Table of contents for "Towards reliable quantification of cell state velocities"

Valérie Marot-Lassauzaie², Brigitte Joanne Bouman², Fearghal Declan Donaghy, Yasmin Demerdash, Marieke Alida Gertruda Essers, Laleh Haghverdi^{*}

These authors contributed equally to this work.

* laleh.haghverdi@mdc-berlin.de

Table of contents

Introduction

Methods

Dynamical inference

The time scale over which average cell state velocities are reported

Scale invariance of gene-wise velocity components

First approach: κ -velo

Second approach: eco-velo

Visualisation

Nyström projection (velocity visualisation for κ -velo) Visualisation for eco-velo

Processing

Processing pipeline of κ -velo Processing pipeline of eco-velo Overview of the workflow for κ -velo and eco-velo Simulation data Real data

Results

PCA and Nyström projection faithfully represent the high-dimensional velocity vectors κ -velo recovers simulated velocities

Careful processing prevents introduction of artefacts

 $\kappa\text{-velo}$ explains cell state plasticities and speed of transcriptional change in pancreas endocrinogenesis

 κ -velo recovers multiple differentiation paths in hematopoietic system

Eco-velo approximates cell state velocities using minimal data processing and computation Computational efficiency of the methods

Data and software availability

Discussion

Supporting information

References