; P0503K) to allow ligation to a pre-
adenylated linker. The RNA was then reverse transcribed with Rev-
erse Transcriptase (Biozym; ERT12925K) and the cDNA purified via
a Novex 10 % TBE Urea PAGE gel (Fisher Scientific; EC68752BOX).
The fragments were circularized using Circligase I (Biozym;
CL4115K) followed by a PCR amplification and size selection using
a Novex 8 % TBE PAGE gel (Fisher Scientific; EC62152BOX). For all
samples, ribosome profiling library size distributions were checked
on the Bioanalyzer 2100 using a high sensitivity DNA assay (Agi-
lent; 5067–4626), multiplexed and sequenced on a NovaSeq
6000 Illumina producing single end 1x51nt reads. The samples
were processed in one batch to avoid a sample processing bias.
THP-1 macrophage ribo-seq libraries were sequenced to an aver-
age depth of 80 M (min. 64 M, max. 91 M) raw reads.
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2.3. Stranded mRNA sequencing

Total RNA was isolated using TRIzol Reagent (Invitrogen;
15596018) using 3 million of the exact same human THP-1 derived
macrophage-like cells processed for ribosome profiling. RIN scores
were measured on a BioAnalyzer 2100 using the RNA 6000 Nano
assay (Agilent; 5067–1511). Poly(A)-purified mRNA-seq libraries
were generated from high quality RNA (average RNA Integrity
Number (RIN)) of 7.7. RNA-seq library preparation was performed
according to the TruSeq Stranded mRNA Reference Guide, using
500 ng of total RNA as input. Libraries were multiplexed and
sequenced on an Illumina NovaSeq 6000 producing paired
2x101nt reads. THP-1 macrophage mRNA-seq libraries were
sequenced to an average depth of 160 M (min. 81 M, max.
207 M) raw reads.

2.4. RNA-seq and ribo-seq data analysis

Ribo-seq and RNA-seq were analyzed as previously described
[28]. Before genome mapping, Ribo-seq reads were clipped to
remove residual adapters using the FASTX toolkit (https://hannon-
lab.cshl.edu/fastx_toolkit/). Reads mapping to the ribosomal RNA
and tRNA sequences were removed with Bowtie2 v2.4.5 [29]. The
paired mRNA-seq reads (2x101nt) were trimmed to 29-mers (the
average length of Ribo-seq reads) to reduce any read length or fil-
tering bias towards mapping or quantification. This was done in
order to establish the comparability of the data obtained from
Ribo-seq and RNA-seq. Ribo-seq and trimmed RNA-seq reads were
then mapped to the human reference genome (GRCh38, Ensembl
v87) using STAR v2.7.10a [30]. During the alignment step, the fol-
lowing parameters were used: ‘‘--limitIObufferSize300000000--
limitOutSJcollapsed10000000--outSAMattributesAll--outFilterMul
timapNmax20--outFilterMismatchNmax 2 --alignSJoverhangMin
1000--twopassMode Basic”.

2.5. Prediction and differential translation of actively translated ORFs

Actively translated ORFs were detected with ORFquant 1.00
[31] using a pooled set including all mapped ribo-seq samples.
We only considered ORFs with a minimum number of 15P-sites
in: i) cells treated with lipopolysaccharide (LPS), and ii) cells trea-
ted with a combination of lipopolysaccharide (LPS) and Dex. Pre-
dicted ORFs were divided into six considered sORF biotypes: CDS
(annotated coding sequences, partially or totally in-frame), lncRNA
ORFs (lncRNA-ORFs, encoded by presumed long non-coding RNAs),
ncRNA ORFs (ncRNA-ORF, encoded by processed transcripts of
protein-coding genes), upstream ORFs (uORFs, encoded by 50 UTR
sequences), internal ORFs (intORFs, fully overlapping an annotated
CDS in an alternative frame), and downstream ORFs (dORFs,
encoded by 30 UTR sequences)).

Next, P-site counts were extracted with RiboseQC (https://doi.
org/10.1101/601468). In-frame P-site counts were quantified for
each called ORF and used as input to identify differentially trans-
lated ORFs with DESeq2 v1.26.0 [32]. ORFs with an absolute fold
change equal or higher than 1.5 and an adjusted p-value lower
than 0.01 were defined as differentially translated.

2.6. Quality control (QC) analysis of ribo-seq data

An algorithm called ribo-TIS Hunter (ribo-TISH) was used to
perform quality control analysis on the mapped RPFs [33]. RPFs
distribution around annotated coding genes and grouping by read
length were checked using the ‘‘quality” function of this toolkit.
RPF 50 end distribution near annotated gene start codons is
assessed for each read group before estimating P-site offsets. The
RPF count between the 15 bp upstream of the first base of the start
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codon and the 12 bp upstream of the first base of the stop codon
was taken into account when calculating the RPF count distribu-
tion in three reading frames as well as the CDS metagene profile.
The ratio between the highest RPF count across all three reading
frames and the total of all RPF counts was used to calculate the per-
centage of RPF counts in the dominant frame. Furthermore, RPF
counts between �40 and +20 bp of the start/stop codon’s first base
were summed across all annotated genes to generate an RPF count
profile near the start/stop codon.

Further QC analysis was performed using the RiboWaltz R pack-
age to identify P-sites and calculate the distance of the P-site from
the start and stop codons of the coding sequence. Furthermore, the
tool returns the data structure used to calculate the distribution of
P-site across transcript regions (50 UTR, CDS, and 30 UTR) and trin-
ucleotide (3-nt) periodicity covered by the P-site [34].

2.7. Identification of translationally regulated genes

The quantification of gene expression was accomplished by
using featureCounts v2.0.1 to count the number of reads that
mapped to a known genomic and transcriptomic reference [35].
DESeq2 v1.26.0 statistical model (design=�Condition + SeqType +
Condition:SeqType) was used to normalize gene counts with
respect to size factor or other normalization parameters for both
ribo-seq and RNA-seq data [32]. The translation efficiency of genes
was calculated by combining RPF and mRNA counts, and then the
deltaTE (DTE) method in R was used to identify genes that were
differentially and translationally regulated, as described by
Chothani et. al. [20]. A false discovery rate (FDR) threshold value
of 0.05 was utilized as a cutoff to quantify change in translation
efficiency for each gene and categorize genes into various regula-
tory classes utilizing the DTE approach.

2.8. Pathway enrichment and regulatory network analysis

The gene list from each regulatory class was analysed using the
Enrichr R package to test the probability that annotated gene sets
were statistically enriched for Gene Ontology (GO) terms (version
2015) based on their participation in biological processes [36].
Associations were considered statistically significant if their
adjusted p-values for multiple testing were less than 0.05.

We further performed integrative pathway enrichment analysis
on RNA-seq, ribo-seq, and DTE datasets using ActivePathways R
package with the default parameters [37]. We provided the p-
values of differential changes in mRNA, ribosome footprints
(RPF), and translation efficiency (TE) of genes listed in each regula-
tory class as the first input in this three-step method. As a second
input, we used gene sets corresponding to the Reactome Databases
Molecular Pathways [38] and Gene Ontology Biological Process
[39] downloaded from the g:Profiler web server [40]. Specifically,
in the first step of the ActivePathways method, adjusted p-values
from different datasets for each gene were merged using a statisti-
cal data fusion approach, resulting in an integrated gene list [41].
The integrated gene list was then ranked in decreasing order of sig-
nificance and filtered using the default threshold (unadjusted
p < 0.1). Step two involved statistical enrichments of pathways
using the ranked hypergeometric test, which determines the path-
ways significantly enriched in the integrated gene list. Step three
generated separate gene lists from individual input datasets and
performed similar pathway enrichments (as in step 2) with the
ranked hypergeometric test, to find supporting evidence for each
pathway from the integrative analysis.

To identify key RNA-binding proteins (RBPs) that were differen-
tially expressed in the most prominent ‘‘intensified” regulatory
class in our data, we used experimental evidence-based databases
of RBP-RNA bindings derived from ENCODE [41] and POSTAR3 [42].

https://hannonlab.cshl.edu/fastx_toolkit/
https://hannonlab.cshl.edu/fastx_toolkit/
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To build the RBP - targets regulatory network, the R packages
GENIE3 [43], igraph [44], and RCy3 [45] were used. As input data
files, log transformed adjusted p-values for genes that were differ-
entially transcribed (DTG) and translationally efficient (DTEG) from
a specific biological process (derived from Enrichr analysis) were
used. Cytoscape was employed to visualize the RBP-target network
[45].

2.9. Expression analysis

Differential expression analysis of genes within each regulatory
class was performed using Volcano plots in RStudio (RStudio Team
(2022)). RStudio: Integrated Development Environment for R.
RStudio, PBC, Boston, MA URL https://www.rstudio.com/.) using
the ggplot2 package (Wickham H (2016). ggplot2: Elegant Graphics
for Data Analysis. Springer-Verlag New York. ISBN 978-3-319-
24277-4, https://ggplot2.tidyverse.org). Lists of significant and
non-significant DEGs are compiled in Supplementary file 1. Com-
parative gene analysis using Venn diagrams of significantly up
(log2FC � 0.58, p adj � 0.05) and downregulated (log2FC � -0.58,
p adj � 0.05) differentially expressed genes (DEGs) was done using
the online software tool VENN DIAGRAMS generated by the Van de
Peer Lab (https://bioinformatics.psb.ugent.be/webtools/Venn/).
Comparisons were done between genes categorized as ‘‘intensi-
fied” within each platform (RNA-seq and ribo-seq). Output control
parameters were set to Non-symmetrical Venn Diagram Shape and
Colored Venn Diagram Fill.

2.10. Enrichment and STRING network analysis

Enrichment analysis was done on significantly up (log2FC � 0.
5849625, p adj � 0.05) and downregulated (log2FC � -0.5849625
, p adj � 0.05) differentially expressed genes (DEGs) (LPS + Dex
vs LPS) identified in the RNA-seq dataset. Over-Representation
Analysis (ORA) of Reactome Pathways was done using the WEB-
based Gene SeT AnaLysis Toolkit (WebGestalt, https://www.we-
bgestalt.org) [46]. Analysis was done using ensemble gene IDs as
input data, ‘‘genome” as Selected Reference Set, and the default
advanced parameters provided by the website (statistical signifi-
cance (FDR � 0.05) was calculated using Benjamini-Hochberg Pro-
cedure). Plots of the Top 10 ORA Reactome Pathways were
generated in RStudio (RStudio Team (2022). RStudio: Integrated
Development Environment for R. RStudio, PBC, Boston, MA URL
https://www.rstudio.com/.) using the ggplot2 package (Wickham
H (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-
Verlag New York. ISBN 978–3-319–24277-4, https://ggplot2.tidy-
verse.org.). STRING network analysis was performed in Cytoscape
3.9.1 [47] using the Cytoscape stringAPP [48] (medium confidence
cutoff, 0.400). To group the proteins in the network based on their
interactions from STRING, clusterMaker2 [49] was used to run
Markov clustering (MCL) [50]. The MCL granularity parameter (in-
filtration value) was set to 4 and array source was set to use the
STRING confidence score attribute (stringdb::score) as weights.
All other settings were kept at default. Functional enrichment anal-
ysis was performed on the top four subnetworks (clusters 1–4)
using the stringAPP with an FDR threshold of 5 % (FDR� 0.05), gen-
erating lists of terms spanning 14 categories: GO Biological Pro-
cess, GO Molecular Function, GO Cellular Component, DISEASE,
KEGG Pathways, Reactome Pathways, and WikiPathways. Func-
tional enrichment analysis of the networks from the upregulated
‘‘intensified” DEGs resulted in 399 statistically significant terms,
and analysis of the networks from the downregulated ‘‘intensified”
DEGs resulted in 1167 statistically significant terms. Each list of
terms was filtered to eliminate redundant terms (using the default
redundancy cutoff of 0.5), resulting in reduced lists of 108 enriched
terms for the networks from the upregulated ‘‘intensified” DEGs
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and 369 enriched terms for the networks from the downregulated
‘‘intensified” DEGs. Enrichment analysis of STRING network clus-
ters of ‘‘buffered” DEGs identified 44 enriched terms before filter-
ing and 9 enriched terms after filtering, enrichment analysis of
‘‘exclusive” DEGs identified 163 terms before filtering and 24 after
filtering. Of these, the four most significant terms (FDR � 0.05)
from each analysis were chosen.
2.11. Statistical analysis

For differential expression analysis with DESeq, the Wald test
was used when comparing the two treatment conditions. In addi-
tion, a deltaTE equivalent interaction coefficient that is equal to
translation change and independent of transcriptional change
was introduced into the DESeq statistical model [24]. In
ActivePathways, Brown’s extension of the Fisher’s combined prob-
ability test was utilized to generate merged p-values frommultiple
datasets. The regulatory link generated by GENIE3 was ranked by a
random forest algorithm [43].
3. Results

3.1. Quality control analysis of ribo-seq data

The human monocyte cell line THP-1 was utilized to examine
the overall effects of the synthetic glucocorticoid Dexamethasone
(Dex) on the transcriptional and post-transcriptional regulation
of gene expression in the context of macrophage innate immunity.
Phorbol 12-myristate 13-acetate (PMA) was used to differentiate
THP-1 cells into macrophages (henceforth referred to as macro-
phages), and then LPS stimulation was used to establish a pro-
inflammatory M1 macrophage phenotype. The modulatory effect
of Dex on LPS induced macrophages was analyzed using an inte-
grated approach combining the mRNA sequencing and Ribosome
profiling (Fig. 1A). In general, ribo-seq data provides a global snap-
shot of all the translating ribosomes and predicts the protein abun-
dance in a population of cells at a given time.

At the core of ribo-seq experiments is the formation of mRNA-
ribonucleoprotein complexes by translating ribosomes. These
mRNA-ribonucleoprotein complexes are resistant to digestion by
nucleases and serve as ribosome-protected footprints (RPFs) in a
sequencing scenario. Thus, the sequencing of these RPFs provide
precise location of active ribosomes on the translated transcripts
(Fig. 1A). Using the sequenced RPFs that were mapped to the anno-
tated coding genes, we identified the translation activities of ribo-
somes in vehicle treated, LPS stimulated, and LPS + Dex treated
macrophages, using a comprehensive statistical toolkit for ribo-
some profiling, named ribo-TISH [33]. It provides a summary of
the distribution of RPF lengths and a measurement of the quality
of the size selection. Under all treatment conditions (vehicle con-
trol, LPS and LPS + Dex) in our ribo-seq experiment, the size of
RPFs, recovered from mapped sequencing data, was typically
around 28 nucleotides (nts) (Fig. 1B-D).

Ribo-TISH also provides several QC metrics/profiles based on
the RPF length distribution, to evaluate the quality of RPFs of differ-
ent lengths. The first category of our Ribo-seq data QC profile was
the distribution of RPF counts across three reading frames and the
fraction of RPF counts (fd) in the dominant frame within the anno-
tated coding genes at various RPF lengths (Fig. 1B-D). The best
quality data was observed for 28 nts RPF length under all treat-
ment conditions, with a higher fraction of RPF counts (fd > 0.9) in
the dominant reading frame. Different-length RPFs may have vary-
ing data quality (smaller fd for the RPFs with 26 or 27 nts). A higher
RPF count in the data’s dominant RPF length also ensures a signif-
icant 3-nt periodicity for downstream analysis. Notably, 3-nt peri-
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Fig. 1. Experiment summary, computational analysis, and subsequent quality check of ribo-seq data (A) Overview of the ribosome profiling experimental workflow and data
analysis. The processed data include five biological replicates for each treatment condition for ribo-seq and four biological replicates for each treatment condition for RNA-
seq. (B-D) ribo-TISH analysis for quality control of ribo-seq data of PMA-differentiated THP-1 derived macrophage-like cells treated with control vehicle, LPS, or a combination
of LPS and dexamethasone (LPS + Dex). Upper panel: RPF length distribution mapped to annotated protein-coding regions. Lower panel: Different quality profiles/metrics for
annotated RPFs. The data for first, second, and third reading frame is represented by the colors red, green, and blue, respectively. Each row displays RPFs with their
corresponding lengths. Column 1: Distribution of RPF 50 ends across all codons and three reading frames, indicating the proportion of RPF counts from the dominant reading
frame. Column 2: RPF 50 end count distribution near annotated TISs. P-site offset and the ratio between RPF counts at annotated TISs and sum of RPF counts near the
annotated translation initiation sites (TISs) after correction for P-site offset are shown. Column 3: RPF 50 end count distribution in close proximity to annotated stop codon.
Column 4: RPF count distribution across three reading frames in protein-coding regions (CDS). (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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odicity is a characteristic primary structure of coding regions in all
known organisms [51]. This structural feature is often utilized dur-
ing bioinformatics analyses to predict the coding sequence and to
identify the potential shift in reading frame of a gene [52].

The meta-gene profile of the RPF count near the annotated
translation initiation (TIS) and termination sites was shown in
the second category of the QC profile (Fig. 1B-D). As expected, in
all treatment conditions, our data showed RFP counts increase near
the annotated TIS and decrease near the termination site. ribo-TISH
computes the distance between the P-site and the 50 end of the
5626
sequenced RPFs (i.e., the P-site offset) based on the meta-gene pro-
file of the 50 end of the sequenced RPFs in relation to the annotated
TIS. The P-site (called peptidyl site) of ribosome binds tRNA hold-
ing the growing polypeptide chain [53]. Identifying the P-site posi-
tion on RPF using ribo-seq data is a critical step in quantitatively
analysing translation events at the codon level [54]. The canonical
initiating Met-tRNA is base-paired with the AUG start codon at the
P-site, which is typically internal to the sequenced RPFs and which
serves as the entry point for the first aminoacyl tRNA. For RPFs of
varying lengths, the P-site offset can also vary. In our datasets, P-
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site offset was found to be 12 nts for the RPFs with a length of 28
nts in all the samples. The P-site offset, on the other hand, varied
for RPFs of different lengths (24 and 26 nts). Since a default P-
site offset of 12 nts was applied to all reads during the quality con-
trol analysis, no value was returned for RPF lengths of 24 nts (ve-
hicle) and 27 nts (vehicle and LPS + Dex treatments). This
indicated that RPF maintains a distinct P-site offset of varying
length under various treatment conditions.

A third category of QC profile shown is the meta-gene profile of
the RPF count across the whole CDS of the annotated protein cod-
ing genes. These data show the enrichment of RPF counts at the
annotated TIS versus the whole CDS region after P-site offset cor-
rection (Fig. 1B-D). In addition, different length RPFs had different
meta-gene profiles and RPF enrichment scores at the TIS. Thus,
ribo-TISH analysis confirmed various aspects of the quality of our
ribo-seq data from the different treatment conditions.

3.2. Genome-wide translational analysis

To further determine the P-sites within ribosome protected
fragments at nucleotide resolution, we used the RiboWaltz R pack-
age to maximize offset coherence and to improve the interpreta-
tion of P-site positional information from the ribo-seq data. This
approach provides a meta-gene read density heatmap for every
read length, accounting for both the 50and 30 ends of the reads. It
provides an overview of the occupancy profiles used to determine
P-sites and permits visual verification of the accuracy of P-site off-
set values. Considering that the distance between 50 ends and TIS is
essentially constant for different RPF lengths, a stable 50 end is the
optimal extremity in our ribo-seq data (Fig. 2A). Identifying the
ribosome P-site in each RPF is crucial for determining the 3-nt peri-
odicity of translating ribosomes and drawing correct conclusions
about ribosome positions. In our ribo-seq data (using a LPS + Dex
treated sample as reference), the percentage of P-sites located in
the 50 UTR, CDS, and 30 UTR regions of mRNAs varied with region
length. Expectedly, the CDS of transcripts was emerged as the
region with the highest percentage of reads, as well as the highest
proportion of P-site enrichment (Fig. 2B). Furthermore, we
observed codon periodicity uniquely in the coding sequence
(CDS), with no signal along UTRs, neither near start nor stop
codons (Fig. 2C). This suggests that the ribosomes were often in a
non-translational state outside of the CDS. For each read group,
we showed the percentage of P-sites in the three possible transla-
tion reading frames (periodicity analysis) for the 50 UTR, CDS and 30

UTR in order to determine the extent to which the obtained P-sites
lead to codon periodicity in the CDS. The data clearly suggested a
P-site enrichment in the first frame of the CDS coding sequence
(Fig. 2D-E). To further determine which codons exhibited greater
or lesser ribosome density in our data, we analyzed codon usage,
i.e. the frequency of in-frame P-sites along the coding sequence
(codon by codon), normalized for the frequency of each codon in
the sequences. The resulting codon usage indexes highlighted start
and stop codons and also detected the frequency of different
codons of amino acids used in all translating ORFs in our ribosome
profiling data (Fig. 2F).

Next, we identified actively translated ORFs in our macro-
phages. We categorized these ORFs based on host gene annotation
and genomic position relative to known coding regions. As a result,
we found a total of 14,967 translated ORFs in both coding and non-
coding transcripts, across a wide range of expression values. The
vast majority of ORFs (14,266; �95 %) were found in protein-
coding genes mapped over previously discovered CDS coding
domains (Fig. 2G, Fig. S2). Additionally, we identified 416 genes
with 462 translated upstream open reading frames (uORF), 10
genes with 11 internal open reading frames (intORF), and 20 genes
with 21 downstream open reading frames (dORF) (Fig. 2G, Fig. S2).
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We also found 207 ORFs encoded by non-coding transcripts in our
data, which mainly belonged to the processed transcripts of
protein-coding genes (ncRNA) and long noncoding RNA (lincRNA-
ORF) biotypes (Fig. 2H, Fig. S2).

3.3. Translational regulation of glucocorticoid receptor target genes in
human macrophages

Ribosome profiling also offer a quantitative way to investigate
translational regulation by post-transcriptional processes that
affect protein levels, including protein stability, protein degrada-
tion, and others [55–58]. We applied a deltaTE approach that uses
the DESeq2 statistical model to determine the significant changes
in interaction term (or DTE) under different treatments [24]. The
principle component analysis (PCA) was conducted on both ribo-
seq and RNA-seq results to determine the source variation in the
data other than the treatment. It demonstrated that PC1 explained
74 % of the variance in the RNA-seq (Fig. 3A) and 64 % of the vari-
ance in the ribo-seq (Fig. 3B), indicating that sample treatment dif-
ferences accounted for the major variance in these data.
Integrating the RNA-seq and ribo-seq allow the calculation of the
change in translation efficiency (DTE) of differentially expressed
genes, which is the ratio of RPFs over mRNA counts within a gene’s
coding sequence. The genes were considered translationally regu-
lated that exhibited change in translation efficiency under
LPS + Dex condition in macrophages. These genes were also
referred to as differential translation efficiency genes or DTEGs. A
gene was designated as DTEG specifically if variations in mRNA
read counts cannot account for changes in the number of RPFs
(Fig. 3C, Supplementary file 1). On the other hand, a differentially
transcribed gene (DTG)] is a gene that is transcriptionally but not
translationally regulated. These genes showed significant change
in mRNA counts as well as RPFs (Fig. 3C, Supplementary file 1).

Taking DTEGs and DTG genes into account, we further com-
bined the changes in RPF, mRNA, and translation efficiency (TE)
to determine a gene’s regulatory class. A threshold of p adj < 0.05
was used to identify genes that have undergone significant changes
in LPS + Dex treatment compared to LPS. The genes were catego-
rized into (i) Forwarded: Genes classified as ‘‘forwarded” are tran-
scriptionally regulated. There was no change in TE in these genes,
and the change in mRNA is responsible for the change in RPFs.
Therefore, genes that had significant RPF and mRNA but not signif-
icant TE belong to this category. This class contains a total of 55
genes identified as DTG (Fig. 3D, Supplementary file 1). (ii) Exclu-
sive: The change in TE is solely driven by the change in RPFs, while
mRNA counts remain unchanged. Therefore, this group consists of
genes with significant TE and RPFs but no significant change in
mRNA counts. Consequently, these genes are only regulated trans-
lationally. There is a total of 464 DTEG genes in this class (Fig. 3E,
Supplementary file 1). (iii) Intensified: These are the genes that are
regulated by both transcription and translation (significant change
in mRNA, RPFs, and TE). Both DTGs and DTEGs describe these
genes. In this case, mRNA changes act with the change in TE. This
class contains a total of 1851 genes (Fig. 3F, Supplementary file 1).
(iv) Buffered: These represent the genes where the transcriptional
change is nullified by the change in TE to the extent that RPFs do
not change significantly. Consequently, genes with a significant
TE and RNA but not a significant RPF are considered to be transla-
tionally buffered. This category includes a total of 356 genes
(Fig. 3G, Supplementary file 1).

Furthermore, to understand the system-level relationship of
transcriptional and translational overlaps, we performed integra-
tive analysis using the ActivePathways method that utilized a sta-
tistical fusion approach to discover systematically enriched
pathways by combining adjusted p-values from DTG, DTEG and
DTE data. For the most prominent ‘‘intensified” regulatory class,



Fig. 2. Ribosome positioning and P-site estimation along mRNAs in LPS and Dex-treated samples. (A) meta-gene heatmaps for various read lengths show the signal at the
50 end (upper panel) and 30 end (lower panel) of reads aligned around the start and stop codons. (B) Data from ribosome profiling that shows the percentage of P-sites in the
50 UTR, CDS, and 30 UTR of mRNAs (left). Percentage of mRNA sequence region lengths (right). (C) meta-profiles at the genome-wide level displaying the periodicity of
ribosomes along the transcripts for all detected read lengths (upper panel) and for reads of 28 nts (lower panel). (D) Read length-based stratification of the percentage of P-
sites in the three frames along the 50 UTR, CDS, and 30 UTR. (E) P-site enrichment along the 50 UTR, CDS, and 30 UTR (all reads combined). (F) Analysis of codon usage: The
codon usage index is the frequency of in-frame P-sites along each codon’s coding sequence, normalized for codon frequency. Above each bar are the amino acids that match
the codons. (G-H) Biotype distribution of all the translated ORFs (protein coding and non-coding ORFs) and ORF length (protein length) coverage in ribo-seq data from
macrophages.
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Fig. 3. Genome-wide transcriptional and translational regulation in macrophages by GR. Analysis of the principal components of (A) ribo-seq and (B) RNA-seq datasets from
macrophages treated with LPS and Dex. (C) The log fold change values for each gene in the RNA-seq and ribo-seq data are shown in a scatter plot. The genes with differential
transcription (DTGs) and translation efficiency (DTEGs) are displayed. (D-G) Profiles of genes and pathways in each regulatory class: forwarded (D), exclusive (E), intensified
(F), and buffered (G).
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we identified 47 Reactome pathways, where an increase in tran-
scription was also pronounced at the translational level (Fig. S3,
Supplementary file 2). 42 Reactome pathways were exclusively
regulated at the translational level (Fig. S4, Supplementary file 2).
Additionally, ActivePathways identified 15 statistically enriched
GO biological processes in translationally buffered DTG, where
change in RNA levels of genes were more pronounced than their
translation efficiency (Fig. S5, Supplementary file 2) (In this com-
bined p-value based analysis, we were unable to detect enrichment
of neither Reactome pathways nor biological processes in the ‘‘for-
warded” class). Taken together, our analysis showed distinct
classes of genes differentially expressed upon GR ligand treatment
in inflammatory macrophages, with most GR target genes falling
into the ‘‘intensified” category. These genes were controlled both
transcriptionally and translationally.

3.4. The majority of dexamethasone regulated genes are intensified

The results described above prompted us to investigate the
number of highly expressed and significant differentially expressed
5629
genes (DEGs) with a FC � 1.5 (log2FC � 0.58) or below FC � -1.5
(log2FC � -0.58) (Fig. 4). For identifying possible differences at
the transcriptional and translational level, the expression was
investigated in the RNA-seq and ribo-seq data separately. Amongst
the ‘‘forwarded” regulated genes (RNA-seq), the majority of the
significant DEGs were found to be suppressed (15 downregulated
genes vs 4 upregulated) (Fig. 4A, Supplementary file 3). Similarly,
amongst the number of ‘‘buffered” genes, 92 genes were found to
be downregulated (FC � -1.5) while 44 were found to be upregu-
lated (FC � 1.5). Interestingly, the number of upregulated (606
genes) and downregulated genes (624 genes) categorized as ‘‘in-
tensified” was almost equal. Notably, none of the genes categorized
as ‘‘exclusive” passed the set log2FC and p adj (�0.05) cutoffs, sug-
gesting that these genes are exclusively post-transcriptionally
regulated.

In the ribo-seq data, none of the genes categorized as ‘‘for-
warded” regulated were significantly differentially regulated on
the translational level (Fig. 4B, Supplementary file 1). Contrary to
the RNA-seq data, but consistent with the definition of ‘‘exclu-
sively” translationally regulated genes, 103 genes and 58 genes



Fig. 4. Majority of dexamethasone regulated differentially expressed genes in LPS-stimulated THP1 cells are under intensified regulation. (A) Volcano plots of up- (red,
log2FC � 0.58, p adj � 0.05) and downregulated genes (blue, log2FC � 0.58, p adj � 0.05) identified within each regulatory class in the RNA-seq dataset. (B) Volcano plots of
up- (red, log2FC � 0.58, p adj � 0.05) and downregulated genes (blue, log2FC � 0.58, p adj � 0.05) identified within each regulatory class in the ribo-seq dataset. (C) Overlap
(Venn diagram) of significantly up- and downregulated ‘‘intensified” genes in the RNA-seq and ribo-seq datasets. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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were identified as significantly up- and downregulated, respec-
tively. Consistent with the RNA-seq data, the majority of the genes
were categorized as ‘‘intensified”, with exception for one single
gene amongst those downregulated (Fig. 4A-B). This additional
lone gene (Cardiomyopathy associate 5, CMYA5, log2FC = -0.865)
was subsequently identified as significantly suppressed in the
‘‘buffered” class (Fig. 4A-B). Further comparing the technologies
for the number of ‘‘intensified” up- and downregulated genes, we
identified differences between the RNA-seq and ribo-seq datasets.
The increased number of upregulated genes and the decreased
number of downregulated genes in the ribo-seq data, together with
the observation that these genes exhibited a significant change in
DTE, suggest that the transcriptional expression of these genes
may be further regulated on the translational level.

The observation that the number of ‘‘intensified” genes were
the different between the RNA-seq and ribo-seq platforms,
prompted us to investigate their overlap (Fig. 4C). For this purpose,
the DEGs from the volcano plots, identified as up (FC � 1.5, p
adj � 0.05) and downregulated (FC � -1.5, p adj � 0.05) were
examined. Comparative analysis of the RNA-seq and ribo-seq data
with a focus on the significant ‘‘intensified” DEGs (up and down-
regulated genes), identified overlapping and non-overlapping
genes (Fig. 4C). 551 genes were found to be commonly upregulated
in both profiles (RNA-seq and ribo-seq) and 490 genes were found
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to be commonly downregulated in both. 81 genes were exclusively
found amongst the significantly upregulated, and 32 genes were
exclusive for the significantly downregulated DEGs in the ribo-
seq data. Simultaneously, in the RNA-seq data, 55 genes were
exclusively found in the significantly upregulated, and 134 DEGs
were in the significantly downregulated DEGs. As the genes lists
were based on the significant DEGs identified in the volcano plots,
a closer gene-by-gene analysis of the FC expression values and the
adj. p-values (p adj), was done to determine the cause for the pres-
ence of non-overlapping genes over the two methodologies. A
common denominator for the lack of representation on the oppos-
ing data set (ribo-seq for RNA-seq, and vice versa) was the FC
expression. That is, the 55 upregulated genes exclusive for the
RNA-seq data set had, in the ribo-seq data, a fold change expres-
sion below the set cutoff (FC � 1.5). Similarly, the 134 downregu-
lated genes exclusive for the RNA-seq dataset had, in the ribo-seq
data, a fold change expression above the set cutoff (FC � -1.5). Con-
versely, the 81 upregulated genes exclusive for the ribo-seq dataset
had, in the RNA-seq data, a fold change expression below the set
cutoff (FC � 1.5) and the 32 downregulated genes exclusive for
the ribo-seq dataset had, in the RNA-seq data, a fold change
expression above the set cutoff (FC � -1.5). Notably, assessing
the combined effects of mRNA expression, RPF, and TE demon-
strated that well-known GR targets were either ‘‘intensified”
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upregulated (e.g. FKBP5, KLF4, TSC22D3, NOS2, FOXO1, PER1, DUSP1
and SLCO2A1) or ‘‘intensified” downregulated (e.g. IL1A, TNFSF10,
IL12B, CCR7, ATF3, IL6, CXCL9, CCL2) (Fig. S6). Closer inspection iden-
tified the those that were ‘‘intensified” upregulated (e.g. FKBP5,
KLF4, TSC22D3, NOS2, FOXO1, DUSP1) as immune-suppressive while
in the ‘‘intensified” downregulated category chiefly pro-
inflammatory molecules (e.g. IL1A, IL6, CCR7) were identified
(Fig. S6). Together, these results suggest that for the majority of
the Dex-responsive DEGs, the transcriptional change was ‘‘intensi-
fied” by a translational change in the same regulatory direction
(activation/suppression).
3.5. The expression of LPS and dexamethasone responsive immune-
regulatory genes are under intensified regulation

Withmost of the Dex-responsive DEGs being categorized as ‘‘in-
tensified”, we next proceeded to explore the biological function of
the genes in this category (Fig. 5). For this purpose, we focused our
analysis on the RNA-seq dataset and the significant DEGs from the
volcano plots, identified as up- (FC � 1.5, p adj � 0.05) and down-
regulated (FC � -1.5, p adj � 0.05) were examined. Overrepresen-
tation analysis (ORA) of the upregulated DEGs identified a
significant enrichment for Reactome Pathway categories associ-
ated with downstream intracellular signaling events (e.g., Sema-
phorin interactions, Interleukin-17 signaling, Response to metal
ions, and MAP kinase activation) (Fig. 5A). While pathways associ-
ated with pattern recognition (e.g., Toll-like Receptor TLR6:TLR2
Cascade, Toll-like Receptor TLR1:TLR2 Cascade, G alpha (q) signal-
ing events, and MyD88:MAL (TIRAP) cascade initiated on plasma
membrane) were identified amongst the top 10 pathways, their
enrichment was non-significant (FDR � 0.05) (Fig. 5A). These
enrichment results were further underpinned by protein network
analysis using the Cytoscape software [47]. STRING protein net-
work analysis was done using the Cytoscape stringAPP [48] with
subsequent Markov clustering (MCL) and functional enrichment
analysis of the top four clustered subnetworks (clusters 1–4). Net-
work analysis and manual analysis of gene function identified the
top four subnetworks as ‘inflammatory related’ (Fig. 5B). In addi-
tion to Interleukin (IL)15, IL27 receptor alpha (IL27RA), and the
interferon lamda receptor 1 (IFNLR1), the ‘‘Cytokine signaling net-
work” contained several important intracellular signaling compo-
nents including those involved in regulating the inflammatory
response such as Janus kinase 1 (JAK1) and GRB2-associated binder
1 (GAB1). Furthermore, this network contained several key nega-
tive regulators of inflammation such as Protein Inhibitor of Acti-
vated STAT3 (PIAS3), Suppressor of Cytokine Signaling 6 (SOCS6),
and Atypical Chemokine Receptor 3 (ACKR3). The latter (ACKR3)
has been shown to mediate chemokine sequestration, degradation,
or transcytosis [59,60]. The ‘‘G protein - GPCR network”, the ‘‘Che-
motaxis network”, and the ‘‘TLR2 response network” all contain
key components that contribute to the recognition of microbe
associated molecular patterns (MAMPs), chemotactic response of
Fig. 5. Genes classified as under intensified regulated expression are involved in the
representation analysis, ORA) of Top 10 Reactome Pathways amongst the genes significa
the number of DEGs enriched in respective pathway in RNA-seq data. The enrichment ra
the respective pathway, and the color of the dot refers to the significance of enrichm
classified as intensified regulated, with the top four identified STRING subnetworks/cluste
the enrichment categories plotted in (C). (C) The top four enriched categories (GO Biolog
FDR � 0.001, was considered statistically significant. (D) Enrichment analysis (ORA
dexamethasone (log2FC � -0.58, p adj � 0.05). The size of the dot represents the numbe
number of enriched DEGs relative to the total number of genes in the respective pathwa
protein network analysis of significantly downregulated DEGs classified as intensified re
(MCL). Surrounding donut colors represent the enrichment categories plotted in (F). (F) Th
Pathway) identified in the subnetworks (E). *** FDR � 0.001 was considered statistically
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macrophages, and the regulation of the inflammatory response.
Concordantly, functional enrichment analysis of the genes in these
subnetworks revealed the top four enriched categories to be ‘‘GO
Biological processes: Regulation of response to stimulus”, ‘‘KEGG
Pathway: JAK-STAT signaling pathway”, GO Molecular Function:
Signaling receptor activity”, and ‘‘GO Biological Processes: G
protein-coupled receptor signaling pathway” (Fig. 5C).

The Top 10 ORA Reactome Pathways significantly enriched in
the downregulated DEGs, were all related to the cytokine and che-
mokine signaling response in the immune system (Fig. 5D). Consis-
tently, STRING protein network analysis of the same genes,
revealed the top four subnetworks (clusters 1–4) to comprise of
inflammatory mediators known to be suppressed by glucocorti-
coids (Fig. 5E). The ‘‘Cytokine-chemokine network” comprised to
a large extent of various macrophage-derived MAMP receptors
(Toll-like receptors (TLR1, TLR4, TLR8)) and effector molecules.
These effector molecules include interleukins (IL1A, IL1B, IL6,
IL19, IL12B, IL16, IL18, IL33), cytokines (Chemokine (C-X-C motif)
ligand 9 (CXCL9), CXCL10, CXCL11, Tumor necrosis factor (TNF)
ligand superfamily member 10 (TNFSF10), Colony stimulating fac-
tor (CSF)), chemokines (Chemokine (CAC motif) ligand 1 (CCL1),
CCL2, CCL5, CCL4L1, CCL19, CCL22), and their cognate receptors
(IL36RN, CCR7, CX3CR2, CXCR5). It was additionally dominated
by macrophage expressing co-stimulatory molecules that con-
tribute to downstream macrophage-mediated effector T cell acti-
vation (Cluster of differentiation (CD)69, CD70, CD80, CD83,
CD86, CD274, TNFRSF4, TNFRSF9) as well as molecules involved
in lipid metabolism (prostaglandin synthesis) (FFAR2, PTGE2,
PTGE4, PTGS2). The ‘‘IFN signaling network”, the ‘‘Inflammation-
modulatory network”, and the ‘‘Signal transduction network” all
contain key components that contribute to immune pathway sig-
naling, downstream of the effector molecules and pattern recogni-
tion receptor (PRRs) in the ‘‘Cytokine-chemokine network”. Key
examples found in the ‘‘IFN signaling network” include the inter-
feron (IFN) induced STAT1, STAT2, Guanylate Binding Protein 1–4
(GBP1, GBP2, GBP3, GBP4), IFNB1, IFN stimulated gene (ISG) 15,
and 2’-5’-Oligoadenylate Synthase 1 (OAS1) that all contribute to
the IFN signaling cascade. The main functional features of the pro-
teins identified in the ‘‘Inflammation-modulatory network” are
recognition of MAMPs and regulation of inflammation (Nucleotide
Binding Oligomerization Domain Containing 2 (NOD2), TRAF3
interacting protein 3 (TRAF3IP3)), apoptosis (e.g., TNF Superfamily
Member 15 (TNFSF15)), and macrophage bactericidal activity (Lac-
case Domain Containing 1 (LACC1). Finally, the ‘‘Signal transduc-
tion network” is characterized by proteins involved in
maintenance of immune/inflammatory homeostasis. Notably, LYN
(LYN Proto-Oncogene, Src Family Tyrosine Kinase), FYN (FYN
Proto-Oncogene, Src Family Tyrosine Kinase) and SRC (SRC Proto-
Oncogene, Src Family Tyrosine Kinase) have been shown to func-
tion as molecular switches that direct homeostasis and inflamma-
tion [61,62]. Consistent with these results, functional enrichment
analysis of the genes in these subnetworks revealed the top three
dexamethasone responsive immune regulation. (A) Enrichment analysis (Over-
ntly upregulated by Dex (log2FC � 0.58, p adj � 0.05). The size of the dot represents
tio represents the number of enriched DEGs relative to the total number of genes in
ent (FDR). (B) STRING protein network analysis of significantly upregulated DEGs
rs identified using Markov clustering (MCL). The surrounding donut color represents
ical Process, GO Molecular Function, and KEGG Pathway) in the subnetworks (B). ***
) of Top 10 Reactome Pathways amongst genes significantly downregulated by
r of DEGs enriched in the respective pathway. The enrichment ratio represents the
y, and the color of the dot refers to the significance of enrichment (FDR). (E) STRING
gulated. Top four identified STRING subnetworks/clusters using Markov clustering
e top four enriched categories (GO Biological Process, KEGG Pathway, and Reactome
significant.
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enriched categories to be ‘‘GO Biological Process: Response to
external stimulus”, ‘‘GO Biological Process: Regulation of cytokine
production”, and ‘‘KEGG Pathways: Cytokine-cytokine receptor
interactions” (Fig. 5F). The top fourth enriched category found
was ‘‘Reactome Pathways: Cytokine Signaling in Immune System”,
which had previously been identified as the most highly enriched
Reactome Pathway (FDR < 2.220446e-16) in the full group of
downregulated genes (Fig. 5A, F).

Moreover, having identified the ‘‘intensified” regulatory class as
most prominent, we computationally identified the potential
translational regulators that were enriched for a particular biolog-
ical function. It is known that RBPs bind post-transcriptionally to
target mRNAs and regulate their stability, distribution and transla-
tion into corresponding protein products [63,64]. We integrated
expression data of ‘‘intensified” genes with RBP-RNA binding data-
sets based on eCLIP [65], iCLIP [66] and PAR-CLIP [67] experiments
and provided by ENCODE [68] and POSTAR3 [42] web servers. We
found 35 differentially expressed RBPs under the ‘‘intensified” cat-
egory (Fig. S7A, Supplementary file 4). We also evaluated RBP - tar-
get regulatory relationships using a random forest based model
(GENIE3) [43]. In this model, we identified ZFP36 and IGF2P2 as
key potential translational regulators (RBPs) derived from a gene
set involved in a biological process related to the regulation of
cytokine production (Fig. S7B, Supplementary file 4). ZFP36 has
been shown to act as a post-transcriptional anti-inflammatory
modulator by suppressing the production of various pro-
inflammatory cytokines, including TNF-alpha [69]. Recent studies
have also revealed the posttranscriptional regulation of inflamma-
tory processes by IGF2BP2 [70]. According to the change in trans-
lation efficiency pattern, targets for both RBPs include genes with
increased or decreased translation efficiency (Fig. S7B). This sug-
gests that ZFP36 and IGF2BP2 might act as either translational
repressors or activators during the process of cytokine regulation
by GCs.

Together, these results demonstrate that the dexamethasone-
responsive genes that are categorized as ‘‘intensified” regulated,
predominantly exhibit innate immune and immunomodulatory
function that contribute to the macrophage response, as well as
downstream macrophage-mediated activation of the adaptive
response. Furthermore, data suggest that post-transcriptional
mechanisms contribute to the expression of dexamethasone-
responsive genes.

3.6. Pro-inflammatory leukotriene response and antigen presentation
genes are buffered, while cell migration and apoptosis genes are under
exclusively post-transcriptional regulation

Our differential expression analysis of the genes classified as
‘‘buffered” in the RNA-seq data identified 44 significantly upregu-
lated DEGs and 92 downregulated DEGs (Fig. 4A). Gene-by-gene
manual functional exploration of these genes identified six upreg-
ulated genes, and 26 downregulated genes, as exhibiting in
immune or metabolic function (Fig. 6A). Microsomal Glutathione
S-Transferase 2 (MGST2), which is involved in the production of
pro-inflammatory leukotrienes (such as leukotriene C4, LTC4)
and prostaglandin E, were found to activated by Dex [71,72]. Sim-
ilarly, Signaling Receptor and Transporter of Retinol STRA6 (STRA6)
and AKT Interacting Protein (AKTIP) were also activated. While
MGST2 contributes to inflammation, the retinal transporter STRA6
contributes to the activation of Janus kinase 2 (JAK2) and its target
STAT5, which ultimately increases the expression of the cytokine
inhibitors SOCS3 and PPARG [73,74]. Amongst the suppressed DEGs,
key examples include CD40, PARP9, ELOVL7, CXCL6, TLR6, PIKFYVE,
and HLA-DQA1 that all contribute to immune-metabolic response,
antigen presentation, or downstream B and T cells activation
[75–79].
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Subsequent STRING protein network analysis with Markov clus-
tering (MCL) together with functional analysis identified two of the
formed networks as comprising proteins involved in regulating
antigen presentation (‘‘Antigen presentation network”) and inter-
feron induction (‘‘IFN induction regulatory network”) (Fig. 6B).
Enrichment analysis performed on the differentially expressed
DEGs used for the networks consistently identified the top four
enriched categories to be immune related: ‘‘GO Biological Process:
Positive regulation of immune system process”, ‘‘GO Biological Pro-
cess: Immune response”, ‘‘GO Biological Process: Response to
molecule of bacterial origin”, and ‘‘GO Biological Process: Regula-
tion of defense response” (Fig. 6C). Together, this suggests that
genes encoding proteins involved in antigen presentation and
stimulation of T cell activation may be regulated on the transcrip-
tional level and post-transcriptionally buffered, possibly as a safe-
guard mechanism against the rapid induction of aberrant down-
stream adaptive immune response activation.

Finally, differential expression analysis of the genes identified
as exclusively translationally regulated (‘‘exclusive”) identified
103 DEGs as upregulated by Dex, and 58 as suppressed by Dex
(Fig. 4B). These are genes whose expression is exclusively regu-
lated in the translational level, exhibiting no significant changes
on the transcriptional (mRNA) level nor a significant change in
translational efficiency. Unlike our functional analysis of ‘‘intensi-
fied” and ‘‘buffered” genes, analysis of the exclusively translation-
ally regulated genes only identified a handful of genes (CCR2, IL24,
CARD14, FABP3, SH3RF2) associated with immunity (Fig. 6D, Sup-
plementary file 3). Broadly, the exclusively translationally regu-
lated genes were related to basic intracellular processes such as
signaling and cytoskeletal changes (Fig. S8). Nevertheless, the
immune related genes identified may be important. The CCR2
receptor mediates monocyte and macrophages chemotaxis, and
cell movement toward sites of infection, through binding of CCL2
and CCL7 [80,81]. While Fatty acid binding protein 3 (FABP3) is
involved in intracellular transport of long-chain fatty acids and
their acyl-CoA esters; IL24, SH3 domain containing ring finger 2
(SH3RF2), and Caspase recruitment domain family member 14
(CARD14) have all been implicated in regulating cellular apoptosis
[82–85]. Whereas IL24 and SH3RF2 that act as an inducer of apop-
tosis and as an anti-apoptotic regulator of the JNK pathway,
respectively, were suppressed in response to Dex; CARD14 expres-
sion was upregulated (Fig. 6D). CARD14, which not only protects
cells against apoptosis, has also been shown to serve as a scaffold-
ing protein that activates the inflammatory NF-jB and p38/JNK
MAP kinase signaling pathways in a BCL10 and MALT1-
dependent manner [84,86–88]. These observations are consistent
with the shifts that stimulated monocytes undergo in the presence
of external stimuli. While monocytes in general are relatively short
lived and undergo spontaneous apoptosis in the absence of stimu-
lation, pro-inflammatory stimulation (by e.g., LPS, IL-1b, and TNFa)
results in inhibition of apoptosis [89].

Together, these results suggest that genes involved in processes
governing cell movement and apoptosis in response to external
stimuli are significantly regulated on the post-transcriptional level,
possibly allowing for rapid changes prolonging cell viability and
immune mobilization.
4. Discussion

In the context of host immunity, maintaining transcriptional
and post-transcriptional gene regulation plays an essential role in
the establishment and resolution of inflammation [90]. A dysregu-
lated immune expression, stemming from aberrant upstream
stream signaling or from alternations in the gene regulatory net-
works, can result in a disrupted immune homeostasis, excessive



Fig. 6. Genes involved in the leukotriene response and antigen presentation are buffered, while genes regulating cell migration and apoptosis are exclusively post-
transcriptionally regulated (A) Bar plot of Dex-responsive differentially expressed immune and metabolic genes (DEGs) under ‘‘buffered” expression regulation (RNA-seq). ***
p adj� 0.001, ** p adj� 0.01, and * p adj� 0.05 were considered statistically significant. (B) STRING protein network analysis of DEGs in (A) identified using Markov clustering
(MCL). Fill color denote upregulated (red) or downregulated (blue) fold change expression. Surrounding donut color represent enrichment categories plotted in (C). (C) Top
four enriched categories identified in the subnetworks (B). *** FDR � 0.001, ** FDR � 0.01 were considered statistically significant. (D) Bar plot of Dex-responsive differentially
expressed immune genes (DEGs) under ‘‘exclusive” expression regulation (ribo-seq). *** p adj � 0.001, ** p adj � 0.01, and * p adj � 0.05 were considered statistically
significant. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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inflammation, reduced immune resolution, and associated altered
phenotypes. In clinical contexts, GCs such as Dexamethasone,
Prednisone or Cortisone are used to suppress excessive inflamma-
tion in a GR-dependent manner. Since GR is not merely an
immune-specific transcriptional regulator, prolonged exposure of
GCs does, however, come with a cost. Long-term use of GCs induces
glucose intolerance and insulin resistance, adipocyte hypertrophy,
osteoporosis, muscle and skin atrophy, glaucoma, impaired wound
healing, steroid resistance, as well as various psychological side-
effects including insomnia and depression [91–97]. Thus, novel
insights into the gene regulatory networks that GR functions
within, is key to more context-specific GC therapy. Generally, tran-
scriptional changes coexist with mRNA export and stability regula-
tion, translation efficiency, and protein stability, all of which
influence the final protein output. In gene expression, translational
control of specific mRNAs plays critical role, and numerous mech-
anisms have been identified to regulate translation [98]. For exam-
ple, acute inflammatory responses may be suppressed by the rapid
mRNA transcript degradation of cytokines, chemokines, enzymes,
and other mediators [99]. Such post-transcriptional regulation is
orchestrated by a diverse group of regulatory factors including
RNA-binding proteins (RBP), microRNAs (miRNA) and other classes
of small noncoding RNAs (sncRNA), which recognize and bind to
sequences present in their target mRNAs [100–102]. Next genera-
tion sequencing methods such as RNA-seq, combined with ribo-
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seq, offers a quantitative approach to determine and understand
the transcriptional and post-transcriptional gene regulation net-
works that GR acts within. When correlated with mRNA abun-
dance, ribo-seq quantifies ribosome-protected fragments and
allows the calculation of translation rates [103]. Here, we investi-
gated the transcriptional and translational regulation by Dex-
liganded GR, using a previously published computational method
that integrates matched RNA-seq and ribo-seq data to subcatego-
rize genes as forwarded, intensified, buffered, or exclusively (ex-
clusive) translationally regulated [24]. Dex treatment of LPS-
stimulated macrophages displayed genome-wide translated ORFs
with ribosome profiling when combined with quantitative mRNA
sequencing. Our list includes >90 % protein coding ORFs that com-
prise CDS (14,266 genes), uORF (416 genes), intORF (10 genes) and
dORF (20genes) (Fig. 2G). As reported by recent studies, both uORF
and dORF are essential in modulating the translation of CDS [104–
107]. The small noncoding translated ORFs identified in our study
may represent a significant source of peptides, which warrants
additional investigation. Several recent studies highlighted the
importance of these un-annotated ORFs which might encode
micro-proteins with essential regulatory functions [108–111].
Importantly, 490 non-canonical ORFs were already annotated in
a recent standardized ribo-seq ORF catalog [112]. The greatest
interest in our study is determining the regulatory class of protein
coding genes (CDS) using the deltaTE approach (Fig. 3D-G). Here
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we found that in Dex treated LPS-stimulated macrophages, the
majority of the significantly differentially expressed genes were
regulated on both the transcriptional and translational levels (in-
tensified). Consistent with the immune suppressive function of
the GC-GR axis, network and enrichment analyses identify these
as pro-inflammatory immune effector and immunomodulatory
molecules. While Dex treatment resulted in suppression of
immune effectors such as cytokines (interferons and interleukins),
chemokines, TLRs, co-stimulatory markers, and intracellular path-
way components; several key negative regulators of inflammation
(PIAS3, SOCS6, and ACKR3) were conversely upregulated by Dex.
Notably, in airway epithelial cells, pro-inflammatory genes such
as Tumor necrosis factor alpha (TNFa), IL6, IL4Ra, inducible nitric
oxide synthase (iNOS), and CCL2, CCL7, CCL11 have all been
observed to be post-transcriptionally regulated in a GC-
dependent manner [15–18,113,114]. In the case of the chemotactic
CCL2, GR has been shown to interact with Proline-rich nuclear
receptor coregulator protein 2 (PNRC2) in a ligand-dependent
manner, recruiting Upstream frame-shift 2 (UFP2), triggering a
rapid CCL2 mRNA degradation and reducing chemotaxis (‘GR-
mediated mRNA decay’) in THP-1 cells [115]. While these select
examples suggest a role for GC/GR-dependent post-
transcriptional regulation, our study now sheds light on the impact
of global post-transcriptional regulation by GCs in macrophage
inflammatory settings. Predicting a post-transcriptional regulatory
network model, we infer a potential role of ribosome binding pro-
teins (RBPs) in translation control of GR target mRNAs during the
regulation of inflammatory cytokine production (Fig. S7).

Amongst the upregulated intensified genes, TLR2 was found to
form an antimicrobial response protein network with IRAK3,
SIGLEC14, CLECL4E, IL17RA, and the antimicrobial CCL17 (‘‘TLR2
response network”). Like TLR2, CLEC4E functions as a PRR for bac-
terial and fungal MAMPs as well as damage-associate molecular
patterns (DAMPs) [115,116]. Notably, in macrophages, Listeria
monocytogenes activates CLEC5A and TLR2 simultaneously to acti-
vate both the MyD88-p38 and Syk-AKT signaling pathways, which
induces inflammasome activation and production of IL-1b and
IL17A resulting in production of T cell receptor (TCR) cb T cells,
vital to the initial inflammatory and immune response [117].

In the presence of an infection, innate immune effector
responses must be rapid and potent to counteract the developing
infection. Our observations that pro-inflammatory effector mole-
cules and molecules regulating or contributing to these responses
are under intensified regulation are consistent with their function
as antimicrobial agents and promoters of chemotaxis of other
immune cells. Likewise, we find that genes involved in cytoskeletal
rearrangement and apoptosis are exclusively regulated on the
translational level, allowing for rapid changes in protein abun-
dance to maintain these functions. Although the initial pro-
inflammatory response requires a potent induction, downstream
responses governing the activation and regulation of the adaptive
B and T cell response, require a multi-layer regulation. In line with
this notion, our data suggests that the downregulated CD40, PARP9,
CXCL6, TLR6, PIKFYVE, and HLA-DQA1 belong to the category of
‘‘buffered” genes that exhibit a significant change on the transcrip-
tional level and a counteracting significant translational efficiency
and are therefore regulated on both the transcriptional and trans-
lational levels. For instance, expression of CD40 on macrophages
allows for interaction with CD40 ligand (CD40LG) on B and T cells,
which induces memory B cell development as well as T cell-
dependent Ig class switching [75,76]. Our observations that sup-
pression of Toll-like receptor 6 (TLR6), Major Histocompatibility
Complex (MHC), Class II, DQ Alpha 1 (HLA-DQA1), and Phosphati-
nositide kinase, FYVE-type zinc finger containing (PIKFYVE) which
plays a key role in MHC class II antigen presentation (to T cells),
all suggest that Dex reduces macrophage antigen presentation
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and subsequent T cell response [77]. Further, reduction of Poly
(ADP-Ribose) Polymerase Family Member 9 (PARP9) and CXCL6
suggests a reduction of pro-inflammatory cytokine and chemokine
production [78,79]. Taken together, we define a global transcrip-
tional and translational regulatory profile for GR-target genes in
human macrophages. In particular, the translational control may
play a pertinent role in inflammatory genes suppression by GR.

5. Conclusion

In this study, a ribosome profiling approach combined with
mRNA sequencing was used to classify Dex responsive LPS-
stimulated genes into various translational regulatory classes
based on fold changes in mRNA, ribosome-protected RNA frag-
ments, and translation efficiency. In this line, the THP-1 derived
macrophages serve as a reproducible model system for gaining
new mechanistic insight into the function of the GC-GR axis in
immune regulation. The translation efficiency was calculated by
normalizing an average of ribosome footprint density by the abun-
dance of the gene’s mRNA. The relative direction of change in
mRNA abundance and translation efficiency was used to classify
genes. Our analysis in Dex and LPS stimulated macrophages
resulted in categorization of Dex responsive genes mainly into four
distinct regulatory classes: forwarded, exclusive, intensified, and
buffered. Transcriptional regulation drives translationally ‘‘for-
warded” genes, whereas ‘‘exclusive” genes are governed by trans-
lational control. Genes belonging to ‘‘intensified” class make up
the majority of differentially expressed genes, and these genes
are both regulated by transcription and translation. Importantly,
gene enrichment and STRING protein network analysis revealed a
vast array of Dex-GR target genes in the intensified regulatory class
that are involved in macrophage inflammation modulation. In this
regard, however, much remains to be learned about mechanisms of
translational control [10,118–123]. Nevertheless, an important
step toward this goal is to characterize the post-transcriptional
regulation of early GR responsive genes (e.g. RBPs) in primary mur-
ine and human macrophages, which is linked to protein synthesis
inhibition in response to Dex stimulation. Importantly, our ribo-
some profiling in macrophages has revealed that a large number
of non-canonical ORFs are translated outside of the annotated cod-
ing sequences. Further characterization of these small ORFs may
alter our understanding of translational regulatory mechanisms
in several biological processes of medical relevance. Thus, further
research into the global translational regulatory mechanisms that
underpins the GR anti-inflammatory response could pave the
way for the development of improved and safer immunomodula-
tory therapeutic regimens.
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