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Abstract

Animal studies show a pivotal role of dihydrotestosterone (DHT) in pressure overload-induced myocardial hypertrophy and dysfunc-
tion. The aim of our study was to evaluate the role of DHT levels and myocardial hypertrophy and myocardial protein expression in
patients with severe aortic valve stenosis (AS). Forty-three patients [median age 68 (41–80) yr] with severe AS and indication for
surgical aortic valve replacement (SAVR) were prospectively enrolled. Cardiac magnetic resonance imaging including analysis of
left ventricular muscle mass (LVM), fibrosis and function, and laboratory tests including serum DHT levels were performed before
and after SAVR. During SAVR, left ventricular (LV) biopsies were performed for proteomic profiling. Serum DHT levels correlated
positively with indexed LVM (LVMi, R = 0.64, P = 0.0001) and fibrosis (R = 0.49, P = 0.0065) and inversely with LV function (R =
�0.42, P = 0.005) in patients with severe AS. DHT levels were associated with higher abundance of the hypertrophy (moesin, R =
0.52, P = 0.0083)- and fibrosis (vimentin, R = 0.41, P = 0.039)-associated proteins from LV myocardial biopsies. Higher serum DHT
levels preoperatively were associated with reduced LV function (ejection fraction, R = �0.34, P = 0.035; circulatory efficiency, R =
�0.46, P = 0.012; and global longitudinal strain, R = 0.49, P = 0.01) and increased fibrosis (R = 0.55, P = 0.0022) after SAVR. Serum
DHT levels were associated with adverse myocardial remodeling and higher abundance in hypertrophy- and fibrosis-associated
proteins in patients with severe AS. DHT may be a target to prevent or attenuate adverse myocardial remodeling in patients with
pressure overload due to AS.

NEW & NOTEWORTHY Serum dihydrotestosterone (DHT) levels correlated positively with the degree of hypertrophy, fibrosis,
and dysfunction from cardiac magnetic resonance imaging in female and male patients with aortic valve stenosis. Left ventricular
proteome profiling had been performed in this patient cohort and an association between serum DHT levels and the abundance
of the hypertrophy-associated protein moesin and the fibrosis-associated protein vimentin was found.

aortic valve stenosis; cardiac remodeling; dihydrotestosterone; proteomics

INTRODUCTION

Several animal studies have described a relationship between
testosterone, its active metabolite dihydrotestosterone (DHT),
and cardiac hypertrophy (1, 2). Testosterone and DHT act via
androgen receptors and have shown to induce an androgen

receptor-dependent hypertrophic response in neonatal ratmyo-
cytes (3). The reduction of DHT levels via antiandrogen therapy
with finasteride effectively attenuated cardiac hypertrophy and
left ventricular (LV) dysfunction in female and male mice with
pressure overload, improved cardiac function, and attenuated
remodeling aftermyocardial infarction inmice (1, 2).
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Androgen receptors are present in healthymale and female
hearts, and higher free testosterone levels have been associ-
ated with elevated left ventricular muscle mass (LVM) (3, 4).
Antiandrogenic therapy in male patients with prostate cancer
and heart failure was associated with lower LV septal thick-
ness, and in male patients with type I diabetes, testosterone
serum levels were associated with higher LVM (5, 6).

In patients with severe aortic valve stenosis (AS), left ven-
tricular hypertrophy (LVH), fibrosis, and dysfunction are
common and associated with adverse outcomes (7–10).
Several studies have shown that female patients with AS
show less hypertrophy and better function, as well as less
morbidity and mortality than male patients with AS (11, 12).
In addition, it is known that postmenopausal women show
lower indexed LVM (LVMi) and lower levels of testosterone
and free testosterone (4). However, an association between
DHT serum levels and the degree of LVH has not yet been
investigated in female andmale patients with severe AS.

The aim of the present study was to compare serum DHT
levels in female andmale patients with severe AS and to study
its possible correlation to 1) imaging parameters of LVH, fibro-
sis, and LV function before and after surgical aortic valve
replacement (SAVR) and 2) hypertrophy- and fibrosis-associ-
atedmyocardial protein expression levels from LV biopsies.

METHODS

Patient Cohort

Sixty patients with severe AS and an indication for SAVR,
according to current diagnostic guidelines (13), were prospec-
tively enrolled within the SMART study (Systems Medicine of
Heart Failure, clinicaltrials.gov NCT03172338). Exclusion criteria
were the presence of moderate to severe aortic valve regurgita-
tion (AR) and the presence of coronary artery diseasewith an in-
dication for revascularization and general contraindications to
cardiacmagnetic resonance imaging examination (MRI).Within
this cohort, 43 patients [median age 68 (41–80) yr] had received
serum DHT level measurement from peripheral venous blood
samples before SAVR. These patients were included in the pres-
ent study. Patient characteristics are shown in Table 1.

Routine clinical assessment in these patients included
Doppler echocardiography with measurement of mean gra-
dient across the diseased aortic valve (5-chamber view). Next
to routine clinical examinations before SAVR, all patients
underwent blood evaluation including DHT and estradiol
levels and cardiac MRI. Blood pressure measurements were
performed at the end of the MRI examination lying horizon-
tally in supine position. The medical history of all patients
was recorded, and cardiac MRI examinations were per-
formed median 1 day before and median 110 days after
SAVR. During SAVR of the 43 patients, LV myocardial sam-
ples were collected from n = 28 patients and used for proteo-
mic profiling. In the remaining 15 patients, myocardial
samples during SAVR could not be obtained because of tech-
nical reasons. Patient characteristics of the 28 patients were
similar to the total cohort [mean age, 68 yr; body surface
area (BSA), 2.0, female, n = 9 (39%); systolic blood pressure,
139 mmHg; diastolic blood pressure, 74 mmHg; mean pres-
sure gradient across the aortic valve, 53 mmHg; and serum
DHT level, 230 pg/mL].

The study protocol was in agreement with the principles
outlined in the Declaration of Helsinki and was approved by
theMedical Ethics Review Committee. All patients gavewrit-
ten, informed consent before inclusion.

Cardiac Magnetic Resonance Imaging

Left ventricular mass, volume, and function.
All MRI examinations were performed using a whole body 1.5
Tesla MR system (Achieva R 3.2.2.0, Philips Medical Systems,
Best, The Netherlands) using a five-element cardiac phased-
array coil. Analyses were performed using View Forum
(Philips Medical Systems Nederland B.V; View Forum
R6.3V1L7 SP1). Gapless balanced Turbo Field Echo (bTFE)
cine two-dimensional short-axis sequences were obtained
using standardMRI protocol for LVM, volume, and function.

LV fibrous tissue content.
For fibrosis assessment, a single breathhold-modified Look-
Locker inversion-recovery sequence inmidventricular short-
axis view was acquired before and 10 min after contrast
administration. Calculation of extracellular volume (ECV)
was performed using the followingmethod:

ECV ¼ 1� hematocritð Þ�
�
1=TmyopostÞ � ð1=TmyopreÞ

�
1=TbloodpostÞ � ð1=TbloodpreÞ

where myo is LV midwall myocardial T1 value, blood is LV
blood pool T1 value, and pre and post refer to the measure-
ment before and after, respectively, contrast administration.
Myocardial fibrous tissue content (absolute ECV = aECV) was
calculated using the following equation: aECV = LV myocar-
dial volume � ECV. LV myocardial volume = LVM/1.05,
where 1.05 is the myocardial density (in g/mL).

Table 1. Patient characteristic

Preoperative Parameters

Aortic Valve

Stenosis

n 43
Age, yr 66 ± 10
Body surface area, m2 1.98 ±0.2
Females, n (%) 15 (35)
Systolic blood pressure, mmHg 138 ± 16
Diastolic blood pressure, mmHg 75 ±9
Hypertension, n (%) 20 (47)
Dyslipidemia, n (%) 9 (21)
Diabetes mellitus, n (%) 3 (7)
Coronary artery disease, n (%) 0 (0)
Atrial fibrillation paroxysmal, n (%) 1 (2)
Atrial fibrillation permanent, n (%) 0 (0)
Left ventricular end-diastolic volume, mL/m2 83 ±21
Left ventricular myocardial mass, g/m2 76 ± 25
Mean pressure gradient aortic valve, mmHg 53 ± 13
Aortic valve insufficiency, grade (none/mild, moderate,
severe)

(43, 0, 0)

Left ventricular ejection fraction, % 56 ±6
Fibrous tissue content, mL/m2 16 ± 5
Serum dihydrotestosterone level, pg/mL 244 ± 137
Medications
ACE inhibitor, n (%) 5 (12)
b-Blocker, n (%) 6 (14)

Values are means ± SD or n (%); n, number of patients. ACE in-
hibitor, angiotensin-converting enzyme inhibitor. Mean pressure
gradient aortic valve describes severity of aortic valve stenosis.
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Global Longitudinal Strain Feature Tracking

MRI-based feature-tracking analyses were performed
using commercially available software provided by Medis
(QStrain, v. 2.1.12.2, Medis Medical Imaging Systems, Leiden,
The Netherlands). Feature tracking was performed in the
end-diastole and end-systole cardiac phases at the endo- and
epicardial borders. Global longitudinal strain (GLS) was
assessed by averaging the peak systolic strain values of 17
segments extracted from three LAX images (2-, 3-, and 4-
long-axis CV).

Circulatory Efficiency

Circulatory efficiency (CircE) describes the ratio between
total left ventricular work and the work required for main-
taining cardiovascular circulation and is defined as the ratio
between circulatory power (CP) and left ventricular myocar-
dial power (LVMP).

CircE ¼ CP
LVMP

CP is defined as the hydrodynamic power distally to the
valve representing the power needed to maintain effective
blood flow against systemic vascular resistance (afterload)

CP ¼ MAP�COeff

where MAP is mean arterial pressure and COeff is effective
cardiac output. The dimension of COeff is liters per minutes.
COeff is the product of heart rate and SVeff. SVeff = (EDV �
ESV) � (1 � regurgitation fraction), where SVeff is effective
stroke volume.

LVMP was defined as the surrogate power of the LV to
perform one heartbeat since the applied method is an
estimation.

LVMP ¼ Vwall �rwall

tCS

Vwall is myocardial wall volume, rwall is wall stress, and tCS
is LV systolic contraction time.

Wall stress was calculated using a simplified approach of
the law of Laplace:

rwall ¼ Psys � RBP

2� Swall

where Psys is LV peak systolic pressure, RBP is mean radius of
the blood pool, and Swall is mean myocardial wall thickness.
Swall and RBP during systole were averaged from LV segmen-
tations considering the LV as a cylindrical geometry for cor-
rection of potential regional differences. Psys is the sum of the
systolic blood pressure measured at the right arm and the
maximum pressure gradient across the aortic valve. LVMP
was indexed to body surface area (BSA). All parameters were
computed from cardiac magnetic resonance imaging-derived
volumetric data and echocardiographic and clinical data.
More details are described in former studies (14).

Laboratory Testing

Peripheral venous blood samples were collected at time of
MRI (around 5:00 PM in the afternoon) median 1 day before
SAVR. DHT and estradiol levels were measured from serum
blood tubes. Immediately after blood collection, blood sam-
ples were centrifuged and stored at 2�C–8�C for a maximum

of 3 days. The concentration of DHTwas determined by radi-
ological immunoassay, and concentration of estradiol was
quantified by electrochemical luminescence immunoassay
as standardized measurements performed in the hospital-
associated laboratory.

ProteomeMeasurement

Sample preparation for mass spectrometry
measurements.
LV myocardial samples. LV myocardial samples were col-
lected from 28 patients with AS during aortic valve replace-
ment surgery. Samples were taken and frozen directly in
liquid nitrogen and kept at �80�C. Detailed information con-
cerning protein extraction and peptide preparation, as well as
the generation of a heart reference sample for matching
library can be found in a recent publication (15). Protein con-
centration wasmeasured using Bio-Rad DC Protein assay, and
100 mg of each sample was further processed using the SP3
cleanup and digestion protocol as previously described (16).

LC-MS/MS analyses. Peptide samples were eluted from
stage tips (80% acetonitrile, 0.1% formic acid), and after evap-
orating, organic solvent peptides were resolved in sample
buffer (3% acetonitrile/0.1% formic acid). Peptide separation
was performed on a 20-cm reversed-phase column (75-mm
inner diameter, packed with ReproSil-Pur C18-AQ; 1.9 mm, Dr.
Maisch GmbH) using a 200-min gradient with a 250 nL/min
flow rate of increasing buffer B concentration (from 2% to
60%) on a high-performance liquid chromatography (HPLC)
system (ThermoScientific). Peptides were measured on an
Orbitrap Fusion (individual samples) and Q Exactive HF-X
Orbitrap instrument (reference sample) (ThermoScientific).
Detailed information can be found in a recent publication (15).

MaxQuant software package (v1.6.2.6) was used to analyze
the data. The internal Andromeda search engine was used to
search MS2 spectra against a decoy human UniProt database
(HUMAN.2019-01, with isoform annotations) containing for-
ward and reverse sequences.

A deep-heart proteome dataset was generated from a
mixed reference sample. Using two-dimensional liquid chro-
matography before tandem mass spectrometry analysis, we
identified, in total 8,365 distinct protein groups. This deep
reference proteome was used, as described by Doll et al (17),
to match MS2 identification across individual runs to pep-
tide precursors and to reach a uniform coverage across all
samples with an average of 3,561 ± 187 proteins quantified
per individual sample.

MaxQuant results were filtered to exclude reverse data-
base hits, potential contaminants, and proteins only identi-
fied by site. All proteins for which the lead entry was marked
“fragment” or with less than 50% valid values were excluded.
Label free quantification (LFQ) values were log2 transformed,
and missing values were imputed by random draw from
Gaussian distribution with a downshift of 1.8 � standard
deviation and 0.3 � standard deviation of the observed val-
ues per sample.

Analyses with regard to associations between myocardial
protein expression levels and serum DHT levels and cardiac
imaging parameters were performed for targeted proteins
known to play a role in cardiac hypertrophy and fibrosis and
partly known to be influenced by DHT.
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Statistical Analysis

In the first step, we performed a univariate correlation
analysis of the clinical parameters using pairwise com-
plete observations. All parameters that were found signifi-
cant in univariate correlation analyses and which we
considered clinically relevant and/or causally related to
LVH were included in the final multiple linear regression
model to predict indexed myocardial mass.

Proteins known to play a role in cardiac hypertrophy and
fibrosis or known to be influenced by DHT were selected
from the proteomic dataset. Associations between myocar-
dial protein expression levels and serum DHT levels and car-
diac imaging parameters were calculated in pairwise
univariate analyses.

In all correlation analyses, we report the Pearson correla-
tion coefficient as R and consider a P value of <0.05 as a sig-
nificant finding. All statistical analyses were performed
using R version 4.0.4.

RESULTS

Serum DHT Levels Correlate with Adverse Structural
and Functional Myocardial Remodeling in Patients with
Severe AS

Serum DHT levels correlated positively with LVMi (R =
0.64, P = 0.0001) in patients with severe AS, which was also
present when looking at the subgroups of female and male
patients separately (female, R = 0.61, P = 0.015; and male, R =
0.42, P = 0.025) (Fig. 1, A and B). Multiple linear regression
was calculated to predict LVMi based on serum DHT lev-
els, the mean pressure gradient across the stenotic aortic
valve, the systolic blood pressure, and age at surgery. A
significant regression equation was found [F(4, 35) =
10.09, P < 0.00005], with an R2 of 0.54. Coefficients, confi-
dence intervals, and P values are listed in Fig. 1C. SerumDHT
level is a significant predictor of LVMi. There was no

correlation between LVMi and serum levels of estradiol in
patients with AS.

Serum DHT levels correlated inversely with LV ejection
fraction (R = �0.42, P = 0.005) in the total cohort and within
the subgroups of female and male patients separately
(female, R = �0.67, P = 0.0064; and male, R = �0.39, P =
0.04) (Fig. 2, A and B). Serum DHT levels also correlated
inversely with circulatory efficiency (R = �0.37, P = 0.032),
which is an imaging-based surrogate marker describing the
ratio between left ventricular work and the work required to
maintain cardiovascular circulation in all patients with
severe AS and within the subgroups in female (R =�0.54, P =
0.047) but not in male (R = �0.27, P = 0.24) patients (Fig. 2, C
and D). Serum DHT levels additionally correlated with the
clinically relevant biomarker nt-pro-BNP. There was no cor-
relation between LV ejection fraction and serum levels of es-
tradiol in patients with AS.

Serum DHT Levels Correlate with Proteins Related to
Cardiac Hypertrophy and Fibrosis

Serum DHT levels correlate positively with the abundance
of the prohypertrophic-acting protein moesin (MSN) (R =
0.52, P = 0.0083) and profibrotic-acting protein vimentin
(R = 0.41, P = 0.039) (Fig. 3, A and B). Next to the already-
described correlation between DHT and LVM, MSN also cor-
relates with LVM (Fig. 4A) and, furthermore, both MSN and
serum DHT correlate with clinical imaging parameter of fi-
brosis (R = 0.49, P = 0.025; and R = 0.49, P = 0.0065) (Fig. 4, B
and C). Figure 5 shows all proteins that have been analyzed
for a possible correlation with DHT.

Higher Serum DHT Levels Preoperatively Are
Associated with Reduced Myocardial Function and
Increased Fibrosis after SAVR

Preoperative serum DHT levels correlated negatively with
LVEF (R = �0.34, P = 0.035) and circulatory efficiency (R =
�0.46, P = 0.012) and positively with global longitudinal

R = 0.64, p = 3.9e−06
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Figure 1. Serum dihydrotestosterone
(DHT) levels correlate with left ventricu-
lar (LV) muscle mass. A and B: scatter
diagrams with regression lines and 95%
confidence intervals representing the cor-
relation between serum dihydrotestoster-
one (DHT) levels and left ventricular (LV)
muscle mass in all subjects and shown
separately for female and male patients. C:
multiple linear regression was calculated
to predict indexed myocardial mass based
on serum DHT levels, the mean pressure
gradient across the stenotic aortic valve,
the systolic blood pressure, and age at
surgery. All subjects: n = 43, female: n = 15,
male: n = 28, R, Pearson correlation
coefficient.
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strain (R = 0.49, P = 0.01) and fibrous tissue content (R =
0.55, P = 0.0022) after SAVR (Fig. 6).

Antiandrogen Therapy is Associated with Low DHT and
Favorable Cardiac Structure and Function in Patients
with Severe AS

In our cohort, two male patients happened to have a
medical history of prostate cancer and antiandrogen
therapy (GnRH analog, central blockage of testosterone
production) and presented with low levels of DHT (62 pg/
mL, 179 pg/mL vs. median 329 pg/mL in all male
patients), low LVMi (46 g/m2, 55 g/m2 vs. median 81 g/m2

in all male patients), low fibrous tissue content (13 mL/
m2, 13 mL/m2 vs. median 17 mL/m2 in all male patients),
and high LVEF (62%, 65% vs. median 55% in all male

patients). Another two male patients had a medical his-
tory of benign prostate hyperplasia and finasteride treat-
ment, which is a peripheral DHT conversion blocker. One
patient showed low DHT levels (178 pg/mL), low LVMi (62
g/m2), low fibrous tissue content (14 mL/m2), and pre-
served LVEF (55%), whereas the other one showed com-
parable DHT values to the rest of the male cohort (335 pg/
mL) and LVM, which was higher than in the three other
patients, however, still in normal range (73 g/m2) (normal
range for LVMi in male patients is >35 yr, 42–78 g/m2)
(18). LVEF was mildly decreased (53%) and fibrous tissue
content was mildly increased (15 mL/m2). The four male
patients all had severe AS (mean gradient across the aor-
tic valve: 40 mmHg, 48 mmHg, 49 mmHg, and 53 mmHg,
respectively).
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Figure 2. Serum dihydrotestosterone (DHT) levels correlate with left ventricular (LV) function. A and B: scatter diagrams with regression lines and 95%
confidence intervals representing the correlation between serum dihydrotestosterone (DHT) level and left ventricular (LV) ejection fraction in all subjects
and in female and male patients separately. C and D: circulatory efficiency correlates with serum DHT levels in all subjects and in female patients sepa-
rately. All subjects: n = 43, female: n = 15, male: n = 28, R, Pearson correlation coefficient.
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Figure 3. Serum dihydrotestosterone (DHT) levels corre-
late with prohypertrophic and profibrotic proteins. Scatter
diagrams with regression lines and 95% confidence inter-
val representing the correlation between serum dihydro-
testosterone (DHT) levels and protein abundance of
moesin (MSN; A) and vimentin (VIM; B) from left ventricular
myocardial biopsies. MSN: n = 25, VIM: n = 21, R, Pearson
correlation coefficient.
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DISCUSSION

With this explorative observational study, we provide new
insights into the association between higher serum DHT lev-
els and higher degree of cardiac hypertrophy, fibrosis, and
dysfunction in human patients with pressure overload due
to aortic valve stenosis before and after SAVR. Furthermore,
we describe a correlation between serum DHT levels and

expression levels of myocardial proteins associated with hy-
pertrophy and fibrosis.

DHT and the Degree of Remodeling in Pressure
Overload

Testosterone and its active metabolite DHT have been
shown to induce cardiac growth and dysfunction in cell
culture and animal models (2, 19–21). The enzyme 5a-re-
ductase is responsible for the conversion from testoster-
one to DHT, and the 5a-reductase blocker finasteride,
which is used for example in male patients with prostate
disease, leads to a reduction of DHT serum levels and has
been shown to attenuate pressure-induced cardiac hyper-
trophy in mice (2). In humans, testosterone serum levels
were associated with higher LVM in male patients with
type I diabetes (5). However, these patients did not suffer
from cardiac pressure overload and/or pathological car-
diac hypertrophy. In the present study, we demonstrate
for the first time that DHT is associated with adverse
myocardial remodeling in patients with severe AS and in
a small group of patients, antiandrogen therapy was asso-
ciated with favorable cardiac structure and function. In
addition, higher preoperative serum DHT levels in
patients with AS were associated with reduced myocar-
dial function and increased fibrosis after SAVR. We there-
fore speculate that DHT may contribute to adverse
outcomes in patients with severe AS.

In a large retrospective analysis, it was described that
finasteride treatment for prostate disease in male patients
with heart failure was associated with reduced LV septal
thickness (6). Prohypertrophic mechanisms of testosterone,
however, are not only interesting in male but also in female
patients. Women with polycystic ovary syndrome, for exam-
ple, suffer from hyperandrogenism and are known to have
an increased risk for LVH (22) and also female mice with
induced polycystic ovarian syndrome progressively devel-
oped cardiac hypertrophy (23). These data from the literature
suggest that testosterone may be associated with LVH also
independent of pressure overload.

R = 0.61, p = 0.0014

40

80

120

33.25 33.50 33.75

Protein abundance − MSN

LV
 m

as
s 

in
 g

/m
2

A
R = 0.49, p = 0.025

10

15

20

25

30

33.25 33.50 33.75

Protein abundance − MSN

F
ib

ro
us

 ti
ss

ue
 c

on
te

nt
 in

 m
l/m

2

B
R = 0.49, p = 0.0065

15

20

25

30

100 200 300 400 500

DHT in pg/ml

F
ib

ro
us

 ti
ss

ue
 c

on
te

nt
 in

 m
l/m

2

C

Figure 4. Correlation between serum dihydrotestosterone (DHT) levels and myocardial protein abundance with clinical parameters for hypertrophy and
fibrosis from magnetic resonance imaging. Scatter diagrams with regression lines and 95% confidence intervals representing the correlation between
protein abundance of moesin (MSN) and left ventricular (LV) muscle mass (A) and fibrous tissue content (B). Serum dihydrotestosterone (DHT) levels cor-
relate with fibrous tissue content (C). A: n = 25, B: n = 21, C: n = 28, R, Pearson correlation coefficient.

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
GC CAM

K2G

RHOA

M
AP2K

4

CALM
3

COL1
A1

COL3
A1

VIM M
SN

Ser
um

 D
HT

LV
 m

as
s

Fibr
ou

s t
iss

ue

GC

CAMK2G

RHOA

MAP2K4

CALM3

COL1A1

COL3A1

VIM

MSN

Serum DHT

LV mass

Fibrous tissue

Figure 5. Correlation between serum dihydrotestosterone (DHT) levels,
clinical imaging parameters, and protein abundances of selected hy-
pertrophy- and fibrosis-associated proteins. Blue dots represent signifi-
cant (P < 0.05), positive pairwise Pearson correlation coefficients.
CALM3, calmodulin-3; CAMK2G, calcium/calmodulin-dependent pro-
tein kinase II-c; COL1A1, collagen type I a1 chain; COL3A1, collagen type
III a1 chain; GC, guanylate cyclase; MAP2K4, mitogen-activated protein
kinase kinase 4; MSN, moesin; RHOA, Ras homolog family member A;
VIM, vimentin.

DIHYDROTESTOSTERONE IS ASSOCIATED WITH CARDIAC HYPERTROPHY

H954 AJP-Heart Circ Physiol � doi:10.1152/ajpheart.00288.2022 � www.ajpheart.org
Downloaded from journals.physiology.org/journal/ajpheart at Max Delbrueck Centrums Fuer Molekulare Medizin MDC (141.080.159.067) on October 31, 2022.

http://www.ajpheart.org


DHT and Myocardial Protein Expression Levels

At the molecular level, it is known that androgen recep-
tors are present in human and animal cardiac myocytes (3)
and that myocytes respond to androgens with a hyper-
trophic response (21). Thus, the cardiac muscle phenotype
can directly be regulated by androgenic steroids. The use
of anabolic steroids (as synthetic derivatives of the male
sex hormones testosterone), for example, was also shown
to be associated with cardiac hypertrophy in both, human
and animals (24) and low levels of DHT are described to be
protective against cardiac hypertrophy (25).

Our study showed that serum DHT levels correlated not
only with clinical parameters of hypertrophy and fibrosis but
also increased expression of hypertrophy (moesin)- and fi-
brosis (vimentin)-associated proteins in LV samples from
patients with severe AS. In addition, a positive correlation
between moesin and increased LVM, as well as increased fi-
brous tissue content, could be detected.

Moesin is part of the ezrin/radixin/moesin (ERM) com-
plex and can be activated by the cardiac sarcolemmal
Naþ /Hþ exchanger (NHE), which is associated with the
development of LV myocyte hypertrophy in animal stud-
ies (26–31). In human umbilical venous endothelial cells, it
could be demonstrated that testosterone induces andro-
gen receptor-mediated time- and dose-dependent increase
of moesin expression (32, 33). In line with these findings,
moesin activation was inhibited by the addition of the andro-
gen receptor antagonist hydroxyflutamide, emphasizing the
biological effectiveness of testosterone via androgen recep-
tor-mediated pathways (32).

Vimentin on the other hand is a cytoskeletal protein
present in fibroblasts and myofibroblasts and influencing
extracellular matrix composition (34). In a hormone-sensi-
tive human tumor cell line, it was also shown that DHT
enhanced the expression of vimentin (35).

In accordance with these findings from cell culture and ani-
mal studies, we can describe the association between higher se-
rum levels of DHT, increased moesin and vimentin expression
levels, and higher degree of cardiac hypertrophy and fibrosis in
patientswith severe AS. Aswe cannot demonstrate a causal rela-
tionship between DHT and cardiac hypertrophy and/or fibrosis,
we might, however, hypothesize a DHT-mediated increase in
moesin and vimentin expression, which in turnmight be associ-
ated with LVH and fibrosis. Future studies in animals with
reduced, normal, and increased DHT levels might help to ana-
lyze the causal effects of DHT on LVHandfibrosis.

DHT, but Not Estradiol, Was Associated with Cardiac
Remodeling in Elderly Patients with Aortic Valve
Stenosis

High levels of the female sex hormone estradiol have been
shown to attenuate pressure overload-induced hypertrophy in
both humans and animals (36, 37). Inmicemodels with induced
chronic pressure-overload, male mice show a higher proportion
of pathological cardiac hypertrophy than female mice (38). In
our cohort of elderly patients with AS (median age, 68 yr), how-
ever, an association between serum estradiol levels and cardiac
hypertrophy could not be described. Estradiol levels in post-
menopausal women are known to be low and not rarely below
the detection limit of regular laboratory tests (39). The samewas
true in our cohort, where 11/15 (73%) female patients had no
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detectable estradiol levels. Besides, there were only measure-
ments of estradiol levels and not of estrone, the dominant form
of estrogen, which may be altered in our predominantly post-
menopausal female patients with AS. If there could also be a
shift in the balance between DHT and estradiol/estrone levels
within the patients that might further influence the pathogene-
sis of cardiac remodeling and AS remains a matter of specula-
tion and cannot be answered based on our data.

Antiandrogenic Therapy – A Treatment Option to
Reduce Hypertrophy in Patients with Aortic Stenosis?

Data from cell culture, animal, and human studies, includ-
ing our own, show that male sex hormones influence cardiac
remodeling (3–5, 19, 21). As the degree of cardiac hypertrophy,
fibrosis, and dysfunction is known to have a negative impact
on patients’ morbidity and mortality, it seems tempting to
think about the use of antiandrogenic therapy to prevent car-
diac remodeling in patients with AS to improve outcome in
these patients (40, 41). In animal studies, a positive effect of
antiandrogen therapy (finasteride) on cardiac hypertrophy, fi-
brosis, and function could be described (2). As finasteride has
the ability to reduce DHT and to inhibit signal transduction in
cardiac myocytes, it might be a therapeutic option to reduce
LVH. In our study cohort, only a very small group of four male
patients happened to be on antiandrogenic therapy because of
prostate disease, and next to low levels of DHT, these patients
also showed low degree of adverse cardiac remodeling and
preserved cardiac function. However, wemust emphasize that
the small number of these patients receiving antiandrogenic
therapy is a study limitation and prohibits to draw causative
conclusions. It remains to be demonstrated if targeting DHT
might improve outcomes in patients with AS.

Conclusions

Higher DHT levels were associated with adverse myocar-
dial structure, function, and proteomic remodeling in
patients with severe AS. Future studies are needed to deter-
mine whether targeting DHT is effective in improving out-
comes in patients with AS.
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